51
|
Salkeni MA, Rizvi W, Hein K, Higa GM. Neu Perspectives, Therapies, and Challenges for Metastatic HER2-Positive Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2021; 13:539-557. [PMID: 34602823 PMCID: PMC8481821 DOI: 10.2147/bctt.s288344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
Even though gene amplification or protein overexpression occurs in approximately one-fifth of all breast cancers, the discovery of HER2 has, nevertheless, had profound implications for the disease. Indeed, the characterization of the receptor resulted in a number of significant advances. Structurally, unique features provided avenues for the development of numerous compounds with target-specificity; molecularly, biological constructs revealed a highly complex, internal signal transduction pathway with regulatory effects on tumor proliferation, survival, and perhaps, even resistance; and clinically, disease outcomes manifested its predictive and prognostic value. Yet despite the receptor’s utility, the beneficial effects are diminished by tumor recurrence after neo- or adjuvant therapy as well as losses resulting from the inability to cure patients with metastatic disease. What these observations suggest is that while tumor response may be partially linked to uncoupling cell surface message reception and nuclear gene expression, as well as recruitment of the innate immune system, disease progression and/or resistance may involve a reprogrammable signaling mainframe that elicits alternative growth and survival signals. This review attempts to meld current perceptions related to HER2-positive metastatic breast cancer with particular attention to current biological insights and therapeutic challenges.
Collapse
Affiliation(s)
- Mohamad Adham Salkeni
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wajeeha Rizvi
- Department of Internal Medicine, West Virginia University, Morgantown, WV, USA
| | - Kyaw Hein
- Department of Business, Lamar University, Houston, TX, USA
| | - Gerald M Higa
- Departments of Clinical Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
52
|
Moon J, Oh YM, Ha SJ. Perspectives on immune checkpoint ligands: expression, regulation, and clinical implications. BMB Rep 2021. [PMID: 34078531 PMCID: PMC8411045 DOI: 10.5483/bmbrep.2021.54.8.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the tumor microenvironment, immune checkpoint ligands (ICLs) must be expressed in order to trigger the inhibitory signal via immune checkpoint receptors (ICRs). Although ICL expression frequently occurs in a manner intrinsic to tumor cells, extrinsic factors derived from the tumor microenvironment can fine-tune ICL expression by tumor cells or prompt non-tumor cells, including immune cells. Considering the extensive interaction between T cells and other immune cells within the tumor microenvironment, ICL expression on immune cells can be as significant as that of ICLs on tumor cells in promoting anti-tumor immune responses. Here, we introduce various regulators known to induce or suppress ICL expression in either tumor cells or immune cells, and concise mechanisms relevant to their induction. Finally, we focus on the clinical significance of understanding the mechanisms of ICLs for an optimized immunotherapy for individual cancer patients.
Collapse
Affiliation(s)
- Jihyun Moon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| | - Yoo Min Oh
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
53
|
Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J. Hijacking of the Host's Immune Surveillance Radars by Burkholderia pseudomallei. Front Immunol 2021; 12:718719. [PMID: 34456925 PMCID: PMC8384953 DOI: 10.3389/fimmu.2021.718719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei (B. pseudomallei) causes melioidosis, a potentially fatal disease for which no licensed vaccine is available thus far. The host-pathogen interactions in B. pseudomallei infection largely remain the tip of the iceberg. The pathological manifestations are protean ranging from acute to chronic involving one or more visceral organs leading to septic shock, especially in individuals with underlying conditions similar to COVID-19. Pathogenesis is attributed to the intracellular ability of the bacterium to ‘step into’ the host cell’s cytoplasm from the endocytotic vacuole, where it appears to polymerize actin filaments to spread across cells in the closer vicinity. B. pseudomallei effectively evades the host’s surveillance armory to remain latent for prolonged duration also causing relapses despite antimicrobial therapy. Therefore, eradication of intracellular B. pseudomallei is highly dependent on robust cellular immune responses. However, it remains ambiguous why certain individuals in endemic areas experience asymptomatic seroconversion, whereas others succumb to sepsis-associated sequelae. Here, we propose key insights on how the host’s surveillance radars get commandeered by B. pseudomallei.
Collapse
Affiliation(s)
- Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - A S Smiline Girija
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
54
|
Bone Marrow Neutrophils of Multiple Myeloma Patients Exhibit Myeloid-Derived Suppressor Cell Activity. J Immunol Res 2021; 2021:6344344. [PMID: 34414242 PMCID: PMC8369183 DOI: 10.1155/2021/6344344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
Activated normal density granulocytes (NDGs) can suppress T-cell responses in a similar way as myeloid-derived suppressor cells (MDSCs). In this study, we tested the hypothesis that NDGs from blood and bone marrow of multiple myeloma (MM) patients have the ability to suppress T-cells, as MDSC. MM is an incurable plasma cell malignancy of the bone marrow. Like most malignancies, myeloma cells alter its microenvironment to promote tumor growth, including inhibition of the immune system. We found that MM NDG from the bone marrow suppressed proliferation of T-cells, in contrast to healthy donors. The inhibitory effect could not be explained by changed levels of mature or immature NDG in the bone marrow. Moreover, NDG isolated from the blood of both myeloma patients and healthy individuals could inhibit T-cell proliferation and IFN-γ production. On the contrary to previous studies, blood NDGs did not have to be preactivated to mediate suppressive effects. Instead, they became activated during coculture, indicating that contact with activated T-cells is important for their ability to regulate T-cells. The inhibitory effect was dependent on the production of reactive oxygen species and could be reverted by the addition of its inhibitor, catalase. Our findings suggest that blood NDGs from MM patients are suppressive, but no more than NDGs from healthy donors. However, only bone marrow NDG from MM patients exhibited MDSC function. This MDSC-like suppression mediated by bone marrow NDG could be important for the growth of malignant plasma cells in MM patients.
Collapse
|
55
|
Jakovija A, Chtanova T. Neutrophil Interactions with the Lymphatic System. Cells 2021; 10:cells10082106. [PMID: 34440875 PMCID: PMC8393351 DOI: 10.3390/cells10082106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
The lymphatic system is a complex network of lymphatic vessels and lymph nodes designed to balance fluid homeostasis and facilitate host immune defence. Neutrophils are rapidly recruited to sites of inflammation to provide the first line of protection against microbial infections. The traditional view of neutrophils as short-lived cells, whose role is restricted to providing sterilizing immunity at sites of infection, is rapidly evolving to include additional functions at the interface between the innate and adaptive immune systems. Neutrophils travel via the lymphatics from the site of inflammation to transport antigens to lymph nodes. They can also enter lymph nodes from the blood by crossing high endothelial venules. Neutrophil functions in draining lymph nodes include pathogen control and modulation of adaptive immunity. Another facet of neutrophil interactions with the lymphatic system is their ability to promote lymphangiogenesis in draining lymph nodes and inflamed tissues. In this review, we discuss the significance of neutrophil migration to secondary lymphoid organs and within the lymphatic vasculature and highlight emerging evidence of the neutrophils’ role in lymphangiogenesis.
Collapse
Affiliation(s)
- Arnolda Jakovija
- Innate and Tumor Immunology Laboratory, Immunity Theme, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- St Vincent’s School of Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tatyana Chtanova
- Innate and Tumor Immunology Laboratory, Immunity Theme, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence:
| |
Collapse
|
56
|
Wilk AJ, Lee MJ, Wei B, Parks B, Pi R, Martínez-Colón GJ, Ranganath T, Zhao NQ, Taylor S, Becker W, Jimenez-Morales D, Blomkalns AL, O’Hara R, Ashley EA, Nadeau KC, Yang S, Holmes S, Rabinovitch M, Rogers AJ, Greenleaf WJ, Blish CA. Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. J Exp Med 2021; 218:e20210582. [PMID: 34128959 PMCID: PMC8210586 DOI: 10.1084/jem.20210582] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Madeline J. Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Bei Wei
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Benjamin Parks
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
- Graduate Program in Computer Science, Stanford University School of Medicine, Stanford, CA
| | - Ruoxi Pi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Thanmayi Ranganath
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nancy Q. Zhao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Shalina Taylor
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA
| | - Winston Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | | | | | - Andra L. Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ruth O’Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Euan A. Ashley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Kari C. Nadeau
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA
| | - Angela J. Rogers
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - William J. Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
- Department of Applied Physics, Stanford University, Stanford, CA
| | - Catherine A. Blish
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
57
|
Abstract
ABSTRACT The ongoing coronavirus disease 2019 (COVID-19) pandemic has swept over the world and causes thousands of deaths. Although the clinical features of COVID-19 become much clearer than before, there are still further problems with the pathophysiological process and treatments of severe patients. One primary problem is with the paradoxical immune states in severe patients with COVID-19. Studies indicate that Severe Acute Respiratory Syndrome Coronavirus 2 can attack the immune system, manifested as a state of immunosuppression with a decrease in lymphocytes, whereas a state of hyperinflammation, presenting as elevated cytokine levels, is also detected in COVID-19. Therefore, discussing the specific status of immunity in COVID-19 will contribute to the understanding of its pathophysiology and the search for appropriate treatments. Here, we review all the available literature concerning the different immune states in COVID-19 and the underlying pathophysiological mechanisms. In addition, the association between immune states and the development and severity of disease as well as the impact on the selection of immunotherapy strategies are discussed in our review.
Collapse
Affiliation(s)
- Ye Liu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Hubei, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Hubei, China
| | - Dongxue Xu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Hubei, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Hubei, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Research Center of Hubei Critical Care Medicine, Hubei, China
| |
Collapse
|
58
|
Role of Neutrophils in Cardiac Injury and Repair Following Myocardial Infarction. Cells 2021; 10:cells10071676. [PMID: 34359844 PMCID: PMC8305164 DOI: 10.3390/cells10071676] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are first-line responders of the innate immune system. Following myocardial infarction (MI), neutrophils are quickly recruited to the ischemic region, where they initiate the inflammatory response, aiming at cleaning up dead cell debris. However, excessive accumulation and/or delayed removal of neutrophils are deleterious. Neutrophils can promote myocardial injury by releasing reactive oxygen species, granular components, and pro-inflammatory mediators. More recent studies have revealed that neutrophils are able to form extracellular traps (NETs) and produce extracellular vesicles (EVs) to aggravate inflammation and cardiac injury. On the contrary, there is growing evidence showing that neutrophils also exert anti-inflammatory, pro-angiogenic, and pro-reparative effects, thus facilitating inflammation resolution and cardiac repair. In this review, we summarize the current knowledge on neutrophils’ detrimental roles, highlighting the role of recently recognized NETs and EVs, followed by a discussion of their beneficial effects and molecular mechanisms in post-MI cardiac remodeling. In addition, emerging concepts about neutrophil diversity and their modulation of adaptive immunity are discussed.
Collapse
|
59
|
da Fonseca-Martins AM, de Souza Lima-Gomes P, Antunes MM, de Moura RG, Covre LP, Calôba C, Rocha VG, Pereira RM, Menezes GB, Gomes DCO, Saraiva EM, de Matos Guedes HL. Leishmania Parasites Drive PD-L1 Expression in Mice and Human Neutrophils With Suppressor Capacity. Front Immunol 2021; 12:598943. [PMID: 34211455 PMCID: PMC8240668 DOI: 10.3389/fimmu.2021.598943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-γ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response.
Collapse
Affiliation(s)
- Alessandra M da Fonseca-Martins
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Phillipe de Souza Lima-Gomes
- Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Renan Garcia de Moura
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Luciana P Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil.,Division of Medicine, University College London, London, United Kingdom
| | - Carolina Calôba
- Departamento de Imunologia, Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Grizente Rocha
- Departamento de Imunologia, Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata M Pereira
- Departamento de Imunologia, Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Elvira M Saraiva
- Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L de Matos Guedes
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
60
|
Yajuk O, Baron M, Toker S, Zelter T, Fainsod-Levi T, Granot Z. The PD-L1/PD-1 Axis Blocks Neutrophil Cytotoxicity in Cancer. Cells 2021; 10:cells10061510. [PMID: 34203915 PMCID: PMC8232689 DOI: 10.3390/cells10061510] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
The PD-L1/PD-1 axis mediates immune tolerance and promotes tumor growth and progression via the inhibition of anti-tumor immunity. Blocking the interaction between PD-L1 and PD-1 was clinically shown to be beneficial in maintaining the anti-tumor functions of the adaptive immune system. Still, the consequences of blocking the PD-L1/PD-1 axis on innate immune responses remain largely unexplored. In this context, neutrophils were shown to consist of distinct subpopulations, which possess either pro- or anti-tumor properties. PD-L1-expressing neutrophils are considered pro-tumor as they are able to suppress cytotoxic T cells and are propagated with disease progression. That said, we found that PD-L1 expression is not limited to tumor promoting neutrophils, but is also evident in anti-tumor neutrophils. We show that neutrophil cytotoxicity is effectively and efficiently blocked by tumor cell-expressed PD-1. Furthermore, the blocking of either neutrophil PD-L1 or tumor cell PD-1 maintains neutrophil cytotoxicity. Importantly, we show that tumor cell PD-1 blocks neutrophil cytotoxicity and promotes tumor growth via a mechanism independent of adaptive immunity. Taken together, these findings highlight the therapeutic potential of enhancing anti-tumor innate immune responses via blocking of the PD-L1/PD-1 axis.
Collapse
|
61
|
Timaxian C, Vogel CFA, Orcel C, Vetter D, Durochat C, Chinal C, NGuyen P, Aknin ML, Mercier-Nomé F, Davy M, Raymond-Letron I, Van TNN, Diermeier SD, Godefroy A, Gary-Bobo M, Molina F, Balabanian K, Lazennec G. Pivotal Role for Cxcr2 in Regulating Tumor-Associated Neutrophil in Breast Cancer. Cancers (Basel) 2021; 13:cancers13112584. [PMID: 34070438 PMCID: PMC8197482 DOI: 10.3390/cancers13112584] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines present in the tumor microenvironment are essential for the control of tumor progression. We show here that several ligands of the chemokine receptor Cxcr2 were up-regulated in the PyMT (polyoma middle T oncogene) model of breast cancer. Interestingly, the knock-down of Cxcr2 in PyMT animals led to an increased growth of the primary tumor and lung metastasis. The analysis of tumor content of PyMT-Cxcr2-/- animals highlighted an increased infiltration of tumor associated neutrophils (TANs), mirrored by a decreased recruitment of tumor associated macrophages (TAMs) compared to PyMT animals. Analysis of PyMT-Cxcr2-/- TANs revealed that they lost their killing ability compared to PyMT-Cxcr2+/+ TANs. The transcriptomic analysis of PyMT-Cxcr2-/- TANs showed that they had a more pronounced pro-tumor TAN2 profile compared to PyMT TANs. In particular, PyMT-Cxcr2-/- TANs displayed an up-regulation of the pathways involved in reactive oxygen species (ROS) production and angiogenesis and factors favoring metastasis, but reduced apoptosis. In summary, our data reveal that a lack of Cxcr2 provides TANs with pro-tumor effects.
Collapse
Affiliation(s)
- Colin Timaxian
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Charlotte Orcel
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Diana Vetter
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Camille Durochat
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Clarisse Chinal
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Phuong NGuyen
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Marie-Laure Aknin
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Françoise Mercier-Nomé
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Martin Davy
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, 31076 Toulouse, France;
- Platform of Experimental and Compared Histopathology, STROMALab, UMR UPS/CNRS 5223, EFS, Inserm U1031, 31076 Toulouse, France
| | - Thi-Nhu-Ngoc Van
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Anastasia Godefroy
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Franck Molina
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Karl Balabanian
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Institut de Recherche Saint-Louis, Université de Paris, EMiLy, Inserm U1160, 75010 Paris, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Correspondence:
| |
Collapse
|
62
|
Chen R, Zhou L. PD-1 signaling pathway in sepsis: Does it have a future? Clin Immunol 2021; 229:108742. [PMID: 33905818 DOI: 10.1016/j.clim.2021.108742] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023]
Abstract
Sepsis is characterized by high mortality and poor prognosis and is one of the leading causes of death among patients in the intensive care unit (ICU). In the past, drugs that block early inflammatory responses have done little to reverse the progression of sepsis. Programmed cell death receptor 1 (PD-1) and its two ligands, programmed cell death receptor ligand 1(PD-L1) and programmed cell death receptor ligand 2 (PD-L2), are negative regulatory factors of the immune response of the body. Recently, the role of the PD-1 signaling pathway in sepsis has been widely studied. Studies showed that the PD-1 signaling pathways are closely related to the mortality and prognosis of sepsis patients. In the immunotherapy of sepsis, whether in animal experiments or clinical trials, anti-PD-1/PD-L1 antibodies have shown good promise. In this review, firstly, we focus on the immunosuppressive mechanism of sepsis and the structure and function of the PD-1 signaling pathway. The variety of the PD-1 signaling pathways in sepsis is introduced. Then, the relationship between the PD-1 signaling pathway and immune cells and organ dysfunction and the regulatory factors of the PD-1 signaling pathway in sepsis is discussed. Finally, the application of the PD-1 signaling pathway in sepsis is specifically emphasized.
Collapse
Affiliation(s)
- Rongping Chen
- Department of Intensive care unit, The First People's Hospital of Foshan, Foshan 528000, Guangdong Province, China; Sun Yet-sen University, Guangzhou 510000, Guangdong Province, China
| | - Lixin Zhou
- Department of Intensive care unit, The First People's Hospital of Foshan, Foshan 528000, Guangdong Province, China.
| |
Collapse
|
63
|
Shen X, Cao K, Zhao Y, Du J. Targeting Neutrophils in Sepsis: From Mechanism to Translation. Front Pharmacol 2021; 12:644270. [PMID: 33912055 PMCID: PMC8072352 DOI: 10.3389/fphar.2021.644270] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Although our understanding in the pathophysiological features of sepsis has increased significantly during the past decades, there is still lack of specific treatment for sepsis. Neutrophils are important regulators against invading pathogens, and their role during sepsis has been studied extensively. It has been suggested that the migration, the antimicrobial activity, and the function of neutrophil extracellular traps (NETs) have all been impaired during sepsis, which results in an inappropriate response to primary infection and potentially increase the susceptibility to secondary infection. On the other hand, accumulating evidence has shown that the reversal or restoration of neutrophil function can promote bacterial clearance and improve sepsis outcome, supporting the idea that targeting neutrophils may be a promising strategy for sepsis treatment. In this review, we will give an overview of the role of neutrophils during sepsis and discuss the potential therapeutic strategy targeting neutrophils.
Collapse
Affiliation(s)
- Xiaofei Shen
- Faculty of Hepato-Biliary-Pancreatic Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ke Cao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangdong, China
| |
Collapse
|
64
|
Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, Aschenbrenner AC. Neutrophils in COVID-19. Front Immunol 2021; 12:652470. [PMID: 33841435 PMCID: PMC8027077 DOI: 10.3389/fimmu.2021.652470] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Strong evidence has been accumulated since the beginning of the COVID-19 pandemic that neutrophils play an important role in the pathophysiology, particularly in those with severe disease courses. While originally considered to be a rather homogeneous cell type, recent attention to neutrophils has uncovered their fascinating transcriptional and functional diversity as well as their developmental trajectories. These new findings are important to better understand the many facets of neutrophil involvement not only in COVID-19 but also many other acute or chronic inflammatory diseases, both communicable and non-communicable. Here, we highlight the observed immune deviation of neutrophils in COVID-19 and summarize several promising therapeutic attempts to precisely target neutrophils and their reactivity in patients with COVID-19.
Collapse
Affiliation(s)
- Nico Reusch
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kevin Baßler
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
65
|
Club Cell Protein 16 Attenuates CD16 brightCD62 dim Immunosuppressive Neutrophils in Damaged Tissue upon Posttraumatic Sepsis-Induced Lung Injury. J Immunol Res 2021; 2021:6647753. [PMID: 33575362 PMCID: PMC7861919 DOI: 10.1155/2021/6647753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/24/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Recently, identification of immunosuppressive polymorphonuclear leukocytes (PMNL) that were traditionally described as proinflammatory cells emerged in the field of posttraumatic immunity. To understand their local and remote distribution after trauma, PMNL-subsets and the impact of immunomodulatory Club Cell protein (CC)16 that correlates with pulmonary complications were assessed. Methods C57BL/6N mice were divided into three groups, receiving isolated blunt chest trauma (TxT), undergoing TxT followed by cecal ligation and puncture (CLP, TxT + CLP) after 24 h, or sham undergoing analgosedation (n = 18/group). Further, each group was subdivided into three groups receiving either no treatment (ctrl) or intratracheal neutralization of CC16 by application of anti-CC16-antibody or application of an unspecific IgG control antibody (n = 6/group). Treatment was set at the time point after TxT. Analyses followed 6 h post-CLP. PMNL were characterized via expression of CD11b, CD16, CD45, CD62L, and Ly6G by flow cytometry in bone marrow (BM), blood, spleen, lung, liver, and bronchoalveolar and peritoneal lavage fluid (BALF and PL). Apoptosis was assessed by activated (cleaved) caspase-3. Results from untreated ctrl and IgG-treated mice were statistically comparable between all corresponding sham, TxT, and TxT + CLP groups. Results Immature (CD16dimCD62Lbright) PMNL increased significantly in BM, circulation, and spleen after TxT vs. sham and were significantly attenuated in the lungs, BALF, PL, and liver. Classical-shaped (CD16brightCD62Lbright) PMNL increased after TxT vs. sham in peripheral tissue and were significantly attenuated in circulation, proposing a trauma-induced migration of mature or peripheral differentiation of circulating immature PMNL. Immunosuppressive (CD16brightCD62Ldim) PMNL decreased significantly in the lungs and spleen, while they systemically increased after TxT vs. sham. CLP in the TxT + CLP group reduced immunosuppressive PMNL in PL and increased their circulatory rate vs. isolated TxT, showing local reduction in affected tissue and their increase in nonaffected tissue. CC16 neutralization enhanced the fraction of immunosuppressive PMNL following TxT vs. sham and decreased caspase-3 in the lungs post-CLP in the TxT + CLP group, while apoptotic cells in the liver diminished post-TxT. Posttraumatic CC16 neutralization promotes the subset of immunosuppressive PMNL and antagonizes their posttraumatic distribution. Conclusion Since CC16 affects both the distribution of PMNL subsets and apoptosis in tissues after trauma, it may constitute as a novel target to beneficially shape the posttraumatic tissue microenvironment and homeostasis to improving outcomes.
Collapse
|
66
|
Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21239165. [PMID: 33271941 PMCID: PMC7730745 DOI: 10.3390/ijms21239165] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.
Collapse
|
67
|
Lamberti G, Sisi M, Andrini E, Palladini A, Giunchi F, Lollini PL, Ardizzoni A, Gelsomino F. The Mechanisms of PD-L1 Regulation in Non-Small-Cell Lung Cancer (NSCLC): Which Are the Involved Players? Cancers (Basel) 2020; 12:E3129. [PMID: 33114576 PMCID: PMC7692442 DOI: 10.3390/cancers12113129] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Treatment with inhibition of programmed cell death 1 (PD-1) or its ligand (PD-L1) improves survival in advanced non-small-cell lung cancer (NSCLC). Nevertheless, only a subset of patients benefit from treatment and biomarkers of response to immunotherapy are lacking. Expression of PD-L1 on tumor cells is the primary clinically-available predictive factor of response to immune checkpoint inhibitors, and its relevance in cancer immunotherapy has fostered several studies to better characterize the mechanisms that regulate PD-L1 expression. However, the factors associated with PD-L1 expression are still not well understood. Genomic alterations that activate KRAS, EGFR, and ALK, as well as the loss of PTEN, have been associated with increased PD-L1 expression. In addition, PD-L1 expression is reported to be increased by amplification of CD274, and decreased by STK11 deficiency. Furthermore, PD-L1 expression can be modulated by either tumor extrinsic or intrinsic factors. Among extrinsic factors, the most prominent one is interferon-γ release by immune cells, while there are several tumor intrinsic factors such as activation of the mechanistic target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Myc pathways that can increase PD-L1 expression. A deeper understanding of PD-L1 expression regulation is crucial for improving strategies that exploit inhibition of this immune checkpoint in the clinic, especially in NSCLC where it is central in the therapeutic algorithm. We reviewed current preclinical and clinical data about PD-L1 expression regulation in NSCLC.
Collapse
Affiliation(s)
- Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.L.); (M.S.); (E.A.); (A.A.)
| | - Monia Sisi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.L.); (M.S.); (E.A.); (A.A.)
| | - Elisa Andrini
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.L.); (M.S.); (E.A.); (A.A.)
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, viale Filopanti 22, 40126 Bologna, Italy; (A.P.); (P.-L.L.)
| | - Francesca Giunchi
- Laboratory of Oncologic Molecular Pathology, S.Orsola-Malpighi Teaching Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, viale Filopanti 22, 40126 Bologna, Italy; (A.P.); (P.-L.L.)
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.L.); (M.S.); (E.A.); (A.A.)
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy
| | - Francesco Gelsomino
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy
| |
Collapse
|
68
|
Abdelhamid L, Cabana-Puig X, Mu Q, Moarefian M, Swartwout B, Eden K, Das P, Seguin RP, Xu L, Lowen S, Lavani M, Hrubec TC, Jones CN, Luo XM. Quaternary Ammonium Compound Disinfectants Reduce Lupus-Associated Splenomegaly by Targeting Neutrophil Migration and T-Cell Fate. Front Immunol 2020; 11:575179. [PMID: 33193366 PMCID: PMC7609861 DOI: 10.3389/fimmu.2020.575179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Hypersensitivity reactions and immune dysregulation have been reported with the use of quaternary ammonium compound disinfectants (QACs). We hypothesized that QAC exposure would exacerbate autoimmunity associated with systemic lupus erythematosus (lupus). Surprisingly, however, we found that compared to QAC-free mice, ambient exposure of lupus-prone mice to QACs led to smaller spleens with no change in circulating autoantibodies or the severity of glomerulonephritis. This suggests that QACs may have immunosuppressive effects on lupus. Using a microfluidic device, we showed that ambient exposure to QACs reduced directional migration of bone marrow-derived neutrophils toward an inflammatory chemoattractant ex vivo. Consistent with this, we found decreased infiltration of neutrophils into the spleen. While bone marrow-derived neutrophils appeared to exhibit a pro-inflammatory profile, upregulated expression of PD-L1 was observed on neutrophils that infiltrated the spleen, which in turn interacted with PD-1 on T cells and modulated their fate. Specifically, QAC exposure hindered activation of splenic T cells and increased apoptosis of effector T-cell populations. Collectively, these results suggest that ambient QAC exposure decreases lupus-associated splenomegaly likely through neutrophil-mediated toning of T-cell activation and/or apoptosis. However, our findings also indicate that even ambient exposure could alter immune cell phenotypes, functions, and their fate. Further investigations on how QACs affect immunity under steady-state conditions are warranted.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- School of Medicine, Stanford University, Stanford, CA, United States
| | - Maryam Moarefian
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Brianna Swartwout
- Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Prerna Das
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ryan P. Seguin
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Sarah Lowen
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine-Virginia Campus, Blacksburg, VA, United States
| | - Mital Lavani
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine-Virginia Campus, Blacksburg, VA, United States
| | - Terry C. Hrubec
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine-Virginia Campus, Blacksburg, VA, United States
| | - Caroline N. Jones
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Bioengineering, University of Texas, Dallas, TX, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
69
|
Lu F, Zhao Y, Pang Y, Ji M, Sun Y, Wang H, Zou J, Wang Y, Li G, Sun T, Li J, Ma D, Ye J, Ji C. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma. Cancer Lett 2020; 497:178-189. [PMID: 33091534 DOI: 10.1016/j.canlet.2020.10.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
The NLRP3 inflammasome plays a pro-tumorigenic role in various malignancies. However, its potential role in lymphomagenesis remains unclear. In this study, we identified an immunosuppressive state in patients with diffuse large B cell lymphoma (DLBCL), which was characterized by markedly elevated interleukin (IL)-18 levels in lymphoma tissues and positive correlation with programmed death ligand 1 (PD-L1) expression. Furthermore, NLRP3 inflammasome activation in DLBCL cell lines upregulated PD-L1 and reduced the proportion of cytotoxic T cells. NLRP3 inflammasome blockade in vivo suppressed lymphoma growth and ameliorated anti-tumor immunity by downregulating PD-L1 in the tumor microenvironment and decreasing the proportion of PD-1/TIM-3-expressing T cells, myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Further in vivo studies revealed IL-18 as the main effector cytokine involved in the negative regulation of anti-lymphoma immunity. Interestingly, NLRP3 blockers combined with anti-PD-L1 treatment exerted antagonistic effects during lymphoma therapy. Altogether, our findings indicate that NLRP3 inflammasome promotes immunosuppression by modulating PD-L1 and immune cells. Accordingly, this study highlights the prognostic and therapeutic values of the NLRP3 inflammasome in lymphoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Apoptosis
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Inflammasomes/immunology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yanan Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yihua Pang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yanping Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hongchun Wang
- Department of Laboratory Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jie Zou
- Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yan Wang
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, 271000, PR China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
70
|
Wang Z, Yang C, Li L, Zhang Z, Pan J, Su K, Chen W, Li J, Qiu F, Huang J. CD62L dim Neutrophils Specifically Migrate to the Lung and Participate in the Formation of the Pre-Metastatic Niche of Breast Cancer. Front Oncol 2020; 10:540484. [PMID: 33178575 PMCID: PMC7593663 DOI: 10.3389/fonc.2020.540484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Lung metastasis is one of the leading causes of death in patients with breast cancer. The mechanism of tumor metastasis remains controversial. Recently, the formation of a pre-metastatic niche has been considered a key factor contributing to breast cancer metastasis, which might also explain the tendency of organ metastasis. Our study initially re-examined the critical time of the niche formation and simultaneously detected a novel subset of neutrophils, CD62Ldim neutrophils, which had not previously been reported in tumor metastasis; the number of these cells progressively increased during breast cancer progression and was closely related to the formation of the pre-metastatic niche. Furthermore, we explored the mechanism of their aggregation in the pre-metastatic niche in the lung and found that they were specifically chemoattracted by the CXCL12-CXCR4 signaling pathway. Compared to the CD62Lhi neutrophils, CD62Ldim neutrophils exhibited stronger adhesion and increased survival. The results provide new insights into the subsequent targeted treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Su
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wuzhen Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
71
|
Gjoerup O, Brown CA, Ross JS, Huang RSP, Schrock A, Creeden J, Fabrizio D, Tolba K. Identification and Utilization of Biomarkers to Predict Response to Immune Checkpoint Inhibitors. AAPS JOURNAL 2020; 22:132. [PMID: 33057937 DOI: 10.1208/s12248-020-00514-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICPI) have revolutionized cancer therapy and provided clinical benefit to thousands of patients. Despite durable responses in many tumor types, the majority of patients either fail to respond at all or develop resistance to the ICPI. Furthermore, ICPI treatment can be accompanied by serious adverse effects. There is an urgent need for identification of patient populations that will benefit from ICPI as single agents and when used in combinations. As ICPI have achieved regulatory approvals, accompanying biomarkers including PD-L1 immunohistochemistry (IHC) and tumor mutational burden (TMB) have also received approvals for some indications. The ICPI pembrolizumab was the first example of a tissue-agnostic FDA approval based on tumor microsatellite instability (MSI)/deficient mismatch repair (dMMR) biomarker status, rather than on tumor histology assessment. Several other ICPI-associated biomarkers are in the exploratory stage, including quantification of tumor-infiltrating lymphocytes (TILs), gene expression profiling (GEP) of an inflamed microenvironment, and neoantigen prediction. TMB and PD-L1 expression can predict a subset of responses, but they fail to predict all responses to checkpoint blockade. While a single biomarker is currently limited in its ability to fully capture the complexity of the tumor-immune microenvironment, a combination of biomarkers is emerging as a method to improve predictive power. Here we review the steadily growing impact of comprehensive genomic profiling (CGP) for development and utilization of predictive biomarkers by simultaneously capturing TMB, MSI, and the status of genomic targets that confer sensitivity or resistance to immunotherapy, as well as detecting inflammation through RNA expression signatures.
Collapse
Affiliation(s)
- Ole Gjoerup
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA. .,Foundation Medicine, 121 Seaport Blvd, Room 970-35, Boston, Massachusetts, 02210, USA.
| | | | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA.,Upstate Medical University, Syracuse, New York, USA
| | | | - Alexa Schrock
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | - James Creeden
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | | | - Khaled Tolba
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
72
|
Yang P, Wang Y, Yao Z, Gao X, Liu C, Wang X, Wu H, Ding X, Hu J, Lin B, Li Q, Li M, Li X, Chen X, Qi W, Li W, Xue J, Xu H. Enhanced Safety and Antitumor Efficacy of Switchable Dual Chimeric Antigen Receptor-Engineered T Cells against Solid Tumors through a Synthetic Bifunctional PD-L1-Blocking Peptide. J Am Chem Soc 2020; 142:18874-18885. [DOI: 10.1021/jacs.0c08538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peiwei Yang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ying Wang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zheng Yao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinmei Gao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chen Liu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinmin Wang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Heming Wu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xu Ding
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bingjing Lin
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mengwei Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xin Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiangying Chen
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weiyan Qi
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weiguang Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianpeng Xue
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province and State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
73
|
Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, Krämer B, Krammer T, Brumhard S, Bonaguro L, De Domenico E, Wendisch D, Grasshoff M, Kapellos TS, Beckstette M, Pecht T, Saglam A, Dietrich O, Mei HE, Schulz AR, Conrad C, Kunkel D, Vafadarnejad E, Xu CJ, Horne A, Herbert M, Drews A, Thibeault C, Pfeiffer M, Hippenstiel S, Hocke A, Müller-Redetzky H, Heim KM, Machleidt F, Uhrig A, Bosquillon de Jarcy L, Jürgens L, Stegemann M, Glösenkamp CR, Volk HD, Goffinet C, Landthaler M, Wyler E, Georg P, Schneider M, Dang-Heine C, Neuwinger N, Kappert K, Tauber R, Corman V, Raabe J, Kaiser KM, Vinh MT, Rieke G, Meisel C, Ulas T, Becker M, Geffers R, Witzenrath M, Drosten C, Suttorp N, von Kalle C, Kurth F, Händler K, Schultze JL, Aschenbrenner AC, Li Y, Nattermann J, Sawitzki B, Saliba AE, Sander LE. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 2020; 182:1419-1440.e23. [PMID: 32810438 PMCID: PMC7405822 DOI: 10.1016/j.cell.2020.08.001] [Citation(s) in RCA: 972] [Impact Index Per Article: 243.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
Collapse
Affiliation(s)
| | - Nico Reusch
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Daniela Paclik
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Baßler
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH) Berlin, Germany
| | - Bowen Zhang
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenzo Bonaguro
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Elena De Domenico
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Daniel Wendisch
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Grasshoff
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | | | - Michael Beckstette
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Tal Pecht
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Adem Saglam
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Oliver Dietrich
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Henrik E Mei
- Mass Cytometry Lab, DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry Lab, DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Désirée Kunkel
- Flow and Mass Cytometry Core Facility, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arik Horne
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Miriam Herbert
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Anna Drews
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Pfeiffer
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Andreas Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin-Moira Heim
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Machleidt
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Uhrig
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Laure Bosquillon de Jarcy
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Linda Jürgens
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph R Glösenkamp
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH) Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Philipp Georg
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Schneider
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Study Center (CSC), Charité, Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nick Neuwinger
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Kappert
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Tauber
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Raabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Kim Melanie Kaiser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Michael To Vinh
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Gereon Rieke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Thomas Ulas
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Matthias Becker
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research (HZI), Braunschweig, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Christian Drosten
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany; German Center for Infection Research (DZIF)
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Christof von Kalle
- Clinical Study Center (CSC), Charité, Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany.
| | - Anna C Aschenbrenner
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF)
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| |
Collapse
|
74
|
Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol 2020; 11:2100. [PMID: 32983165 PMCID: PMC7492657 DOI: 10.3389/fimmu.2020.02100] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, cancer immunotherapies such as checkpoint blockade and adoptive T cell transfer have been a game changer in many aspects and have improved the treatment for various malignancies considerably. Despite the clinical success of harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy are still limited to a subset of patients and cancer types. In recent years, neutrophils, the most abundant circulating leukocytes, have emerged as promising targets for anti-cancer therapies. Traditionally regarded as the first line of defense against infections, neutrophils are increasingly recognized as critical players during cancer progression. Evidence shows the functional plasticity of neutrophils in the tumor microenvironment, allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor cell activity, as well as their role in tumor elimination, exerted mainly via antibody-dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically target neutrophils in cancer. These include strategies in humans to either silence the pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions. Redirecting neutrophils seems a promising approach to harness innate immunity to improve treatment for cancer patients.
Collapse
Affiliation(s)
- Charita Furumaya
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Paula Martinez-Sanz
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Panagiota Bouti
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
75
|
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer 2020; 20:485-503. [PMID: 32694624 DOI: 10.1038/s41568-020-0281-y] [Citation(s) in RCA: 573] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Neutrophils play a key role in defence against infection and in the activation and regulation of innate and adaptive immunity. In cancer, tumour-associated neutrophils (TANs) have emerged as an important component of the tumour microenvironment. Here, they can exert dual functions. TANs can be part of tumour-promoting inflammation by driving angiogenesis, extracellular matrix remodelling, metastasis and immunosuppression. Conversely, neutrophils can also mediate antitumour responses by direct killing of tumour cells and by participating in cellular networks that mediate antitumour resistance. Neutrophil diversity and plasticity underlie the dual potential of TANs in the tumour microenvironment. Myeloid checkpoints as well as the tumour and tissue contexture shape neutrophil function in response to conventional therapies and immunotherapy. We surmise that neutrophils can provide tools to tailor current immunotherapy strategies and pave the way to myeloid cell-centred therapeutic strategies, which would be complementary to current approaches.
Collapse
Affiliation(s)
- Sebastien Jaillon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
| | - Andrea Ponzetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Diletta Di Mitri
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Angela Santoni
- Dipartimento di Medicina Molecolare Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma 'La Sapienza', Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
76
|
Cohen JT, Miner TJ, Vezeridis MP. Is the neutrophil-to-lymphocyte ratio a useful prognostic indicator in melanoma patients? Melanoma Manag 2020; 7:MMT47. [PMID: 32922729 PMCID: PMC7475797 DOI: 10.2217/mmt-2020-0006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 12/25/2022] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is gaining traction as a biomarker with utility in a variety of malignancies including melanoma. Intact lymphocyte function is necessary for tumor surveillance and destruction, and neutrophils play a role in suppressing lymphocyte proliferation and in the induction of lymphocyte apoptosis. Early research in melanoma indicates that in high-risk localized melanoma, a high NLR is correlated with worse overall and disease-free survival. Similarly, in metastatic melanoma treated with both metastasectomy and immunotherapies, an elevated NLR is predictive of shortened overall survival and progression-free survival. Future studies incorporating NLR into more traditional melanoma prognostic markers while employing more granular outcomes, are needed to realize the full potential of NLR.
Collapse
Affiliation(s)
- Joshua T Cohen
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Thomas J Miner
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Michael P Vezeridis
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
77
|
Galbraith NJ, Walker SP, Gardner SA, Bishop C, Galandiuk S, Polk HC. Interferon-gamma increases monocyte PD-L1 but does not diminish T-cell activation. Cell Immunol 2020; 357:104197. [PMID: 32891037 DOI: 10.1016/j.cellimm.2020.104197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/06/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023]
Abstract
Immune dysfunction can occur during sepsis or following major trauma. Decreased monocyte HLA-DR expression and cytokine responses are associated with mortality. Recent studies have shown that adaptive immune system defects can also occur in such patients, characterised by increased PD-L1 expression and associated T-cell anergy. The aim of this study was to determine the effects of an immune adjuvant, interferon-gamma, on monocyte PD-L1 expression and T-cell activation in an ex-vivo human whole blood model of infection. We found that with interferon-gamma treatment, monocytes had increased HLA-DR expression and augmented TNF-α production in response to LPS stimulation, with a decrease in IL-10 levels. Both LPS and interferon-gamma increased the level of monocyte PD-L1 expression, and that a combination of both agents synergistically stimulated a further increase in PD-L1 levels as measured by flow cytometry. However, despite elevated PD-L1 expression, both CD4 and CD8 T-cell activation was not diminished by the addition of interferon-gamma treatment. These findings suggest that PD-L1 may not be a reliable marker for T-cell anergy, and that interferon-gamma remains an adjuvant of interest that can improve the monocyte inflammatory response while preserving T-cell activation.
Collapse
Affiliation(s)
- Norman J Galbraith
- Department of General Surgery, Royal Alexandra Hospital, Paisley, Glasgow, Scotland, UK.
| | - Samuel P Walker
- University of Kentucky School of Medicine, University of Kentucky, Lexington, KY, USA
| | - Sarah A Gardner
- Price Institute of Surgical Research, Hiram C. Polk, Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Campbell Bishop
- Price Institute of Surgical Research, Hiram C. Polk, Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Susan Galandiuk
- Price Institute of Surgical Research, Hiram C. Polk, Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Hiram C Polk
- Price Institute of Surgical Research, Hiram C. Polk, Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
78
|
Bocanegra A, Blanco E, Fernandez-Hinojal G, Arasanz H, Chocarro L, Zuazo M, Morente P, Vera R, Escors D, Kochan G. PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy. Int J Mol Sci 2020; 21:E5918. [PMID: 32824655 PMCID: PMC7460585 DOI: 10.3390/ijms21165918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
The use of monoclonal antibodies targeting PD-1/PD-L1 axis completely changed anticancer treatment strategies. However, despite the significant improvement in overall survival and progression-free survival of patients undergoing these immunotherapy treatments, the only clinically accepted biomarker with some prediction capabilities for the outcome of the treatment is PD-L1 expression in tumor biopsies. Nevertheless, even when having PD-L1-positive tumors, numerous patients do not respond to these treatments. Considering the high cost of these therapies and the risk of immune-related adverse events during therapy, it is necessary to identify additional biomarkers that would facilitate stratifying patients in potential responders and non-responders before the start of immunotherapies. Here, we review the utility of PD-L1 expression not only in tumor cells but in immune system cells and their influence on the antitumor activity of immune cell subsets.
Collapse
Affiliation(s)
- Ana Bocanegra
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Ester Blanco
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Gonzalo Fernandez-Hinojal
- Department of Oncology, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (G.F.-H.); (R.V.)
| | - Hugo Arasanz
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Luisa Chocarro
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Miren Zuazo
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Pilar Morente
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Ruth Vera
- Department of Oncology, Complejo Hospitalario de Navarra, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (G.F.-H.); (R.V.)
| | - David Escors
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| | - Grazyna Kochan
- Oncoimmunology Group, Biomedical Research Centre Navarrabiomed-UPNA, IdISNA, Irunlarrea 3, 31008 Pamplona, Spain; (E.B.); (H.A.); (L.C.); (M.Z.); (P.M.); (D.E.)
| |
Collapse
|
79
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, O'Brien-Simpson NM, Darby IB. Peripheral neutrophil phenotypes during management of periodontitis. J Periodontal Res 2020; 56:58-68. [PMID: 32803891 DOI: 10.1111/jre.12793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Neutrophils are emerging as a key player in periodontal pathogenesis. The surface expression of cellular markers enables functional phenotyping of neutrophils which have distinct roles in disease states. This study aimed to evaluate the effect of periodontal management on neutrophil phenotypes in peripheral blood in periodontitis patients over one year. MATERIALS AND METHODS Peripheral blood and the periodontal parameters, mean probing depth and percentage of sites with bleeding on probing (%BOP), were collected from 40 healthy controls and 54 periodontitis patients at baseline and 3-, 6- and 12- months post-treatment. Flow cytometry was used to identify CD11b+ , CD16b+ , CD62L- and CD66b+ expression on neutrophils, neutrophil maturation stages as promyelocytes (CD11b- CD16b- ), metamyelocytes (CD11b+ CD16b- ) and mature neutrophils (CD11b+ CD16b+ ), and suppressive neutrophil phenotype as bands (CD16dim CD62Lbright ), normal neutrophils (CD16bright CD62Lbright ) and suppressive neutrophils (CD16bright CD62Ldim ). RESULTS CD62L- expression decreased with treatment. No differences were observed in neutrophil maturation stages in health or disease upon treatment. Suppressive and normal neutrophils showed a reciprocal relationship, where suppressive neutrophils decreased with treatment and normal neutrophils increased with treatment. In addition, %BOP was associated with suppressive neutrophils. CONCLUSION This study demonstrates that management of periodontitis significantly modifies distinct neutrophil phenotypes in peripheral blood. Suppressive neutrophils may play a role in the pathogenesis of periodontitis. However, their exact role is unclear and requires further investigation.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Jason C Lenzo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | | | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
80
|
Osei-Bordom D, Bozward AG, Oo YH. The hepatic microenvironment and regulatory T cells. Cell Immunol 2020; 357:104195. [PMID: 32861844 DOI: 10.1016/j.cellimm.2020.104195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The human liver is regarded as a lymphoid organ that contributes to both local and systemic immune response. Intrahepatic immune cells including regulatory T cells (Tregs) reside in the hepatic microenvironment which is enriched with proinflammatory cytokines, chemokines and metabolites. In addition, the hepatic microenvironment has the unique ability to establish and maintain immune tolerance despite the continuous influx of the gut derived microbial products via the portal vein. Regulatory T cells play a crucial role in maintaining the hepatic tolerogenic state; however, the phenotypic stability, function and survival of Tregs in the inflamed liver microenvironment is still poorly understood. Despite this, Tregs immunotherapy remains as an appealing therapeutic option in autoimmune and immune mediated liver diseases. In order to advance cell therapy, it is important for us to further our understanding of the hepatic microenvironment, with the aim of developing ways to modify the hostile, inflamed environment to one which is more favourable. By doing so, T cell stability and function would be enhanced, resulting in improved clinical outcomes.
Collapse
Affiliation(s)
- Daniel Osei-Bordom
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom; Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, United Kingdom
| | - Amber G Bozward
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom
| | - Ye Htun Oo
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom; Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, United Kingdom.
| |
Collapse
|
81
|
Tumor-Associated Neutrophils Dampen Adaptive Immunity and Promote Cutaneous Squamous Cell Carcinoma Development. Cancers (Basel) 2020; 12:cancers12071860. [PMID: 32664318 PMCID: PMC7408986 DOI: 10.3390/cancers12071860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) development has been linked to immune dysfunctions but the mechanisms are still unclear. Here, we report a progressive infiltration of tumor-associated neutrophils (TANs) in precancerous and established cSCC lesions from chemically induced skin carcinogenesis. Comparative in-depth gene expression analyses identified a predominant protumor gene expression signature of TANs in lesions compared to their respective surrounding skin. In addition, in vivo depletion of neutrophils delayed tumor growth and significantly increased the frequency of proliferating IFN-γ (interferon-γ)-producing CD8+ T cells. Mechanisms that limited antitumor responses involved high arginase activity, production of reactive oxygen species (ROS) and nitrite (NO), and the expression of programmed death-ligand 1 (PD-L1) on TAN, concomitantly with an induction of PD-1 on CD8+ T cells, which correlated with tumor size. Our data highlight the relevance of targeting neutrophils and PD-L1-PD-1 (programmed death-1) interaction in the treatment of cSCC.
Collapse
|
82
|
Junqueira-Kipnis AP, Trentini MM, Marques Neto LM, Kipnis A. Live Vaccines Have Different NK Cells and Neutrophils Requirements for the Development of a Protective Immune Response Against Tuberculosis. Front Immunol 2020; 11:741. [PMID: 32391021 PMCID: PMC7189015 DOI: 10.3389/fimmu.2020.00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
It has been shown that neutrophils drive NK cells to activate DCs while NK cells regulate neutrophils survival. In response to mycobacteria, NK cells proliferate and produces IFN-γ, that appears to regulate the neutrophilic inflammatory responses to both M. tuberculosis infection and BCG vaccination. Although the role of neutrophils in the immune response to tuberculosis is a matter of debate, neutrophils were shown to be crucial to induce specific response against mc2-CMX vaccine. The objective of this study was to investigate the interplay between NK cells and neutrophils in regard to the development of a protective immune response against M. tuberculosis. Depletion of NK cells during vaccination did not alter the total number of neutrophils or DCs, but reduced the number of activated DCs, thus reducing the generation of Th1 specific immune responses and the protection conferred by mc2-CMX and BCG vaccines. However, only in mc2-CMX vaccination that neutrophil depletion interfered with the NK cell numbers and protection. In conclusion, it was shown that only when both NK and neutrophils were present, specific Th1 response and protection was achieved by mc2-CMX vaccine, while neutrophils although activated upon BCG vaccination were not necessary for the induced protection.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Monalisa Martins Trentini
- Laboratory of Immunopathology of Infectious Disease, Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Lázaro Moreira Marques Neto
- Laboratory of Immunopathology of Infectious Disease, Department of Biosciences and Technology, Tropical Institute of Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - André Kipnis
- Laboratory of Molecular Bacteriology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
83
|
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 108:377-396. [DOI: 10.1002/jlb.4mir0220-574rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
84
|
Fujita A, Kan-O K, Tonai K, Yamamoto N, Ogawa T, Fukuyama S, Nakanishi Y, Matsumoto K. Inhibition of PI3Kδ Enhances Poly I:C-Induced Antiviral Responses and Inhibits Replication of Human Metapneumovirus in Murine Lungs and Human Bronchial Epithelial Cells. Front Immunol 2020; 11:432. [PMID: 32218789 PMCID: PMC7079687 DOI: 10.3389/fimmu.2020.00432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Viral infections of the airway can exacerbate respiratory diseases, such as asthma or chronic obstructive pulmonary disease (COPD), and accelerate disease progression. Phosphoinositide 3-kinase (PI3K)δ, a class 1A PI3K, has been studied as a potential target for achieving anti-oncogenic and anti-inflammatory effects. However, the role of PI3Kδ in antiviral responses is poorly understood. Using a synthetic double-stranded RNA poly I:C and a selective PI3Kδ inhibitor IC87114, we investigated the role of PI3Kδ signaling in poly I:C-induced expression of the T lymphocyte-inhibitory molecule programmed death 1 ligand 1 (PD-L1), inflammatory responses and antiviral interferon (IFN) responses. C57BL/6N mice were treated with IC87114 or vehicle by intratracheal (i.t.) instillation followed by i.t. administration of poly I:C. Poly I:C increased PD-L1 expression on epithelial cells, lymphocytes, macrophages, and neutrophils in the lungs and IC87114 suppressed poly I:C-induced PD-L1 expression on epithelial cells and neutrophils possibly via inhibition of the Akt/mTOR signaling pathway. IC87114 also attenuated poly I:C-induced increases in numbers of total cells, macrophages, neutrophils and lymphocytes, as well as levels of KC, IL-6 and MIP-1β in bronchoalveolar lavage fluid. Gene expression of IFNβ, IFNλ2 and IFN-stimulated genes (ISGs) were upregulated in response to poly I:C and a further increase in gene expression was observed following IC87114 treatment. In addition, IC87114 enhanced poly I:C-induced phosphorylation of IRF3. We assessed the effects of IC87114 on human primary bronchial epithelial cells (PBECs). IC87114 decreased poly I:C-induced PD-L1 expression on PBECs and secretion of IL-6 and IL-8 into culture supernatants. IC87114 further enhanced poly I:C- induced increases in the concentrations of IFNβ and IFNλ1/3 in culture supernatants as well as upregulated gene expression of ISGs in PBECs. Similar results were obtained in PBECs transfected with siRNA targeting the PIK3CD gene encoding PI3K p110δ, and stimulated with poly I:C. In human metapneumovirus (hMPV) infection of PBECs, IC87114 suppressed hMPV-induced PD-L1 expression and reduced viral replication without changing the production levels of IFNβ and IFNλ1/3 in culture supernatants. These data suggest that IC87114 may promote virus elimination and clearance through PD-L1 downregulation and enhanced antiviral IFN responses, preventing prolonged lung inflammation, which exacerbates asthma and COPD.
Collapse
Affiliation(s)
- Akitaka Fujita
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, Japan
| | - Ken Tonai
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Norio Yamamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Ogawa
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
85
|
Weston MW, Rinde-Hoffman D, Lopez-Cepero M. Monitoring cell-mediated immunity during immunosuppression reduction in heart transplant recipients with severe systemic infections. Clin Transplant 2020; 34:e13809. [PMID: 32003048 DOI: 10.1111/ctr.13809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Treatment for severe systemic infections in heart transplantation is reduction in immunosuppression while treating the infection. An assay that measures adenosine triphosphate production in activated lymphocytes (ImmuKnow® ) objectively monitors cellular immunity of transplant recipients. In this study, we used ImmuKnow® to adjust immunosuppression in heart transplant recipients with severe systemic infections. METHODS Heart transplant recipients were followed with ImmuKnow® at the time of biopsy and diagnosis of systemic infection. Patients who developed an infection were monitored by ImmuKnow® assay with adjustments in immunosuppression based upon the results of the assay. Maintenance immunosuppression was reinstituted when the ImmuKnow® increased to >225 ng/mL of ATP. RESULTS Two or more ImmuKnow® assays were performed in 80 patients. Thirteen patients developed severe systemic infections. ImmuKnow® mean value at the time of diagnosis of infection was 109 ± 49.2 ng/mL. Reduction in immunosuppression and treatment of infection resulted in normalization of ImmuKnow® level, resolution of infection, and no episodes of rebound rejection. CONCLUSION Heart transplant recipients with severe systemic infections presented with a decreased ImmuKnow® , suggesting over immunosuppression. ImmuKnow® can be used as an objective measurement in withdrawing immunosuppression in heart transplant recipients with severe systemic infections.
Collapse
|
86
|
Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, Placebo-Controlled, Single Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559). Crit Care Med 2020; 47:632-642. [PMID: 30747773 DOI: 10.1097/ccm.0000000000003685] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To assess for the first time the safety and pharmacokinetics of an antiprogrammed cell death-ligand 1 immune checkpoint inhibitor (BMS-936559; Bristol-Myers Squibb, Princeton, NJ) and its effect on immune biomarkers in participants with sepsis-associated immunosuppression. DESIGN Randomized, placebo-controlled, dose-escalation. SETTING Seven U.S. hospital ICUs. STUDY POPULATION Twenty-four participants with sepsis, organ dysfunction (hypotension, acute respiratory failure, and/or acute renal injury), and absolute lymphocyte count less than or equal to 1,100 cells/μL. INTERVENTIONS Participants received single-dose BMS-936559 (10-900 mg; n = 20) or placebo (n = 4) infusions. Primary endpoints were death and adverse events; key secondary endpoints included receptor occupancy and monocyte human leukocyte antigen-DR levels. MEASUREMENTS AND MAIN RESULTS The treated group was older (median 62 yr treated pooled vs 46 yr placebo), and a greater percentage had more than 2 organ dysfunctions (55% treated pooled vs 25% placebo); other baseline characteristics were comparable. Overall mortality was 25% (10 mg dose: 2/4; 30 mg: 2/4; 100 mg: 1/4; 300 mg: 1/4; 900 mg: 0/4; placebo: 0/4). All participants had adverse events (75% grade 1-2). Seventeen percent had a serious adverse event (3/20 treated pooled, 1/4 placebo), with none deemed drug-related. Adverse events that were potentially immune-related occurred in 54% of participants; most were grade 1-2, none required corticosteroids, and none were deemed drug-related. No significant changes in cytokine levels were observed. Full receptor occupancy was achieved for 28 days after BMS-936559 (900 mg). At the two highest doses, an apparent increase in monocyte human leukocyte antigen-DR expression (> 5,000 monoclonal antibodies/cell) was observed and persisted beyond 28 days. CONCLUSIONS In this first clinical evaluation of programmed cell death protein-1/programmed cell death-ligand 1 pathway inhibition in sepsis, BMS-936559 was well tolerated, with no evidence of drug-induced hypercytokinemia or cytokine storm, and at higher doses, some indication of restored immune status over 28 days. Further randomized trials on programmed cell death protein-1/programmed cell death-ligand 1 pathway inhibition are needed to evaluate its clinical safety and efficacy in patients with sepsis.
Collapse
|
87
|
Ai L, Xu A, Xu J. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:33-59. [PMID: 32185706 DOI: 10.1007/978-981-15-3266-5_3] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunotherapies that target PD-1/PD-L1 axis have shown unprecedented success in a wide variety of human cancers. PD-1 is one of the key coinhibitory receptors expressed on T cells upon T cell activation. After engagement with its ligands, mainly PD-L1, PD-1 is activated and recruits the phosphatase SHP-2 in proximity to T cell receptor (TCR) and CD28 signaling. This event results in dephosphorylation and attenuation of key molecules in TCR and CD28 pathway, leading to inhibition of T cell proliferation, activation, cytokine production, altered metabolism and cytotoxic T lymphocytes (CTLs) killer functions, and eventual death of activated T cells. Bodies evolve coinhibitory pathways controlling T cell response magnitude and duration to limit tissue damage and maintain self-tolerance. However, tumor cells hijack these inhibitory pathways to escape host immune surveillance by overexpression of PD-L1. This provides the scientific rationale for clinical application of immune checkpoint inhibitors in oncology. The aberrantly high expression of PD-L1 in tumor microenvironment (TME) can be attributable to the "primary" activation of multiple oncogenic signaling and the "secondary" induction by inflammatory factors such as IFN-γ. Clinically, antibodies targeting PD-1/PD-L1 reinvigorate the "exhausted" T cells in TME and show remarkable objective response and durable remission with acceptable toxicity profile in large numbers of tumors such as melanoma, lymphoma, and mismatch-repair deficient tumors. Nevertheless, most patients are still refractory to anti-PD-1/PD-L1 therapy. Identifying the predictive biomarkers and design rational PD-1-based combination therapy become the priorities in cancer immunotherapy. PD-L1 expression, cytotoxic T lymphocytes infiltration, and tumor mutation burden (TMB) are generally considered as the most important factors affecting the effectiveness of PD-1/PD-L1 blockade. The revolution in cancer immunotherapy achieved by PD-1/PD-L1 blockade offers the paradigm for scientific translation from bench to bedside. The next decades will without doubt witness the renaissance of immunotherapy.
Collapse
Affiliation(s)
- Luoyan Ai
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Antao Xu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
88
|
Humanized Mice as an Effective Evaluation System for Peptide Vaccines and Immune Checkpoint Inhibitors. Int J Mol Sci 2019; 20:ijms20246337. [PMID: 31888191 PMCID: PMC6940818 DOI: 10.3390/ijms20246337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide vaccination was developed for the prevention and therapy of acute and chronic infectious diseases and cancer. However, vaccine development is challenging, because the patient immune system requires the appropriate human leukocyte antigen (HLA) recognition with the peptide. Moreover, antigens sometimes induce a low response, even if the peptide is presented by antigen-presenting cells and T cells recognize it. This is because the patient immunity is dampened or restricted by environmental factors. Even if the immune system responds appropriately, newly-developed immune checkpoint inhibitors (ICIs), which are used to increase the immune response against cancer, make the immune environment more complex. The ICIs may activate T cells, although the ratio of responsive patients is not high. However, the vaccine may induce some immune adverse effects in the presence of ICIs. Therefore, a system is needed to predict such risks. Humanized mouse systems possessing human immune cells have been developed to examine human immunity in vivo. One of the systems which uses transplanted human peripheral blood mononuclear cells (PBMCs) may become a new diagnosis strategy. Various humanized mouse systems are being developed and will become good tools for the prediction of antibody response and immune adverse effects.
Collapse
|
89
|
La Manna MP, Orlando V, Paraboschi EM, Tamburini B, Di Carlo P, Cascio A, Asselta R, Dieli F, Caccamo N. Mycobacterium tuberculosis Drives Expansion of Low-Density Neutrophils Equipped With Regulatory Activities. Front Immunol 2019; 10:2761. [PMID: 31849955 PMCID: PMC6892966 DOI: 10.3389/fimmu.2019.02761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
In human tuberculosis (TB) neutrophils represent the most commonly infected phagocyte but their role in protection and pathology is highly contradictory. Moreover, a subset of low-density neutrophils (LDNs) has been identified in TB, but their functions remain unclear. Here, we have analyzed total neutrophils and their low-density and normal-density (NDNs) subsets in patients with active TB disease, in terms of frequency, phenotype, functional features, and gene expression signature. Full-blood counts from Healthy Donors (H.D.), Latent TB infected, active TB, and cured TB patients were performed. Frequency, phenotype, burst activity, and suppressor T cell activity of the two different subsets were assessed by flow cytometry while NETosis and phagocytosis were evaluated by confocal microscopy. Expression analysis was performed by using the semi-quantitative RT-PCR array technology. Elevated numbers of total neutrophils and a high neutrophil/lymphocyte ratio distinguished patients with active TB from all the other groups. PBMCs of patients with active TB disease contained elevated percentages of LDNs compared with those of H.D., with an increased expression of CD66b, CD33, CD15, and CD16 compared to NDNs. Transcriptomic analysis of LDNs and NDNs purified from the peripheral blood of TB patients identified 12 genes differentially expressed: CCL5, CCR5, CD4, IL10, LYZ, and STAT4 were upregulated, while CXCL8, IFNAR1, NFKB1A, STAT1, TICAM1, and TNF were downregulated in LDNs, as compared to NDNs. Differently than NDNs, LDNs failed to phagocyte live Mycobacterium tuberculosis (M. tuberculosis) bacilli, to make oxidative burst and NETosis, but caused significant suppression of antigen-specific and polyclonal T cell proliferation which was partially mediated by IL-10. These insights add a little dowel of knowledge in understanding the pathogenesis of human TB.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Valentina Orlando
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | | | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Paola Di Carlo
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo, Italy
| |
Collapse
|
90
|
Bedke T, Muscate F, Soukou S, Gagliani N, Huber S. Title: IL-10-producing T cells and their dual functions. Semin Immunol 2019; 44:101335. [PMID: 31734129 DOI: 10.1016/j.smim.2019.101335] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, which significantly contributes to the maintenance and reestablishment of immune homeostasis. However, this classical view fails to fully describe the pleiotropic roles of IL-10. Indeed, IL-10 can also promote immune responses, e.g. by supporting B-cell and CD8+ T-cell activation. The reasons for these seemingly opposing functions are unclear to a large extent. Recent and previous studies suggest that the cellular source and the microenvironment impact the function of IL-10. However, studies addressing the mechanisms which determine whether IL-10 promotes inflammation or controls it have just begun. This review first summarizes the recent findings on the heterogeneity of IL-10 producing T cells and their impact on the target cells. Finally, we will propose two possible explanations for the dual functions of IL-10.
Collapse
Affiliation(s)
- Tanja Bedke
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franziska Muscate
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Shiwa Soukou
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden.
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
91
|
Kumagai Y, Ohzawa H, Miyato H, Horie H, Hosoya Y, Lefor AK, Sata N, Kitayama J. Surgical Stress Increases Circulating Low-Density Neutrophils Which May Promote Tumor Recurrence. J Surg Res 2019; 246:52-61. [PMID: 31561178 DOI: 10.1016/j.jss.2019.08.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Low-density neutrophils (LDN) have been shown to be increased in peripheral blood in patients with various diseases and closely related to immune-mediated pathology. However, the frequency and function of LDN in circulating blood of the patients following abdominal surgery have not been well understood. METHODS LDN were determined by CD66b(+) cells, which were copurified with mononuclear cells by density gradient preparations of peripheral blood of surgical patients. The effects of the purified LDN on T cell proliferation and tumor cell lysis were examined in vitro. Neutrophil extracellular traps (NETs) production was examined by extracellular nuclear staining. RESULTS The number of LDN with an immature phenotype is markedly increased in peripheral blood samples in patients after abdominal surgery. The frequency of LDN correlated positively with operative time and intraoperative blood loss. The purified LDN significantly suppressed the proliferation of autologous T cells stimulated with anti-CD3 mAb coated on plate and partially inhibited the cytotoxicity of lymphocytes activated with recombinant interleukin-2 against a human gastric cancer cell, OCUM-1. The LDN also produced NETs after short-term culture in vitro, which efficiently trap many OCUM-1. These results suggest that surgical stress recruits immunosuppressive LDN in the circulation in the early postoperative period. CONCLUSIONS The LDN may support the lodging of circulating tumor cells via NETs formation and inhibit T cell-mediated antitumor response in target organs, which may promote postoperative cancer metastases. Functional blockade of LDN might be an effective strategy to reduce tumor recurrence after abdominal surgery.
Collapse
Affiliation(s)
- Yuko Kumagai
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke City, Tochigi, Japan
| | - Hideyuki Ohzawa
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke City, Tochigi, Japan
| | - Hideyo Miyato
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke City, Tochigi, Japan
| | - Hisanaga Horie
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke City, Tochigi, Japan
| | - Yoshinori Hosoya
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke City, Tochigi, Japan
| | - Alan Kawarai Lefor
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke City, Tochigi, Japan
| | - Naohiro Sata
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke City, Tochigi, Japan
| | - Joji Kitayama
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke City, Tochigi, Japan.
| |
Collapse
|
92
|
Luke K, Purwanto B, Herawati L, Al-Farabi MJ, Oktaviono YH. Predictive Value of Hematologic Indices in the Diagnosis of Acute Coronary Syndrome. Open Access Maced J Med Sci 2019; 7:2428-2433. [PMID: 31666841 PMCID: PMC6814467 DOI: 10.3889/oamjms.2019.666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Distinguishing between Acute Coronary Syndrom (ACS) and SCAD (Stable Coronary Artery Disease) requires advanced laboratory instrument and electrocardiogram. However, their availabilities in primary care settings in developing countries are limited. Hematologic changes usually occur in the ACS patient and might be valuable to distinguish ACS from SCAD. AIM This study compares the hematologic indices between ACS and SCAD patients and analyses its predictive value for ACS. MATERIAL AND METHODS A total of 191 patients (79 ACS and 112 SCAD) were enrolled in this study based on the inclusion criteria. Patient's characteristic, hematologic indices on admission, and the final diagnosis were obtained from medical records. Statistical analyses were done using SPSS 23.0. RESULTS In this research MCHC value (33.40 vs. 32.80 g/dL; p < 0.05); WBC (11.16 vs. 7.40 x109/L; p < 0.001); NLR (6.29 vs. 2.18; p < 0.001); and PLR (173.88 vs 122.46; p < 0.001) were significantly higher in ACS compared to SCAD patients. While MPV (6.40 vs. 10.00 fL; p < 0.001) was significantly lower in ACS patients. ROC curve analysis showed MPV had the highest AUC (95%) for ACS diagnosis with an optimum cut-off point at ≤ 8.35 fL (sensitivity 93.6% and specificity 97.3%). CONCLUSION There was a significant difference between hematologic indices between ACS and SCAD patients. MPV is the best indices to distinguish ACS.
Collapse
Affiliation(s)
- Kevin Luke
- Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Bambang Purwanto
- Department of Physiology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Lilik Herawati
- Department of Physiology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Makhyan Jibril Al-Farabi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- School of Management, Healthcare Entrepreneurship Division, University College London, Gower St, Bloomsbury, WC1E 6BT, London, UK
| | - Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
93
|
Shen X, Zhang L, Li J, Li Y, Wang Y, Xu ZX. Recent Findings in the Regulation of Programmed Death Ligand 1 Expression. Front Immunol 2019; 10:1337. [PMID: 31258527 PMCID: PMC6587331 DOI: 10.3389/fimmu.2019.01337] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
With the recent approvals for the application of monoclonal antibodies that target the well-characterized immune checkpoints, immune therapy shows great potential against both solid and hematologic tumors. The use of these therapeutic monoclonal antibodies elicits inspiring clinical results with durable objective responses and improvements in overall survival. Agents targeting programmed cell death protein 1 (PD-1; also known as PDCD1) and its ligand (PD-L1) achieve a great success in immune checkpoints therapy. However, the majority of patients fail to respond to PD-1/PD-L1 axis inhibitors. Expression of PD-L1 on the membrane of tumor and immune cells has been shown to be associated with enhanced objective response rates to PD-1/PD-L1 inhibition. Thus, an improved understanding of how PD-L1 expression is regulated will enable us to better define its role as a predictive marker. In this review, we summarize recent findings in the regulation of PD-L1 expression.
Collapse
Affiliation(s)
- Xiangfeng Shen
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yulin Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| |
Collapse
|
94
|
Abstract
Over the past few decades, thanks to the use of new technologies, the spectrum of functional capabilities of neutrophil granulocytes has been significantly expanded. Their effector potential with respect to infectious agents, including phagocytosis, the production of active forms of oxygen and nitrogen, degranulation with the release of numerous enzymes and antimicrobial peptides, and the formation of extracellular traps were studied in detail. However, it has been found that many of the factors that neutrophils use to directly destroy pathogens have a regulating effect on other cells of the immune system and the neutrophils themselves. In addition, upon activation, neutrophils are capable of synthesizing a number of de novo biologically active molecules. Traditionally considered as inducers of an inflammatory reaction, neutrophils demonstrate the ability to simultaneously incorporate mechanisms that contribute to limiting and resolving inflammation. Ambivalent both helper and suppressor effects of neutrophils on cells of congenital and adaptive immunity testifies to their important immunoregulatory role both in homeostasis and various types of pathology, particularly in the development of malignant tumors.
Collapse
|
95
|
Voisin M, Nourshargh S. Neutrophil trafficking to lymphoid tissues: physiological and pathological implications. J Pathol 2019; 247:662-671. [PMID: 30584795 PMCID: PMC6492258 DOI: 10.1002/path.5227] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022]
Abstract
Recent advances have provided evidence for the involvement of neutrophils in both innate and adaptive immunity, robustly challenging the old dogma that neutrophils are short-lived prototypical innate immune cells solely involved in acute responses to microbes and exerting collateral tissue damage. There is now ample evidence showing that neutrophils can migrate into different compartments of the lymphoid system where they contribute to the orchestration of the activation and/or suppression of lymphocyte effector functions in homeostasis and during chronic inflammation, such as autoimmune disorders and cancer. In support of this notion, neutrophils can generate a wide range of cytokines and other mediators capable of regulating the survival, proliferation and functions of both T and B cells. In addition, neutrophils can directly engage with lymphocytes and promote antigen presentation. Furthermore, there is emerging evidence of the existence of distinct and diverse neutrophil phenotypes with immunomodulatory functions that characterise different pathological conditions, including chronic and autoimmune inflammatory conditions. The aim of this review is to discuss the mechanisms implicated in neutrophil trafficking into the lymphoid system and to provide an overview of the immuno-regulatory functions of neutrophils in health and disease in the context of adaptive immunity. Copyright © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mathieu‐Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| |
Collapse
|
96
|
Castell SD, Harman MF, Morón G, Maletto BA, Pistoresi-Palencia MC. Neutrophils Which Migrate to Lymph Nodes Modulate CD4 + T Cell Response by a PD-L1 Dependent Mechanism. Front Immunol 2019; 10:105. [PMID: 30761151 PMCID: PMC6362305 DOI: 10.3389/fimmu.2019.00105] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/14/2019] [Indexed: 01/20/2023] Open
Abstract
It is well known that neutrophils are rapidly recruited to a site of injury or infection and perform a critical role in pathogen clearance and inflammation. However, they are also able to interact with and regulate innate and adaptive immune cells and some stimuli induce the migration of neutrophils to lymph nodes (LNs). Previously, we demonstrated that the immune complex (IC) generated by injecting OVA into the footpad of OVA/CFA immunized mice induced the migration of OVA+ neutrophils to draining LNs (dLNs). Here we investigate the effects of these neutrophils which reach dLNs on CD4+ T cell response. Our findings here strongly support a dual role for neutrophils in dLNs regarding CD4+ T cell response modulation. On the one hand, the CD4+ T cell population expands after the influx of OVA+ neutrophils to dLNs. These CD4+ T cells enlarge their proliferative response, activation markers and IL-17 and IFN-γ cytokine production. On the other hand, these neutrophils also restrict CD4+ T cell expansion. The neutrophils in the dLNs upregulate PD-L1 molecules and are capable of suppressing CD4+ T cell proliferation. These results indicate that neutrophils migration to dLNs have an important role in the homeostasis of adaptive immunity. This report describes for the first time that the influx of neutrophils to dLNs dependent on IC presence improves CD4+ T cell response, at the same time controlling CD4+ T cell proliferation through a PD-L1 dependent mechanism.
Collapse
Affiliation(s)
- Sofía D Castell
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - María F Harman
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Gabriel Morón
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Belkys A Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - María C Pistoresi-Palencia
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| |
Collapse
|
97
|
Kim Y, Lee D, Lee J, Lee S, Lawler S. Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: A mathematical model. PLoS One 2019; 14:e0211041. [PMID: 30689655 PMCID: PMC6349324 DOI: 10.1371/journal.pone.0211041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Neutrophils display rapid and potent innate immune responses in various diseases. Tumor-associated neutrophils (TANs) however either induce or overcome immunosuppressive functions of the tumor microenvironment through complex tumor-stroma crosstalk. We developed a mathematical model to address the question of how phenotypic alterations between tumor suppressive N1 TANS, and tumor promoting N2 TANs affect nonlinear tumor growth in a complex tumor microenvironment. The model provides a visual display of the complex behavior of populations of TANs and tumors in response to various TGF-β and IFN-β stimuli. In addition, the effect of anti-tumor drug administration is incorporated in the model in an effort to achieve optimal anti-tumor efficacy. The simulation results from the mathematical model were in good agreement with experimental data. We found that the N2-to-N1 ratio (N21R) index is positively correlated with aggressive tumor growth, suggesting that this may be a good prognostic factor. We also found that the antitumor efficacy increases when the relative ratio (Dap) of delayed apoptotic cell death of N1 and N2 TANs is either very small or relatively large, providing a basis for therapeutically targeting prometastatic N2 TANs.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Seongwon Lee
- Division of Mathematical Models, National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Sean Lawler
- Department of neurosurgery, Harvard Medical School & Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
98
|
Bruse N, Leijte GP, Pickkers P, Kox M. New frontiers in precision medicine for sepsis-induced immunoparalysis. Expert Rev Clin Immunol 2019; 15:251-263. [PMID: 30572728 DOI: 10.1080/1744666x.2019.1562336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION In the last decade, the sepsis research field has shifted focus from targeting hyperinflammation to reversing sepsis-induced immunoparalysis. Sepsis-induced immunoparalysis is very heterogeneous: the magnitude and the nature of the underlying immune defects differ considerably between patients, but also within individuals over time. Therefore, a 'one-treatment-fits-all' strategy for sepsis-induced immunoparalysis is bound to fail, and an individualized 'precision medicine' approach is required. Such a strategy is nevertheless hampered by the unsuitability of the currently available markers to identify the many immune defects that can manifest in individual patients. Areas covered: We describe the currently available markers for sepsis-induced immunoparalysis and limitations pertaining to their use. Furthermore, future prospects and caveats are discussed, focusing on 'omics' approaches: genomics, transcriptomics, epigenomics, and metabolomics. Finally, we present a contemporary overview of adjuvant immunostimulatory therapies. Expert opinion: The integration of multiple omics techniques offers a systems biology approach which can yield biomarker profiles that accurately and comprehensively gauge the extent and nature of sepsis-induced immunoparalysis. We expect this development to be instrumental in facilitating precision medicine for sepsis-induced immunoparalysis, consisting of the application of targeted immunostimulatory therapies and follow-up measurements to monitor the response to treatment and to titrate or adjust medication.
Collapse
Affiliation(s)
- Niklas Bruse
- a Department of Intensive Care Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Radboud Center for Infectious Diseases , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Guus P Leijte
- a Department of Intensive Care Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Radboud Center for Infectious Diseases , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Peter Pickkers
- a Department of Intensive Care Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Radboud Center for Infectious Diseases , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Matthijs Kox
- a Department of Intensive Care Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Radboud Center for Infectious Diseases , Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
99
|
Rossi AL, Le M, Chung CS, Chen Y, Fallon EA, Matoso A, Xu S, Chun TT, Erickson CP, Ayala A. A novel role for programmed cell death receptor ligand 2 in sepsis-induced hepatic dysfunction. Am J Physiol Gastrointest Liver Physiol 2019; 316:G106-G114. [PMID: 30431333 PMCID: PMC6383374 DOI: 10.1152/ajpgi.00204.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver is an organ that, when dysfunctional in a septic patient, is strongly associated with morbidity and mortality. Understanding the pathophysiology of liver failure during sepsis may lead to improved diagnostics and potential therapeutic targets. Historically, programmed cell death receptor (PD) ligand 1 (PD-L1) has been considered the primary ligand for its checkpoint molecule counterpart, PD-1, with PD-L2 rarely in the immunopathological spotlight. PD-1 and PD-L1 contribute to liver dysfunction in a murine cecal ligation and puncture (CLP) model of sepsis, but virtually nothing is known about PD-L2's role in sepsis. Therefore, our central hypothesis was that sepsis-induced changes in hepatic PD-L2 expression contributed to worsened liver function and, subsequently, more pronounced morbidity and mortality. We found that although PD-L1 gene deficiency attenuated the hepatic dysfunction seen in wild-type mice after CLP, the loss of PD-L2 appeared to actually worsen indices of liver function along with a trend toward higher liver tissue vascular permeability. Conversely, some protective effects of PD-L2 gene deletion were noted, such as reduced liver/peritoneal bacterial load and reduced IL-6, IL-10, and macrophage inflammatory protein 2 levels following CLP. These diverse actions, as well as the unique expression pattern of PD-L2, may explain why no overt survival advantage could be witnessed in the septic PD-L2-/- mice. Taken together, these data suggest that although PD-L2 has some selective effects on the hepatic response seen in the septic mouse, these factors are not sufficient to alter septic mortality in this adult murine model. NEW & NOTEWORTHY Our study shows not only that ligands of the checkpoint protein PD-1 respond inversely to a stressor such as septic challenge (PD-L2 declines, whereas PD-L1 rises) but also that aspects of liver dysfunction increase in septic mice lacking the PD-L2 gene. Furthermore, these differences in PD-L2 gene-deficient animals culminated in the abrogation of the survival advantage seen in the septic PD-L1-knockout mice, suggesting that PD-L2 may have roles beyond a simple immune tolerogen.
Collapse
Affiliation(s)
- Anne-Lise Rossi
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Marilyn Le
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Chun-Shiang Chung
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Yaping Chen
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Eleanor A. Fallon
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Andres Matoso
- 2Department Pathology and Laboratory Medicine, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island,3Department of Pathology, Johns Hopkins Medical Institutions. Baltimore, Maryland
| | - Shumin Xu
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island,4Department of Emergency Internal Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tristen T. Chun
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Craig P. Erickson
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island
| | - Alfred Ayala
- 1Division of Surgical Research/Department of Surgery, Lifespan-Rhode Island Hospital and Brown University, Providence, Rhode Island
| |
Collapse
|
100
|
Brown RA, Henderlight M, Do T, Yasin S, Grom AA, DeLay M, Thornton S, Schulert GS. Neutrophils From Children With Systemic Juvenile Idiopathic Arthritis Exhibit Persistent Proinflammatory Activation Despite Long-Standing Clinically Inactive Disease. Front Immunol 2018; 9:2995. [PMID: 30619348 PMCID: PMC6305285 DOI: 10.3389/fimmu.2018.02995] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Systemic juvenile idiopathic arthritis (SJIA) is a chronic childhood arthropathy with features of autoinflammation. Early inflammatory SJIA is associated with expansion and activation of neutrophils with a sepsis-like phenotype, but neutrophil phenotypes present in longstanding and clinically inactive disease (CID) are unknown. The objective of this study was to examine activated neutrophil subsets, S100 alarmin release, and gene expression signatures in children with a spectrum of SJIA disease activity. Methods: Highly-purified neutrophils were isolated using a two-step procedure of density-gradient centrifugation followed by magnetic-bead based negative selection prior to flow cytometry or cell culture to quantify S100 protein release. Whole transcriptome gene expression profiles were compared in neutrophils from children with both active SJIA and CID. Results: Patients with SJIA and active systemic features demonstrated a higher proportion of CD16+CD62Llo neutrophil population compared to controls. This neutrophil subset was not seen in patients with CID or patients with active arthritis not exhibiting systemic features. Using imaging flow cytometry, CD16+CD62Llo neutrophils from patients with active SJIA and features of macrophage activation syndrome (MAS) had increased nuclear hypersegmentation compared to CD16+CD62L+ neutrophils. Serum levels of S100A8/A9 and S100A12 were strongly correlated with peripheral blood neutrophil counts. Neutrophils from active SJIA patients did not show enhanced resting S100 protein release; however, regardless of disease activity, neutrophils from SJIA patients did show enhanced S100A8/A9 release upon PMA stimulation compared to control neutrophils. Furthermore, whole transcriptome analysis of highly purified neutrophils from children with active SJIA identified 214 differentially expressed genes (DEG) compared to neutrophils from healthy controls. The most significantly upregulated gene pathway was Immune System Process, including AIM2, IL18RAP, and NLRC4. Interestingly, this gene set showed intermediate levels of expression in neutrophils from patients with long-standing CID yet persistent serum IL-18 elevation. Indeed, all patient samples regardless of disease activity demonstrated elevated inflammatory gene expression, including inflammasome components and S100A8. Conclusion: We identify features of neutrophil activation in SJIA patients with both active disease and CID, including a proinflammatory gene expression signature, reflecting persistent innate immune activation. Taken together, these studies expand understanding of neutrophil function in chronic autoinflammatory disorders such as SJIA.
Collapse
Affiliation(s)
- Rachel A Brown
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Maggie Henderlight
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Thuy Do
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Shima Yasin
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alexei A Grom
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Monica DeLay
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sherry Thornton
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|