51
|
Walters K, Sarsenov R, Too WS, Hare RK, Paterson IC, Lambert DW, Brown S, Bradford JR. Comprehensive functional profiling of long non-coding RNAs through a novel pan-cancer integration approach and modular analysis of their protein-coding gene association networks. BMC Genomics 2019; 20:454. [PMID: 31159744 PMCID: PMC6547491 DOI: 10.1186/s12864-019-5850-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of cellular processes in diseases such as cancer, although the functions of most remain poorly understood. To address this, here we apply a novel strategy to integrate gene expression profiles across 32 cancer types, and cluster human lncRNAs based on their pan-cancer protein-coding gene associations. By doing so, we derive 16 lncRNA modules whose unique properties allow simultaneous inference of function, disease specificity and regulation for over 800 lncRNAs. Results Remarkably, modules could be grouped into just four functional themes: transcription regulation, immunological, extracellular, and neurological, with module generation frequently driven by lncRNA tissue specificity. Notably, three modules associated with the extracellular matrix represented potential networks of lncRNAs regulating key events in tumour progression. These included a tumour-specific signature of 33 lncRNAs that may play a role in inducing epithelial-mesenchymal transition through modulation of TGFβ signalling, and two stromal-specific modules comprising 26 lncRNAs linked to a tumour suppressive microenvironment and 12 lncRNAs related to cancer-associated fibroblasts. One member of the 12-lncRNA signature was experimentally supported by siRNA knockdown, which resulted in attenuated differentiation of quiescent fibroblasts to a cancer-associated phenotype. Conclusions Overall, the study provides a unique pan-cancer perspective on the lncRNA functional landscape, acting as a global source of novel hypotheses on lncRNA contribution to tumour progression. Electronic supplementary material The online version of this article (10.1186/s12864-019-5850-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin Walters
- School of Mathematics and Statistics, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Radmir Sarsenov
- Sheffield RNAi Screening Facility (SRSF), Department of Biomedical Science, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Wen Siong Too
- Sheffield RNAi Screening Facility (SRSF), Department of Biomedical Science, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Roseanna K Hare
- Department of Biomedical Science, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Daniel W Lambert
- Sheffield Institute for Nucleic Acids (SInFoNiA), Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Stephen Brown
- Sheffield RNAi Screening Facility (SRSF), Department of Biomedical Science, University of Sheffield, Sheffield, South Yorkshire, UK
| | - James R Bradford
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, South Yorkshire, UK. .,Almac Diagnostic Services, Craigavon, Northern Ireland, UK.
| |
Collapse
|
52
|
Zhao Z, Xiong S, Wang R, Li Y, Wang X, Wang Y, Bai S, Chen W, Zhao Y, Cheng B. Peri-tumor fibroblasts promote tumorigenesis and metastasis of hepatocellular carcinoma via Interleukin6/STAT3 signaling pathway. Cancer Manag Res 2019; 11:2889-2901. [PMID: 31118769 PMCID: PMC6489558 DOI: 10.2147/cmar.s192263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Because many hepatocellular carcinoma (HCC) cases develop from fibrotic or cirrhotic livers, fibroblasts are abundant in the microenvironment of HCC. Although the contribution of cancer-associated fibroblasts (CAFs) to the progression of HCC is well established, the role of fibroblasts has not been comprehensively revealed. Patients and methods: The RayBio Human Cytokine Antibody Array was used to elucidate the role of peri-tumor fibroblasts (PTFs) in promoting malignant properties of HCC. IL-6 and STAT3 signaling were inhibited in both HCC cell lines and non-tumor L-02 liver cells to further determine its role in the progression of HCC. Moreover, the expression of IL-6 and pTyr705 STAT3 was detected in HCC samples and peri-tumor liver tissues by immunohistochemical staining. Results: PTFs not only promoted the proliferation, invasion, and metastasis of liver cancer cells, but also stimulated the permanent malignant transformation of human non-tumor L-02 liver cells, resulting in hepatocarcinogenesis in vivo. The RayBio Human Cytokine Antibody Array indicated that PTFs secreted a higher level of soluble IL-6 than CAFs. IL-6 derived from PTFs greatly activated STAT3 Tyr705 phosphorylation in both non-tumor L-02 cells and HCC cells. IL-6-neutralizing antibody and STAT3 Tyr705 phosphorylation inhibitor, cryptotanshinone, largely abolished the positive effects of PTFs on HCC carcinogenesis and progression. Moreover, high expression of pTyr705 STAT3 in peri-tumor tissues was significantly correlated with tumor recurrence rate after three years in a postsurgical follow-up with patients with HCC. Conclusion: These results indicated that PTFs induce carcinogenesis and development of HCC via IL-6 and STAT3 signaling.
Collapse
Affiliation(s)
- Zhenxiong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yawen Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
53
|
Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 2019; 18:63. [PMID: 30927923 PMCID: PMC6441173 DOI: 10.1186/s12943-019-0983-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor microenvironment (TME) is comprised of many different cell populations, such as cancer-associated fibroblasts and various infiltrating immune cells, and non-cell components of extracellular matrix. These crucial parts of the surrounding stroma can function as both positive and negative regulators of all hallmarks of cancer development, including evasion of apoptosis, induction of angiogenesis, deregulation of the energy metabolism, resistance to the immune detection and destruction, and activation of invasion and metastasis. This review represents a summary of recent studies focusing on describing these effects of microenvironment on initiation and progression of the head and neck squamous cell carcinoma, focusing on oral squamous cell carcinoma, since it is becoming clear that an investigation of differences in stromal composition of the head and neck squamous cell carcinoma microenvironment and their impact on cancer development and progression may help better understand the mechanisms behind different responses to therapy and help define possible targets for clinical intervention.
Collapse
Affiliation(s)
- Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595,, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
54
|
Wen Q, Xu C, Zhou J, Liu NM, Cui YH, Quan MF, Cao JG, Ren KQ. 8-bromo-7-methoxychrysin suppress stemness of SMMC-7721 cells induced by co-culture of liver cancer stem-like cells with hepatic stellate cells. BMC Cancer 2019; 19:224. [PMID: 30866863 PMCID: PMC6416872 DOI: 10.1186/s12885-019-5419-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 02/27/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Our previous works have demonstrated that 8-bromo-7-methoxychrysin suppressed stemness of human hepatocellular carcinoma (HCC) cell line SMMC-7721 induced by condition medium from hepatic stellate cell line LX-2 that was activated by liver cancer stem-like cells (LCSCs). However, whether and whereby BrMC inhibits the stemness induced by co-culture of LCSCs and LX-2 cells remains to be investigated. METHODS The second-generation spheres by sphere culture were identified and used as SMMC-7721-and MHCC97H-derived LCSLCs. SMMC-7721-and MHCC97-derived LCSCs/LX-2 cells transwell co-culture system was treated with BrMC and its lead compound chrysin. The concentrations of IL-6, IL-8, HGF and PDGF in condition medium from co-culture were measured by enzyme-linked immunosorbent assay (ELISA). The stemness of SMMC-7721 cells was evaluated by sphere formation assay and western blot analysis for expression levels of cancer stem cell markers (CD133 and CD44).The expression levels of cancer-associated fibroblast markers (FAP-α and α-SMA) were employed to evaluate pathologic activation of LX-2 cells. Addition of IL-6 and/or HGF or deletion of IL-6 and/or HGF was conducted to investigate the mechanisms for BrMC and chrysin treatment in SMMC-7721-derived LCSLCs co-cultured with LX-2cells. RESULTS The co-culture of LCSLCs with LX-2 cells increased sphere formation capability as well as expression of CD133 and CD44 in SMMC-7721 cells, meanwhile, upregulated expression of FAP-α in LX-2 cells. ELISA indicated that the concentrations of IL-6 and HGF were significantly elevated in Co-CM than that of condition media from co-cultured SMMC-7721 cells/LX-2 cells. Treatment of BrMC and chrysin with co-cultures of SMMC-7721- and MHCC97H-derived LCSLCs and LX-2 cells effectively inhibited the above responses. Moreover, addition of IL-6 and/or HGF induced stemness of SMMC-7721 cells and activation of LX-2 cells, conversely, deletion of IL-6 and/or HGF suppressed those. Furthermore, the inhibitory effects of BrMC and chrysin on stemness of SMMC-7721 cells and activation of LX-2 cells were attenuated by addition of IL-6 or HGF, and enhanced by deletion of IL-6 or HGF. CONCLUSIONS Our results suggest IL-6 and HGF may be the key communication molecules for the interaction between LCSLCs and HSCs, and BrMC and chrysin could block these effects and be the novel therapeutic candidates for HCC management.
Collapse
Affiliation(s)
- Qi Wen
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Chang Xu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Jie Zhou
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Nuo-Min Liu
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Ying-Hong Cui
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Mei-Fang Quan
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Jian-Guo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| | - Kai-qun Ren
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, 410013 China
- Key Laboratory of Study and Discover of Small Targeted Molecules of Hunan Province, Changsha, 410013 China
| |
Collapse
|
55
|
Chen L, Qin Y, Zhang T, Ding N, Chen Y, Zhang Z, Guo C. Clinical significance of cancer-associated fibroblasts and their correlation with microvessel and lymphatic vessel density in lung adenocarcinoma. J Clin Lab Anal 2019; 33:e22832. [PMID: 30737838 PMCID: PMC6528563 DOI: 10.1002/jcla.22832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Background To determine whether cancer‐associated fibroblasts (CAFs) are associated with microvessel density (MVD) and lymphatic vessel density (LVD) in lung adenocarcinoma (ADC) or are not prognostic. Methods Ninety‐three lung adenocarcinoma patients without adjuvant therapy between January 2010 and June 2011 were enrolled. CAFs, MVD, and LVD were identified by α‐smooth muscle actin (α‐SMA), CD34 and D2‐40 staining via immunohistochemistry. Staining intensities were assessed and quantified. For statistics, Pearson's chi‐square test, logistic regression, Kaplan‐Meier, and log‐rank tests were applied. In addition, the Cox proportional hazards model was used for multifactor analysis to predict survival. Results CAFs abundance in lung adenocarcinoma is associated with higher MVD and LVD. In addition, a correlation was demonstrated between MVD and LVD (P < 0.05). CAFs, MVD, and LVD are significantly correlating with age, tumor size, differentiation grade, clinical stage, and lymph node metastasis (P < 0.05), but not influenced by gender, tumor location, and smoking history. Three‐year overall survival in the CAFs‐poor group is 64.5%, which is significant higher than that in the CAFs‐rich cohort (41.9%). Further, we found that age, clinical stage, α‐SMA, CD34, D2‐40 positivity, tumor size, differentiation grade, and lymph node metastasis significantly correlate with overall survival of patients with lung adenocarcinoma. However, sex, smoking history, and tumor location have no association with 3‐year survival. The clinical stage is an independent prognostic factor in overall survival (P < 0.05). Conclusions The density of CAFs identified by α‐SMA staining is associated with progression and metastasis of lung adenocarcinoma and affects the patient's disease outcome.
Collapse
Affiliation(s)
- Ling Chen
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Yue Qin
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Tenglong Zhang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Ning Ding
- Department of Oncology, University of Qingdao Medical School, Qingdao, China
| | - Yi Chen
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Zhe Zhang
- Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Chengye Guo
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
56
|
Wang FT, Sun W, Zhang JT, Fan YZ. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett 2019; 17:3055-3065. [PMID: 30867734 PMCID: PMC6396119 DOI: 10.3892/ol.2019.9973] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Adequate blood supply is essential for tumor survival, growth and metastasis. The tumor microenvironment (TME) is dynamic and complex, comprising cancer cells, cancer-associated stromal cells and their extracellular products. The TME serves an important role in tumor progression. Cancer-associated fibroblasts (CAFs) are the principal component of stromal cells within the TME, and contribute to tumor neo-angiogenesis by altering the proteome and degradome. The present paper reviews previous studies of the molecular signaling pathways by which CAFs promote tumor neo-angiogenesis and highlights therapeutic response targets. Also discussed are potential strategies for antitumor neo-angiogenesis to improve tumor treatment efficacy.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wei Sun
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jing-Tao Zhang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
57
|
Cancer-associated fibroblasts promote the stemness of CD24 + liver cells via paracrine signaling. J Mol Med (Berl) 2018; 97:243-255. [PMID: 30564864 DOI: 10.1007/s00109-018-1731-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs), which support tumor progress in hepatocellular carcinoma (HCC) developed in fibrotic or cirrhotic livers, are regulated by the tumor microenvironment. Cancer-associated fibroblasts (CAFs) are the major component of the tumor stroma in HCC; however, the mechanisms by which CAFs contribute to stemness maintenance remain largely unknown. Here, we found that the expression of CD24 was high in HCC tissues compared with adjacent normal liver tissues, and positively correlated with the poor prognosis and α-SMA expression in CAFs. CD24+ cells isolated from HCC cell lines exhibited stemness properties of self-renewal, chemotherapy resistance, metastasis, and tumorigenicity in NOD/SCID mice. Moreover, CAF-derived HGF and IL6 enhanced the stemness properties of CD24+ cells via activating STAT3 Tyr705 phosphorylation. Blockade of HGF/c-Met or IL6/IL6R signaling significantly abolished the effect of CAFs on stemness properties, which compromised the activation of STAT3 pathway in CD24+ cells. Meanwhile, knockdown of STAT3 in CD24+ cells notably attenuated CAF-induced stemness characteristics of CD24+ cells. Furthermore, in HCC patients, higher expression of phospho-STAT3 was also demonstrated to be positively correlated with poor clinical outcomes. In summary, HGF and IL6 secreted by CAFs promoted the stemness properties of CD24+ cells through the phosphorylation of STAT3 signaling, and targeting the paracrine pathways may provide a new therapeutic strategy for HCC. KEY MESSAGES: CD24, identified as a marker for HCC CSCs, was positively correlated with the poor prognosis and α-SMA expression in CAFs. CAFs promoted self-renewal, chemotherapy resistance, metastasis, and tumorigenicity of CD24+ HCC cells. HGF and IL6 secreted by CAFs promoted the stemness properties of CD24+ HCC cells through the phosphorylation of STAT3.
Collapse
|
58
|
Rho–ROCK signaling regulates tumor-microenvironment interactions. Biochem Soc Trans 2018; 47:101-108. [DOI: 10.1042/bst20180334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
Abstract
Reciprocal biochemical and biophysical interactions between tumor cells, stromal cells and the extracellular matrix (ECM) result in a unique tumor microenvironment that determines disease outcome. The cellular component of the tumor microenvironment contributes to tumor growth by providing nutrients, assisting in the infiltration of immune cells and regulating the production and remodeling of the ECM. The ECM is a noncellular component of the tumor microenvironment and provides both physical and biochemical support to the tumor cells. Rho–ROCK signaling is a key regulator of actomyosin contractility and regulates cell shape, cytoskeletal arrangement and thereby cellular functions such as cell proliferation, differentiation, motility and adhesion. Rho–ROCK signaling has been shown to promote cancer cell growth, migration and invasion. However, it is becoming clear that this pathway also regulates key tumor-promoting properties of the cellular and noncellular components of the tumor microenvironment. There is accumulating evidence that Rho–ROCK signaling enhances ECM stiffness, modifies ECM composition, increases the motility of tumor-associated fibroblasts and lymphocytes and promotes trans-endothelial migration of tumor-associated lymphocytes. In this review, we briefly discuss the current state of knowledge on the role of Rho–ROCK signaling in regulating the tumor microenvironment and the implications of this knowledge for therapy, potentially via the development of selective inhibitors of the components of this pathway to permit the tuning of signaling flux, including one example with demonstrated utility in pre-clinical models.
Collapse
|
59
|
Kong J, Zhao H, Shang Q, Ma Z, Kang N, Tan J, Ahmed Ibrahim Alraimi H, Liu T. Establishment and characterization of a carcinoma-associated fibroblast cell line derived from a human salivary gland adenoid cystic carcinoma. ACTA ACUST UNITED AC 2018; 24:11-18. [PMID: 29734861 DOI: 10.1080/15419061.2018.1464000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Salivary gland adenoid cystic carcinoma (SACC) is one of the most common malignancies in the oral and maxillofacial region. Carcinoma-associated fibroblast (CAF) is an important component in the tumor microenvironment and participates in SACC progression. In this study, we established a CAF cell line derived from a human SACC and named it CAF-SA. It was identified that CAF-SA expressed typical CAF biomarkers. Then, we studied the cellular communications between CAF-SA, tumor cells and endothelial cells. It was found that CAF-SA promoted the migration, invasion, and proliferation of SACC tumor cells in vitro. In addition, tube formation by endothelial cells was enhanced by CAF-SA. In vivo experiment showed that SACC cells formed larger xenografts in nude mice when they were transplanted with CAF-SA. Overall, we demonstrated that CAF-SA exhibited the most important defining feature of CAF by promoting cancer progression.
Collapse
Affiliation(s)
- Jing Kong
- a College of Stomatology , Dalian Medical University , Dalian , China
| | - Han Zhao
- a College of Stomatology , Dalian Medical University , Dalian , China
| | - Qianhui Shang
- a College of Stomatology , Dalian Medical University , Dalian , China
| | - Zhifei Ma
- a College of Stomatology , Dalian Medical University , Dalian , China
| | - Ni Kang
- a College of Stomatology , Dalian Medical University , Dalian , China
| | - Junling Tan
- a College of Stomatology , Dalian Medical University , Dalian , China
| | | | - Tingjiao Liu
- a College of Stomatology , Dalian Medical University , Dalian , China
| |
Collapse
|
60
|
Brcal Defective Breast Cancer Cells Induce in vitro Transformation of Cancer Associated Fibroblasts (CAFs) to Metastasis Associated Fibroblasts (MAF). Sci Rep 2018; 8:13903. [PMID: 30224826 PMCID: PMC6141525 DOI: 10.1038/s41598-018-32370-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023] Open
Abstract
It is known that Cancer Associated Fibroblast (CAFs) from the primary tumor site can accompany cancer cells to a secondary site during the process of metastasis. We hypothesize that these CAFs could be transformed to an altered cell type, which can be called as Metastasis Associated Fibroblasts (MAF) in turn can support, and convoy cancer cells for metastasis. There are no published reports that have characterized and distinguished CAFs from MAF. It is well established that some of the cancer cells within the tumor mass accumulate novel mutations prior to metastasis. Hence, we speculated that mutations in the tumor suppressor gene, BRCA1, which is already reported to induce metastasis via abnormal expression of Ezrin, Radixin and Moesin (ERM), could generate MAF. In the present study, we demonstrate for the first time that CAFs isolated from primary breast cancer tissues when co-cultured with BRCA1 mutated HCC1937 cells transform CAFs to MAF in vitro. As expected, MAF augmented proliferation, migration and invasion along with over-expression of epithelial mesenchymal transition (EMT) markers, Ezrin and CCL5, thereby facilitating metastasis. Therefore, we inhibited Ezrin and CCL5 in vitro in MAF and observed that the migration and invasion abilities of these cells were attenuated. This highlights the intriguing possibilities of combination therapy using MAF inhibitors as anti-metastatic agents along with anticancer drugs, to control the metastatic spread from primary tumor site.
Collapse
|
61
|
Dörsam B, Bösl T, Reiners KS, Barnert S, Schubert R, Shatnyeva O, Zigrino P, Engert A, Hansen HP, von Strandmann EP. Hodgkin Lymphoma-Derived Extracellular Vesicles Change the Secretome of Fibroblasts Toward a CAF Phenotype. Front Immunol 2018; 9:1358. [PMID: 29967610 PMCID: PMC6015880 DOI: 10.3389/fimmu.2018.01358] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Secretion of extracellular vesicles (EVs) is a ubiquitous mechanism of intercellular communication based on the exchange of effector molecules, such as growth factors, cytokines, and nucleic acids. Recent studies identified tumor-derived EVs as central players in tumor progression and the establishment of the tumor microenvironment (TME). However, studies on EVs from classical Hodgkin lymphoma (cHL) are limited. The growth of malignant Hodgkin and Reed–Sternberg (HRS) cells depends on the TME, which is actively shaped by a complex interaction of HRS cells and stromal cells, such as fibroblasts and immune cells. HRS cells secrete cytokines and angiogenic factors thus recruiting and inducing the proliferation of surrounding cells to finally deploy an immunosuppressive TME. In this study, we aimed to investigate the role of tumor cell-derived EVs within this complex scenario. We observed that EVs collected from Hodgkin lymphoma (HL) cells were internalized by fibroblasts and triggered their migration capacity. EV-treated fibroblasts were characterized by an inflammatory phenotype and an upregulation of alpha-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts. Analysis of the secretome of EV-treated fibroblast revealed an enhanced release of pro-inflammatory cytokines (e.g., IL-1α, IL-6, and TNF-α), growth factors (G-CSF and GM-CSF), and pro-angiogenic factors such as VEGF. These soluble factors are known to promote HL progression. In line, ingenuity pathway analysis identified inflammatory pathways, including TNF-α/NF-κB-signaling, as key factors directing the EV-dependent phenotype changes in fibroblasts. Confirming the in vitro data, we demonstrated that EVs promote α-SMA expression in fibroblasts and the expression of proangiogenic factors using a xenograft HL model. Collectively, we demonstrate that HL EVs alter the phenotype of fibroblasts to support tumor growth, and thus shed light on the role of EVs for the establishment of the tumor-promoting TME in HL.
Collapse
Affiliation(s)
- Bastian Dörsam
- Clinic for Hematology, Oncology and Immunology, Experimental Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Teresa Bösl
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Katrin S Reiners
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sabine Barnert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University, Freiburg, Germany
| | - Olga Shatnyeva
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology, University Hospital of Cologne, Cologne, Germany
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Elke Pogge von Strandmann
- Clinic for Hematology, Oncology and Immunology, Experimental Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.,Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
62
|
Wang M, Sun Y, Xu J, Lu J, Wang K, Yang DR, Yang G, Li G, Chang C. Preclinical studies using miR-32-5p to suppress clear cell renal cell carcinoma metastasis via altering the miR-32-5p/TR4/HGF/Met signaling. Int J Cancer 2018; 143:100-112. [PMID: 29396852 DOI: 10.1002/ijc.31289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
While testicular nuclear receptor 4 (TR4) may promote prostate cancer (PCa) metastasis, its role in the clear cell renal cell carcinoma (ccRCC) remains unclear. Here we found a higher expression of TR4 in ccRCC tumors from patients with distant metastases than those from metastasis-free patients, suggesting TR4 may play positive roles in the ccRCC metastasis. Results from multiple in vitro ccRCC cell lines also confirmed TR4's positive roles in promoting ccRCC cell invasion/migration via altering the microRNA (miR-32-5p)/TR4/HGF/Met/MMP2-MMP9 signaling. Mechanism dissection revealed that miR-32-5p could suppress TR4 protein expression levels via direct binding to the 3'UTR of TR4 mRNA, and TR4 might then alter the HGF/Met signaling at the transcriptional level via direct binding to the TR4-response-elements (TR4RE) on the HGF promoter. Then the in vitro data also demonstrated the efficacy of Sunitinib, a currently used drug to treat ccRCC, could be increased after targeting this newly identified miR-32-5p/TR4/HGF/Met signaling. The preclinical study using the in vivo mouse model with xenografted ccRCC cells confirmed the in vitro cell lines data. Together, these findings suggest that TR4 is a key player to promote ccRCC metastasis and targeting this miR-32-5p/TR4/HGF/Met signaling with small molecules including TR4-shRNA or miR-32-5p may help to develop a new therapy to better suppress the ccRCC metastasis.
Collapse
Affiliation(s)
- Mingchao Wang
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Junjie Xu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Jieyang Lu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Kefeng Wang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Dong-Rong Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Guosheng Yang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642
| | - Gonghui Li
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, 14642.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan
| |
Collapse
|
63
|
Rhee H, Kim HY, Choi JH, Woo HG, Yoo JE, Nahm JH, Choi JS, Park YN. Keratin 19 Expression in Hepatocellular Carcinoma Is Regulated by Fibroblast-Derived HGF via a MET-ERK1/2-AP1 and SP1 Axis. Cancer Res 2018; 78:1619-1631. [PMID: 29363547 DOI: 10.1158/0008-5472.can-17-0988] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/12/2017] [Accepted: 01/18/2018] [Indexed: 11/16/2022]
Abstract
Keratin (KRT) 19 is a poor prognostic marker for hepatocellular carcinoma (HCC); however, regulatory mechanisms underlying its expression remain unclear. We have previously reported the presence of fibrous tumor stroma in KRT19-positive HCC, suggesting that cross-talk between cancer-associated fibroblasts (CAF) and tumor epithelial cells could regulate KRT19 expression. This was investigated in this study using an in vitro model of paracrine interaction between HCC cell lines (HepG2, SNU423) and hepatic stellate cells (HSC), a major source of hepatic myofibroblasts. HSCs upregulated transcription and translation of KRT19 in HCC cells via paracrine interactions. Mechanistically, hepatocyte growth factor (HGF) from HSCs activated c-MET and the MEK-ERK1/2 pathway, which upregulated KRT19 expression in HCC cells. Furthermore, AP1 (JUN/FOSL1) and SP1, downstream transcriptional activators of ERK1/2, activated KRT19 expression in HCC cells. In clinical specimens of human HCC (n = 339), HGF and KRT19 protein expression correlated with CAF levels. In addition, HGF or MET protein expression was associated with FOSL1 and KRT19 expression and was found to be a poor prognostic factor. Analysis of data from The Cancer Genome Atlas also revealed KRT19 expression was closely associated with CAF and MET-mediated signaling activities. These results provide insights into the molecular background of KRT19-positive HCC that display an aggressive phenotype.Significance: These findings reveal KRT19 expression in hepatocellular carcinoma is regulated by cross-talk between cancer-associated fibroblasts and HCC cells, illuminating new therapeutic targets for this aggressive disease. Cancer Res; 78(7); 1619-31. ©2018 AACR.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Young Kim
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Jeong Eun Yoo
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hae Nahm
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Sub Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
64
|
Petrizzo A, Mauriello A, Tornesello ML, Buonaguro FM, Tagliamonte M, Buonaguro L. Cellular prognostic markers in hepatitis-related hepatocellular carcinoma. Infect Agent Cancer 2018; 13:10. [PMID: 29599818 PMCID: PMC5870199 DOI: 10.1186/s13027-018-0183-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and accounts for about 6% of all new cancers diagnosed worldwide. Moreover, it is the third and the fifth leading cause of death from cancer in men and women, respectively. HBV and HCV chronic infection is the main risk factor for HCC. A range of therapies are used in the management of HCC according to the extent and severity of liver disease. In this perspective, evaluation of prognosis represents a crucial step for proper management of HCC patients. However, the clinical outcome can be significantly different in HCC patients within the same stage of disease. Therefore, many efforts have been made to define new parameters with more precise prognostic value, and the search for HCC prognostic markers is gaining momentum. The present review aims at providing an update on cellular prognostic markers for HCC.
Collapse
Affiliation(s)
- A. Petrizzo
- Laboratory of Cancer Immunoregulation, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” – IRCCS, Via Mariano Semmola, 1, 80131 Naples, Italy
| | - A. Mauriello
- Laboratory of Cancer Immunoregulation, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” – IRCCS, Via Mariano Semmola, 1, 80131 Naples, Italy
| | - M. L. Tornesello
- Lab Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” – IRCCS, Via Mariano Semmola, 1, 80131 Naples, Italy
| | - F. M. Buonaguro
- Lab Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” – IRCCS, Via Mariano Semmola, 1, 80131 Naples, Italy
| | - M. Tagliamonte
- Laboratory of Cancer Immunoregulation, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” – IRCCS, Via Mariano Semmola, 1, 80131 Naples, Italy
| | - L. Buonaguro
- Laboratory of Cancer Immunoregulation, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” – IRCCS, Via Mariano Semmola, 1, 80131 Naples, Italy
- Lab Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” – IRCCS, Via Mariano Semmola, 1, 80131 Naples, Italy
| |
Collapse
|
65
|
Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int 2018; 18:44. [PMID: 29568237 PMCID: PMC5859782 DOI: 10.1186/s12935-018-0538-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, accounting for almost 90% of total liver cancer burden. Surgical resection followed by adjuvant and systemic chemotherapy are the most meticulously followed treatment procedures but the complex etiology and high metastatic potential of the disease renders surgical treatment futile in majority of the cases. Another hindrance to the scenario is the acquired resistance to drugs resulting in relapse of the disease. Hence, to provide insights into development of novel therapeutic targets and diagnostic biomarkers, this review focuses on the various molecular mechanisms underlying chemoresistance in HCC. We have provided a comprehensive summary of the various strategies adopted by HCC cells, extending from apoptosis evasion, autophagy activation, drug expulsion to epigenetic transformation as modes of therapy resistance. The role of stem cells in imparting chemoresistance is also discussed. Furthermore, the review also focuses on how this knowledge might be exploited for the development of an effective, prospective therapy against HCC.
Collapse
Affiliation(s)
- K Lohitesh
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Rajdeep Chowdhury
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| | - Sudeshna Mukherjee
- Department of Biological-Sciences, Birla Institute of Technology and Sciences (BITS), Campus, VidyaVihar, Pilani, Rajasthan 333031 India
| |
Collapse
|
66
|
Wang L, Yang D, Tian J, Gao A, Shen Y, Ren X, Li X, Jiang G, Dong T. Tumor necrosis factor receptor 2/AKT and ERK signaling pathways contribute to the switch from fibroblasts to CAFs by progranulin in microenvironment of colorectal cancer. Oncotarget 2018; 8:26323-26333. [PMID: 28412748 PMCID: PMC5432260 DOI: 10.18632/oncotarget.15461] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/06/2017] [Indexed: 12/01/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are a crucial cellular component in tumor microenvironment and could promote tumor progression. CAFs are usually derived from resident fibroblasts, which undergoing an activated process stimulated by tumor cells. However, the agents and mechanism driving this switch have not yet been elucidated. Progranulin (PGRN), a well acknowledged secreted glycoprotein, could promote proliferation and angiogenesis of colorectal cancer (CRC) cells, and high expression of PGRN correlated with patient poor prognosis. Whether PGRN has effects on the function of stromal fibroblasts is unknown. Herein we found that there was a positive correlation between PGRN expression of CRC cells and expressions of smooth muscle actin α (α-SMA) on CAFs in CRC patient tissues. PGRN/α-SMA co-expression was positively correlated with CRC patient poor prognosis. Co-cultured with CRC cells or human recombinant PGRN (rPGRN), the expression of Ki67, fibroblast activation protein (FAP) and α-SMA in fibroblasts were all up-regulated significantly, accompanying with elevated cellular proliferation, migration and contraction. Whilst co-cultured with PGRN-silenced CRC cells, these functions were down-regulated. Studies of the underlying molecular mechanism demonstrated that either tumor necrosis factor receptor 2 (TNFR2)/Akt or the extracellular regulated kinase (ERK) signaling pathway contributed to modulate of Ki67, FAP, and α-SMA expression, and correlated to abilities of proliferation, migration and contraction in fibroblasts. In conclusion, PGRN plays an important role in activation of CRC fibroblasts, which may be taken as a prospective target of CRC therapy.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, Shandong 250117, P. R. China.,Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R.China
| | - Dong Yang
- Department of Oncology, Affiliated hospital of Jining Medical College, Jining, Shandong 272129, P. R. China
| | - Jing Tian
- Department of Oncology, People's Hospital of Zhangqiu City, Zhangqiu, Shandong 250200, P. R. China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R.China
| | - Yihang Shen
- Programs of Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Xia Ren
- Key Medical Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Key Laboratory for Rare and Uncommon Diseases of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250012, P. R. China
| | - Xia Li
- Key Medical Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Key Laboratory for Rare and Uncommon Diseases of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250012, P. R. China
| | - Guosheng Jiang
- Key Medical Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Key Laboratory for Rare and Uncommon Diseases of Shandong, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250012, P. R. China
| | - Taotao Dong
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
67
|
Abstract
During development of a novel treatment for cancer patients, the tumor microenvironment and its interaction with the tumor cells must be considered. Aspects such as the extracellular matrix (ECM), the epithelial-mesenchymal transition (EMT), secreted factors, cancer-associated fibroblasts (CAFs), the host immune response, and tumor-associated microphages (TAM) are critical for cancer progression and metastasis. Additionally, signaling pathways such as the nuclear factor κB (NF-κB), transforming growth factor β (TGFβ), and tumor necrosis factor α (TNFα) can promote further cytokine release in the tumor environment, and impact tumor progression greatly. Importantly, cytokine overexpression has been linked to drug resistance in cancers and is therefore an attractive target for combinational therapies. Specific inhibitors of cytokines involved in signaling between tumor cells and the microenvironment have not been studied in depth and have great potential for use in personalized medicines. Together, the interactions between the microenvironment and tumors are critical for tumor growth and promotion and should be taken into serious consideration for future novel therapeutic approaches.
Collapse
|
68
|
Oliveira AG, Araújo TG, Carvalho BDM, Rocha GZ, Santos A, Saad MJA. The Role of Hepatocyte Growth Factor (HGF) in Insulin Resistance and Diabetes. Front Endocrinol (Lausanne) 2018; 9:503. [PMID: 30214428 PMCID: PMC6125308 DOI: 10.3389/fendo.2018.00503] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
In obesity, insulin resistance (IR) and diabetes, there are proteins and hormones that may lead to the discovery of promising biomarkers and treatments for these metabolic disorders. For example, these molecules may impair the insulin signaling pathway or provide protection against IR. Thus, identifying proteins that are upregulated in IR states is relevant to the diagnosis and treatment of the associated disorders. It is becoming clear that hepatocyte growth factor (HGF) is an important component of the pathophysiology of IR, with increased levels in most common IR conditions, including obesity. HGF has a role in the metabolic flux of glucose in different insulin sensitive cell types; plays a key role in β-cell homeostasis; and is capable of modulating the inflammatory response. In this review, we discuss how, and to what extent HGF contributes to IR and diabetes pathophysiology, as well as its role in cancer which is more prevalent in obesity and diabetes. Based on the current literature and knowledge, it is clear that HGF plays a central role in these metabolic disorders. Thus, HGF levels could be employed as a biomarker for disease status/progression, and HGF/c-Met signaling pathway modulators could effectively regulate IR and treat diabetes.
Collapse
Affiliation(s)
- Alexandre G. Oliveira
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- *Correspondence: Alexandre G. Oliveira
| | - Tiago G. Araújo
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Bruno de Melo Carvalho
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Mario J. A. Saad
| |
Collapse
|
69
|
Novikova MV, Khromova NV, Kopnin PB. Components of the Hepatocellular Carcinoma Microenvironment and Their Role in Tumor Progression. BIOCHEMISTRY (MOSCOW) 2017; 82:861-873. [PMID: 28941454 DOI: 10.1134/s0006297917080016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes recently published data on the mechanisms of tumor cell interaction with the tumor microenvironment. Tumor stroma influences the processes of hepatocarcinogenesis, epithelial-to-mesenchymal transition, invasion, and metastasis. The tumor microenvironment includes both cellular and noncellular components. Main cellular components of hepatocellular carcinoma (HCC) stroma are tumor-associated fibroblasts, hepatic stellate cells, immune cells, and endothelial cells that produce extracellular components of tumor microenvironment such as extracellular matrix, various proteins, proteolytic enzymes, growth factors, and cytokines. The noncellular components of the stroma modulate signaling pathways in tumor cells and stimulate invasion and metastasis. The tumor microenvironment composition and organization can serve as prognostic factors in HCC pathogenesis. Current approaches in HCC targeted therapy are aimed at creating efficient strategies for interrupting tumor interactions with the stroma. Recent data on the composition and role of the microenvironment in HCC pathogenesis, as well as new developments in antitumor drug design are discussed.
Collapse
Affiliation(s)
- M V Novikova
- Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, 115478, Russia.
| | | | | |
Collapse
|
70
|
Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol Lett 2017; 14:2611-2620. [PMID: 28927027 PMCID: PMC5588104 DOI: 10.3892/ol.2017.6497] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 05/08/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblasts in the tumor stroma are well recognized as having an indispensable role in carcinogenesis, including in the initiation of epithelial tumor formation. The association between cancer cells and fibroblasts has been highlighted in several previous studies. Regulation factors released from cancer-associated fibroblasts (CAFs) into the tumor microenvironment have essential roles, including the support of tumor growth, angiogenesis, metastasis and therapy resistance. A mutual interaction between tumor-induced fibroblast activation, and fibroblast-induced tumor proliferation and metastasis occurs, thus CAFs act as tumor supporters. Previous studies have reported that by developing fibroblast-targeting drugs, it may be possible to interrupt the interaction between fibroblasts and the tumor, thus resulting in the suppression of tumor growth, and metastasis. The present review focused on the reciprocal feedback loop between fibroblasts and cancer cells, and evaluated the potential application of anti-CAF agents in the treatment of cancer.
Collapse
Affiliation(s)
- Leilei Tao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
71
|
Sun Y, Fan X, Zhang Q, Shi X, Xu G, Zou C. Cancer-associated fibroblasts secrete FGF-1 to promote ovarian proliferation, migration, and invasion through the activation of FGF-1/FGFR4 signaling. Tumour Biol 2017; 39:1010428317712592. [PMID: 28718374 DOI: 10.1177/1010428317712592] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, due to its high propensity for metastasis. Cancer-associated fibroblasts, as the dominant component of tumor microenvironment, are crucial for tumor progression. However, the mechanisms underlying the regulation of ovarian cancer cells by cancer-associated fibroblasts remain little known. Here, we first isolated cancer-associated fibroblasts from patients' ovarian tissues and found that cancer-associated fibroblasts promoted SKOV3 cells' proliferation, migration, and invasion. Fibroblast growth factor-1 was identified as a highly increased factor in cancer-associated fibroblasts compared with normal fibroblasts by quantitative reverse transcription polymerase chain reaction (~4.6-fold, p < 0.01) and ELISA assays (~4-fold, p < 0.01). High expression of fibroblast growth factor-1 in cancer-associated fibroblasts either naturally or through gene recombination led to phosphorylation of fibroblast growth factor receptor 4 in SKOV3 cells, which is followed by the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathway and epithelial-to-mesenchymal transition-associated gene Snail1 and MMP3 expression. Moreover, treatment of SKOV3 cell with fibroblast growth factor receptor inhibitor PD173074 terminated cellular proliferation, migration, and invasion, reduced the phosphorylation level of fibroblast growth factor receptor 4, and suppressed the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathway. In addition, the expression level of Snail1 and MMP3 was reduced, while the expression level of E-cadherin increased. These observations suggest a crucial role for cancer-associated fibroblasts and fibroblast growth factor-1/fibroblast growth factor receptor 4 signaling in the progression of ovarian cancer. Therefore, this fibroblast growth factor-1/fibroblast growth factor receptor 4 axis may become a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuanzhen Sun
- 1 Department of Laboratory, Laiwu Maternal and Child Health Care Hospital, Laiwu, China
| | - Xiaoli Fan
- 2 Department of Occupational Poisoning, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Qing Zhang
- 3 Department of Laboratory, Shandong Provincial Hospital, Jinan, China
| | - Xiaoyu Shi
- 1 Department of Laboratory, Laiwu Maternal and Child Health Care Hospital, Laiwu, China
| | - Guangwei Xu
- 4 Department of Laboratory, Weihaiwei People's Hospital, Weihai, China
| | - Cuimin Zou
- 4 Department of Laboratory, Weihaiwei People's Hospital, Weihai, China
| |
Collapse
|
72
|
Hu CT, Wu JR, Cheng CC, Wu WS. The Therapeutic Targeting of HGF/c-Met Signaling in Hepatocellular Carcinoma: Alternative Approaches. Cancers (Basel) 2017; 9:cancers9060058. [PMID: 28587113 PMCID: PMC5483877 DOI: 10.3390/cancers9060058] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/23/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC), one of the most devastating cancers worldwide, is due to frequent recurrence and metastasis. Among the metastatic factors in the tumor microenvironment, hepatocyte growth factor (HGF) has been well known to play critical roles in tumor progression, including HCC. Therefore, c-Met is now regarded as the most promising therapeutic target for the treatment of HCC. However, there are still concerns about resistance and the side effects of using conventional inhibitors of c-Met, such as tyrosine kinase inhibitors. Recently, many alternative strategies of c-Met targeting have been emerging. These include targeting the downstream effectors of c-Met, such as hydrogen peroxide-inducible clone 5 (Hic-5), to block the reactive oxygen species (ROS)-mediated signaling for HCC progression. Also, inhibition of endosomal regulators, such as PKCε and GGA3, may perturb the c-Met endosomal signaling for HCC cell migration. On the other hand, many herbal antagonists of c-Met-dependent signaling, such as saponin, resveratrol, and LZ-8, were identified. Taken together, it can be anticipated that more effective and safer c-Met targeting strategies for preventing HCC progression can be established in the future.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 970, Taiwan.
| | - Jia-Ru Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chuan-Chu Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
73
|
Cai XR, Li X, Lin JX, Wang TT, Dong M, Chen ZH, Jia CC, Hong YF, Lin Q, Wu XY. Autologous transplantation of cytokine-induced killer cells as an adjuvant therapy for hepatocellular carcinoma in Asia: an update meta-analysis and systematic review. Oncotarget 2017; 8:31318-31328. [PMID: 28412743 PMCID: PMC5458210 DOI: 10.18632/oncotarget.15454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High recurrence rate after curative treatment is the major problem for hepatocellular carcinoma (HCC). Cytokine-induced killer cells (CIKs) therapy was extensively studied among HCC patients. However, the value of CIKs therapy was controversial. A meta-analysis was performed to investigate the efficacy of adjuvant CIKs after invasive treatments among HCC patients. METHODS We searched online for literatures studying sequential CIKs therapy for HCC patients. Recurrence-free survival (RFS), progress-free survival (PFS) and overall survival (OS) were set as the main endpoints. Both overall and subgroup analysis were accomplished. RESULTS A total of 12 clinical trials with 1,387 patients were included. The pooled analysis showed a significant improvement of RFS, PFS and OS in CIK group (HR 0.56, 95% CI 0.47-0.67, p<0.00001 for RFS; HR 0.53, 95% CI 0.40-0.69, p<0.00001 for PFS; HR 0.59, 95% CI 0.46-0.77, p<0.0001 for OS). The proportion of CD4+ T cells increased significantly, while CD8+ T cells decreased significantly after CIKs therapy (WMD 4.07, 95% CI 2.58-5.56, p<0.00001; WMD -2.84, 95% CI -4.67 to -1.01, p=0.002, respectively). No significant differences of adverse events between CIK and non-CIK group existed. CONCLUSIONS Conventionally invasive therapies combined with CIKs therapy could improve the prognosis of HCC patients, especially for RFS and PFS, with mild side effects. Optimizing patient selection shall be the direction in future studies.
Collapse
Affiliation(s)
- Xiu-Rong Cai
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Xing Li
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Jin-Xiang Lin
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Tian-Tian Wang
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Min Dong
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Zhan-Hong Chen
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Chang-Chang Jia
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
- Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Ying-Fen Hong
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Qu Lin
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| | - Xiang-Yuan Wu
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
- Guangdong provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, People's Republic of China
| |
Collapse
|
74
|
Hepatocyte Growth Factor, a Key Tumor-Promoting Factor in the Tumor Microenvironment. Cancers (Basel) 2017; 9:cancers9040035. [PMID: 28420162 PMCID: PMC5406710 DOI: 10.3390/cancers9040035] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment plays a key role in tumor development and progression. Stromal cells secrete growth factors, cytokines and extracellular matrix proteins which promote growth, survival and metastatic spread of cancer cells. Fibroblasts are the predominant constituent of the tumor stroma and Hepatocyte Growth Factor (HGF), the specific ligand for the tyrosine kinase receptor c-MET, is a major component of their secretome. Indeed, cancer-associated fibroblasts have been shown to promote growth, survival and migration of cancer cells in an HGF-dependent manner. Fibroblasts also confer resistance to anti-cancer therapy through HGF-induced epithelial mesenchymal transition (EMT) and activation of pro-survival signaling pathways such as ERK and AKT in tumor cells. Constitutive HGF/MET signaling in cancer cells is associated with increased tumor aggressiveness and predicts poor outcome in cancer patients. Due to its role in tumor progression and therapeutic resistance, both HGF and MET have emerged as valid therapeutic targets. Several inhibitors of MET and HGF are currently being tested in clinical trials. Preclinical data provide a strong indication that inhibitors of HGF/MET signaling overcome both primary and acquired resistance to EGFR, HER2, and BRAF targeting agents. These findings support the notion that co-targeting of cancer cells and stromal cells is required to prevent therapeutic resistance and to increase the overall survival rate of cancer patients. HGF dependence has emerged as a hallmark of therapeutic resistance, suggesting that inhibitors of biological activity of HGF should be included into therapeutic regimens of cancer patients.
Collapse
|
75
|
Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017. [PMID: 28216578 DOI: 10.3390/ijms18020405.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive-regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
|
76
|
Tahmasebi Birgani M, Carloni V. Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int J Mol Sci 2017; 18:ijms18020405. [PMID: 28216578 PMCID: PMC5343939 DOI: 10.3390/ijms18020405] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal and prevalent cancers in the human population. Different etiological factors such as hepatitis B and C virus, alcohol and diabetes cause liver injury followed by inflammation, necrosis and hepatocytes proliferation. Continuous cycles of this destructive–regenerative process culminates in liver cirrhosis which is characterized by regenerating nodules that progress to dysplastic nodules and ultimately HCC. Despite its significance, there is only an elemental understanding of the pathogenetic mechanisms, and there are only limited therapeutic options. Therefore, the study of the involved molecular mechanisms can open a new insight to define more effective treatment strategies. A variety of alterations have been reported in HCC patients, particularly the cancer-associated microenvironment components including immune cells, fibroblast cells, endothelial cells and extracellular matrix can support the neoplastic cells to proliferate, growth and invade. This review summarizes the current state of knowledge and highlights the principal challenges that are relevant to controlling this milieu.
Collapse
Affiliation(s)
- Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 63461, Iran.
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy.
| |
Collapse
|
77
|
Cioca A, Ceausu AR, Marin I, Raica M, Cimpean AM. The multifaceted role of podoplanin expression in hepatocellular carcinoma. Eur J Histochem 2017; 61:2707. [PMID: 28348421 PMCID: PMC5311863 DOI: 10.4081/ejh.2017.2707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
The role of podoplanin in hepatocellular carcinoma (HCC) is not clear yet. The aim of our study was to evaluate the expression of podoplanin in HCC and to determine its role in hepatocarcinogenesis. We performed immunohistochemistry with monoclonal D2-40 antibody, on paraffin-embedded tissue sections of 72 patients diagnosed with HCC. Lymphatic vessels density (LVD) was increased in patients who had vascular invasion at the time of diagnosis (P=0.018) and in those with associated cirrhosis (P=0.006). Tumor cells showing podoplanin expression were correlated with histological grade (P=0.040). Podoplanin-expressing cancer associated fibroblasts (CAFs) were correlated with both LVD (P=0.019) and tumor cells (P=0.015). Our results sustain the dual role of podoplanin in HCC by its involvement in both HCC tumorigenesis, lymphatic neovascularization and tumor invasion invasiveness. A possible crosstalk between epithelial and stromal tumor cells in HCC tumor microenvironment may be mediated by podoplanin, but this hypothesis needs further studies to elucidate this interrelation.
Collapse
Affiliation(s)
- Andreea Cioca
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Department of Pathology.
| | | | | | | | | |
Collapse
|
78
|
Du H, Che G. Genetic alterations and epigenetic alterations of cancer-associated fibroblasts. Oncol Lett 2016; 13:3-12. [PMID: 28123515 PMCID: PMC5245074 DOI: 10.3892/ol.2016.5451] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/12/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are one major type of component identified in the tumor microenvironment. Studies have focused on the genetic and epigenetic status of CAFs, since they are critical in tumor progression and differ phenotypically and functionally from normal fibroblasts. The present review summarizes the recent achievements in understanding the gene profiles of CAFs and pays special attention to their possible epigenetic alterations. A total of 7 possible genetic alterations and epigenetic changes in CAFs are discussed, including gene differential expression, karyotype analysis, gene copy number variation, loss of heterozygosis, allelic imbalance, microsatellite instability, post-transcriptional control and DNA methylation. These genetic and epigenetic characteristics are hypothesized to provide a deep understanding of CAFs and a perspective on their clinical significance.
Collapse
Affiliation(s)
- Heng Du
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
79
|
Hyaluronan synthase 2 expressed by cancer-associated fibroblasts promotes oral cancer invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:181. [PMID: 27884164 PMCID: PMC5123319 DOI: 10.1186/s13046-016-0458-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hyaluronan synthases (HAS) control the biosynthesis of hyaluronan (HA) and critically modulate the tumor microenviroment. Cancer-associated fibroblasts (CAFs) affect the progression of a tumor by remolding the matrix. However, little is known about the role of HAS from CAFs in this process. This study aimed to determine the role of hyaluronan synthase 2 (HAS2) from CAFs in the progression of oral squamous cell carcinoma (OSCC) invasion. METHODS HAS isoforms 1, 2, and 3 in paired sets of CAFs and normal fibroblasts (NFs) were examined by real-time PCR, and the expression of HAS2 and α-SMA in OSCC tissue sections was further evaluated using immunohistochemical staining. Furthermore, we used a conditioned culture medium model to evaluate the effects of HAS2 from CAFs on the invasion and epithelial-mesenchymal transition (EMT) of the oral cancer cells Cal27. Finally, we compared the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) between CAFs and NF, and between CAFs with or without HAS2 knockdown using an antibody array and western blotting. RESULTS CAFs expressed higher levels of HAS2 than the paired NFs. HAS2 expression was consistent with α-SMA-positive myofibroblasts in the stroma of OSCC, and these were significantly correlated advanced clinical stages and cervical lymph node metastasis. Knocking down HAS2 with a specific siRNA or treatment with a HAS inhibitor markedly attenuated CAF-induced invasion and EMT of Cal27 cells. Higher MMP1 and lower TIMP1 levels were detected in the supernatants of CAFs relative to NFs. Knocking down HAS2 could decrease the expression of MMP1 and increase that of TIMP1 in CAFs. CONCLUSIONS HAS2 is one of the key regulators responsible for CAF-mediated OSCC progression and acts by modulating the balance of MMP1 and TIMP1.
Collapse
|
80
|
Zhou W, Xu G, Wang Y, Xu Z, Liu X, Xu X, Ren G, Tian K. Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells. Cell Cycle 2016; 16:73-81. [PMID: 27841696 DOI: 10.1080/15384101.2016.1252882] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumors are comprised of malignant cancer cells and stromal cells which constitute the tumor microenvironment (TME). Previous studies have shown that cancer associated fibroblast (CAF) in TME is an important promoter of tumor initiation and progression. However, the underlying molecular mechanisms by which CAFs influence the growth of colorectal cancer cells (CRCs) have not been clearly elucidated. In this study, by using a non-contact co-culture system between human colorectal fibroblasts (CCD-18-co) and CRCs (LoVo, SW480, and SW620), we found that fibroblasts existing in tumor microenvironment positively influenced the metabolism of colorectal cancer cells, through its autophagy and oxidative stress pathway which were initially induced by neighboring tumor cells. Therefore, our data provided a novel possibility to develop fibroblasts as a potential target to treat CRC.
Collapse
Affiliation(s)
- Wenjing Zhou
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China.,b Department of Neurosurgery , Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University , Jinan , China
| | - Gang Xu
- c Department of Gastroenterology , 456 Hospital of PLA , Jinan , Shandong , China
| | - Yunqiu Wang
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Ziao Xu
- d The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Xiaofei Liu
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Xia Xu
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Guijie Ren
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Keli Tian
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| |
Collapse
|
81
|
Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene 2016; 36:1090-1101. [DOI: 10.1038/onc.2016.273] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
|
82
|
Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 2016; 22:6841-6850. [PMID: 27570421 PMCID: PMC4974583 DOI: 10.3748/wjg.v22.i30.6841] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression.
Collapse
|
83
|
IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal 2016; 28:1314-1324. [PMID: 27297362 DOI: 10.1016/j.cellsig.2016.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/30/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Aberrant tumor microenvironment is involved closely in tumor initiation and progression, in which cancer associated fibroblasts (CAFs) play a pivotal role. Both IL-6/STAT3 signaling and TIMP-1 have been found to modulate the crosstalk between tumor cells and CAFs in tumor microenvironment, however, the underlying mechanism remains unclear. Here, we showed that IL-6/STAT3 signaling was activated aberrantly in HCC tissues and correlated with poor post-surgical outcome. The in vitro experiments confirmed that activation of IL-6/STAT3 pathway enhanced TIMP-1 expression directly via phosphorylated STATs (p-STAT3)-binding with TIMP-1 promoter in Huh7 cells. Furthermore, activation of IL-6/STAT3 pathway in HCC cells was shown to induce the transformation from normal liver fibroblasts (LFs) to CAFs via up-regulating TIMP-1 expression. Co-culture with CAFs promoted the growth of Huh7 cells both in vitro and in vivo. Finally, by co-Immunoprecipitation and immunoblotting assessments, PCAF, a well-known acetyltransferase, was revealed to acetylate cytoplasmic STAT3 protein directly and regulate TIMP-1 expression negatively in Huh7 cells. In summary, this investigation indicated that there was a positive IL-6/TIMP-1 feedback loop controlling the crosstalk between HCC cells and its neighbouring fibroblasts. The data here also identified that PCAF repressed TIMP-1 expression via acetylation of STAT3. In conclusion, this investigation demonstrated that CAFs promoted HCC growth via IL-6/STAT3/AKT pathway and TIMP-1 over-expression driven by IL-6/STAT3 pathway in HCC cells brought in more CAFs through activating LFs. Finally, PCAF could block this positive feedback by acetylating STAT3 in HCC cells.
Collapse
|
84
|
Ilangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S. The hepatocyte growth factor (HGF)–MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions. Cytokine 2016; 82:125-39. [PMID: 26822708 DOI: 10.1016/j.cyto.2015.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/14/2022]
|
85
|
Song T, Dou C, Jia Y, Tu K, Zheng X. TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor apoptosis by activating SDF1/CXCR4 signaling in hepatocellular carcinoma. Oncotarget 2016; 6:12061-79. [PMID: 25909286 PMCID: PMC4494923 DOI: 10.18632/oncotarget.3616] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/14/2015] [Indexed: 12/29/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP-1) is an endogenous inhibitor for MMPs that regulates the remodeling and turnover of the ECM during normal development and pathological conditions. Intriguingly, recent studies have shown that TIMP-1 plays a dual role in cancer progression. In this study, we found that TIMP-1 expression in HCC tissues is associated with advanced TNM stage, intrahepatic metastasis, portal vein invasion, and vasculature invasion. Notably, TIMP-1 expression in HCC tissue is significantly related to worse overall survival for patients with HCC after liver resection. Ectopic TIMP1 expression promoted the growth of HCC xenografts in nude mice. Both co-culture with Huh7 cells with a high level of TIMP-1 and TIMP1 treatment resulted in up-regulation of hallmarks of carcinoma-associated fibroblasts (CAFs) and accelerated cell proliferation, migration and invasion in immortalized liver fibroblasts (LFs) isolated from human normal liver tissue. By co-culture with CAFs, SDF-1/CXCR4/PI3K/AKT signaling was activated and apoptosis was markedly repressed with an increased Bcl-2/BAX ratio in Huh7 cells. Taken together, our observations suggest that TIMP-1 induces the trans-differentiation of LFs into CAFs, suppresses apoptosis via SDF-1/CXCR4/PI3K/AKT signaling and then promotes HCC progression. This protein may be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Changwei Dou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuli Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
86
|
Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev 2016; 99:186-196. [PMID: 26278673 DOI: 10.1016/j.addr.2015.07.007] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/26/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022]
Abstract
Cancer microenvironment is created not only by malignant epithelial cells, but also by several kinds of stromal cells. Since Paget proposed the "seed and soil" hypothesis, the biological importance of the cancer microenvironment has come to be widely accepted. The main compartment of host stromal cells are fibroblasts (Cancer-Associated Fibroblasts; CAFs), which are the main source of the collagen-producing cells. CAFs directly communicate with the cancer cells and other types of stromal cells to acquire a specific biological phenotype. CAFs play important roles in several aspects of the tumor progression process and the chemotherapeutic process. However, CAFs have heterogeneous origins, phenotypes, and functions under these conditions. A crucial challenge is to understand how much of this heterogeneity serves different biological responses to cancer cells. In this review, we highlight the issue of how diverse and heterogeneous functions given by CAFs can exert potent influences on tumor progression and therapeutic response. Furthermore, we also discuss the current advances in the development of novel therapeutic strategies against CAFs.
Collapse
Affiliation(s)
- Genichiro Ishii
- Division of Pathology Exploratory Oncology Research & Clinical Trial Center National Cancer Center 6-5-1, Kashiwanoha, Kashiwa-City, Chiba 277-8577, Japan.
| | - Atsushi Ochiai
- Division of Pathology Exploratory Oncology Research & Clinical Trial Center National Cancer Center 6-5-1, Kashiwanoha, Kashiwa-City, Chiba 277-8577, Japan
| | - Shinya Neri
- Division of Pathology Exploratory Oncology Research & Clinical Trial Center National Cancer Center 6-5-1, Kashiwanoha, Kashiwa-City, Chiba 277-8577, Japan
| |
Collapse
|
87
|
Cui Y, Sun S, Ren K, Quan M, Song Z, Zou H, Li D, Cao J. Reversal of liver cancer-associated stellate cell-induced stem-like characteristics in SMMC-7721 cells by 8-bromo-7-methoxychrysin via inhibiting STAT3 activation. Oncol Rep 2016; 35:2952-62. [PMID: 26935885 DOI: 10.3892/or.2016.4637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/27/2015] [Indexed: 11/05/2022] Open
Abstract
Hepatic stellate cells (HSCs) that are activated by human hepatocellular carcinoma (HCC) cells secrete a variety of cytokines, which are the main component of the HCC microenvironment. We aimed to determine whether 8-bromo-7-methoxychrysin (BrMC) could interfere in cross-talk of the human hepatic stellate cell line LX-2 and liver cancer stem-like cells (LCSLCs) to inhibit the characteristics of LCSLCs endowed with the capacity of sustaining human hepatocellular carcinoma (HCC) self-renewal and progression, and to identify its potential mechanism of action. We found that the levels of fibroblast activation protein (FAP) were augmented in LX-2 cells treated with the conditioned medium of LCSLCs (LCSLC-CM) compared to those cultured with routine medium, indicating that the LCSLC-CM can activate LX-2 cells to become liver cancer-associated stellate cells (LCAHSCs). Furthermore, sphere forming capability of SMMC-7721 cells was enhanced and stem cell-related protein expression was significantly increased following treatment with the conditioned medium of LCAHSCs (LCAHSC-CM). Moreover, the level of p-STAT3 was increased in LX-2 cells treated with LCSLC-CM and BrMC reduced expression of p-STAT3. Combination of BrMC and the selective inhibitor of STAT3 cucurbitacin I (JSI-124) synergistically suppressed the LCSLC characteristics in SMMC-7721 cells. Collectively, our data showed that BrMC inhibited the interaction between LX-2 cells and HCC-derived CSCs, and did so potentially through modulation of the STAT3 pathway. Future therapeutic strategies employing anti-CSC therapy should confirm the potential of cucurbitacin I (JSI-124) and BrMC as potent therapeutic agents.
Collapse
Affiliation(s)
- Yinghong Cui
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Shuwen Sun
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Kaiqun Ren
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Meifang Quan
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Zhenwei Song
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Hui Zou
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Duo Li
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Jianguo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
88
|
Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, Liu W, Tai Y, Peng YW, Zhang Q. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis 2016. [PMID: 26900950 DOI: 10.1038/oncsis.2016.7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although carcinoma-associated fibroblasts (CAFs) in tumor microenvironments have a critical role in immune cell modulation, their effects on the generation of regulatory dendritic cells (DCs) are still unclear. In this study, we initially show that CAFs derived from hepatocellular carcinoma (HCC) tumors facilitate the generation of regulatory DCs, which are characterized by low expression of costimulatory molecules, high suppressive cytokines production and enhanced regulation of immune responses, including T-cell proliferation impairment and promotion of regulatory T-cell (Treg) expansion via indoleamine 2,3-dioxygenase (IDO) upregulation. Our findings also indicate that STAT3 activation in DCs, as mediated by CAF-derived interleukin (IL)-6, is essential to IDO production. Moreover, IDO inhibitor, STAT3 and IL-6 blocking antibodies can reverse this hepatic CAF-DC regulatory function. Therefore, our results provide new insights into the mechanisms by which CAFs induce tumor immune escape as well as a novel cancer immunotherapeutic approach (for example, targeting CAFs, IDO or IL-6).
Collapse
Affiliation(s)
- J-T Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-N Deng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - H-M Yi
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - G-Y Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - B-S Fu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W-J Chen
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-W Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
89
|
Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, Liu W, Tai Y, Peng YW, Zhang Q. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis 2016; 5:e198. [PMID: 26900950 PMCID: PMC5154347 DOI: 10.1038/oncsis.2016.7] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 01/13/2016] [Indexed: 12/13/2022] Open
Abstract
Although carcinoma-associated fibroblasts (CAFs) in tumor microenvironments have a critical role in immune cell modulation, their effects on the generation of regulatory dendritic cells (DCs) are still unclear. In this study, we initially show that CAFs derived from hepatocellular carcinoma (HCC) tumors facilitate the generation of regulatory DCs, which are characterized by low expression of costimulatory molecules, high suppressive cytokines production and enhanced regulation of immune responses, including T-cell proliferation impairment and promotion of regulatory T-cell (Treg) expansion via indoleamine 2,3-dioxygenase (IDO) upregulation. Our findings also indicate that STAT3 activation in DCs, as mediated by CAF-derived interleukin (IL)-6, is essential to IDO production. Moreover, IDO inhibitor, STAT3 and IL-6 blocking antibodies can reverse this hepatic CAF-DC regulatory function. Therefore, our results provide new insights into the mechanisms by which CAFs induce tumor immune escape as well as a novel cancer immunotherapeutic approach (for example, targeting CAFs, IDO or IL-6).
Collapse
Affiliation(s)
- J-t Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-n Deng
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - H-m Yi
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - G-y Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - B-s Fu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W-j Chen
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Y-w Peng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
90
|
Teng F, Tian WY, Wang YM, Zhang YF, Guo F, Zhao J, Gao C, Xue FX. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J Hematol Oncol 2016; 9:8. [PMID: 26851944 PMCID: PMC4744391 DOI: 10.1186/s13045-015-0231-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are believed to play an essential role in cancer initiation and development. However, little research has been undertaken to evaluate the role of CAFs in endometrial cancer (EC) progression. We aim to detect the functional contributions of CAFs to promote progression of EC. Methods Stromal fibroblasts were isolated from endometrioid adenocarcinomas and normal endometrial tissues. The conditioned media of cultured CAFs and normal fibroblasts (NFs) were collected to detect the level of stromal cell-derived factor-1alpha (SDF-1α), macrophage chemoattractant protein-1 (MCP-1), migration inhibitory factor (MIF), colony stimulating factor-1 (CSF-1), and interleukin-1 (IL-1) by ELISA. The CAFs or NFs were cocultured with EC cell lines to determine the proliferation, migration, and invasion by MTT assays and transwell chambers. Xenograft models were used to observe tumor growth. Matrix metalloproteinases (MMP)-2 and MMP-9 activity was evaluated by zymography. AMD3100 (a chemokine receptor 4 (CXCR4) antagonist) was used to block the SDF-1/CXCR4 axis. Neutralizing antibodies were used to detect PI3K/Akt and MAPK/Erk pathways by western blotting. SDF-1α and CXCR4 expressions were analyzed in xenotransplanted tumors and 348 cases by immunohistochemistry. Results CAFs promoted proliferation, migration, and invasion as well as in vivo tumorigenesis of admixed EC cells significantly more than NFs by secreting SDF-1α. These effects were significantly inhibited by AMD3100. CAFs promoted EC progression via the SDF-1α/CXCR4 axis to activate the PI3K/Akt and MAPK/Erk signalings in a paracrine-dependent manner or increase MMP-2 and MMP-9 secretion in an autocrine-dependent manner. SDF-1α and CXCR4 expression upregulation accompanied clinical EC development and progression. High SDF-1α expression levels were associated with deep myometrial invasion, lymph node metastasis, and poor prognosis in EC. Conclusions Our data indicated that CAFs derived from EC tissues promoted EC progression via the SDF-1/CXCR4 axis in a paracrine- or autocrine-dependent manner. SDF-1α is a novel independent poor prognostic factor for EC patients’ survival. Targeting the SDF-1/CXCR4 axis might provide a novel therapeutic strategy for EC treatment.
Collapse
Affiliation(s)
- Fei Teng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Wen-Yan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Ying-Mei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Yan-Fang Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Fei Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Jing Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| | - Feng-Xia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, NO 154, Anshan Road, He Ping District, Tianjin, 300052, China.
| |
Collapse
|
91
|
Wong PF, Gall MG, Bachovchin WW, McCaughan GW, Keane FM, Gorrell MD. Neuropeptide Y is a physiological substrate of fibroblast activation protein: Enzyme kinetics in blood plasma and expression of Y2R and Y5R in human liver cirrhosis and hepatocellular carcinoma. Peptides 2016; 75:80-95. [PMID: 26621486 DOI: 10.1016/j.peptides.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/17/2015] [Accepted: 11/20/2015] [Indexed: 12/27/2022]
Abstract
Fibroblast activation protein (FAP) is a dipeptidyl peptidase (DPP) and endopeptidase that is weakly expressed in normal adult human tissues but is greatly up-regulated in activated mesenchymal cells of tumors and chronically injured tissue. The identities and locations of target substrates of FAP are poorly defined, in contrast to the related protease DPP4. This study is the first to characterize the physiological substrate repertoire of the DPP activity of endogenous FAP present in plasma. Four substrates, neuropeptide Y (NPY), peptide YY, B-type natriuretic peptide and substance P, were analyzed by mass spectrometry following proteolysis in human or mouse plasma, and by in vivo localization in human liver tissues with cirrhosis and hepatocellular carcinoma (HCC). NPY was the most efficiently cleaved substrate of both human and mouse FAP, whereas all four peptides were efficiently cleaved by endogenous DPP4, indicating that the in vivo degradomes of FAP and DPP4 differ. All detectable DPP-specific proteolysis and C-terminal processing of these neuropeptides was attributable to FAP and DPP4, and plasma kallikrein, respectively, highlighting their combined physiological significance in the regulation of these neuropeptides. In cirrhotic liver and HCC, NPY and its receptor Y2R, but not Y5R, were increased in hepatocytes near the parenchymal-stromal interface where there is an opportunity to interact with FAP expressed on nearby activated mesenchymal cells in the stroma. These novel findings provide insights into the substrate specificity of FAP, which differs greatly from DPP4, and reveal a potential function for FAP in neuropeptide regulation within liver and cancer biology.
Collapse
Affiliation(s)
- Pok Fai Wong
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Margaret G Gall
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - William W Bachovchin
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Geoffrey W McCaughan
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Fiona M Keane
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Mark D Gorrell
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
92
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
93
|
LI XIAOYUN, WEN JINGYUN, JIA CHANGCHANG, WANG TIANTIAN, LI XING, DONG MIN, LIN QU, CHEN ZHANHONG, MA XIAOKUN, WEI LI, LIN ZEXIAO, RUAN DANYUN, CHEN JIE, WU DONGHAO, LIU WEI, TAI YAN, XIONG ZHIYONG, WU XIANGYUAN, ZHANG QI. MicroRNA-34a-5p enhances sensitivity to chemotherapy by targeting AXL in hepatocellular carcinoma MHCC-97L cells. Oncol Lett 2015; 10:2691-2698. [PMID: 26722228 PMCID: PMC4665305 DOI: 10.3892/ol.2015.3654] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
Mature microRNA (miRNA) 34a-5p, which is a well-known tumor suppressor in hepatitis virus-associated hepatocellular carcinoma (HCC), plays an important role in cell processes, such as cell proliferation and apoptosis, and is therefore an optimal biomarker for future clinical use. However, the role of miRNA-34a-5p in chemoresistance has yet to be identified. In the present study, the expression of miRNA-34a-5p was assessed by an in situ hybridization assay in HCC tissues and was found to be significantly decreased compared with the pericarcinomatous areas of the tissue specimens, which consisted of samples obtained from 114 patients with HCC. High expression of miRNA-34a-5p was found to be associated with a favorable overall survival time in HCC patients. Functional tests performed by transfecting miRNA-34a-5p mimics or inhibitors into MHCC-97L cells illustrated that miRNA-34a-5p inhibited proliferation, elevated apoptosis and decreased chemoresistance to cisplatin in HCC cells. AXL is the direct target of miRNA-34a-5p, as confirmed by sequence analysis and luciferase assay. Transfection of the cells with small interfering RNA for AXL (siAXL) increased the apoptosis ratio of the MHCC-97L cell line. Transfection with siAXL led to similar biological behaviors in the MHCC-97L cells to those induced by ectopic expression of miRNA-34a-5p. Thus, it was concluded that miRNA-34a-5p enhanced the sensitivity of the cells to chemotherapy by targeting AXL in hepatocellular carcinoma. In addition, low expression of miRNA-34a-5p in HCC tissues yielded an unfavorable prognosis for patients with HCC that received radical surgery, due to the promotion of proliferation and an increase in chemoresistance in HCC cells.
Collapse
Affiliation(s)
- XIAO-YUN LI
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - JING-YUN WEN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - CHANG-CHANG JIA
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - TIAN-TIAN WANG
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - XING LI
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - MIN DONG
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - QU LIN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - ZHAN-HONG CHEN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - XIAO-KUN MA
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - LI WEI
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - ZE-XIAO LIN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - DAN-YUN RUAN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - JIE CHEN
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - DONG-HAO WU
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - WEI LIU
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - YAN TAI
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - ZHI-YONG XIONG
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - XIANG-YUAN WU
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| | - QI ZHANG
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Gunagdong 510630, P.R. China
| |
Collapse
|
94
|
New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases 2015; 3:325-340. [PMID: 28943628 PMCID: PMC5548255 DOI: 10.3390/diseases3040325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, arising from neoplastic transformation of hepatocytes or liver precursor/stem cells. HCC is often associated with pre-existing chronic liver pathologies of different origin (mainly subsequent to HBV and HCV infections), such as fibrosis or cirrhosis. Current therapies are essentially still ineffective, due both to the tumor heterogeneity and the frequent late diagnosis, making necessary the creation of new therapeutic strategies to inhibit tumor onset and progression and improve the survival of patients. A promising strategy for treatment of HCC is the targeted molecular therapy based on the restoration of tumor suppressor proteins lost during neoplastic transformation. In particular, the delivery of master genes of epithelial/hepatocyte differentiation, able to trigger an extensive reprogramming of gene expression, could allow the induction of an efficient antitumor response through the simultaneous adjustment of multiple genetic/epigenetic alterations contributing to tumor development. Here, we report recent literature data supporting the use of members of the liver enriched transcription factor (LETF) family, in particular HNF4α, as tools for gene therapy of HCC.
Collapse
|
95
|
Huang L, Xu AM, Liu W. Transglutaminase 2 in cancer. Am J Cancer Res 2015; 5:2756-2776. [PMID: 26609482 PMCID: PMC4633903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 06/05/2023] Open
Abstract
The significant influence of tumor microenvironment on malignant cells has been investigated with enthusiasm in this era of targeted therapy. Transglutaminase 2 (TG2, EC 2.3.2.13), a multi-functional enzyme that catalyzes the formation of intermolecular isopeptide bonds between glutamine and lysine side-chains, has been reported to exert important pathophysiological functions. The aim of this review was to investigate the correlation between TG2 and malignant behaviors, which could provide the rationale for novel approaches in anti-cancer therapy. We performed a systematic and electronic search on Medline, Scopus, and Web of Science for relevant publications from inception to April 2015. The bibliographic references of retrieved articles were further reviewed for additional relevant studies. TG2 exerts important physiological functions and plays vital roles in inflammation mainly through its modulation on the structure and stability of extracellular matrix (ECM). It also regulates EMT of diverse malignant cells through various intracellular and extracellular pathways. TG2 also plays an important role in tumor progression and may serve as a novel prognostic biomarker and therapeutic target in various cancer types. TG2 promotes malignant cell mobility, invasion, and metastasis, and induces chemo-resistance of cancer cells, mainly through its pro-crosslink and signaling transduction mediation propensities. In conclusion, TG2 plays vital roles in malignancy progression, and may have important prognostic and therapeutic significances.
Collapse
Affiliation(s)
- Lei Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
- Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
- Research Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty of Mannheim, Heidelberg UniversityMannheim, Germany
| | - A-Man Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
- Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
96
|
Thompson AI, Conroy KP, Henderson NC. Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC Gastroenterol 2015; 15:63. [PMID: 26013123 PMCID: PMC4445994 DOI: 10.1186/s12876-015-0291-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/15/2015] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related death worldwide, and is increasing in incidence. Currently, our therapeutic repertoire for the treatment of HCC is severely limited, and therefore effective new therapies are urgently required. Recently, there has been increasing interest focusing on the cellular and molecular interactions between cancer cells and their microenvironment. HCC represents a unique opportunity to study the relationship between a diseased stroma and promotion of carcinogenesis, as 90 % of HCCs arise in a cirrhotic liver. Hepatic stellate cells (HSC) are the major source of extracellular proteins during fibrogenesis, and may directly, or via secreted products, contribute to tumour initiation and progression. In this review we explore the complex cellular and molecular interplay between HSC biology and hepatocarcinogenesis. We focus on the molecular mechanisms by which HSC modulate HCC growth, immune cell evasion and angiogenesis. This is followed by a discussion of recent progress in the field in understanding the mechanistic crosstalk between HSC and HCC, and the pathways that are potentially amenable to therapeutic intervention. Furthermore, we summarise the exciting recent developments in strategies to target HSC specifically, and novel techniques to deliver pharmaceutical agents directly to HSC, potentially allowing tailored, cell-specific therapy for HCC.
Collapse
Affiliation(s)
- Alexandra I Thompson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| | - Kylie P Conroy
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| | - Neil C Henderson
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK.
| |
Collapse
|
97
|
Sun C, Sun H, Zhang C, Tian Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 2015; 12:292-302. [PMID: 25308752 PMCID: PMC4654321 DOI: 10.1038/cmi.2014.91] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of cancer mortality and a common poor-prognosis malignancy due to postoperative recurrence and metastasis. There is a significant correlation between chronic hepatitis B virus (HBV) infection and hepatocarcinogenesis. As the first line of host defense against viral infections and tumors, natural killer (NK) cells express a large number of immune recognition receptors (NK receptors (NKRs)) to recognize ligands on hepatocytes, liver sinusoidal endothelial cells, stellate cells and Kupffer cells, which maintain the balance between immune response and immune tolerance of NK cells. Unfortunately, the percentage and absolute number of liver NK cells decrease significantly during the development and progression of HCC. The abnormal expression of NK cell receptors and dysfunction of liver NK cells contribute to the progression of chronic HBV infection and HCC and are significantly associated with poor prognosis for liver cancer. In this review, we focus on the role of NK cell receptors in anti-tumor immune responses in HCC, particularly HBV-related HCC. We discuss specifically how tumor cells evade attack from NK cells and how emerging understanding of NKRs may aid the development of novel treatments for HCC. Novel mono- and combination therapeutic strategies that target the NK cell receptor-ligand system may potentially lead to successful and effective immunotherapy in HCC.Cellular & Molecular Immunology advance online publication, 6 October 2014; doi:10.1038/cmi.2014.91.
Collapse
Affiliation(s)
- Cheng Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
98
|
Xiong Y, McDonald LT, Russell DL, Kelly RR, Wilson KR, Mehrotra M, Soloff AC, LaRue AC. Hematopoietic stem cell-derived adipocytes and fibroblasts in the tumor microenvironment. World J Stem Cells 2015; 7:253-265. [PMID: 25815113 PMCID: PMC4369485 DOI: 10.4252/wjsc.v7.i2.253] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/08/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is complex and constantly evolving. This is due, in part, to the crosstalk between tumor cells and the multiple cell types that comprise the TME, which results in a heterogeneous population of tumor cells and TME cells. This review will focus on two stromal cell types, the cancer-associated adipocyte (CAA) and the cancer-associated fibroblast (CAF). In the clinic, the presence of CAAs and CAFs in the TME translates to poor prognosis in multiple tumor types. CAAs and CAFs have an activated phenotype and produce growth factors, inflammatory factors, cytokines, chemokines, extracellular matrix components, and proteases in an accelerated and aberrant fashion. Through this activated state, CAAs and CAFs remodel the TME, thereby driving all aspects of tumor progression, including tumor growth and survival, chemoresistance, tumor vascularization, tumor invasion, and tumor cell metastasis. Similarities in the tumor-promoting functions of CAAs and CAFs suggest that a multipronged therapeutic approach may be necessary to achieve maximal impact on disease. While CAAs and CAFs are thought to arise from tissues adjacent to the tumor, multiple alternative origins for CAAs and CAFs have recently been identified. Recent studies from our lab and others suggest that the hematopoietic stem cell, through the myeloid lineage, may serve as a progenitor for CAAs and CAFs. We hypothesize that the multiple origins of CAAs and CAFs may contribute to the heterogeneity seen in the TME. Thus, a better understanding of the origin of CAAs and CAFs, how this origin impacts their functions in the TME, and the temporal participation of uniquely originating TME cells may lead to novel or improved anti-tumor therapeutics.
Collapse
|
99
|
Spina A, De Pasquale V, Cerulo G, Cocchiaro P, Della Morte R, Avallone L, Pavone LM. HGF/c-MET Axis in Tumor Microenvironment and Metastasis Formation. Biomedicines 2015; 3:71-88. [PMID: 28536400 PMCID: PMC5344235 DOI: 10.3390/biomedicines3010071] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Tumor metastases are responsible for approximately 90% of all cancer-related deaths. Metastasis formation is a multistep process that requires acquisition by tumor cells of a malignant phenotype that allows them to escape from the primary tumor site and invade other organs. Each step of this mechanism involves a deep crosstalk between tumor cells and their microenvironment where the host cells play a key role in influencing metastatic behavior through the release of many secreted factors. Among these signaling molecules, Hepatocyte Growth Factor (HGF) is released by many cell types of the tumor microenvironment to target its receptor c-MET within the cells of the primary tumor. Many studies reveal that HGF/c-MET axis is implicated in various human cancers, and genetic and epigenetic gain of functions of this signaling contributes to cancer development through a variety of mechanisms. In this review, we describe the specific types of cells in the tumor microenvironment that release HGF in order to promote the metastatic outgrowth through the activation of extracellular matrix remodeling, inflammation, migration, angiogenesis, and invasion. We dissect the potential use of new molecules that interfere with the HGF/c-MET axis as therapeutic targets for future clinical trials in cancer disease.
Collapse
Affiliation(s)
- Anna Spina
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Giuliana Cerulo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
100
|
Buonaguro L, Tagliamonte M, Petrizzo A, Damiano E, Tornesello ML, Buonaguro FM. Cellular prognostic markers in hepatocellular carcinoma. Future Oncol 2015; 11:1591-1598. [PMID: 26043213 DOI: 10.2217/fon.15.39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the five big killers worldwide and is frequently associated with chronic hepatitis B and C virus (HBV and HCV) infections. Tumor microenvironment consists of a complex network of cells and factors that plays a key role in the tumor progression and prognosis. This is true also for HCC. Several studies have shown strikingly strong correlation between HCC clinical prognosis and intratumoral infiltration of cells affecting tumor growth, invasion, angiogenesis and metastasis. None of such cells is yet validated for routine diagnostic and prognostic assessment. The present review aims at providing a state-of-the-art of such studies.
Collapse
|