51
|
Trifone C, Salido J, Ruiz MJ, Leng L, Quiroga MF, Salomón H, Bucala R, Ghiglione Y, Turk G. Interaction Between Macrophage Migration Inhibitory Factor and CD74 in Human Immunodeficiency Virus Type I Infected Primary Monocyte-Derived Macrophages Triggers the Production of Proinflammatory Mediators and Enhances Infection of Unactivated CD4 + T Cells. Front Immunol 2018; 9:1494. [PMID: 29997630 PMCID: PMC6030361 DOI: 10.3389/fimmu.2018.01494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Understanding the mechanisms of human immunodeficiency virus type I (HIV-1) pathogenesis would facilitate the identification of new therapeutic targets to control the infection in face of current antiretroviral therapy limitations. CD74 membrane expression is upregulated in HIV-1-infected cells and the magnitude of its modulation correlates with immune hyperactivation in HIV-infected individuals. In addition, plasma level of the CD74 activating ligand macrophage migration inhibitory factor (MIF) is increased in infected subjects. However, the role played by MIF/CD74 interaction in HIV pathogenesis remains unexplored. Here, we studied the effect of MIF/CD74 interaction on primary HIV-infected monocyte-derived macrophages (MDMs) and its implications for HIV immunopathogenesis. Confocal immunofluorescence analysis of CD74 and CD44 (the MIF signal transduction co-receptor) expression indicated that both molecules colocalized at the plasma membrane specifically in wild-type HIV-infected MDMs. Treatment of infected MDMs with MIF resulted in an MIF-dependent increase in TLR4 expression. Similarly, there was a dose-dependent increase in the production of IL-6, IL-8, TNFα, IL-1β, and sICAM compared to the no-MIF condition, specifically from infected MDMs. Importantly, the effect observed on IL-6, IL-8, TNFα, and IL-1β was abrogated by impeding MIF interaction with CD74. Moreover, the use of a neutralizing αMIF antibody or an MIF antagonist reverted these effects, supporting the specificity of the results. Treatment of unactivated CD4+ T-cells with MIF-treated HIV-infected MDM-derived culture supernatants led to enhanced permissiveness to HIV-1 infection. This effect was lost when CD4+ T-cells were treated with supernatants derived from infected MDMs in which CD74/MIF interaction had been blocked. Moreover, the enhanced permissiveness of unactivated CD4+ T-cells was recapitulated by exogenous addition of IL-6, IL-8, IL-1β, and TNFα, or abrogated by neutralizing its biological activity using specific antibodies. Results obtained with BAL and NL4-3 HIV laboratory strains were reproduced using transmitted/founder primary isolates. This evidence indicated that MIF/CD74 interaction resulted in a higher production of proinflammatory cytokines from HIV-infected MDMs. This caused the generation of an inflammatory microenvironment which predisposed unactivated CD4+ T-cells to HIV-1 infection, which might contribute to viral spreading and reservoir seeding. Overall, these results support a novel role of the MIF/CD74 axis in HIV pathogenesis that deserves further investigation.
Collapse
Affiliation(s)
- César Trifone
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Jimena Salido
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Julia Ruiz
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Lin Leng
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - María Florencia Quiroga
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Horacio Salomón
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Yanina Ghiglione
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Gabriela Turk
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
52
|
Colin DJ, Cottet-Dumoulin D, Faivre A, Germain S, Triponez F, Serre-Beinier V. Experimental Model of Human Malignant Mesothelioma in Athymic Mice. Int J Mol Sci 2018; 19:ijms19071881. [PMID: 29949929 PMCID: PMC6073357 DOI: 10.3390/ijms19071881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a thoracic aggressive cancer caused by asbestos exposure, which is difficult to diagnose and treat. Here, we characterized an in vivo orthotopic xenograft model consisting of human mesothelioma cells (designed as H2052/484) derived from a pleural NCI-H2052 tumor injected in partially immunodeficient athymic mice. We assessed tumor formation and tumor-dependent patterns of inflammation. H2052/484 cells conserved their mesothelioma phenotype and most characteristics from the parental NCI-H2052 cells. After intra-thoracic injection of H2052/484 cells, thoracic tumors developed in nearly all mice (86%) within 14 days, faster than from parental NCI-H2052 cells. When the mice were euthanized, the pleural lavage fluid was examined for immune cell profiles. The pleural immune cell population increased with tumor development. Interestingly, the proportion of myeloid-derived suppressor cell and macrophage (especially CD206+ M2 macrophages) populations increased in the pleural fluid of mice with large mesothelioma development, as previously observed in immunocompetent mice. This reliable orthotopic model recapitulates human mesothelioma and may be used for the study of new treatment strategies.
Collapse
Affiliation(s)
- Didier J Colin
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging (CIBM), University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland.
| | - David Cottet-Dumoulin
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland.
| | - Anna Faivre
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland.
| | - Stéphane Germain
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging (CIBM), University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland.
| | - Frédéric Triponez
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland.
| | - Véronique Serre-Beinier
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
53
|
TWEAK increases CD74 expression and sensitizes to DDT proinflammatory actions in tubular cells. PLoS One 2018; 13:e0199391. [PMID: 29924850 PMCID: PMC6010292 DOI: 10.1371/journal.pone.0199391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
CD74 is a multifunctional protein and a receptor for Macrophage Migration Inhibitory Factor (MIF) and MIF-2 / D-dopachrome tautomerase (DDT) cytokines, upregulated in diabetic kidney disease. However, the drivers of CD74 expression and DDT function in kidney cells are poorly characterized. TWEAK is a proinflammatory cytokine that promotes kidney injury. We have now identified CD74 gene expression as upregulated in the kidneys in response to systemic TWEAK administration in mice, and have characterized the in vivo CD74 expression and the functional consequences in cultured cells. TWEAK administration to mice resulted in a progressive time-dependent (up to 24h) upregulation of kidney CD74 mRNA (RT-PCR) and protein (Western blot). Furthermore, the CD74 ligands MIF and DDT were also upregulated at the protein level 24h after TWEAK administration. Immunohistochemistry localized the increased CD74, MIF and DDT expression to tubular cells. In cultured tubular cells, TWEAK increased CD74 mRNA and protein expression dose-dependently, with a temporal pattern similar to in vivo. TWEAK-induced CD74 localized to the cell membrane, where it can function as a cytokine receptor. For the first time, we explored the actions of DDT in tubular cells and found that DDT amplified the increase in MCP-1 and RANTES expression in response to TWEAK. By contrast, DDT did not significantly modify TWEAK-induced Klotho downregulation. In conclusion, TWEAK upregulates CD74 and its ligands MIF and DDT in renal tubular cells. This may have functional consequences for kidney injury since DDT amplified the inflammatory response to TWEAK.
Collapse
|
54
|
Alabdulmon W, Alhomaidan HT, Rasheed Z, Madar IH, Alasmael N, Alkhatib S, Al Ssadh H. CD74 a Potential Therapeutic Target for Breast Cancer Therapy: Interferon Gamma Up-regulates its Expression in CAMA-1 and MDA-MB-231 Cancer Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ijcr.2018.58.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
55
|
Shen D, Lang Y, Chu F, Wu X, Wang Y, Zheng X, Zhang HL, Zhu J, Liu K. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful? Expert Opin Ther Targets 2018; 22:567-577. [PMID: 29856236 DOI: 10.1080/14728222.2018.1484109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) plays an important role in the pathogenesis of Guillain-Barré syndrome (GBS) and its animal model experimental autoimmune neuritis (EAN), which may offer an opportunity for the development of the novel therapeutic strategies for GBS. Areas covered: 'macrophage migration inhibitory factor' and 'Guillain-Barré syndrome' were used as keywords to search for related publications on Pub-Med, National Center for Biotechnology Information (NCBI), USA. MIF is involved in the etiology of various inflammatory and autoimmune disorders. However, the roles of MIF in GBS and EAN have not been summarized in the publications we identified. Therefore, in this review, we described and analyzed the major roles of MIF in GBS/EAN. Primarily, this molecule aggravates the inflammatory responses in this disorder. However, multiple studies indicated a protective role of MIF in GBS. The potential of MIF as a therapeutic target in GBS has been recently demonstrated in experimental and clinical studies, although clinical trials have been unavailable to date. Expert opinion: MIF plays a critical role in the initiation and progression of GBS and EAN, and it may represent a potential therapeutic target for GBS.
Collapse
Affiliation(s)
- Donghui Shen
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Yue Lang
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Fengna Chu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Xiujuan Wu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Ying Wang
- b Department of Neurobiology, Care Sciences and Society , Division of Neurodegeneration, Karolinska Institute, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Xiangyu Zheng
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| | - Hong-Liang Zhang
- c Department of Life Sciences , the National Natural Science Foundation of China , Beijing , China
| | - Jie Zhu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China.,b Department of Neurobiology, Care Sciences and Society , Division of Neurodegeneration, Karolinska Institute, Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Kangding Liu
- a Neuroscience Center, Department of Neurology , The First Hospital of Jilin University, Jilin University , Changchun , China
| |
Collapse
|
56
|
Kok T, Wasiel AA, Dekker FJ, Poelarends GJ, Cool RH. High yield production of human invariant chain CD74 constructs fused to solubility-enhancing peptides and characterization of their MIF-binding capacities. Protein Expr Purif 2018; 148:46-53. [PMID: 29601965 DOI: 10.1016/j.pep.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
The HLA class II histocompatibility antigen gamma chain, also known as HLA-DR antigen-associated invariant chain or CD74, has been shown to be involved in many biological processes amongst which antigen loading and transport of MHC class II molecules from the endoplasmic reticulum to the Golgi complex. It is also part of a receptor complex for macrophage migration inhibitory factor (MIF), and participates in inflammatory signaling. The inhibition of MIF-CD74 complex formation is regarded as a potentially attractive therapeutic target in inflammation, cancer and immune diseases. In order to be able to produce large quantities of the extracellular moiety of human CD74, which has been reported to be unstable and protease-sensitive, different constructs were made as fusions with two solubility enhancers: the well-known maltose-binding domain and Fh8, a small protein secreted by the parasite Fasciola hepatica. The fusion proteins could be purified with high yields from Escherichia coli and were demonstrated to be active in binding to MIF. Moreover, our results strongly suggest that the MIF binding site is located in the sequence between the transmembrane and the membrane-distal trimerisation domain of CD74, and comprises at least amino acids 113-125 of CD74.
Collapse
Affiliation(s)
- Tjie Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands; Faculty of Biotechnology, University of Surabaya, Jalan Raya Kalirungkut, Surabaya, 60292, Indonesia
| | - Anna A Wasiel
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
57
|
Gai JW, Wahafu W, Song L, Ping H, Wang M, Yang F, Niu Y, Qing W, Xing N. Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells. Oncol Lett 2018; 15:7631-7638. [PMID: 29731899 PMCID: PMC5920967 DOI: 10.3892/ol.2018.8309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/07/2018] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to investigate the expression and potential roles of CD74 in human urothelial cell carcinoma of the bladder (UCB) in vitro and in vivo. CD74 and macrophage migration inhibitory factor (MIF) were located and assayed in normal and UCB samples and cell lines using immunostaining. CD74 was knocked down using CD74 shRNA lentiviral particles in HT-1376 cells. The proliferative, invasive potential and microvessel density (MVD) of knockdown-CD74 HT-1376 cells were analyzed in vitro or in vivo. The expression of CD74 in an additional high grade UCB J82 cell line was also verified in vivo. All experiments were repeated at least 3 times. The majority of muscle-invasive bladder cancer (MIBC) samples, and only one high grade UCB cell line, HT-1376, expressed CD74, compared with normal, non-muscle-invasive bladder cancer (NMIBC) samples and other cell lines. The levels of proliferation and invasion were decreased in the CD74 knockdown-HT-1376 cells, and western blotting assay indicated that the levels of proteins associated with proliferation, apoptosis and invasion in the cells were affected correspondingly by different treatments in vitro. The tumorigenesis and MVD assays indicated less proliferation and angiogenesis in the knockdown-HT-1376 cells compared with the scramble cells. Notably, J82 cells exhibiting no signal of CD74 in vitro presented the expression of CD74 in vivo. The present study revealed the potential roles of CD74 in the proliferation, invasion and angiogenesis of MIBC, and that it may serve as a potential therapeutic target for UCB, but additional studies are required.
Collapse
Affiliation(s)
- Jun-Wei Gai
- Department of Urology, Tianjin First Central Hospital, Tianjin 300191, P.R. China
| | - Wasilijiang Wahafu
- Department of Urology, Beijing Chao-Yang Hospital, Beijing 100020, P.R. China
| | - Liming Song
- Department of Urology, Beijing Chao-Yang Hospital, Beijing 100020, P.R. China
| | - Hao Ping
- Department of Urology, Beijing Chao-Yang Hospital, Beijing 100020, P.R. China
| | - Mingshuai Wang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing 100020, P.R. China
| | - Feiya Yang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing 100020, P.R. China
| | - Yinong Niu
- Department of Urology, Beijing Chao-Yang Hospital, Beijing 100020, P.R. China
| | - Wei Qing
- Department of Orthopedics, Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| | - Nianzeng Xing
- Department of Urology, Beijing Chao-Yang Hospital, Beijing 100020, P.R. China
| |
Collapse
|
58
|
Le Hiress M, Akagah B, Bernadat G, Tu L, Thuillet R, Huertas A, Phan C, Fadel E, Simonneau G, Humbert M, Jalce G, Guignabert C. Design, Synthesis, and Biological Activity of New N-(Phenylmethyl)-benzoxazol-2-thiones as Macrophage Migration Inhibitory Factor (MIF) Antagonists: Efficacies in Experimental Pulmonary Hypertension. J Med Chem 2018. [PMID: 29526099 DOI: 10.1021/acs.jmedchem.7b01312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a key pleiotropic mediator and a promising therapeutic target in cancer as well as in several inflammatory and cardiovascular diseases including pulmonary arterial hypertension (PAH). Here, a novel series of N-(phenylmethyl)-benzoxazol-2-thiones 5-32 designed to target the MIF tautomerase active site was synthesized and evaluated for its effects on cell survival. Investigation of structure-activity relationship (SAR) particularly at the 5-position of the benzoxazole core led to the identification of 31 that potently inhibits cell survival in DU-145 prostate cancer cells and pulmonary endothelial cells derived from patients with idiopathic PAH (iPAH-ECs), two cell lines for which survival is MIF-dependent. Molecular docking studies helped to interpret initial SAR related to MIF tautomerase inhibition and propose preferred binding mode for 31 within the MIF tautomerase active site. Interestingly, daily treatment with 31 started 2 weeks after a subcutaneous monocrotaline injection regressed established pulmonary hypertension in rats.
Collapse
Affiliation(s)
- Morane Le Hiress
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Bernardin Akagah
- MIFCARE , 24 rue du Faubourg Saint-Jacques , 75014 Paris , France
| | - Guillaume Bernadat
- BioCIS , Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Alice Huertas
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France.,AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre , France
| | - Carole Phan
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Elie Fadel
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Gérald Simonneau
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France.,AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre , France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France.,AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre , France
| | - Gaël Jalce
- MIFCARE , 24 rue du Faubourg Saint-Jacques , 75014 Paris , France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| |
Collapse
|
59
|
Wang SS, Cen X, Liang XH, Tang YL. Macrophage migration inhibitory factor: a potential driver and biomarker for head and neck squamous cell carcinoma. Oncotarget 2018; 8:10650-10661. [PMID: 27788497 PMCID: PMC5354689 DOI: 10.18632/oncotarget.12890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 02/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), a pleiotropic proinflammatory cytokine, has been showed to be associated with the immunopathogenesis of many diseases. Recent study demonstrated that MIF promoted tumorigenesis and tumor progression and played a critical role in various kinds of human cancer including head and neck squamous cell carcinoma(HNSCC). Hence, in this paper we retrospected the relationship between MIF and angiogenesis, epithelial-mesenchymal transition (EMT), inflammation, immune response, hypoxia microenvironment, and discussed whether it is a promising biomarker for diagnosis and supervisor of HNSCC.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China.,Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu Sichuan, People's Republic of China
| |
Collapse
|
60
|
Prognostic significance of CD44 in human colon cancer and gastric cancer: Evidence from bioinformatic analyses. Oncotarget 2018; 7:45538-45546. [PMID: 27323782 PMCID: PMC5216740 DOI: 10.18632/oncotarget.9998] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/29/2016] [Indexed: 12/14/2022] Open
Abstract
CD44 is a well-recognized stem cell biomarker expressed in colon and gastric cancer. In order to identify whether CD44 mRNA could be used as a prognostic marker in colon and gastric cancer, bioinformatic analyses were used in this study. cBioPortal analysis and COSMIC analysis were used to explore the CD44 mutation. CD44 mRNA levels were evaluated by using SAGE Genie tools and Oncomine analysis. Kaplan-Meier Plotter was performed to identify the prognostic roles of CD44 mRNA in these two cancers. In this study, first, we found that low alteration frequency of CD44 mRNA in colon and gastric cancer. Second, the high CD44 mRNA level was found in colon and gastric cancer, and it correlated with a benign survival rate in gastric cancer. Third, CD4 and CD74 may be used as markers to predict the prognosis of colon and gastric cancer. However, the deep mechanism(s) of these results remains unclear, further studies have to be performed in the future.
Collapse
|
61
|
CD74 and intratumoral immune response in breast cancer. Oncotarget 2017; 8:12664-12674. [PMID: 27058619 PMCID: PMC5355043 DOI: 10.18632/oncotarget.8610] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
CD74 (invariant chain) plays a role in MHC class II antigen presentation. We assessed CD74 and MHCII expression in tumor cells, as well as CD8, CD4, and CD68 tumor infiltrating leucocyte (TIL) density by immunohistochemistry in a cohort of 492 breast cancer patients. CD74 expression was associated with poor prognostic markers including patient age, tumor grade, ER status, non-Luminal A subtypes, and with MHCII expression and higher TIL densities, particularly in the Basal-like subgroup. Univariate analysis showed a favorable prognostic effect of CD74 (Hazard ratio = 0.46, 95% CI = 0.26–0.89, p = 0.022) and for combined CD74/MHCII (Hazard ratio = 0.26, 95% CI = 0.17–0.81, p = 0.014) positive status for overall survival that was only manifested in the Basal-like subgroup. CD74 and MHCII expression is associated with patient survival in Basal-like breast cancer, and the association with TIL may reflect an effective intratumoral immune response.
Collapse
|
62
|
Ssadh HA, Spencer PS, Alabdulmenaim W, Alghamdi R, Madar IH, Miranda-Sayago JM, Fernández N. Measurements of heterotypic associations between cluster of differentiation CD74 and CD44 in human breast cancer-derived cells. Oncotarget 2017; 8:92143-92156. [PMID: 29190904 PMCID: PMC5696170 DOI: 10.18632/oncotarget.20922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023] Open
Abstract
Interactions between pairs of membrane-bound receptors can enhance tumour development with implications for targeted therapies for cancer. Here we demonstrate clear heterotypic interaction between CD74 and CD44, which might act in synergy and hence contribute to breast cancer progression. CD74, a type II transmembrane glycoprotein, is a chaperone for MHC class II biosynthesis and a receptor for the MIF. CD44 is the receptor for hyaluronic acid and is a Type I transmembrane protein. Interactions between CD74, MIF and the intra-cytoplasmic domain of CD44 result in activation of ERK1/2 pathway, leading to increased cell proliferation and decreased apoptosis. The level of CD44 in the breast tumor cell lines CAMA-1, MDA-MB-231, MDA-MB-435 and the immortalized normal luminal cell line 226LDM was higher than that of CD74. It was also observed that CD74 and CD44 exhibit significant variation in expression levels across the cells. CD74 and CD44 were observed to accumulate in cytoplasmic compartments, suggesting they associate with each other to facilitate tumour growth and metastasis. Use of a novel and validated colocalisation and image processing approach, coupled with co-immunoprecipitation, confirmed that CD74 and CD44 physically interact, suggesting a possible role in breast tumour growth. This is the first time that CD74 and CD44 colocalization has been quantified in breast cancer cells using a non-invasive and validated bioimaging procedure. Measuring the co-expression levels of CD74 and CD44 could potentially be used as a ‘biomarker signature’ to monitor different stages of breast cancer.
Collapse
Affiliation(s)
- Hussain Al Ssadh
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Patrick S Spencer
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Waleed Alabdulmenaim
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.,Pathology Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Rana Alghamdi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.,King Abdulaziz University, Rabigh Campus, Rabigh, Saudi Arabia
| | - Inamul Hasan Madar
- Department of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Jose M Miranda-Sayago
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Nelson Fernández
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| |
Collapse
|
63
|
Qiumin H, Biao X, Weihong W, Chongyun B, Shaowei H. [Inhibitory effect and underlying mechanism of total saponins from Paris polyphylla var. yunnanensis on the proliferation of salivary adenoid cystic carcinoma ACC-83 cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:317-321. [PMID: 28675019 DOI: 10.7518/hxkq.2017.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect and underlying mechanism of total saponins from Paris polyphylla var. yunnanensis on the proliferation of salivary adenoid cystic carcinoma ACC-83 cells. METHODS In vitro cell culture was performed. The proliferation of ACC-83 cells treated with different concentrations (5, 10, 20, 40, 60, 80, 100 μg·mL⁻¹) of total saponins from Paris polyphylla var. yunnanensis was observed using CCK-8 assay. Meanwhile, the apoptosis of ACC-83 cells treated with different concentrations (25, 50, 100 μg·mL⁻¹) of the total saponins was observed using flow cytometry. The expression levels of macrophage migration inhibitory factor (MIF) and CD74 were measured using Western blot and reverse transcription-polymerase chain reaction. RESULTS The total saponins from Paris polyphylla var. yunnanensis induced apoptosis and expressed dose-effect relationship. ACC-83 cells expressed MIF and CD74, and the total saponins suppressed MIF and CD74 expression in ACC-83 cells. CONCLUSIONS The total saponins from Paris polyphylla var. yunnanensis can significantly inhibit the proliferation, suppress MIF and CD74 expression, and promote apoptosis in ACC-83 cells. This study provides a theoretical basis for the treatment of salivary adenoid cystic carcinoma using Paris polyphylla var. yunnanensis.
.
Collapse
Affiliation(s)
- He Qiumin
- Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China
| | - Xu Biao
- Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China
| | - Wang Weihong
- Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China
| | - Bao Chongyun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hu Shaowei
- Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China
| |
Collapse
|
64
|
Expression of CD74 in invasive breast carcinoma: its relation to Nottingham Prognostic Index, hormone receptors, and HER2 immunoprofile. TUMORI JOURNAL 2017; 103:193-203. [PMID: 27834468 DOI: 10.5301/tj.5000562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE To study the immunohistochemical expression of CD74 in series of invasive breast carcinomas classified according to their estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) immunoprofile and explore its correlation to Nottingham Prognostic Index (NPI) and tumor pathologic stage to determine if it has a prognostic value. METHODS A total of 160 cases of mammary carcinoma were classified broadly according to their ER, PR, and HER2 expression into luminal, HER2-positive, and triple-negative groups. The NPI was calculated and pathologic stage was recorded for each individual case and cases were classified into different prognostic groups. The CD74 expression was evaluated immunohistochemically and correlated to different prognostic variables. RESULTS The CD74 immunohistochemical expression in invasive breast carcinoma was significantly higher in triple-negative tumors, higher tumor grades, presence of lymph nodal metastasis, higher tumor stages, and higher NPI scores. CONCLUSIONS The CD74 might be a useful prognostic indicator predicting poor outcome of patients with breast carcinoma. Its consistent expression in triple-negative breast carcinomas points to the need of further studies to test the possibility if it can be targeted in treatment of breast carcinoma, especially in such groups.
Collapse
|
65
|
Zhou Y, Chen H, Liu L, Yu X, Sukhova GK, Yang M, Zhang L, Kyttaris VC, Tsokos GC, Stillman IE, Ichimura T, Bonventre JV, Libby P, Shi GP. CD74 Deficiency Mitigates Systemic Lupus Erythematosus-like Autoimmunity and Pathological Findings in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:2568-2577. [PMID: 28219888 DOI: 10.4049/jimmunol.1600028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/22/2017] [Indexed: 12/20/2022]
Abstract
CD74 mediates MHC class-II antigenic peptide loading and presentation and plays an important role in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus. C57BL/6 Faslpr mice that develop spontaneous lupus-like autoimmunity and pathology showed elevated CD74 expression in the inflammatory cell infiltrates and the adjacent tubular epithelial cells (TECs) in kidneys affected by lupus nephritis but negligible levels in kidneys from age-matched wild-type mice. The inflammatory cytokine IFN-γ or IL-6 induced CD74 expression in kidney TECs in vitro. The presence of kidney TECs from Faslpr mice, rather than from wild-type mice, produced significantly stronger histones, dsDNA, and ribonucleoprotein-Smith Ag complex-induced CD4+ T cell activation. Splenocytes from CD74-deficient FaslprCd74-/- mice had muted responses in a MLR and to the autoantigen histones. Compared with FaslprCd74+/+ mice, FaslprCd74-/- mice had reduced kidney and spleen sizes, splenic activated T cells and B cells, serum IgG and autoantibodies, urine albumin/creatinine ratio, kidney Periodic acid-Schiff score, IgG and C3 deposition, and serum IL-6 and IL-17A levels, but serum IL-2 and TGF-β levels were increased. Study of chronic graft-versus-host C57BL/6 mice that received donor splenocytes from B6.C-H2bm12 /KhEg mice and those that received syngeneic donor splenocytes yielded similar observations. CD74 deficiency reduced lupus-like autoimmunity and kidney pathology in chronic graft-versus-host mice. This investigation establishes the direct participation of CD74 in autoimmunity and highlights a potential role for CD74 in kidney TECs, together with professional APCs in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Huimei Chen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Research Institute of Nephrology, Nanjing University School of Medicine, Nanjing 210002, China
| | - Li Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.,Department of Biology, School of Life Science, Huzhou Teachers College, Huzhou, Zhejiang 313000, China
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Min Yang
- Department of Rheumatology, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lijun Zhang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Vasileios C Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Takaharu Ichimura
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Joseph V Bonventre
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
66
|
Lozano-Pope I, Sharma A, Matthias M, Doran KS, Obonyo M. Effect of myeloid differentiation primary response gene 88 on expression profiles of genes during the development and progression of Helicobacter-induced gastric cancer. BMC Cancer 2017; 17:133. [PMID: 28201999 PMCID: PMC5310019 DOI: 10.1186/s12885-017-3114-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Gastric cancer is one of the most common and lethal type of cancer worldwide. Infection with Helicobacter pylori (H. pylori) is recognized as the major cause of gastric cancer. However, it remains unclear the mechanism by which Helicobacter infection leads to gastric cancer. Furthermore, the underlying molecular events involved during the progression of Helicobacter infection to gastric malignancy are not well understood. In previous studies, we demonstrated that that H. felis-infected Myd88−/− mice exhibited dramatic pathology and an accelerated progression to gastric dysplasia; however, the MyD88 downstream gene targets responsible for this pathology have not been described. This study was designed to identify MyD88-dependent genes involved in the progression towards gastric cancer during the course of Helicobacter infection. Methods Wild type (WT) and Myd88 deficient mice (Myd88−/−) were infected with H. felis for 25 and 47 weeks and global transcriptome analysis performed on gastric tissue using MouseWG-6 v2 expression BeadChips microarrays. Function and pathway enrichment analyses of statistically significant, differential expressed genes (p < 0.05) were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tools. Results Helicobacter infection affected the transcriptional profile of more genes in Myd88−/− mice compared to WT mice. Infection of Myd88−/− mice resulted in the differential expression of 1,989 genes at 25 weeks (1031 up and 958 downregulated). At 47 weeks post-H.felis infection, 2,162 (1140 up and 1022 downregulated) were differentially expressed. The most significant differentially upregulated gene during Helicobacter infection in Myd88−/− mice was chitinase-like 4 (chil4), which is involved in tissue remodeling and wound healing. Other highly upregulated genes in H. felis-infected Myd88−/− mice included, Indoleamine 2,3-Dioxygenase 1 (Ido1), Guanylate binding protein 2 (Gbp2), ubiquitin D (Ubd), β2-Microglobulin (B2m), CD74 antigen (Cd74), which have been reported to promote cancer progression by enhancing angiogenesis, proliferation, migration, metastasis, invasion, and tumorigenecity. For downregulated genes, the highly expressed genes included, ATPase H+/K+ transporting, alpha subunit (Atp4a), Atp4b, Mucin 5 AC (Muc5ac), Apolipoprotein A-1 (Apoa1), and gastric intrinsic factor (Gif), whose optimal function is important in maintaining gastric hemostasis and lower expression has been associated with increased risk of gastric carcinogenesis. Conclusions These results provide a global transcriptional gene profile during the development and progression of Helicobacter-induced gastric cancer. The data show that our mouse model system is useful for identifying genes involved in gastric cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3114-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arnika Sharma
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Michael Matthias
- Department of Medicine, University of California, La Jolla, CA, USA
| | - Kelly S Doran
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Marygorret Obonyo
- Department of Medicine, University of California, La Jolla, CA, USA.
| |
Collapse
|
67
|
The biological function and significance of CD74 in immune diseases. Inflamm Res 2016; 66:209-216. [DOI: 10.1007/s00011-016-0995-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
|
68
|
Park GB, Chung YH, Gong JH, Jin DH, Kim D. GSK-3β-mediated fatty acid synthesis enhances epithelial to mesenchymal transition of TLR4-activated colorectal cancer cells through regulation of TAp63. Int J Oncol 2016; 49:2163-2172. [PMID: 27599658 DOI: 10.3892/ijo.2016.3679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/23/2016] [Indexed: 11/05/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) in cancer cells is a critical regulatory component of both cellular metabolism and epithelial-mesenchymal transition (EMT) processes via regulation of the β-catenin/E-cadherin and phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Lipogenesis of cancer cells also plays a critical role in survival and metastasis. We investigated the role of GSK-3β-mediated intracellular fatty acid synthesis to control EMT in TLR4-activated colorectal cancer cells and the underlying regulatory mechanism. Engagement of TLR4 with lipopolysaccharide (LPS) in colon cancer cells promoted the induction of phosphorylated GSK-3β and related lipogenic enzymes as well as the expression of CD74, CD44 and macrophage inhibitory factor (MIF), but decreased expression of transcriptionally active p63 (TAp63). In addition, targeted inhibition of GSK-3β using SB216763 was accompanied by decreased intracellular fatty acid synthesis and blockage of CD74 and CD44 expression, whereas it reversed the level of TAp63. Although TAp63 overexpression had no effect on the expression of CD74 and CD44 in LPS-treated colon cancer cells, GSK-3β-dependent fatty acid synthesis and invasive activity were significantly suppressed. Notably, inhibition of CD44 or CD74 by siRNA not only attenuated de novo lipogenesis and migratory activity but also restored the expression of TAp63 in LPS-activated colon cancer cells. These results suggest that TAp63-mediated GSK-3β activation induced by TLR4 stimulation triggers migration and invasion of colon cancer cells through the regulation of lipid synthesis and GSK-3β-mediated CD74/CD44 expression could be a target to control fatty acid-related EMT process through the modulation of TAp63 expression.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ji Hee Gong
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
69
|
Mishra A, Iyer S, Kesarwani A, Baligar P, Arya SP, Arindkar S, Kumar MJM, Upadhyay P, Majumdar SS, Nagarajan P. Role of antigen presenting cell invariant chain in the development of hepatic steatosis in mouse model. Exp Cell Res 2016; 346:188-97. [PMID: 27371158 DOI: 10.1016/j.yexcr.2016.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/11/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
The role of Invariant chain (CD74 or Ii) in antigen presentation via Antigen Presenting Cells (APC), macrophage recruitment as well as survival, T cell activation and B cell differentiation has been well recognized. However, the aspect of CD74 which is involved in the development of hepatic steatosis and the pathways through which it acts remain to be studied. In this study, we investigated the role of CD74 in the inflammatory pathway and its contribution to development of hepatic steatosis. For this, wild type C57BL/6J and CD74 deficient mice (Ii(-/-) mice) were fed with high fat high fructose (HFHF) diet for 12 weeks. Chronic consumption of this feed did not develop hepatic steatosis, glucose intolerance or change in the level of immune cells in Ii(-/-) mice. Moreover, there was relatively delayed expression of genes involved in development of non alcoholic fatty liver disease (NAFLD) in HFHF fed Ii(-/-) mice as compared to that of C57BL/6J phenotype. Taken together, the data suggest that HFHF diet fed Ii(-/-) mice fail to develop hepatic steatosis, suggesting that Ii mediated pathways play a vital role in the initiation and propagation of liver inflammation.
Collapse
Affiliation(s)
| | - Srikanth Iyer
- National Institute of Immunology, New Delhi 110067, India
| | | | | | - Satya Pal Arya
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
70
|
Vandormael P, Verschueren P, De Winter L, Somers V. cDNA phage display for the discovery of theranostic autoantibodies in rheumatoid arthritis. Immunol Res 2016; 65:307-325. [DOI: 10.1007/s12026-016-8839-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
71
|
Wilkinson RDA, Magorrian SM, Williams R, Young A, Small DM, Scott CJ, Burden RE. CCL2 is transcriptionally controlled by the lysosomal protease cathepsin S in a CD74-dependent manner. Oncotarget 2016; 6:29725-39. [PMID: 26358505 PMCID: PMC4745758 DOI: 10.18632/oncotarget.5065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/14/2015] [Indexed: 01/15/2023] Open
Abstract
Cathepsins S (CatS) has been implicated in numerous tumourigenic processes and here we document for the first time its involvement in CCL2 regulation within the tumour microenvironment. Analysis of syngeneic tumours highlighted reduced infiltrating macrophages in CatS depleted tumours. Interrogation of tumours and serum revealed genetic ablation of CatS leads to the depletion of several pro-inflammatory chemokines, most notably, CCL2. This observation was validated in vitro, where shRNA depletion of CatS resulted in reduced CCL2 expression. This regulation is transcriptionally mediated, as evident from RT-PCR analysis and CCL2 promoter studies. We revealed that CatS regulation of CCL2 is modulated through CD74 (also known as the invariant chain), a known substrate of CatS and a mediator of NFkB activity. Furthermore, CatS and CCL2 show a strong clinical correlation in brain, breast and colon tumours. In summary, these results highlight a novel mechanism by which CatS controls CCL2, which may present a useful pharmacodynamic marker for CatS inhibition.
Collapse
Affiliation(s)
- Richard D A Wilkinson
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Sinead M Magorrian
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Rich Williams
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Andrew Young
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Donna M Small
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Christopher J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Roberta E Burden
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
72
|
Relationship between elevated soluble CD74 and severity of experimental and clinical ALI/ARDS. Sci Rep 2016; 6:30067. [PMID: 27444250 PMCID: PMC4957083 DOI: 10.1038/srep30067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/28/2016] [Indexed: 01/11/2023] Open
Abstract
CD74 is expressed on the cell surface of pulmonary macrophages and contributes to macrophage migration inhibitory factor (MIF)-induced inflammatory response in acute lung injury (ALI). A circulating form of CD74 (soluble CD74, sCD74) was recently discovered in autoimmune liver disease. Using two murine ALI models and cells culture, we examined the presence of sCD74 in circulation and alveolar space and preliminarily assessed the biological function of sCD74. The concentrations of sCD74 were increased in serum and bronchoalveolar lavage fluids (BALF) of murine ALI models. The elevated levels of sCD74 in BALF positively correlated with lung permeability and inflammation. In addition, sCD74 is secreted by macrophages in response to MIF stimulation and itself can stimulate the production of inflammatory cytokines. Our clinical study confirmed some findings of basic research. Moreover, we also found Day 3 serum sCD74 levels were associated with worse clinical outcomes. In conclusion, higher serum sCD74 levels may reflect more severe lung injury and may be used to help physicians determine prognosis of acute respiratory distress syndrome (ARDS).
Collapse
|
73
|
Ekmekcioglu S, Davies MA, Tanese K, Roszik J, Shin-Sim M, Bassett RL, Milton DR, Woodman SE, Prieto VG, Gershenwald JE, Morton DL, Hoon DS, Grimm EA. Inflammatory Marker Testing Identifies CD74 Expression in Melanoma Tumor Cells, and Its Expression Associates with Favorable Survival for Stage III Melanoma. Clin Cancer Res 2016; 22:3016-24. [PMID: 26783288 PMCID: PMC4911309 DOI: 10.1158/1078-0432.ccr-15-2226] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/11/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Inflammatory marker expression in stage III melanoma tumors was evaluated for association with outcome, using two independent cohorts of stage III melanoma patients' tumor tissues. EXPERIMENTAL DESIGN Fifteen markers of interest were selected for analysis, and their expression in melanoma tissues was determined by immunohistochemistry. Proteins associating with either overall survival (OS) or recurrence-free survival (RFS) in the retrospective discovery tissue microarray (TMA; n = 158) were subsequently evaluated in an independent validation TMA (n = 114). Cox proportional hazards regression models were used to assess the association between survival parameters and covariates, the Kaplan-Meier method to estimate the distribution of survival, and the log-rank test to compare distributions. RESULTS Expression of CD74 on melanoma cells was unique, and in the discovery TMA, it associated with favorable patient outcome (OS: HR, 0.53; P = 0.01 and RFS: HR, 0.56; P = 0.01). The validation data set confirmed the CD74 prognostic significance and revealed that the absence of macrophage migration inhibitory factor (MIF) and inducible nitric oxide synthase (iNOS) was also associated with poor survival parameters. Consistent with the protein observation, tumor CD74 mRNA expression also correlated positively (P = 0.003) with OS in the melanoma TCGA data set. CONCLUSIONS Our data validate CD74 as a useful prognostic tumor cell protein marker associated with favorable RFS and OS in stage III melanoma. Low or negative expression of MIF in both TMAs and of iNOS in the validation set also provided useful prognostic data. A disease-specific investigation of CD74's functional significance is warranted, and other markers appear intriguing to pursue. Clin Cancer Res; 22(12); 3016-24. ©2016 AACR.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Child
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Humans
- Immunohistochemistry
- Intramolecular Oxidoreductases/metabolism
- Macrophage Migration-Inhibitory Factors/metabolism
- Male
- Melanoma/mortality
- Melanoma/pathology
- Middle Aged
- Neoplasm Staging
- Nitric Oxide Synthase Type II/metabolism
- RNA, Messenger/genetics
- Retrospective Studies
- Skin Neoplasms/mortality
- Skin Neoplasms/pathology
- Young Adult
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keiji Tanese
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Dermatology, School of Medicine, Keio University, Tokyo, Japan
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Myung Shin-Sim
- Department of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, California
| | - Roland L Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E Woodman
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Victor G Prieto
- Department of Pathology and Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donald L Morton
- Department of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, California
| | - Dave S Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, California
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
74
|
Prajzlerová K, Grobelná K, Pavelka K, Šenolt L, Filková M. An update on biomarkers in axial spondyloarthritis. Autoimmun Rev 2016; 15:501-9. [DOI: 10.1016/j.autrev.2016.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
|
75
|
Zhou XJ, Wu FL, Jiang LL, Huang LF, Li GH. Vasoactive Intestinal Peptide Promotes Immune Escape of MKN45 Cells by Inhibiting Antigen-Presenting Molecules of Dendritic Cells In Vitro. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
76
|
Clanchy FIL. High-Affinity Fc Receptor Expression Indicates Relative Immaturity in Human Monocytes. J Interferon Cytokine Res 2015; 36:279-90. [PMID: 26714112 DOI: 10.1089/jir.2015.0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within monocyte heterogeneity, subsets represent discrete, well-characterized phenotypes. Although many studies have highlighted differences between subsets, there is evidence that subpopulations represent contiguous stages in a maturational series. As CD14(hi)CD64(hi) monocytes have higher proliferative potential than CD14(hi)CD64(lo) monocytes, the surface marker profile on 4 subsets defined by CD14 and CD64 was measured. The profiles were compared to that of subsets defined by the high-affinity IgE receptor (FcɛRIα), CD16, and CD14; further differences in size, granularity, and buoyancy were measured in subsets delineated by these markers. There was a positive correlation between proliferative monocyte (PM) prevalence and CD64 expression on the classical monocyte subset, and also between PM prevalence and circulating FcɛRIα(+) monocytes. The expression of CD64, the high-affinity IgG receptor, on canonical human monocyte subsets was determined before and after short-term culture, and in response to interleukin (IL)-6, IL-10, macrophage colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and interferon-γ; the influence of these cytokines on monocyte subset transition was also measured. The loss of FcɛRIα expression preceded an increase in CD16 expression in whole blood cultures. These data indicate that high-affinity Fc receptors are expressed on less mature monocytes and that FcɛRIα(+) monocytes are developmentally antecedent to the canonical classical and intermediate monocyte subsets.
Collapse
Affiliation(s)
- Felix I L Clanchy
- Department of Medicine, Arthritis and Inflammation Research Centre and Co-operative Research Centre for Chronic Inflammatory Diseases, Royal Melbourne Hospital, University of Melbourne , Melbourne, Australia
| |
Collapse
|
77
|
Bowser JL, Blackburn MR, Shipley GL, Molina JG, Dunner K, Broaddus RR. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest 2015; 126:220-38. [PMID: 26642367 DOI: 10.1172/jci79380] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) is central to the generation of extracellular adenosine. Previous studies have highlighted a detrimental role for extracellular adenosine in cancer, as it dampens T cell-mediated immune responses. Here, we determined that, in contrast to other cancers, CD73 is markedly downregulated in poorly differentiated and advanced-stage endometrial carcinoma compared with levels in normal endometrium and low-grade tumors. In murine models, CD73 deficiency led to a loss of endometrial epithelial barrier function, and pharmacological CD73 inhibition increased in vitro migration and invasion of endometrial carcinoma cells. Given that CD73-generated adenosine is central to regulating tissue protection and physiology in normal tissues, we hypothesized that CD73-generated adenosine in endometrial carcinoma induces an innate reflex to protect epithelial integrity. CD73 associated with cell-cell contacts, filopodia, and membrane zippers, indicative of involvement in cell-cell adhesion and actin polymerization-dependent processes. We determined that CD73-generated adenosine induces cortical actin polymerization via adenosine A1 receptor (A1R) induction of a Rho GTPase CDC42-dependent conformational change of the actin-related proteins 2 and 3 (ARP2/3) actin polymerization complex member N-WASP. Cortical F-actin elevation increased membrane E-cadherin, β-catenin, and Na(+)K(+) ATPase. Together, these findings reveal that CD73-generated adenosine promotes epithelial integrity and suggest why loss of CD73 in endometrial cancer allows for tumor progression. Moreover, our data indicate that the role of CD73 in cancer is more complex than previously described.
Collapse
|
78
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
79
|
Subbannayya T, Leal-Rojas P, Barbhuiya MA, Raja R, Renuse S, Sathe G, Pinto SM, Syed N, Nanjappa V, Patil AH, Garcia P, Sahasrabuddhe NA, Nair B, Guerrero-Preston R, Navani S, Tiwari PK, Santosh V, Sidransky D, Prasad TSK, Gowda H, Roa JC, Pandey A, Chatterjee A. Macrophage migration inhibitory factor - a therapeutic target in gallbladder cancer. BMC Cancer 2015; 15:843. [PMID: 26530123 PMCID: PMC4632274 DOI: 10.1186/s12885-015-1855-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background Poor prognosis in gallbladder cancer is due to late presentation of the disease, lack of reliable biomarkers for early diagnosis and limited targeted therapies. Early diagnostic markers and novel therapeutic targets can significantly improve clinical management of gallbladder cancer. Methods Proteomic analysis of four gallbladder cancer cell lines based on the invasive property (non-invasive to highly invasive) was carried out using the isobaric tags for relative and absolute quantitation labeling-based quantitative proteomic approach. The expression of macrophage migration inhibitory factor was analysed in gallbladder adenocarcinoma tissues using immunohistochemistry. In vitro cellular assays were carried out in a panel of gallbladder cancer cell lines using MIF inhibitors, ISO-1 and 4-IPP or its specific siRNA. Results The quantitative proteomic experiment led to the identification of 3,653 proteins, among which 654 were found to be overexpressed and 387 were downregulated in the invasive cell lines (OCUG-1, NOZ and GB-d1) compared to the non-invasive cell line, TGBC24TKB. Among these, macrophage migration inhibitory factor (MIF) was observed to be highly overexpressed in two of the invasive cell lines. MIF is a pleiotropic proinflammatory cytokine that plays a causative role in multiple diseases, including cancer. MIF has been reported to play a central role in tumor cell proliferation and invasion in several cancers. Immunohistochemical labeling of tumor tissue microarrays for MIF expression revealed that it was overexpressed in 21 of 29 gallbladder adenocarcinoma cases. Silencing/inhibition of MIF using siRNA and/or MIF antagonists resulted in a significant decrease in cell viability, colony forming ability and invasive property of the gallbladder cancer cells. Conclusions Our findings support the role of MIF in tumor aggressiveness and suggest its potential application as a therapeutic target for gallbladder cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1855-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Pamela Leal-Rojas
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Mustafa A Barbhuiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Adrienne Helis Malvin Research Foundation, New Orleans, LA, 70130, USA.
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Manipal University, Madhav Nagar, Manipal, 576104, India.
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| | - Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Arun H Patil
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Patricia Garcia
- Department of Pathology, Advanced Center for Chronic Diseases (ACCDiS), CITO, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | | | - Pramod K Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, 474011, India. .,School of Studies in Zoology, Jiwaji University, Gwalior, India.
| | - Vani Santosh
- Department of Pathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India. .,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| | - Juan Carlos Roa
- Department of Pathology, Advanced Center for Chronic Diseases (ACCDiS), CITO, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Manipal University, Madhav Nagar, Manipal, 576104, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| |
Collapse
|
80
|
Wang J, Wei B, Cao S, Xu F, Chen W, Lin H, Du C, Sun Z. Identification by microarray technology of key genes involved in the progression of carotid atherosclerotic plaque. Genes Genet Syst 2015; 89:253-8. [PMID: 25948119 DOI: 10.1266/ggs.89.253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A comparative analysis of gene expression profiles between early and advanced carotid atherosclerotic plaque was performed to identify key genes and pathways involved in the progression of carotid atherosclerotic plaque. Gene expression data set GSE28829 was downloaded from Gene Expression Omnibus, including 13 early and 16 advanced atherosclerotic plaque samples from human carotid. Differentially expressed genes (DEGs) were identified using the package limma of R. Principal component analysis was carried out for the DEGs with package rgl of R. A gene coexpression network was constructed with information from COXPRESdb and then visualized with Cytoscape. Functional enrichment analysis was performed with DAVID and pathway enrichment analysis was done with KEGG. A total of 319 DEGs were identified in the advanced atherosclerotic plaque samples compared with early atherosclerotic plaque samples, including 267 up-regulated genes and 52 down-regulated genes. In the gene coexpression network, TYRO protein tyrosine kinase binding protein was the hub gene with a degree of 23. Functional enrichment analysis and pathway enrichment analysis suggested that the immune response played a critical role in the progression of carotid atherosclerotic plaque. A number of key genes were revealed in carotid atherosclerotic plaque, and are potential biomarkers for diagnosis or treatment. These findings may also guide future research to better decipher the progression of atherosclerosis.
Collapse
Affiliation(s)
- Jian Wang
- 1Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033; 2. Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia National University, Tongliao, Inner Mongolia, 028000, China
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Valiño-Rivas L, Baeza-Bermejillo C, Gonzalez-Lafuente L, Sanz AB, Ortiz A, Sanchez-Niño MD. CD74 in Kidney Disease. Front Immunol 2015; 6:483. [PMID: 26441987 PMCID: PMC4585214 DOI: 10.3389/fimmu.2015.00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/05/2015] [Indexed: 12/17/2022] Open
Abstract
CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ciro Baeza-Bermejillo
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Laura Gonzalez-Lafuente
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ana Belen Sanz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain ; School of Medicine, Universidad Autónoma de Madrid , Madrid , Spain ; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| |
Collapse
|
82
|
Wage J, Ma L, Peluso M, Lamont C, Evens AM, Hahnfeldt P, Hlatky L, Beheshti A. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue. JOURNAL OF RADIATION RESEARCH 2015; 56:792-803. [PMID: 26253138 PMCID: PMC4577010 DOI: 10.1093/jrr/rrv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/22/2015] [Indexed: 05/08/2023]
Abstract
Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age.
Collapse
Affiliation(s)
- Justin Wage
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Lili Ma
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael Peluso
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Clare Lamont
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Andrew M Evens
- Molecular Oncology Research Institute, Tufts Medical Center, Tufts Cancer Center, Tufts University School of Medicine, Boston, MA, USA
| | - Philip Hahnfeldt
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Lynn Hlatky
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Afshin Beheshti
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA Molecular Oncology Research Institute, Tufts Medical Center, Tufts Cancer Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
83
|
van der Vorst EPC, Döring Y, Weber C. MIF and CXCL12 in Cardiovascular Diseases: Functional Differences and Similarities. Front Immunol 2015; 6:373. [PMID: 26257740 PMCID: PMC4508925 DOI: 10.3389/fimmu.2015.00373] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) as part of the cardiovascular diseases is a pathology caused by atherosclerosis, a chronic inflammatory disease of the vessel wall characterized by a massive invasion of lipids and inflammatory cells into the inner vessel layer (intima) leading to the formation of atherosclerotic lesions; their constant growth may cause complications such as flow-limiting stenosis and plaque rupture, the latter triggering vessel occlusion through thrombus formation. Pathophysiology of CAD is complex and over the last years many players have entered the picture. One of the latter being chemokines (small 8-12 kDa cytokines) and their receptors, known to orchestrate cell chemotaxis and arrest. Here, we will focus on the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1) and the chemokine-like function chemokine, macrophage migration-inhibitory factor (MIF). Both are ubiquitously expressed and highly conserved proteins and play an important role in cell homeostasis, recruitment, and arrest through binding to their corresponding chemokine receptors CXCR4 (CXCL12 and MIF), ACKR3 (CXCL12), and CXCR2 (MIF). In addition, MIF also binds to the receptor CD44 and the co-receptor CD74. CXCL12 has mostly been studied for its crucial role in the homing of (hematopoietic) progenitor cells in the bone marrow and their mobilization into the periphery. In contrast to CXCL12, MIF is secreted in response to diverse inflammatory stimuli, and has been associated with a clear pro-inflammatory and pro-atherogenic role in multiple studies of patients and animal models. Ongoing research on CXCL12 points at a protective function of this chemokine in atherosclerotic lesion development. This review will focus on the role of CXCL12 and MIF and their differences and similarities in CAD of high risk patients.
Collapse
Affiliation(s)
- Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| |
Collapse
|
84
|
Alampour-Rajabi S, El Bounkari O, Rot A, Müller-Newen G, Bachelerie F, Gawaz M, Weber C, Schober A, Bernhagen J. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J 2015; 29:4497-511. [PMID: 26139098 DOI: 10.1096/fj.15-273904] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022]
Abstract
Macrophage migration-inhibitory factor (MIF) is a pleiotropic cytokine with chemokine-like functions and is a mediator in numerous inflammatory conditions. Depending on the context, MIF signals through 1 or more of its receptors cluster of differentiation (CD)74, CXC-motif chemokine receptor (CXCR)2, and CXCR4. In addition, heteromeric receptor complexes have been identified. We characterized the atypical chemokine receptor CXCR7 as a novel receptor for MIF. MIF promoted human CXCR7 internalization up to 40%, peaking at 50-400 nM and 30 min, but CXCR7 internalization by MIF was not dependent on CXCR4. Yet, by coimmunoprecipitation, fluorescence microscopy, and a proximity ligation assay, CXCR7 was found to engage in MIF receptor complexes with CXCR4 and CD74, both after ectopic overexpression and in endogenous conditions in a human B-cell line. Receptor competition binding and coimmunoprecipitation studies combined with sulfo-SBED-biotin-transfer provided evidence for a direct interaction between MIF and CXCR7. Finally, we demonstrated MIF/CXCR7-mediated functional responses. Blockade of CXCR7 suppressed MIF-mediated ERK- and zeta-chain-associated protein kinase (ZAP)-70 activation (from 2.1- to 1.2-fold and from 2.5- to 1.6-fold, respectively) and fully abrogated primary murine B-cell chemotaxis triggered by MIF, but not by CXCL12. B cells from Cxcr7(-/-) mice exhibited an ablated transmigration response to MIF, indicating that CXCR7 is essential for MIF-promoted B-cell migration. Our findings provide biochemical and functional evidence that MIF is an alternative ligand of CXCR7 and suggest a functional role of the MIF-CXCR7 axis in B-lymphocyte migration.
Collapse
Affiliation(s)
- Setareh Alampour-Rajabi
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Omar El Bounkari
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Antal Rot
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Gerhard Müller-Newen
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Françoise Bachelerie
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Meinrad Gawaz
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andreas Schober
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jürgen Bernhagen
- *Institute of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, and Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Rhine-Westphalia Technical University of Aachen (RWTH), Aachen, Germany; Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom; INSERM, Unité Mixte de Recherche-S 996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, Clamart, France; Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, University of Tübingen, Tübingen, Germany; Institute for Cardiovascular Prevention, Klinikum der Universität München, and August-Lenz-Stiftung, Ludwig-Maximilians-Universität München, Munich, Germany; **Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Deutches Zentrum für Herz-Kreislauf Forschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
85
|
Martin P, Furman RR, Rutherford S, Ruan J, Ely S, Greenberg J, Coleman M, Goldsmith SJ, Leonard JP. Phase I study of the anti-CD74 monoclonal antibody milatuzumab (hLL1) in patients with previously treated B-cell lymphomas. Leuk Lymphoma 2015; 56:3065-70. [PMID: 25754579 DOI: 10.3109/10428194.2015.1028052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Milatuzumab (hLL1), a humanized anti-CD74 monoclonal antibody, has activity in preclinical non-Hodgkin lymphoma (NHL) models. We conducted a phase 1 trial in previously treated B-cell malignancies. Dose escalation included four planned dose levels (1.5, 4, 6 and 8 mg/kg) with milatuzumab given twice weekly for 6 weeks. After dose level 1, the schedule was changed to daily (Monday-Friday) for 10 days. Twenty-two patients were treated. The most common possibly related toxicities were infusion reaction, anemia, lymphopenia, neutropenia and thrombocytopenia. Three patients experienced dose-limiting toxicity (neutropenia, neutropenia, rash) at dose levels 1, 2 and 4, respectively. Eight patients had stable disease, with no objective responses. The serum half-life of milatuzumab was ∼2 h. In seven patients, In-111 imaging showed no clear evidence of tumor targeting. The short half-life may reflect CD74 rapid internalization and presence on extratumoral tissues; this antigen sink must be overcome to capitalize on the promising preclinical activity of the drug.
Collapse
Affiliation(s)
- Peter Martin
- a Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Richard R Furman
- a Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Sarah Rutherford
- a Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Jia Ruan
- a Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Scott Ely
- b Pathology and Laboratory Medicine, Weill Cornell Medical College , New York , NY , USA
| | - June Greenberg
- a Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Morton Coleman
- a Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Stanley J Goldsmith
- c Department of Radiology , Weill Cornell Medical College , New York , NY , USA
| | - John P Leonard
- a Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|
86
|
Cheng SP, Liu CL, Chen MJ, Chien MN, Leung CH, Lin CH, Hsu YC, Lee JJ. CD74 expression and its therapeutic potential in thyroid carcinoma. Endocr Relat Cancer 2015; 22:179-90. [PMID: 25600560 DOI: 10.1530/erc-14-0269] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD74, the invariant chain of major histocompatibility complex class II, is also a receptor for macrophage migration inhibitory factor (MIF). CD74 and MIF have been associated with tumor progression and metastasis in hematologic and solid tumors. In this study, we found that 60 and 65% of papillary thyroid cancers were positive for CD74 and MIF immunohistochemical staining respectively. Anaplastic thyroid cancer was negative for MIF, but mostly positive for CD74 expression. Normal thyroid tissue and follicular adenomas were negative for CD74 expression. CD74 expression in papillary thyroid cancer was associated with larger tumor size (P=0.043), extrathyroidal invasion (P=0.021), advanced TNM stage (P=0.006), and higher MACIS score (P=0.026). No clinicopathological parameter was associated with MIF expression. Treatment with anti-CD74 antibody in thyroid cancer cells inhibited cell growth, colony formation, cell migration and invasion, and vascular endothelial growth factor secretion. In contrast, treatment with recombinant MIF induced an increase in cell invasion. Anti-CD74 treatment reduced AKT phosphorylation and stimulated AMPK activation. Our findings suggest that CD74 overexpression in thyroid cancer is associated with advanced tumor stage and may serve as a therapeutic target.
Collapse
MESH Headings
- Antibodies/pharmacology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Carcinoma/metabolism
- Carcinoma/pathology
- Carcinoma, Papillary
- Cell Line, Tumor
- Cell Movement
- Gene Expression Regulation, Neoplastic
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Humans
- Intramolecular Oxidoreductases/genetics
- Intramolecular Oxidoreductases/metabolism
- Macrophage Migration-Inhibitory Factors/genetics
- Macrophage Migration-Inhibitory Factors/metabolism
- Thyroid Cancer, Papillary
- Thyroid Gland/metabolism
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Transcriptome
- Tumor Burden
- Wound Healing
Collapse
Affiliation(s)
- Shih-Ping Cheng
- Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan
| | - Chien-Liang Liu
- Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan
| | - Ming-Jen Chen
- Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan
| | - Ming-Nan Chien
- Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan
| | - Ching-Hsiang Leung
- Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan
| | - Chi-Hsin Lin
- Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan
| | - Jie-Jen Lee
- Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan Department of SurgeryDivision of Endocrinology and MetabolismDepartment of Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, TaiwanMackay Junior College of MedicineNursing, and Management, No. 92, Sheng-Ching Road, Peitou, Taipei 11260, TaiwanDepartment of PharmacologyGraduate Institute of Medical Sciences, Taipei Medical University, Taipei, TaiwanDepartment of Medical ResearchMacKay Memorial Hospital, Taipei, TaiwanInstitute of Statistical ScienceAcademia Sinica, Taipei, Taiwan
| |
Collapse
|
87
|
Bos M, Gardizi M, Schildhaus HU, Buettner R, Wolf J. Activated RET and ROS: two new driver mutations in lung adenocarcinoma. Transl Lung Cancer Res 2015; 2:112-21. [PMID: 25806222 DOI: 10.3978/j.issn.2218-6751.2013.03.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 03/12/2013] [Indexed: 12/24/2022]
Abstract
Rearrangements of ROS1 and RET have been recently described as new driver mutations in lung adenocarcinoma with a frequency of about 1% each. RET and ROS1 rearrangements both represent unique molecular subsets of lung adenocarcinoma with virtually no overlap with other known driver mutations described so far in lung adenocarcinoma. Specific clinicopathologic characteristics have been described and several multitargeted receptor kinase inhibitors have shown in vitro activity against NSCLC cells harbouring these genetic alterations. In addition, the MET/ALK/ROS inhibitor crizotinib has already shown impressive clinical activity in patients with advanced ROS1-positive lung cancer. Currently, several early proof of concept clinical trials are testing various kinase inhibitors in both molecular subsets of lung adenocarcinoma patients. Most probably, personalized treatment of these genetically defined new subsets of lung adenocarcinoma will be implemented in routine clinical care of lung cancer patients in the near future.
Collapse
Affiliation(s)
- Marc Bos
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany ; ; Center for Integrated Oncology Cologne/Bonn, Germany
| | - Masyar Gardizi
- Center for Integrated Oncology Cologne/Bonn, Germany ; ; Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Hans-Ulrich Schildhaus
- Center for Integrated Oncology Cologne/Bonn, Germany ; ; Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- Center for Integrated Oncology Cologne/Bonn, Germany ; ; Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Juergen Wolf
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany ; ; Center for Integrated Oncology Cologne/Bonn, Germany
| |
Collapse
|
88
|
Lourenco S, Teixeira VH, Kalber T, Jose RJ, Floto RA, Janes SM. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. THE JOURNAL OF IMMUNOLOGY 2015; 194:3463-74. [PMID: 25712213 DOI: 10.4049/jimmunol.1402097] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal cells (MSCs) are inherently tumor homing and can be isolated, expanded, and transduced, making them viable candidates for cell therapy. This tumor tropism has been used to deliver anticancer therapies to various tumor models. In this study, we sought to discover which molecules are the key effectors of human MSC tumor homing in vitro and using an in vivo murine model. In this study, we discover a novel role for macrophage migration inhibitory factor (MIF) as the key director of MSC migration and infiltration toward tumor cells. We have shown this major role for MIF using in vitro migration and invasion assays, in presence of different receptor inhibitors and achieving a drastic decrease in both processes using MIF inhibitor. Additionally, we demonstrate physical interaction between MIF and three receptors: CXCR2, CXCR4, and CD74. CXCR4 is the dominant receptor used by MIF in the homing tumor context, although some signaling is observed through CXCR2. We demonstrate downstream activation of the MAPK pathway necessary for tumor homing. Importantly, we show that knockdown of either CXCR4 or MIF abrogates MSC homing to tumors in an in vivo pulmonary metastasis model, confirming the in vitro two-dimensional and three-dimensional assays. This improved understanding of MSC tumor tropism will further enable development of novel cellular therapies for cancers.
Collapse
Affiliation(s)
- Sofia Lourenco
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom;
| | - Vitor H Teixeira
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Tammy Kalber
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom; University College London Centre of Advanced Biomedical Imaging, University College London, London WC1E 6DD, United Kingdom
| | - Ricardo J Jose
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London WC1E 6JF, United Kingdom; and
| | - R Andres Floto
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
89
|
Mitchell RA, Yaddanapudi K. Stromal-dependent tumor promotion by MIF family members. Cell Signal 2014; 26:2969-78. [PMID: 25277536 PMCID: PMC4293307 DOI: 10.1016/j.cellsig.2014.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/25/2022]
Abstract
Solid tumors are composed of a heterogeneous population of cells that interact with each other and with soluble and insoluble factors that, when combined, strongly influence the relative proliferation, differentiation, motility, matrix remodeling, metabolism and microvessel density of malignant lesions. One family of soluble factors that is becoming increasingly associated with pro-tumoral phenotypes within tumor microenvironments is that of the migration inhibitory factor family which includes its namesake, MIF, and its only known family member, D-dopachrome tautomerase (D-DT). This review seeks to highlight our current understanding of the relative contributions of a variety of immune and non-immune tumor stromal cell populations and, within those contexts, will summarize the literature associated with MIF and/or D-DT.
Collapse
Affiliation(s)
- Robert A Mitchell
- JG Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Kavitha Yaddanapudi
- JG Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
90
|
Wang J, Lin J, Schlotterer A, Wu L, Fleming T, Busch S, Dietrich N, Hammes HP. CD74 indicates microglial activation in experimental diabetic retinopathy and exogenous methylglyoxal mimics the response in normoglycemic retina. Acta Diabetol 2014; 51:813-21. [PMID: 24974304 DOI: 10.1007/s00592-014-0616-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
Diabetes induces vasoregression, neurodegeneration and glial activation in the retina. Formation of advanced glycation endoproducts (AGEs) is increased in diabetes and contributes to the pathogenesis of diabetic retinopathy. CD74 is increased in activated microglia in a rat model developing both neurodegeneration and vasoregression. In this study, we aimed at investigating whether glucose and major AGE precursor methylglyoxal induce increased CD74 expression in the retina. Expression of CD74 in retinal microglia was analyzed in streptozotocin-diabetic rats by wholemount immunofluorescence. Nondiabetic mice were intravitreally injected with methylglyoxal. Expression of CD74 was studied by retinal wholemount immunofluorescence and quantitative real-time PCR, 48 h after the injection. CD74-positive cells were increased in diabetic 4-month retinas. These cells represented a subpopulation of CD11b-labeled activated microglia and were mainly located in the superficial vascular layer (13.7-fold increase compared to nondiabetic group). Methylglyoxal induced an 9.4-fold increase of CD74-positive cells in the superficial vascular layer and elevated gene expression of CD74 in the mouse retina 2.8-fold. In summary, we identified CD74 as a microglial activation marker in the diabetic retina. Exogenous methylglyoxal mimics the response in normoglycemic retina. This suggests that methylglyoxal is important in mediating microglial activation in the diabetic retina.
Collapse
Affiliation(s)
- Jing Wang
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Gödde NJ, Pearson HB, Smith LK, Humbert PO. Dissecting the role of polarity regulators in cancer through the use of mouse models. Exp Cell Res 2014; 328:249-57. [PMID: 25179759 DOI: 10.1016/j.yexcr.2014.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
Abstract
Loss of cell polarity and tissue architecture is a hallmark of aggressive epithelial cancers. In addition to serving as an initial barrier to tumorigenesis, evidence in the literature has pointed towards a highly conserved role for many polarity regulators during tumor formation and progression. Here, we review recent developments in the field that have been driven by genetically engineered mouse models that establish the tumor suppressive and context dependent oncogenic function of cell polarity regulators in vivo. These studies emphasize the complexity of the polarity network during cancer formation and progression, and reveal the need to interpret polarity protein function in a cell-type and tissue specific manner. They also highlight how aberrant polarity signaling could provide a novel route for therapeutic intervention to improve our management of malignancies in the clinic.
Collapse
Affiliation(s)
- Nathan J Gödde
- Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A׳Beckett Street, Melbourne, VIC 8006, Australia
| | - Helen B Pearson
- Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A׳Beckett Street, Melbourne, VIC 8006, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Lorey K Smith
- Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A׳Beckett Street, Melbourne, VIC 8006, Australia
| | - Patrick O Humbert
- Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A׳Beckett Street, Melbourne, VIC 8006, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Departments of Pathology, The University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
92
|
Heinrichs D, Berres ML, Coeuru M, Knauel M, Nellen A, Fischer P, Philippeit C, Bucala R, Trautwein C, Wasmuth HE, Bernhagen J. Protective role of macrophage migration inhibitory factor in nonalcoholic steatohepatitis. FASEB J 2014; 28:5136-47. [PMID: 25122558 DOI: 10.1096/fj.14-256776] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MIF is an inflammatory cytokine but is hepatoprotective in models of hepatotoxin-induced liver fibrosis. Hepatic fibrosis can also develop from metabolic liver disease, such as nonalcoholic fatty liver disease (NASH). We investigated the role of MIF in high-fat or methionine- and choline-deficient diet mouse models of NASH. Mif(-/-) mice showed elevated liver triglyceride levels (WT, 53±14 mg/g liver; Mif(-/-), 103±7 mg/g liver; P<0.05) and a 2-3-fold increased expression of lipogenic genes. Increased fatty degeneration in the livers of Mif(-/-) mice was associated with increased hepatic inflammatory cells (1.6-fold increase in F4/80(+) macrophages) and proinflammatory cytokines (e.g., 2.3-fold increase in Tnf-α and 2-fold increase in Il-6 expression). However, inflammatory cells and cytokines were decreased by 50-90% in white adipose tissue (WAT) of Mif(-/-) mice. Subset analysis showed that macrophage phenotypes in livers of Mif(-/-) mice were skewed toward M2 (e.g., 1.7-fold and 2.5-fold increase in Arg1 and Il-13, respectively, and 2.5-fold decrease in iNos), whereas macrophages were generally reduced in WAT of these mice (70% reduction in mRNA expression of F4/80(+) macrophages). The protective MIF effect was scrutinized in isolated hepatocytes. MIF reversed inflammation-induced triglyceride accumulation in Hepa1-6 cells and primary hepatocytes and also attenuated oleic acid-elicited triglyceride increase in 3T3-L1 adipocytes. Protection from fatty hepatocyte degeneration was paralleled by a 2- to 3-fold reduction by MIF of hepatocyte proinflammatory cytokine production. Blockade of MIF receptor cluster of differentiation 74 (CD74) but not of CXCR2 or CXCR4 fully reverted the protective effect of MIF, comparable to AMPK inhibition. In summary, we demonstrate that MIF mediates hepatoprotection through the CD74/AMPK pathway in hepatocytes in metabolic models of liver injury.
Collapse
Affiliation(s)
- Daniel Heinrichs
- Institute of Biochemistry and Molecular Cell Biology and Department of Internal Medicine III, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Marie-Luise Berres
- Department of Internal Medicine III, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Melanie Coeuru
- Institute of Biochemistry and Molecular Cell Biology and
| | - Meike Knauel
- Institute of Biochemistry and Molecular Cell Biology and
| | - Andreas Nellen
- Department of Internal Medicine III, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Petra Fischer
- Department of Internal Medicine III, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | | | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christian Trautwein
- Department of Internal Medicine III, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | - Hermann E Wasmuth
- Department of Internal Medicine III, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; and
| | | |
Collapse
|
93
|
Barnes MA, Roychowdhury S, Nagy LE. Innate immunity and cell death in alcoholic liver disease: role of cytochrome P4502E1. Redox Biol 2014; 2:929-35. [PMID: 25180169 PMCID: PMC4143810 DOI: 10.1016/j.redox.2014.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 01/01/2023] Open
Abstract
Ethanol-induced liver injury is a complex process dependent upon the interaction of multiple cell types in the liver, as well as activation of the innate immune response. Increased expression of CYP2E1 in response to high concentrations of ethanol leads to greater production of cytotoxic ethanol metabolites, which in turn contribute to production of reactive oxygen species, oxidative stress, and ultimately, cell death. Necroptotic hepatocyte cell death in response to ethanol is mediated via a CYP2E1-dependent expression of receptor-interacting protein kinase 3 (RIP3), a key component of the necroptosome. In response to alarmins released during ethanol-induced necroptosis, the innate immune response is activated. Macrophage migration inhibitory factor (MIF), a pro-inflammatory multikine involved in many disease processes, is an essential component to this response to injury. MIF expression is increased during ethanol exposure via a CYP2E1-dependent pathway, likely contributing to an exacerbated innate immune response and chronic inflammation after chronic ethanol. This review will discuss the complex interactions between CYP2E1-dependent expression of RIP3 and MIF in the pathophysiology of chronic ethanol-induced liver injury. Alcohol induces hepatocellular death via both apoptosis and necroptosis. Receptor interacting kinase 3 (RIP3) mediates necroptotic cell death. Alcohol-induced injury activates innate immune responses, including MIF. Interactions between innate immunity and cell death with ethanol are reviewed.
Collapse
Affiliation(s)
- Mark A Barnes
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States ; Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States
| | - Sanjoy Roychowdhury
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States ; Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States ; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
94
|
The human-specific invariant chain isoform Iip35 modulates Iip33 trafficking and function. Immunol Cell Biol 2014; 92:791-8. [PMID: 24983457 DOI: 10.1038/icb.2014.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/12/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
The invariant chain (Ii) is a multifunctional protein, which has an essential role in the assembly and transport of major histocompatibility complex class II (MHC II) molecules. From a single gene, Ii is synthesized as four different isoforms: Iip33, Iip35, Iip41 and Iip43. Iip35 and Iip43 are specific to humans, and are formed due to an upstream alternative translation site, resulting in an N-terminal extension of 16 amino acids. This extension harbors a strong endoplasmic reticulum (ER) retention motif. Consequently, Iip35 or Iip43 expressed alone are retained in the ER, whereas Iip33 and Iip41 rapidly traffic to the endosomal pathway. Endogenously expressed, the four isoforms form mixed heterotrimers in the ER; however, mainly due to the absence of the Iip35/p43 isoforms in mice, little is known about how they influence general Ii function. In this study, we have co-expressed Iip33 and Iip35 in human cells with and without MHC II to gain a better understanding of how Iip35 isoform influences the cellular properties of Iip33. We find that Iip35 significantly affects the properties of Iip33. In the presence of Iip35, the transport of Iip33 out of the ER is delayed, its half-life is dramatically prolonged and its ability to induce enlarged endosomes and delayed endosomal maturation is abrogated.
Collapse
|
95
|
Zhang JF, Hua R, Liu DJ, Liu W, Huo YM, Sun YW. Effect of CD74 on the prognosis of patients with resectable pancreatic cancer. Hepatobiliary Pancreat Dis Int 2014; 13:81-6. [PMID: 24463084 DOI: 10.1016/s1499-3872(14)60011-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND CD74 is known as a type II transmembrane glycoprotein that is associated with the major histocompatibility complex class II alpha and beta chains. Recent studies have demonstrated that the expression of CD74 is also linked to some forms of tumors. The present study was to assess the effect of CD74 expression on the prognosis of resectable pancreatic ductal adenocarcinoma (PDAC). METHODS Forty-six patients who had received a curative resection of primary PDAC and postoperative chemotherapy were included in this study. Immunohistochemical staining was conducted of CD74 on paraffin-embedded tumor sample slices. The patients were grouped according to CD74 staining: CD74 (-): CD74 positive tumor cells<25%; and CD74 (+): CD74 positive tumor cells ≥25%. The correlation of CD74 expression level with clinicopathological features and cumulative survival rate was calculated. RESULTS The numbers of CD74 (+) and (-) patients were 32 and 14, respectively. CD74 (+) patients showed a high rate of perineural invasion (P=0.007). The 3- and 5-year cumulative survival rates of CD74 (-) patients were significantly higher than those of CD74 (+) patients (62% and 41% vs 9% and 0%, P=0.000). Multivariate analysis showed that CD74 expression and lymphatic permeation were the independent prognostic indicators. CONCLUSIONS The overexpression of CD74 is a key factor associated with perineural invasion. Lower-stage (I and II) PDAC patients with CD74 overexpression have a poor prognosis even if they receive a curative resection. CD74 can be used as a prognostic indicator for resectable PDAC.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of General Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | | | | | | | | | | |
Collapse
|
96
|
Assis DN, Leng L, Du X, Zhang CK, Grieb G, Merk M, Garcia AB, McCrann C, Chapiro J, Meinhardt A, Mizue Y, Nikolic-Paterson DJ, Bernhagen J, Kaplan MM, Zhao H, Boyer JL, Bucala R. The role of macrophage migration inhibitory factor in autoimmune liver disease. Hepatology 2014; 59:580-91. [PMID: 23913513 PMCID: PMC3877200 DOI: 10.1002/hep.26664] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 07/28/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED The role of the cytokine, macrophage migration inhibitory factor (MIF), and its receptor, CD74, was assessed in autoimmune hepatitis (AIH) and primary biliary cirrhosis (PBC). Two MIF promoter polymorphisms, a functional -794 CATT5-8 microsatellite repeat (rs5844572) and a -173 G/C single-nucleotide polymorphism (rs755622), were analyzed in DNA samples from over 500 patients with AIH, PBC, and controls. We found a higher frequency of the proinflammatory and high-expression -794 CATT7 allele in AIH, compared to PBC, whereas lower frequency was found in PBC, compared to both AIH and healthy controls. MIF and soluble MIF receptor (CD74) were measured by enzyme-linked immunosorbent assay in 165 serum samples of AIH, PBC, and controls. Circulating serum and hepatic MIF expression was elevated in patients with AIH and PBC versus healthy controls. We also identified a truncated circulating form of the MIF receptor, CD74, that is released from hepatic stellate cells and that binds MIF, neutralizing its signal transduction activity. Significantly higher levels of CD74 were found in patients with PBC versus AIH and controls. CONCLUSIONS These data suggest a distinct genetic and immunopathogenic basis for AIH and PBC at the MIF locus. Circulating MIF and MIF receptor profiles distinguish PBC from the more inflammatory phenotype of AIH and may play a role in pathogenesis and as biomarkers of these diseases.
Collapse
Affiliation(s)
- David N. Assis
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Lin Leng
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Xin Du
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Clarence K. Zhang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Gerrit Grieb
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA,Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany,Department of Plastic Surgery, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Melanie Merk
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Alvaro Baeza Garcia
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Catherine McCrann
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Julius Chapiro
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA,Department of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - Yuka Mizue
- Sapporo Immuno Diagnostic Laboratory, Sapporo, Japan
| | - David J. Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Marshall M. Kaplan
- Division of Gastroenterology, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - James L. Boyer
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
97
|
Tan X, Wu Q, Cai Y, Zhao X, Wang S, Gao Z, Yang Y, Li X, Qian J, Wang J, Su B, Chen H, Han B, Jiang G, Lu D. Novel association between CD74 polymorphisms and hematologic toxicity in patients with NSCLC after platinum-based chemotherapy. Clin Lung Cancer 2013; 15:67-78.e12. [PMID: 24220096 DOI: 10.1016/j.cllc.2013.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Platinum-based chemotherapy regimens can cause DNA damage. Macrophage migration inhibitory factor (MIF) plays an important role in the regulation of the cell cycle by either controlling the activity of the SKP1-Cullin/Cdc53-F-box protein ubiquitin ligase (SCF) complex or activating its receptor, CD74. PATIENTS AND METHODS We used a pathway-based approach to investigate the association between genetic polymorphisms in MIF-pathway genes and the outcomes of platinum-based chemotherapy in advanced non-small-cell lung cancer (NSCLC). We used iSelect 24×1 HD BeadChip (Illumina, Inc, San Diego, CA) to genotype 32 tag and potentially functional single nucleotide polymorphisms (SNPs) of 8 selected genes and evaluated their associations with different outcomes for 1004 patients with advanced NSCLC treated with platinum-based chemotherapy. In particular, gastrointestinal toxicity and hematologic toxicity were analyzed for associations with specific genotypes, alleles, and haplotypes. RESULTS Two polymorphisms of CD74, rs2748249 (C/A) and rs1560661 (A/G), were significantly associated with hematologic toxicity. Carrying an A allele in rs2748249 was associated with higher hematologic toxicity (odds ratio [OR], 1.72; 95% confidence interval [CI], 1.24-2.39; P = .001) and carrying a G allele in rs1560661 was associated with lower hematologic toxicity (OR, 0.42; 95% CI, 0.25-0.70; P = .00099) compared with the wild type. Haplotype analysis revealed that the patients with the CG haplotype (consisting of rs2748249 and rs1560661) had reduced hematologic toxicity compared with patients with other haplotypes (OR, 0.70; 95% CI, 0.56-0.87; P = .0013). The binding domain shared by 3 transcription factors (activator protein-2α [AP-2α], progesterone response A/B, and TFII-I) comprised the 2 SNPs that may be involved in the regulation of CD74-related B-cell survival. CONCLUSION Our study is the first to suggest, to our knowledge, that polymorphisms in CD74 might be a marker of lower hematologic toxicity for patients with advanced NSCLC receiving platinum-based chemotherapy.
Collapse
Affiliation(s)
- Xiaoming Tan
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qihan Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Yanyan Cai
- School of Life Science, East China Normal University, Shanghai, China
| | - Xueying Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Shanghai, China
| | - Shingming Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Shanghai, China
| | - Zhiqiang Gao
- Department of Respiratory Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yang Yang
- Department of Thoracic Surgery, College of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Shanghai, China
| | - Ji Qian
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Shanghai, China
| | - Bo Su
- Department of Thoracic Surgery, College of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Shanghai, China
| | - Baohui Han
- Department of Respiratory Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Gening Jiang
- Department of Thoracic Surgery, College of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Shanghai, China.
| |
Collapse
|
98
|
Herrero LJ, Sheng KC, Jian P, Taylor A, Her Z, Herring BL, Chow A, Leo YS, Hickey MJ, Morand EF, Ng LF, Bucala R, Mahalingam S. Macrophage migration inhibitory factor receptor CD74 mediates alphavirus-induced arthritis and myositis in murine models of alphavirus infection. ARTHRITIS AND RHEUMATISM 2013; 65:2724-36. [PMID: 23896945 PMCID: PMC3796577 DOI: 10.1002/art.38090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/09/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Arthrogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) circulate worldwide. This virus class causes debilitating illnesses that are characterized by arthritis, arthralgia, and myalgia. In previous studies, we identified macrophage migration inhibitory factor (MIF) as a critical inflammatory factor in the pathogenesis of alphaviral diseases. The present study was undertaken to characterize the role of CD74, a cell surface receptor of MIF, in both RRV- and CHIKV-induced alphavirus arthritides. METHODS Mouse models of RRV and CHIKV infection were used to investigate the immunopathogenesis of arthritic alphavirus infection. The role of CD74 was assessed using histologic analysis, real-time polymerase chain reaction, flow cytometry, and plaque assay. RESULTS In comparison to wild-type mice, CD74-/- mice developed only mild clinical features and had low levels of tissue damage. Leukocyte infiltration, characterized predominantly by inflammatory monocytes and natural killer cells, was substantially reduced in the infected tissue of CD74-/- mice, but production of proinflammatory cytokines and chemokines was not decreased. CD74 deficiency was associated with increased monocyte apoptosis, but had no effect on monocyte migratory capacity. Consistent with these findings, alphaviral infection resulted in a dose-dependent up-regulation of CD74 expression in human peripheral blood mononuclear cells, and serum MIF levels were significantly elevated in patients with RRV or CHIKV infection. CONCLUSION CD74 appears to regulate immune responses to alphaviral infection through its effects on cellular recruitment and survival. These findings suggest that both MIF and CD74 play a critical role in mediating alphaviral disease, and blocking these factors with novel therapeutic agents could substantially ameliorate the pathologic manifestations.
Collapse
MESH Headings
- Alphavirus Infections/complications
- Alphavirus Infections/pathology
- Animals
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Apoptosis/physiology
- Arthritis, Infectious/etiology
- Arthritis, Infectious/pathology
- Arthritis, Infectious/physiopathology
- Cells, Cultured
- Chemokines/metabolism
- Chikungunya virus/physiology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/pathology
- Myositis/pathology
- Myositis/physiopathology
- Myositis/virology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Ross River virus/physiology
- Severity of Illness Index
Collapse
Affiliation(s)
- Lara J. Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Kuo-Ching Sheng
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Peng Jian
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Zhisheng Her
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Belinda L. Herring
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Angela Chow
- Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - Yee-Sin Leo
- Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | | | - Eric F. Morand
- Centre for Inflammatory Diseases, Monash University, VIC, Australia
| | - Lisa F.P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|
99
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in hippocampus as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 257:129-39. [PMID: 24095878 DOI: 10.1016/j.bbr.2013.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023]
Abstract
To identify genes involved in the development/expression of anxiety/fear, we analyzed the gene expression profile in the hippocampus of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock is a unique genetic resource for the fine mapping of quantitative trait loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety, fearfulness or other complex traits. We selected high- and low-anxious NIH-HS rats according to the number of avoidance responses they performed in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety/fearfulness tests, i.e. the elevated zero-maze and a "novel-cage activity" test. Three weeks after behavioral testing, the hippocampus was dissected and prepared for the microarray study. There appeared 29 down-regulated and 37 up-regulated SNC-related genes (fold-change>|2.19|, FDR<0.05) in the "Low-anxious" vs. the "High-anxious" group. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, nine relevant genes (Avpr1b, Accn3, Cd74, Ltb, Nrg2, Oprdl1, Slc10a4, Slc5a7 and RT1-EC12), tested for validation through qRT-PCR, have either neuroendocrinological or neuroinmunological/inflammation-related functions, or have been related with the hippocampal cholinergic system, while some of them have also been involved in the modulation of anxiety or stress-related (neurobiological and behavioral) responses (i.e. Avpr1b, Oprdl1). The present work confirms the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis or mechanisms involved in anxiety and/or fear, and suggest that some MHC-(neuroinmunological/inflammation)-related pathways, as well as the cholinergic system within the hippocampus, may play a role in shaping individual differences in trait anxiety.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Hippocampal gene expression meta-analysis identifies aging and age-associated spatial learning impairment (ASLI) genes and pathways. PLoS One 2013; 8:e69768. [PMID: 23874995 PMCID: PMC3715497 DOI: 10.1371/journal.pone.0069768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
A number of gene expression microarray studies have been carried out in the past, which studied aging and age-associated spatial learning impairment (ASLI) in the hippocampus in animal models, with varying results. Data from such studies were never integrated to identify the most significant ASLI genes and to understand their effect. In this study we integrated these data involving rats using meta-analysis. Our results show that proper removal of batch effects from microarray data generated from different laboratories is necessary before integrating them for meta-analysis. Our meta-analysis has identified a number of significant differentially expressed genes across age or across ASLI. These genes affect many key functions in the aged compared to the young rats, which include viability of neurons, cell-to-cell signalling and interaction, migration of cells, neuronal growth, and synaptic plasticity. These functional changes due to the altered gene expression may manifest into various neurodegenerative diseases and disorders, some of which leading into syndromic memory impairments. While other aging related molecular changes can result into altered synaptic plasticity simply causing normal aging related non-syndromic learning or spatial learning impairments such as ASLI.
Collapse
|