51
|
Ebihara K, Yamamoto K, Ueda K, Koshikawa N, Kobayashi M. Cholinergic interneurons suppress action potential initiation of medium spiny neurons in rat nucleus accumbens shell. Neuroscience 2013; 236:332-44. [PMID: 23380504 DOI: 10.1016/j.neuroscience.2013.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
Abstract
Acetylcholine plays a crucial role in the regulation of neural functions, including dopamine release, synaptic activity, and intrinsic electrophysiological properties of the nucleus accumbens (NAc) shell. Although the effects of acetylcholine on the action potential properties of NAc medium spiny (MS) neurons have been reported, how intrinsic acetylcholine released from NAc cholinergic interneurons regulates the neural activity of MS neurons is still an open issue. To explore the cholinergic effects on the subthreshold responses and action potential properties of MS neurons in the NAc shell, we first tested the effects of carbachol, a non-selective cholinergic agonist, on MS neuronal activity. Then, we tested the effects of the activation of cholinergic interneurons on the electrophysiological properties of MS neurons via multiple whole-cell patch-clamp recordings. Bath application of carbachol induced resting membrane potential depolarization accompanied by an increase in the voltage response to negative current injection. These increases were blocked by the pre-application of pirenzepine, an M1 muscarinic receptor antagonist. In spite of the facilitative effect on voltage responses of negative current injection, carbachol diminished the characteristic slowly-depolarizing ramp potentials, which respond to positive current pulse injection. Thus, carbachol increased the rheobase and shifted the frequency-current curve toward the right. Repetitive spike firing of a cholinergic interneuron following positive current injection induced a similar increase in the rheobase, which delayed the action potential initiation in 38.9% MS neurons. In contrast to the bath application of carbachol, cholinergic interneuronal stimulation had little effect on the resting membrane potential in MS neurons. These results suggest that the acetylcholine released from a cholinergic interneuron is sufficient to suppress the repetitive spike firing of the adjacent MS neurons, although the depolarization of the resting membrane potential may require simultaneous activation of multiple cholinergic interneurons.
Collapse
Affiliation(s)
- K Ebihara
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | | | |
Collapse
|
52
|
Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A. Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 2013; 152:236-47. [PMID: 23332758 PMCID: PMC4159768 DOI: 10.1016/j.cell.2012.12.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 10/05/2012] [Accepted: 11/21/2012] [Indexed: 11/21/2022]
Abstract
The sigma-1 receptor (Sig-1R), an endoplasmic reticulum (ER) chaperone protein, is an interorganelle signaling modulator that potentially plays a role in drug-seeking behaviors. However, the brain site of action and underlying cellular mechanisms remain unidentified. We found that cocaine exposure triggers a Sig-1R-dependent upregulation of D-type K(+) current in the nucleus accumbens (NAc) that results in neuronal hypoactivity and thereby enhances behavioral cocaine response. Combining ex vivo and in vitro studies, we demonstrated that this neuroadaptation is caused by a persistent protein-protein association between Sig-1Rs and Kv1.2 channels, a phenomenon that is associated to a redistribution of both proteins from intracellular compartments to the plasma membrane. In conclusion, the dynamic Sig-1R-Kv1.2 complex represents a mechanism that shapes neuronal and behavioral response to cocaine. Functional consequences of Sig-1R binding to K(+) channels may have implications for other chronic diseases where maladaptive intrinsic plasticity and Sig-1Rs are engaged.
Collapse
Affiliation(s)
- Saïd Kourrich
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Teruo Hayashi
- Cellular Stress Signaling Unit, Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Drive, Baltimore, MD 21224, USA
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Jian-Ying Chuang
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Boulevard, Baltimore, MD 21224, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Solomon H Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, CA, USA
| |
Collapse
|
53
|
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord 2012; 4:19. [PMID: 22958744 PMCID: PMC3464940 DOI: 10.1186/1866-1955-4-19] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina School of Medicine, CB# 7255, 101 Manning Drive, Chapel Hill, NC, 275997255, USA
| | - Cara A Damiano
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John A Allen
- Neuroscience Research Unit Pfizer Global Research and Development, Groton, CT 06340, USA
| |
Collapse
|
54
|
Hobson BD, Merritt KE, Bachtell RK. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats. Neuropharmacology 2012; 63:1172-81. [PMID: 22749927 DOI: 10.1016/j.neuropharm.2012.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/16/2022]
Abstract
Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A(1) or A(2A) receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15 mg/kg, i.p.). Following one-week withdrawal, the effects of intra-NAc microinjections of the adenosine kinase inhibitor (ABT-702), the adenosine deaminase inhibitor (deoxycoformycin; DCF), the specific A(1) receptor agonist (CPA) and the specific A(2A) receptor agonist (CGS 21680) were tested on the behavioral expression of cocaine sensitization. The results indicate that intra-NAc pretreatment of ABT-702 and DCF dose-dependently blocked the expression of cocaine sensitization while having no effects on acute cocaine sensitivity, suggesting that upregulation of endogenous adenosine in the accumbens is sufficient to non-selectively stimulate adenosine receptors and reverse the expression of cocaine sensitization. Intra-NAc treatment of CPA significantly inhibited the expression of cocaine sensitization, which was reversed by both A(1) and A(2A) receptor antagonism. Intra-NAc treatment of CGS 21680 also significantly inhibited the expression of cocaine sensitization, which was selectively reversed by A(2A), but not A(1), receptor antagonism. Finally, CGS 21680 also inhibited the expression of quinpirole cross-sensitization. Together, these findings suggest that adenosine receptor stimulation in the NAc is sufficient to reverse the behavioral expression of cocaine sensitization and that A(2A) receptors blunt cocaine-induced sensitization of postsynaptic D(2) receptors.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, USA
| | | | | |
Collapse
|
55
|
Seif T, Makriyannis A, Kunos G, Bonci A, Hopf FW. The endocannabinoid 2-arachidonoylglycerol mediates D1 and D2 receptor cooperative enhancement of rat nucleus accumbens core neuron firing. Neuroscience 2011; 193:21-33. [PMID: 21821098 DOI: 10.1016/j.neuroscience.2011.07.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/14/2011] [Accepted: 07/22/2011] [Indexed: 01/09/2023]
Abstract
Many motivated and addiction-related behaviors are sustained by activity of both dopamine D1- and D2-type receptors (D1Rs and D2Rs) as well as CB1 receptors (CB1Rs) in the nucleus accumbens (NAc). Here, we use in vitro whole-cell patch-clamp electrophysiology to describe an endocannabinoid (eCB)-dopamine receptor interaction in adult rat NAc core neurons. D1R and D2R agonists in combination enhanced firing, with no effect of a D1R or D2R agonist alone. This D1R+D2R-mediated firing increase required CB1Rs, since it was prevented by the CB1R antagonists AM251 and Rimonabant. The D1R+D2R firing increase also required phospholipase C (PLC), the major synthesis pathway for the eCB 2-arachidonoylglycerol (2-AG) and one of several pathways for anandamide. Further, inhibition of 2-AG hydrolysis with the monoglyceride lipase (MGL) inhibitor JZL184 allowed subthreshold levels of D1R+D2R receptor agonists to enhance firing, while inhibition of anandamide hydrolysis with the fatty acid amide hydrolase (FAAH) inhibitors URB597 or AM3506 did not. Filling the postsynaptic neuron with 2-AG enabled subthreshold D1R+D2R agonists to increase firing, and the 2AG+D1R+D2R increase in firing was prevented by a CB1R antagonist. Also, the metabotropic glutamate receptor 5 (mGluR5) blocker MPEP prevented the ability of JZL184 to promote subthreshold D1R+D2R enhancement of firing, while the 2-AG+D1R+D2R increase in firing was not prevented by the mGluR5 blocker, suggesting that mGluR5s acted upstream of 2-AG production. Thus, our results taken together are consistent with the hypothesis that NAc core eCBs mediate dopamine receptor (DAR) enhancement of firing, perhaps providing a cellular mechanism underlying the central role of NAc core D1Rs, D2Rs, CB1Rs, and mGluR5s during many drug-seeking behaviors.
Collapse
Affiliation(s)
- T Seif
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Department of Neurology, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | | | | | | | | |
Collapse
|
56
|
Hopf FW, Simms JA, Chang SJ, Seif T, Bartlett SE, Bonci A. Chlorzoxazone, an SK-type potassium channel activator used in humans, reduces excessive alcohol intake in rats. Biol Psychiatry 2011; 69:618-24. [PMID: 21195386 PMCID: PMC3062269 DOI: 10.1016/j.biopsych.2010.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/29/2010] [Accepted: 11/08/2010] [Indexed: 01/05/2023]
Abstract
BACKGROUND Alcoholism imposes a tremendous social and economic burden. There are relatively few pharmacological treatments for alcoholism, with only moderate efficacy, and there is considerable interest in identifying additional therapeutic options. Alcohol exposure alters SK-type potassium channel (SK) function in limbic brain regions. Thus, positive SK modulators such as chlorzoxazone (CZX), a US Food and Drug Administration-approved centrally acting myorelaxant, might enhance SK function and decrease neuronal activity, resulting in reduced alcohol intake. METHODS We examined whether CZX reduced alcohol consumption under two-bottle choice (20% alcohol and water) in rats with intermittent access to alcohol (IAA) or continuous access to alcohol (CAA). In addition, we used ex vivo electrophysiology to determine whether SK inhibition and activation can alter firing of nucleus accumbens (NAcb) core medium spiny neurons. RESULTS Chlorzoxazone significantly and dose-dependently decreased alcohol but not water intake in IAA rats, with no effects in CAA rats. Chlorzoxazone also reduced alcohol preference in IAA but not CAA rats and reduced the tendency for rapid initial alcohol consumption in IAA rats. Chlorzoxazone reduction of IAA drinking was not explained by locomotor effects. Finally, NAcb core neurons ex vivo showed enhanced firing, reduced SK regulation of firing, and greater CZX inhibition of firing in IAA versus CAA rats. CONCLUSIONS The potent CZX-induced reduction of excessive IAA alcohol intake, with no effect on the more moderate intake in CAA rats, might reflect the greater CZX reduction in IAA NAcb core firing observed ex vivo. Thus, CZX could represent a novel and immediately accessible pharmacotherapeutic intervention for human alcoholism.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, California, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Prieto GA, Perez-Burgos A, Palomero-Rivero M, Galarraga E, Drucker-Colin R, Bargas J. Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on Ca V 2.1 channels via PIP2 depletion. J Neurophysiol 2011; 105:2260-74. [PMID: 21389298 DOI: 10.1152/jn.00516.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The loss of dopaminergic neurons in the substantia nigra compacta followed by striatal dopamine depletion is a hallmark of Parkinson's disease. After dopamine depletion, dopaminergic D(2) receptor (D(2)R)-class supersensitivity develops in striatal neurons. The supersensitivity results in an enhanced modulation of Ca(2+) currents by D(2)R-class receptors. However, the relative contribution of D(2)R, D(3)R, and D(4)R types to the supersensitivity, as well as the mechanisms involved, have not been elucidated. In this study, whole cell voltage-clamp recordings were performed to study Ca(2+) current modulation in acutely dissociated striatal neurons obtained from rodents with unilateral 6-hydroxydopamine lesions in the substantia nigra compacta. Selective antagonists for D(2)R, D(3)R, and D(4)R types were used to identify whether the modulation by one of these receptors experiences a selective change after dopaminergic denervation. It was found that D(3)R-mediated modulation was particularly enhanced. Increased modulation targeted Ca(V)2.1 (P/Q) Ca(2+) channels via the depletion of phosphatidylinositol 4,5-bisphosphate, an intracellular signaling cascade hard to detect in control neurons and hypothesized as being amplified by dopamine depletion. An imbalance in the striatal expression of D(3)R and its splice variant, D(3)nf, accompanied enhanced D(3)R activity. Because Ca(V)2.1 Ca(2+) channels mediate synaptic GABA release from the terminals of striatal neurons, reinforcement of their inhibition by D(3)R may explain in part the profound decrease in synaptic strength in the connections among striatal projection neurons observed in the dopamine-depleted striatum.
Collapse
Affiliation(s)
- G Aleph Prieto
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
58
|
Moustafa AA, Gluck MA. Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson's disease and schizophrenia. Neural Netw 2011; 24:575-91. [PMID: 21411277 DOI: 10.1016/j.neunet.2011.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/22/2011] [Accepted: 02/17/2011] [Indexed: 11/29/2022]
Abstract
Disruption to different components of the prefrontal cortex, basal ganglia, and hippocampal circuits leads to various psychiatric and neurological disorders including Parkinson's disease (PD) and schizophrenia. Medications used to treat these disorders (such as levodopa, dopamine agonists, antipsychotics, among others) affect the prefrontal-striatal-hippocampal circuits in a complex fashion. We have built models of prefrontal-striatal and striatal-hippocampal interactions which simulate cognitive dysfunction in PD and schizophrenia. In these models, we argue that the basal ganglia is key for stimulus-response learning, the hippocampus for stimulus-stimulus representational learning, and the prefrontal cortex for stimulus selection during learning about multidimensional stimuli. In our models, PD is associated with reduced dopamine levels in the basal ganglia and prefrontal cortex. In contrast, the cognitive deficits in schizophrenia are associated primarily with hippocampal dysfunction, while the occurrence of negative symptoms is associated with frontostriatal deficits in a subset of patients. In this paper, we review our past models and provide new simulation results for both PD and schizophrenia. We also describe an extended model that includes simulation of the different functional role of D1 and D2 dopamine receptors in the basal ganglia and prefrontal cortex, a dissociation we argue is essential for understanding the non-uniform effects of levodopa, dopamine agonists, and antipsychotics on cognition. Motivated by clinical and physiological data, we discuss model limitations and challenges to be addressed in future models of these brain disorders.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102, USA.
| | | |
Collapse
|
59
|
Moffett MC, Song J, Kuhar MJ. CART peptide inhibits locomotor activity induced by simultaneous stimulation of D1 and D2 receptors, but not by stimulation of individual dopamine receptors. Synapse 2011; 65:1-7. [PMID: 20506412 DOI: 10.1002/syn.20815] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CART (Cocaine- and amphetamine-regulated transcript) peptide has been implicated in playing a modulatory role in reward and reinforcement. Previously, our laboratory demonstrated that injections of CART peptide (CART 55-102) into the nucleus accumbens (NAc) attenuated both cocaine- and dopamine-induced increases in locomotor activity (LMA), and attenuated cocaine reward as well. In this study, the effects of CART peptide on LMA induced by dopamine receptor agonists were evaluated after intraaccumbal injections in male, Sprague-Dawley rats. Effects of the D1 receptor agonist SKF-81,297, saline, CART 55-102, or CART 55-102 and SKF-81,297 together were compared. The SKF-81,297-induced increase in LMA was potentiated by coadministration of CART, while injection of CART alone had no significant effect. Injection of the D2 agonist 7-OH-DPAT had no effect on LMA, and the combination of both 7-OH-DPAT and CART peptide also had no effect. Quinelorane, a D3 receptor agonist, did not alter LMA, nor did the combination of CART peptide and quinelorane. The next experiment examined the effects of CART peptide on LMA induced by coinjection of both the D1 agonist SKF-81,297 and the D2 agonist 7-OH-DPAT. The combination of SKF-81,297 and 7-OH-DPAT induced greater LMA than SKF-81,297 alone. Coadministration of CART peptide along with the D1 and D2 agonists reduced LMA. These results strongly suggest that CART peptide reduces the effects of psychostimulants by modulating the simultaneous activation of both D1 and D2 dopamine receptors rather than by affecting the action of any individual dopamine receptor.
Collapse
Affiliation(s)
- Mark C Moffett
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
60
|
Moyer JT, Danish SF, Finkel LH. Deep brain stimulation: anatomical, physiological, and computational mechanisms. NETWORK (BRISTOL, ENGLAND) 2011; 22:186-207. [PMID: 22149679 DOI: 10.3109/0954898x.2011.638356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Jason T Moyer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, U.S.A
| | | | | |
Collapse
|
61
|
Piray P, Keramati MM, Dezfouli A, Lucas C, Mokri A. Individual Differences in Nucleus Accumbens Dopamine Receptors Predict Development of Addiction-Like Behavior: A Computational Approach. Neural Comput 2010; 22:2334-68. [DOI: 10.1162/neco_a_00009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Clinical and experimental observations show individual differences in the development of addiction. Increasing evidence supports the hypothesis that dopamine receptor availability in the nucleus accumbens (NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain dopaminergic circuit, we propose a reinforcement learning model for addiction based on the actor-critic model of striatum. Modeling dopamine receptors in the NAc as modulators of learning rate for appetitive—but not aversive—stimuli in the critic—but not the actor—we define vulnerability to addiction as a relatively lower learning rate for the appetitive stimuli, compared to aversive stimuli, in the critic. We hypothesize that an imbalance in this learning parameter used by appetitive and aversive learning systems can result in addiction. We elucidate that the interaction between the degree of individual vulnerability and the duration of exposure to drug has two progressive consequences: deterioration of the imbalance and establishment of an abnormal habitual response in the actor. Using computational language, the proposed model describes how development of compulsive behavior can be a function of both degree of drug exposure and individual vulnerability. Moreover, the model describes how involvement of the dorsal striatum in addiction can be augmented progressively. The model also interprets other forms of addiction, such as obesity and pathological gambling, in a common mechanism with drug addiction. Finally, the model provides an answer for the question of why behavioral addictions are triggered in Parkinson's disease patients by D2 dopamine agonist treatments.
Collapse
Affiliation(s)
- Payam Piray
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | - Amir Dezfouli
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Caro Lucas
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Azarakhsh Mokri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran, and Department of Clinical Sciences, Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
62
|
D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex. Proc Natl Acad Sci U S A 2010; 107:16366-71. [PMID: 20805489 DOI: 10.1073/pnas.1004108107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing-dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at +30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.
Collapse
|
63
|
Abstract
The substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus critical for movement control. A hallmark of the SNr gamma-aminobutyric acid (GABA)-containing projection neurons is their depolarized membrane potential, accompanied by rapid spontaneous spikes. Parkinsonian movement disorders are often associated with abnormalities in SNr GABA neuron firing intensity and/or pattern. A fundamental question is the molecular identity of the ion channels that drive these neurons to a depolarized membrane potential. Recent data show that SNr GABA projection neurons selectively express type 3 canonical transient receptor potential (TRPC3) channels. Such channels are tonically active and mediate an inward, Na(+)-dependent current, leading to a substantial depolarization and ensuring appropriate firing intensity and pattern in SNr GABA projection neurons. Equally important, TRPC3 channels in SNr GABA neurons are up-regulated by dopamine (DA) released from neighboring nigral DA neuron dendrites. Co-activation of D1 and D5 DA receptors leads to a TRPC3 channel-mediated inward current and increased firing in SNr GABA neurons, whereas D1-like receptor blockade reduces SNr GABA neuron firing frequency and increases their firing irregularity. TRPC3 channels serve as the effector channels mediating an ultra-short SNc-->SNr DA pathway that regulates the firing intensity and pattern of the basal ganglia output neurons.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis TN 38163, USA.
| |
Collapse
|
64
|
Hopf FW, Seif T, Mohamedi ML, Chen BT, Bonci A. The small-conductance calcium-activated potassium channel is a key modulator of firing and long-term depression in the dorsal striatum. Eur J Neurosci 2010; 31:1946-59. [PMID: 20497469 DOI: 10.1111/j.1460-9568.2010.07231.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The striatum is considered to be critical for the control of goal-directed action, with the lateral dorsal striatum (latDS) being implicated in modulation of habits and the nucleus accumbens thought to represent a limbic-motor interface. Although medium spiny neurons from different striatal subregions exhibit many similar properties, differential firing and synaptic plasticity could contribute to the varied behavioral roles across subregions. Here, we examined the contribution of small-conductance calcium-activated potassium channels (SKs) to action potential generation and synaptic plasticity in adult rat latDS and nucleus accumbens shell (NAS) projection neurons in vitro. The SK-selective antagonist apamin exerted a prominent effect on latDS firing, significantly decreasing the interspike interval. Furthermore, prolonged latDS depolarization increased the interspike interval and reduced firing, and this enhancement was reversed by apamin. In contrast, NAS neurons exhibited greater basal firing rates and less regulation of firing by SK inhibition and prolonged depolarization. LatDS neurons also had greater SK currents than NAS neurons under voltage-clamp. Importantly, SK inhibition with apamin facilitated long-term depression (LTD) induction in the latDS but not the NAS, without alterations in glutamate release. In addition, SK activation in the latDS prevented LTD induction. Greater SK function in the latDS than in the NAS was not secondary to differences in sodium or inwardly rectifying potassium channel function, and apamin enhancement of firing did not reflect indirect action through cholinergic interneurons. Thus, these data demonstrate that SKs are potent modulators of action potential generation and LTD in the dorsal striatum, and could represent a fundamental cellular mechanism through which habits are regulated.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, 5858 Horton St, Suite 200, Emeryville, CA 94608, USA.
| | | | | | | | | |
Collapse
|
65
|
Hopf FW, Bowers MS, Chang SJ, Chen BT, Martin M, Seif T, Cho SL, Tye K, Bonci A. Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 2010; 65:682-94. [PMID: 20223203 DOI: 10.1016/j.neuron.2010.02.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
The cellular mechanisms underlying pathological alcohol seeking remain poorly understood. Here, we show an enhancement of nucleus accumbens (NAcb) core action potential firing ex vivo after protracted abstinence from alcohol but not sucrose self-administration. Increased firing is associated with reduced small-conductance calcium-activated potassium channel (SK) currents and decreased SK3 but not SK2 subunit protein expression. Furthermore, SK activation ex vivo produces greater firing suppression in NAcb core neurons from alcohol- versus sucrose-abstinent rats. Accordingly, SK activation in the NAcb core significantly reduces alcohol but not sucrose seeking after abstinence. In contrast, NAcb shell and lateral dorsal striatal firing ex vivo are not altered after abstinence from alcohol, and SK activation in these regions has little effect on alcohol seeking. Thus, decreased NAcb core SK currents and increased excitability represents a critical mechanism that facilitates motivation to seek alcohol after abstinence.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, San Francisco, CA 94608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Singer BF, Loweth JA, Neve RL, Vezina P. Transient viral-mediated overexpression of alpha-calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell leads to long-lasting functional upregulation of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors: dopamine type-1 receptor and protein kinase A dependence. Eur J Neurosci 2010; 31:1243-51. [PMID: 20345911 DOI: 10.1111/j.1460-9568.2010.07155.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) activity is necessary for the long-lasting expression of locomotor sensitization and enhanced drug-taking observed in rats previously exposed to psychostimulants. Exposure to these drugs also transiently increases alphaCaMKII levels in the nucleus accumbens (NAcc), an effect that, when mimicked by transient viral-mediated overexpression of alphaCaMKII in NAcc shell neurons, leads to long-lasting enhancement in locomotor responding to amphetamine and NAcc alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA). The present experiments characterized the dopamine (DA) dependence of the functional AMPA receptor upregulation observed long after transient overexpression of alphaCaMKII. Rats infected with herpes simplex virus-alphaCaMKII in the NAcc shell showed a transient increase in alphaCaMKII levels that peaked at 4 days post-infection and returned to baseline 8 days later. When challenged with AMPA (0.8 nmol/side) in the NAcc shell at 20 days post-infection, these rats showed enhanced locomotion compared with controls. This sensitized locomotor response was blocked when AMPA was coinfused with either the DA type-1 receptor antagonist SCH23390 (0.8 nmol/side) or the protein kinase A inhibitor Rp-cAMPS (80 nmol/side). Neither SCH23390 nor Rp-cAMPS produced locomotor effects when infused by itself into the NAcc shell. Furthermore, these antagonists did not block the acute non-sensitized locomotor response to AMPA observed in control rats. These findings show that transient viral-mediated overexpression of alphaCaMKII in neurons of the NAcc shell leads to long-lasting functional upregulation of AMPA receptors that is DA type-1 receptor and protein kinase A dependent. Thus, transient increases in levels of alphaCaMKII in the NAcc shell produce long-lasting changes in the way that DA and glutamate interact in this site to generate locomotor behavior.
Collapse
Affiliation(s)
- B F Singer
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
67
|
Podda MV, Riccardi E, D'Ascenzo M, Azzena GB, Grassi C. Dopamine D1-like receptor activation depolarizes medium spiny neurons of the mouse nucleus accumbens by inhibiting inwardly rectifying K+ currents through a cAMP-dependent protein kinase A-independent mechanism. Neuroscience 2010; 167:678-90. [PMID: 20211700 DOI: 10.1016/j.neuroscience.2010.02.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/06/2010] [Accepted: 02/28/2010] [Indexed: 01/15/2023]
Abstract
Dopamine/cAMP signaling has been reported to mediate behavioral responses related to drug addiction. It also modulates the plasticity and firing properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), although the effects of cAMP signaling on the resting membrane potential (RMP) of MSNs has not been specifically defined. In this study, activation of dopamine D1-like receptors (D1Rs) by SKF-38393 elicited membrane depolarization and inward currents in MSNs from the NAc core of 14-17 day-old mice. Similar results were obtained following stimulation of adenylyl cyclase (AC) activity with forskolin or application of exogenous cAMP. Forskolin occluded SKF-38393's effects, thus indicating that D1R action is mediated by AC/cAMP signaling. Accordingly, AC blockade by SQ22536 significantly inhibited the responses to SKF-38393. Effects elicited by D1R stimulation or increased cAMP levels were unaffected by protein kinase A (PKA) or protein kinase C (PKC) blockade and were not mimicked by the Epac agonist, 8CPT-2Me-cAMP. Responses to forskolin were also not significantly modified by cyclic nucleotide-gated (CNG) channel blockade. Forskolin-induced membrane depolarization was associated with increased membrane input resistance. Voltage-clamp experiments revealed that forskolin and SKF-38393 effects were due to inhibition of resting K(+) currents exhibiting inward rectification at hyperpolarized potentials and a reversal potential (around -90 mV) that shifted with the extracellular K(+) concentration. Forskolin and D1R agonist effects were abolished by the inward rectifier K(+) (Kir)-channel blocker, BaCl(2). Collectively, these data suggest that stimulation of postsynaptic D1Rs in MSNs of the NAc core causes membrane depolarization by inhibiting Kir currents. This effect is mediated by AC/cAMP signaling but it is independent on PKA, PKC, Epac and CNG channel activation, suggesting that it may stem from cAMP's direct interaction with Kir channels. D1R/cAMP-mediated excitatory effects may influence the generation of output signals from MSNs by facilitating their transition from the quiescent down-state to the functionally active up-state.
Collapse
Affiliation(s)
- M V Podda
- Institute of Human Physiology, Medical School, Catholic University S. Cuore, Rome, Italy
| | | | | | | | | |
Collapse
|
68
|
Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 2009; 90:385-417. [PMID: 19941931 DOI: 10.1016/j.pneurobio.2009.11.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/27/2022]
Abstract
The basal ganglia are often conceptualised as three parallel domains that include all the constituent nuclei. The 'ventral domain' appears to be critical for learning flexible behaviours for exploration and foraging, as it is the recipient of converging inputs from amygdala, hippocampal formation and prefrontal cortex, putatively centres for stimulus evaluation, spatial navigation, and planning/contingency, respectively. However, compared to work on the dorsal domains, the rich potential for quantitative theories and models of the ventral domain remains largely untapped, and the purpose of this review is to provide the stimulus for this work. We systematically review the ventral domain's structures and internal organisation, and propose a functional architecture as the basis for computational models. Using a full schematic of the structure of inputs to the ventral striatum (nucleus accumbens core and shell), we argue for the existence of many identifiable processing channels on the basis of unique combinations of afferent inputs. We then identify the potential information represented in these channels by reconciling a broad range of studies from the hippocampal, amygdala and prefrontal cortex literatures with known properties of the ventral striatum from lesion, pharmacological, and electrophysiological studies. Dopamine's key role in learning is reviewed within the three current major computational frameworks; we also show that the shell-based basal ganglia sub-circuits are well placed to generate the phasic burst and dip responses of dopaminergic neurons. We detail dopamine's modulation of ventral basal ganglia's inputs by its actions on pre-synaptic terminals and post-synaptic membranes in the striatum, arguing that the complexity of these effects hint at computational roles for dopamine beyond current ideas. The ventral basal ganglia are revealed as a constellation of multiple functional systems for the learning and selection of flexible behaviours and of behavioural strategies, sharing the common operations of selection-by-disinhibition and of dopaminergic modulation.
Collapse
Affiliation(s)
- Mark D Humphries
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, S10 2TN, UK.
| | | |
Collapse
|
69
|
Azdad K, Chàvez M, Bischop PD, Wetzelaer P, Marescau B, De Deyn PP, Gall D, Schiffmann SN. Homeostatic plasticity of striatal neurons intrinsic excitability following dopamine depletion. PLoS One 2009; 4:e6908. [PMID: 19730738 PMCID: PMC2733153 DOI: 10.1371/journal.pone.0006908] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 08/05/2009] [Indexed: 11/18/2022] Open
Abstract
The striatum is the major input structure of basal ganglia and is involved in adaptive control of behaviour through the selection of relevant informations. Dopaminergic neurons that innervate striatum die in Parkinson disease, leading to inefficient adaptive behaviour. Neuronal activity of striatal medium spiny neurons (MSN) is modulated by dopamine receptors. Although dopamine signalling had received substantial attention, consequences of dopamine depletion on MSN intrinsic excitability remain unclear. Here we show, by performing perforated patch clamp recordings on brain slices, that dopamine depletion leads to an increase in MSN intrinsic excitability through the decrease of an inactivating A-type potassium current, I(A). Despite the large decrease in their excitatory synaptic inputs determined by the decreased dendritic spines density and the increase in minimal current to evoke the first EPSP, this increase in intrinsic excitability resulted in an enhanced responsiveness to their remaining synapses, allowing them to fire similarly or more efficiently following input stimulation than in control condition. Therefore, this increase in intrinsic excitability through the regulation of I(A) represents a form of homeostatic plasticity allowing neurons to compensate for perturbations in synaptic transmission and to promote stability in firing. The present observations show that this homeostatic ability to maintain firing rates within functional range also occurs in pathological conditions, allowing stabilizing neural computation within affected neuronal networks.
Collapse
Affiliation(s)
- Karima Azdad
- Laboratory of Neurophysiology, University of Brussels (ULB), Brussels, Belgium
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
- * E-mail: (KA); (SNS)
| | - Marcelo Chàvez
- Laboratory of Neurophysiology, University of Brussels (ULB), Brussels, Belgium
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Patrick Don Bischop
- Laboratory of Neurophysiology, University of Brussels (ULB), Brussels, Belgium
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Pim Wetzelaer
- Laboratory of Neurophysiology, University of Brussels (ULB), Brussels, Belgium
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Bart Marescau
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Peter Paul De Deyn
- Department of Biomedical Sciences, Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - David Gall
- Laboratory of Neurophysiology, University of Brussels (ULB), Brussels, Belgium
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Serge N. Schiffmann
- Laboratory of Neurophysiology, University of Brussels (ULB), Brussels, Belgium
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
- * E-mail: (KA); (SNS)
| |
Collapse
|
70
|
Chuhma N, Choi WY, Mingote S, Rayport S. Dopamine neuron glutamate cotransmission: frequency-dependent modulation in the mesoventromedial projection. Neuroscience 2009; 164:1068-83. [PMID: 19729052 DOI: 10.1016/j.neuroscience.2009.08.057] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/22/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
Mesoventromedial dopamine neurons projecting from the medial ventral tegmental area to the ventromedial shell of the nucleus accumbens play a role in attributing incentive salience to environmental stimuli that predict important events, and appear to be particularly sensitive to the effects of psychostimulant drugs. Despite the observation that these dopamine neurons make up almost the entire complement of neurons in the projection, stimulating their cell bodies evokes a fast glutamatergic response in accumbens neurons. This is apparently due to dopamine neuron glutamate cotransmission, suggested by the extensive coexpression of vesicular glutamate transporter 2 (VGLUT2) in the neurons. To examine the interplay between the dopamine and glutamate signals, we used acute quasi-horizontal brain slices made from DAT-YFP mice in which the intact mesoventromedial projection can be visualized. Under current clamp, when dopamine neurons were stimulated repeatedly, dopamine neuron glutamate transmission showed dopamine-mediated facilitation, solely at higher, burst-firing frequencies. Facilitation was diminished under voltage clamp and flipped to inhibition by intracellular Cs(+) or GDPbetaS, indicating that it was mediated postsynaptically. Postsynaptic facilitation was D1 mediated, required activation of NMDA receptors and closure of voltage gated K(+)-channels. When postsynaptic facilitation was blocked, D2-mediated presynaptic inhibition became apparent. These counterbalanced pre- and postsynaptic actions determine the frequency dependence of dopamine modulation; at lower firing frequencies dopamine modulation is not apparent, while at burst firing frequency postsynaptic facilitation dominates and dopamine becomes facilitatory. Dopamine neuron glutamate cotransmission may play an important role in encoding the incentive salience value of conditioned stimuli that activate goal-directed behaviors, and may be an important subtract for enduring drug-seeking behaviors.
Collapse
Affiliation(s)
- N Chuhma
- Department of Psychiatry, Columbia University; Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
71
|
D'Ascenzo M, Podda MV, Fellin T, Azzena GB, Haydon P, Grassi C. Activation of mGluR5 induces spike afterdepolarization and enhanced excitability in medium spiny neurons of the nucleus accumbens by modulating persistent Na+ currents. J Physiol 2009; 587:3233-50. [PMID: 19433572 DOI: 10.1113/jphysiol.2009.172593] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The involvement of metabotropic glutamate receptors type 5 (mGluR5) in drug-induced behaviours is well-established but limited information is available on their functional roles in addiction-relevant brain areas like the nucleus accumbens (NAc). This study demonstrates that pharmacological and synaptic activation of mGluR5 increases the spike discharge of medium spiny neurons (MSNs) in the NAc. This effect was associated with the appearance of a slow afterdepolarization (ADP) which, in voltage-clamp experiments, was recorded as a slowly inactivating inward current. Pharmacological studies showed that ADP was elicited by mGluR5 stimulation via G-protein-dependent activation of phospholipase C and elevation of intracellular Ca(2+) levels. Both ADP and spike aftercurrents were significantly inhibited by the Na(+) channel-blocker, tetrodotoxin (TTX). Moreover, the selective blockade of persistent Na(+) currents (I(NaP)), achieved by NAc slice pre-incubation with 20 nm TTX or 10 \#956;m riluzole, significantly reduced the ADP amplitude, indicating that this type of Na(+) current is responsible for the mGluR5-dependent ADP. mGluR5 activation also produced significant increases in I(NaP), and the pharmacological blockade of this current prevented the mGluR5-induced enhancement of spike discharge. Collectively, these data suggest that mGluR5 activation upregulates I(NaP) in MSNs of the NAc, thereby inducing an ADP that results in enhanced MSN excitability. Activation of mGluR5 will significantly alter spike firing in MSNs in vivo, and this effect could be an important mechanism by which these receptors mediate certain aspects of drug-induced behaviours.
Collapse
Affiliation(s)
- Marcello D'Ascenzo
- Institute of Human Physiology, Catholic University 'S. Cuore', Rome, Italy
| | | | | | | | | | | |
Collapse
|
72
|
Robinson R, Krishnakumar A, Paulose CS. Enhanced dopamine D1 and D2 receptor gene expression in the hippocampus of hypoglycaemic and diabetic rats. Cell Mol Neurobiol 2009; 29:365-72. [PMID: 19132528 PMCID: PMC11506023 DOI: 10.1007/s10571-008-9328-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/06/2008] [Indexed: 12/28/2022]
Abstract
Hypoglycaemic coma and brain injury are potential complications of insulin therapy. Hippocampal neurons are particularly vulnerable to hypoglycaemic stress leading to memory impairment. In the present article, we have investigated the dopamine (DA) content, homovanillic acid (HVA)/DA turnover ratio, DA D(1) and DA D(2) receptors in the hippocampus of insulin-induced hypoglycaemic (IIH) and streptozotocin induced diabetic rats where brain functions are impaired. The DA content decreased significantly in hippocampus of diabetic, diabetic +IIH and control +IIH rats compared to control. The HVA/DA turnover ratio also increased significantly in diabetic, diabetic +IIH and control +IIH rats compared to control. Scatchard analysis using [(3)H] DA in the hippocampus showed a significant increase in DA receptors of diabetic, diabetic +IIH and control +IIH rats with decreased affinity. Gene expression studies using Real-time PCR showed an increased expression of DA D(1) and DA D(2) receptors in the hippocampus of hypoglycaemic and diabetic rats. Our results indicate that the dopaminergic system is impaired in the hippocampus of hypoglycaemic and hyperglycaemic rats impairing DA related functions of hippocampus. We observed a prominent dopaminergic functional disturbance in the hypoglycaemic condition than in hyperglycaemia compared to control. This dopaminergic dysfunction in hippocampus during hypoglycaemia and hyperglycaemia is suggested to contribute to cognitive and memory deficits. This will have clinical significance in the treatment of diabetes.
Collapse
Affiliation(s)
- Remya Robinson
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022 Kerala India
| | - Amee Krishnakumar
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022 Kerala India
| | - C. S. Paulose
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022 Kerala India
| |
Collapse
|
73
|
Abstract
Drug addiction is mediated by complex neuronal processes that converge on the shell of the nucleus accumbens (NAcSh). The NAcSh receives inputs from the lateral hypothalamus (LH), where self-stimulation can be induced. Melanin-concentrating hormone (MCH) is produced mainly in the LH, and its receptor (MCH1R) is highly expressed in the NAcSh. We found that, in the NAcSh, MCH1R is coexpressed with dopamine receptors (D1R and D2R), and that MCH increases spike firing when both D1R and D2R are activated. Also, injecting MCH potentiates cocaine-induced hyperactivity in mice. Mice lacking MCH1R exhibit decreased cocaine-induced conditioned place preference, as well as cocaine sensitization. Using a specific MCH1R antagonist, we further show that acute blockade of the MCH system not only reduces cocaine self-administration, but also attenuates cue- and cocaine-induced reinstatement. Thus, the MCH system has an important modulatory role in cocaine reward and reinforcement by potentiating the dopaminergic system in the NAcSh, which may provide a new rationale for treating cocaine addiction.
Collapse
|
74
|
Hu C, Depuy SD, Yao J, McIntire WE, Barrett PQ. Protein kinase A activity controls the regulation of T-type CaV3.2 channels by Gbetagamma dimers. J Biol Chem 2009; 284:7465-73. [PMID: 19131331 PMCID: PMC2658042 DOI: 10.1074/jbc.m808049200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/07/2009] [Indexed: 01/10/2023] Open
Abstract
Low voltage-activated (LVA), T-type, calcium channels mediate diverse biological functions and are inhibited by Gbetagamma dimers, yet the molecular events required for channel inhibition remain unknown. Here, we identify protein kinase A (PKA) as a molecular switch that allows Gbeta(2)gammax dimers to effect voltage-independent inhibition of Ca(v)3.2 channels. Inhibition requires phosphorylation of Ser(1107), a critical serine residue on the II-III loop of the channel pore protein. S1107A prevents inhibition of unitary currents by recombinant Gbeta(2)gamma(2) dimers but does not disrupt dimer binding nor change its specificity. Gbetagamma dimers released upon receptor activation also require PKA activity for their inhibitory actions. Hence, dopamine inhibition of Ca(v)3.2 whole cell current is precluded by Gbetagamma-scavenger proteins or a peptide that blocks PKA catalytic activity. Fittingly, when used alone at receptor-selective concentrations, D(1) or D(2) agonists do not elicit channel inhibition yet together synergize to inhibit Ca(v)3.2 channel currents. We propose that a dual-receptor regulatory mechanism is used by dopamine to control Ca(v)3.2 channel activity. This mechanism, for example, would be important in aldosterone producing adrenal glomerulosa cells where channel dysregulation would lead to overproduction of aldosterone and consequent cardiac, renal, and brain target organ damage.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Pharmacology, Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
75
|
Azdad K, Gall D, Woods AS, Ledent C, Ferrié S, Schiffmann SN. Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 2009; 34:972-86. [PMID: 18800071 PMCID: PMC5527972 DOI: 10.1038/npp.2008.144] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bursting activity of striatal medium spiny neurons results from membrane potential oscillations between a down- and an upstate that could be regulated by G-protein-coupled receptors. Among these, dopamine D(2) and adenosine A(2A) receptors are highly enriched in striatal neurons and exhibit strong interactions whose physiological significance and molecular mechanisms remain partially unclear. More particularly, respective involvements of common intracellular signaling cascades and A(2A)-D(2) receptor heteromerization remain unknown. Here we show, by performing perforated-patch-clamp recordings on brain slices and loading competitive peptides, that D(2) and A(2A) receptors regulate the induction by N-methyl-D-aspartate of a depolarized membrane potential plateau through mechanisms relying upon specific protein-protein interactions. Indeed, D(2) receptor activation abolished transitions between a hyperpolarized resting potential and a depolarized plateau potential by regulating the Ca(V)1.3a calcium channel activity through interactions with scaffold proteins Shank1/3. Noticeably, A(2A) receptor activation had no effect per se but fully reversed the effects of D(2) receptor activation through a mechanism in which A(2A)-D(2) receptors heteromerization is strictly mandatory, demonstrating therefore a first direct physiological relevance of these heteromers. Our results show that membrane potential transitions and firing patterns in striatal neurons are tightly controlled by D(2) and A(2A) receptors through specific protein-protein interactions including A(2A)-D(2) receptors heteromerization.
Collapse
Affiliation(s)
- Karima Azdad
- Laboratory of Neurophysiology, Université Libre de Bruxelles, Brussels, Belgium.
| | - David Gall
- Laboratory of Neurophysiology, Université Libre de Bruxelles, Brussels, Belgium,European Graduate School of Neuroscience (EURON), Brussels, Belgium
| | - Amina S Woods
- Intramural Research Program, Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, MD, USA
| | | | - Sergi Ferrié
- Intramural Research Program, Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, MD, USA
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, Université Libre de Bruxelles, Brussels, Belgium,European Graduate School of Neuroscience (EURON), Brussels, Belgium,Correspondence: Dr K Azdad or Professor SN Schiffmann, Laboratoire de Neurophysiologie, Université Libre de Bruxelles CP601, Campus Erasme, route de Lennik 808, 1070 Brussels, Belgium, Tel: +3225554103, Fax: +3225554121, ,
| |
Collapse
|
76
|
Paz RD, Tardito S, Atzori M, Tseng KY. Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 2008; 18:773-86. [PMID: 18650071 PMCID: PMC2831778 DOI: 10.1016/j.euroneuro.2008.06.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/27/2008] [Accepted: 06/17/2008] [Indexed: 01/02/2023]
Abstract
The underlying cellular mechanisms leading to frontal cortical hypofunction (i.e., hypofrontality) in schizophrenia remain unclear. Both hypoactive and hyperreactive prefrontal cortical (PFC) states have been reported in schizophrenia patients. Recent proton magnetic resonance spectroscopy studies revealed that antipsychotic-naïve patients with first psychotic episode exhibit a hyperactive PFC. Conversely, PFC activity seems to be diminished in patients chronically exposed to conventional antipsychotic treatments, an effect that could reflect the therapeutic action as well as some of the impairing side effects induced by long-term blockade of dopamine transmission. In this review, we will provide an evolving picture of the pathophysiology of schizophrenia moving from dopamine to a more glutamatergic-centered hypothesis. We will discuss how alternative antipsychotic strategies may emerge by using drugs that reduce excessive glutamatergic response without altering the balance of synaptic and extrasynaptic normal glutamatergic neurotransmission. Preclinical studies indicate that acamprosate, a FDA approved drug for relapse prevention in detoxified alcoholic patients, reduces the glutamatergic hyperactivity triggered by ethanol withdrawal without depressing normal glutamatergic transmission. Whether this effect is mediated by a direct modulation of NMDA receptors or by antagonism of metabotropic glutamate receptor remains to be determined. We hypothesize that drugs with similar pharmacological actions to acamprosate may provide a better and safer approach to reverse psychotic symptoms and cognitive deficits without altering the balance of excitation and inhibition of the corticolimbic dopamine-PFC system. It is predicted that schizophrenia patients treated with acamprosate-like compounds will not exhibit progressive cortical atrophy associated with the anti-dopaminergic effect of classical antipsychotic exposure.
Collapse
Affiliation(s)
- Rodrigo D. Paz
- Departamento de Psiquiatría y Neurociencias, Universidad Diego Portales, Santiago, Chile
- Instituto Psiquiátrico José Horwitz Barak, Santiago, Chile
| | - Sonia Tardito
- Instituto Psiquiátrico José Horwitz Barak, Santiago, Chile
| | - Marco Atzori
- University of Texas at Dallas, School for Behavioral and Brain Sciences, Richardson, Texas, USA
| | - Kuei Y. Tseng
- Department of Cellular & Molecular Pharmacology, RFUMS/The Chicago Medical School, North Chicago, Illinois, USA
| |
Collapse
|
77
|
Newland MC, Paletz EM, Reed MN. Methylmercury and nutrition: adult effects of fetal exposure in experimental models. Neurotoxicology 2008; 29:783-801. [PMID: 18652843 PMCID: PMC2659504 DOI: 10.1016/j.neuro.2008.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 06/25/2008] [Accepted: 06/25/2008] [Indexed: 11/17/2022]
Abstract
Human exposure to the life-span developmental neurotoxicant, methylmercury (MeHg), is primarily via the consumption of fish or marine mammals. Fish are also excellent sources of important nutrients, including selenium and n-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA). Laboratory models of developmental MeHg exposure can be employed to assess the roles of nutrients and MeHg and to identify potential mechanisms of action if the appropriate exposure measures are used. When maternal exposure is protracted, relationships between daily intake and brain mercury are consistent and orderly across species, even when large differences in blood:brain ratios exist. It is well established that low-level developmental MeHg produces sensory deficits. Recent studies also show that perseveration in reversal-learning tasks occurs after gestational exposures that produce low micromolar concentrations in the brain. A no-effect level has not been identified for this effect. These exposures do not affect the acquisition or performance of discrimination learning, set shifting (extradimensional shift), or memory. Reversal-learning deficits may be related to enhanced impact of reinforcers as measured using progressive ratio reinforcement schedules, an effect that could result in perseveration. Also reported is enhanced sensitivity to dopamine reuptake inhibitors and diminished sensitivity to pentobarbital, a GABA(A) agonist. Diets rich in PUFAs or selenium do not protect against MeHg's effects on reversal learning but, by themselves, may diminish variability in performance, enhance attention or psychomotor function and may confer some protection against age-related deficits in these areas. It is hypothesized that altered reward processing, dopamine and GABAergic neurotransmitter systems, and cortical regions associated with choice and perseveration are especially sensitive to developmental MeHg at low exposure levels. Human testing for MeHg's neurotoxicity should emphasize these behavioral domains.
Collapse
Affiliation(s)
- M Christopher Newland
- Department of Psychology, 226 Thach Hall, Auburn University, Auburn, AL 36849-5214, USA.
| | | | | |
Collapse
|
78
|
Imaging apomorphine stimulation of brain arachidonic acid signaling via D2-like receptors in unanesthetized rats. Psychopharmacology (Berl) 2008; 197:557-66. [PMID: 18274730 DOI: 10.1007/s00213-008-1073-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE AND OBJECTIVE Because of the important role of dopamine in neurotransmission, it would be useful to be able to image brain dopamine receptor-mediated signal transduction in animals and humans. Administering the D1-D2 receptor agonist apomorphine may allow us to do this, as the D2-like receptor is reported to be coupled to cytosolic phospholipase A2 activation and arachidonic acid (AA) release from membrane phospholipid. METHODS Unanesthetized adult rats were given intraperitoneally apomorphine (0.5 mg/kg) or saline, with or without pretreatment with 6 mg/kg intravenous raclopride, a D2/D3 receptor antagonist. [1-14C]AA was injected intravenously, then AA incorporation coefficients k*--brain radioactivity divided by integrated plasma radioactivity--markers of AA signaling, were measured using quantitative autoradiography in 62 brain regions. RESULTS Apomorphine significantly elevated k* in 26 brain regions, including the frontal cortex, motor and somatosensory cortex, caudate-putamen, thalamic nuclei, and nucleus accumbens. Raclopride alone did not change baseline values of k*, but raclopride pretreatment prevented the apomorphine-induced increments in k*. CONCLUSIONS A mixed D1-D2 receptor agonist, apomorphine, increased the AA signal by activating only D2-like receptors in brain circuits containing regions with high D2-like receptor densities. Thus, apomorphine might be used with positron emission tomography to image brain D2-like receptor-mediated AA signaling in humans in health and disease.
Collapse
|
79
|
Onn SP, Lin M, Liu JJ, Grace AA. Dopamine and cyclic-AMP regulated phosphoprotein-32-dependent modulation of prefrontal cortical input and intercellular coupling in mouse accumbens spiny and aspiny neurons. Neuroscience 2008; 151:802-16. [PMID: 18155847 PMCID: PMC3050628 DOI: 10.1016/j.neuroscience.2007.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/01/2007] [Accepted: 11/07/2007] [Indexed: 11/21/2022]
Abstract
The roles of dopamine and cyclic-AMP regulated phosphoprotein-32 (DARPP-32) in mediating dopamine (DA)-dependent modulation of corticoaccumbens transmission and intercellular coupling were examined in mouse accumbens (NAC) neurons by both intracellular sharp electrode and whole cell recordings. In wild-type (WT) mice bath application of the D2-like agonist quinpirole resulted in 73% coupling incidence in NAC spiny neurons, compared with baseline (9%), whereas quinpirole failed to affect the basal coupling (24%) in slices from DARPP-32 knockout (KO) mice. Thus, D2 stimulation attenuated DARPP-32-mediated suppression of coupling in WT spiny neurons, but this modulation was absent in KO mice. Further, whole cell recordings revealed that quinpirole reversibly decreased the amplitude of cortical-evoked excitatory postsynaptic potentials (EPSPs) in spiny neurons of WT mice, but this reduction was markedly attenuated in KO mice. Bath application of the D1/D5 agonist SKF 38393 did not alter evoked EPSP amplitude in WT or KO spiny neurons. Therefore, DA D2 receptor regulation of both cortical synaptic (chemical) and local non-synaptic (dye coupling) communications in NAC spiny neurons is critically dependent on intracellular DARPP-32 cascades. Conversely, in fast-spiking interneurons, blockade of D1/D5 receptors produced a substantial decrease in EPSP amplitude in WT, but not in KO mice. Lastly, in putative cholinergic interneurons, cortical-evoked disynaptic inhibitory potentials (IPSPs) were attenuated by D2-like receptor stimulation in WT but not KO slices. These data indicate that DARPP-32 plays a central role in 1) modulating intercellular coupling, 2) cortical excitatory drive of spiny and aspiny GABAergic neurons, and 3) local feedforward inhibitory drive of cholinergic-like interneurons within accumbens circuits.
Collapse
Affiliation(s)
- S-P Onn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
80
|
Moyer JT, Wolf JA, Finkel LH. Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol 2007; 98:3731-48. [PMID: 17913980 DOI: 10.1152/jn.00335.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopaminergic modulation produces a variety of functional changes in the principal cell of the striatum, the medium spiny neuron (MSN). Using a 189-compartment computational model of a ventral striatal MSN, we simulated whole cell D1- and D2-receptor-mediated modulation of both intrinsic (sodium, calcium, and potassium) and synaptic currents (AMPA and NMDA). Dopamine (DA) modulations in the model were based on a review of published experiments in both ventral and dorsal striatum. To objectively assess the net effects of DA modulation, we combined reported individual channel modulations into either D1- or D2-receptor modulation conditions and studied them separately. Contrary to previous suggestions, we found that D1 modulation had no effect on MSN nonlinearity and could not induce bistability. In agreement with previous suggestions, we found that dopaminergic modulation leads to changes in input filtering and neuronal excitability. Importantly, the changes in neuronal excitability agree with the classical model of basal ganglia function. We also found that DA modulation can alter the integration time window of the MSN. Interestingly, the effects of DA modulation of synaptic properties opposed the effects of DA modulation of intrinsic properties, with the synaptic modulations generally dominating the net effect. We interpret this lack of synergy to suggest that the regulation of whole cell integrative properties is not the primary functional purpose of DA. We suggest that D1 modulation might instead primarily regulate calcium influx to dendritic spines through NMDA and L-type calcium channels, by both direct and indirect mechanisms.
Collapse
Affiliation(s)
- Jason T Moyer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
81
|
Fields HL, Hjelmstad GO, Margolis EB, Nicola SM. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 2007; 30:289-316. [PMID: 17376009 DOI: 10.1146/annurev.neuro.30.051606.094341] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ventral tegmental area (VTA) neuron firing precedes behaviors elicited by reward-predictive sensory cues and scales with the magnitude and unpredictability of received rewards. These patterns are consistent with roles in the performance of learned appetitive behaviors and in positive reinforcement, respectively. The VTA includes subpopulations of neurons with different afferent connections, neurotransmitter content, and projection targets. Because the VTA and substantia nigra pars compacta are the sole sources of striatal and limbic forebrain dopamine, measurements of dopamine release and manipulations of dopamine function have provided critical evidence supporting a VTA contribution to these functions. However, the VTA also sends GABAergic and glutamatergic projections to the nucleus accumbens and prefrontal cortex. Furthermore, VTA-mediated but dopamine-independent positive reinforcement has been demonstrated. Consequently, identifying the neurotransmitter content and projection target of VTA neurons recorded in vivo will be critical for determining their contribution to learned appetitive behaviors.
Collapse
Affiliation(s)
- Howard L Fields
- Ernest Gallo Clinic and Research Center and Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, Emeryville, California 94608, USA.
| | | | | | | |
Collapse
|
82
|
Poisik OV, Smith Y, Conn PJ. D1- and D2-like dopamine receptors regulate signaling properties of group I metabotropic glutamate receptors in the rat globus pallidus. Eur J Neurosci 2007; 26:852-62. [PMID: 17672856 DOI: 10.1111/j.1460-9568.2007.05710.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dopamine is essential to the proper functioning of basal ganglia (BG) because loss of dopaminergic input profoundly alters the activity of these nuclei. Experimental evidence suggests that multiple aspects of glutamatergic neurotransmission in the BG are altered with the loss of dopaminergic input. Using whole-cell patch-clamp recording in rat brain slices, we examined whether activity of dopamine receptors is necessary to maintain signaling properties of group I metabotropic glutamate receptor subtypes, mGluR1 and 5, in the rat globus pallidus (GP), one of the nuclei in the BG circuit. Dopaminergic depletion due to systemic treatment with reserpine caused a change in the signaling properties of group I mGluRs, where mGluR1 lost the ability to depolarize GP neurons, while mGluR5 gained such ability. Bath-application of dopamine or D1- and D2-like dopamine receptor agonists to slices from reserpinized rats partly reversed these effects and caused mGluR1 to gain back its ability to depolarize GP neurons. On the other hand, stimulation of either D1-like or D2-like dopamine receptors was sufficient to abolish the activating properties of mGluR5 acquired following reserpine treatment. Interestingly, inhibition of protein kinase A activity alone was sufficient to largely reverse plasticity in function of group I mGluRs that was induced by reserpine treatment. Our data reveal that specific roles of group I mGluRs in the GP depend on the activity of D1-like and D2-like dopamine receptors, further corroborating the importance of dopamine in maintaining proper glutamatergic neurotransmission in the BG.
Collapse
Affiliation(s)
- Olga V Poisik
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
83
|
Inoue Y, Yao L, Hopf FW, Fan P, Jiang Z, Bonci A, Diamond I. Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors. J Pharmacol Exp Ther 2007; 322:23-9. [PMID: 17468300 DOI: 10.1124/jpet.107.120675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tobacco and alcohol are the most commonly used drugs of abuse and show the most serious comorbidity. The mesolimbic dopamine system contributes significantly to nicotine and ethanol reinforcement, but the underlying cellular signaling mechanisms are poorly understood. Nicotinic acetylcholine (nACh) receptors are highly expressed on ventral tegmental area (VTA) dopamine neurons, with relatively low expression in nucleus accumbens (NAcb) neurons. Because dopamine receptors D(1) and D(2) are highly expressed on NAcb neurons, nicotine could influence NAcb neurons indirectly by activating VTA neurons to release dopamine in the NAcb. To investigate this possibility in vitro, we established primary cultures containing neurons from VTA or NAcb separately or in cocultures. Nicotine increased cAMP response element-mediated gene expression only in cocultures; this increase was blocked by nACh or dopamine D(1) or D(2) receptor antagonists. Furthermore, subthreshold concentrations of nicotine with ethanol increased gene expression in cocultures, and this increase was blocked by nACh, D(2) or adenosine A(2A) receptor antagonists, Gbetagamma or protein kinase A (PKA) inhibitors, and adenosine deaminase. These results suggest that nicotine activated VTA neurons, causing the release of dopamine, which in turn stimulated both D(1) and D(2) receptors on NAcb neurons. In addition, subthreshold concentrations of nicotine and ethanol in combination also activated NAcb neurons through synergy between D(2) and A(2A) receptors. These data provide a novel cellular mechanism, involving Gbetagamma subunits, A(2A) receptors, and PKA, whereby combined use of tobacco and alcohol could enhance the reinforcing effect in humans as well as facilitate long-term neuroadaptations, increasing the risk for developing coaddiction.
Collapse
Affiliation(s)
- Yuichiro Inoue
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Devoino LV, Al'perina EL, Gevorgyan MM, Cheido MA. Interaction between dopamine D1 and D2 receptors in modulation of the immune response. Bull Exp Biol Med 2007; 141:553-5. [PMID: 17181050 DOI: 10.1007/s10517-006-0218-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The interaction between dopamine D1 and D2 receptors plays a role in immunomodulation. The results of thus interaction depends on the degree of receptor activation with selective agonists in different doses. Combined treatment with agonists of D1 and D2 receptors in high doses had a synergistic effect in the mechanisms of immunomodulation. Receptor agonists in low doses suppressed the immune response. Our results suggest that weak activation of one of these receptors is accompanied by inactivation of the other receptor type.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Dopamine Agents/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Immunologic Factors/pharmacology
- Male
- Mice
- Mice, Inbred CBA
- Quinpirole/pharmacology
- Receptors, Dopamine D1/immunology
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/immunology
- Receptors, Dopamine D2/metabolism
- Spleen/immunology
- Spleen/pathology
Collapse
Affiliation(s)
- L V Devoino
- Laboratory for Mechanisms of Neurochemical Modulation, Institute of Physiology, Siberian Division, Russian Academy of Medical Sciences, Novosibirsk
| | | | | | | |
Collapse
|
85
|
Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. J Neurophysiol 2007; 97:2448-64. [PMID: 17229830 DOI: 10.1152/jn.00317.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prefrontal cortex (PFC) dopamine D1/5 receptors modulate long- and short-term neuronal plasticity that may contribute to cognitive functions. Synergistic to synaptic strength modulation, direct postsynaptic D1/5 receptor activation also modulates voltage-dependent ionic currents that regulate spike firing, thus altering the neuronal input-output relationships in a process called long-term potentiation of intrinsic excitability (LTP-IE). Here, the intracellular signals that mediate this D1/5 receptor-dependent LTP-IE were determined using whole cell current-clamp recordings in layer V/VI rat pyramidal neurons from PFC slices. After blockade of all major amino acid receptors (V(hold) = -65 mV) brief tetanic stimulation (20 Hz) of local afferents or application of the D1 agonist SKF81297 (0.2-50 microM) induced LTP-IE, as shown by a prolonged (>40 min) increase in depolarizing pulse-evoked spike firing. Pretreatment with the D1/5 antagonist SCH23390 (1 microM) blocked both the tetani- and D1/5 agonist-induced LTP-IE, suggesting a D1/5 receptor-mediated mechanism. The SKF81297-induced LTP-IE was significantly attenuated by Cd(2+), [Ca(2+)](i) chelation, by inhibition of phospholipase C, protein kinase-C, and Ca(2+)/calmodulin kinase-II, but not by inhibition of adenylate cyclase, protein kinase-A, MAP kinase, or L-type Ca(2+) channels. Thus this form of D1/5 receptor-mediated LTP-IE relied on Ca(2+) influx via non-L-type Ca(2+) channels, activation of PLC, intracellular Ca(2+) elevation, activation of Ca(2+)-dependent CaMKII, and PKC to mediate modulation of voltage-dependent ion channel(s). This D1/5 receptor-mediated modulation by PKC coexists with the previously described PKA-dependent modulation of K(+) and Ca(2+) currents to dynamically regulate overall excitability of PFC neurons.
Collapse
Affiliation(s)
- Long Chen
- National Standard Lab of Pharmacology for Chinese Materia Medica, Research Center of Acupuncture and Pharmacology, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | | | | | | | | |
Collapse
|
86
|
Vakalopoulos C. Neurocognitive deficits in major depression and a new theory of ADHD: a model of impaired antagonism of cholinergic-mediated prepotent behaviours in monoamine depleted individuals. Med Hypotheses 2006; 68:210-21. [PMID: 16997497 DOI: 10.1016/j.mehy.2006.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/04/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
The study builds on the propositions introduced in a companion paper on the neuropharmacology of cognition and its relation to key findings in psychiatry. Cognitive inhibition is often invoked to explain performance in psychiatric illness. Yet it remains only a general conceptual model of executive dysfunction. Premotor theory proposes both neuroanatomical and neuropharmacological equivalents of conscious and unconscious processes. The interaction between monoaminergic and cholinergic neurotransmission is stated to have an inverse effect on these two fundamental psychological processes. If one conceives of cognitive inhibition as a failure to voluntarily suppress unconscious prepotent responses, then a deficit in monoaminergic antagonism of cholinergic facilitated prepotent responses accounts for the observed behavioural phenotypes. The plasticity of behaviour is further hypothesized to have an equivalent in intracellular signalling leading to plastic changes in neural networks. Apart from inhibition of prepotent responses it permits the formulation of new behavioural phenotypes. At the receptor level Gi-Gq/11 transduction coupling is proposed to mediate this effect. A hypofunctioning monoaminergic system is thought to underlie the clinical pictures of major depression and ADHD. The neurocognitive deficits of depression include memory loss, poor concentration and rumination. ADHD is characterized by inattention, impulsivity and hyperactivity. Both these syndromes effectively respond to raising serotonin and dopamine levels, respectively. The core symptoms can usefully be attributed to an imbalance between the neuromodulatory effects of monoamines and ACh. Taking the model of monoaminergic-muscarinic receptor interactions presented previously and extended here, a new hypothesis is proposed for the core symptoms of ADHD. Accordingly, impulsivity and hyperactivity result from impaired dopaminergic inhibition and remodelling of muscarinic mediated prepotent responses. The model also predicts memory impairment in major depression by proposing that low serotonin levels in the neocortex is linked to focal hippocampal dysfunction. Hippocampal theta is proposed to trigger phasic monoaminergic activation involved in encoding of cortical traces and plasticity of propotent networks. It proposes a hypothesis for the enhancement of mood and behaviour induced by antidepressants is partly a response to plasticity of neural networks, that is, remodelling of cholinergic-mediated negative habitual behaviours.
Collapse
Affiliation(s)
- C Vakalopoulos
- 171 McKean Street, North Fitzroy, 3068 Melbourne, Australia.
| |
Collapse
|
87
|
Pickel VM, Colago EE, Mania I, Molosh AI, Rainnie DG. Dopamine D1 receptors co-distribute with N-methyl-D-aspartic acid type-1 subunits and modulate synaptically-evoked N-methyl-D-aspartic acid currents in rat basolateral amygdala. Neuroscience 2006; 142:671-90. [PMID: 16905271 DOI: 10.1016/j.neuroscience.2006.06.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/30/2022]
Abstract
Activation of dopamine D1 or glutamate, N-methyl-d-aspartic acid (NMDA) receptors in the basolateral amygdala (BLA) can potently influence affective behaviors and associative learning. Physical protein-protein interactions also can occur between C-terminal peptides of D1 receptors and the NMDA-receptor subunit-1 (NR1), suggesting intracellular associations of direct relevance to dopaminergic modulation of NMDA currents. We examined this possibility by combining electron microscopic immunolabeling of the D1 and NR1 C-terminal peptides with in vitro patch-clamp recording in the rat BLA. In the in vivo preparations, D1 and NR1 were localized to the surface or endomembranes of many of the same somata and dendrites as well as a few axon terminals, including those forming asymmetric, excitatory-type synapses. In vitro analysis of physiologically characterized projection neurons revealed an excitatory response to bath application of either dopamine or the preferential D1 receptor agonist, dihydrexidine. In these neurons, dopamine also selectively reduced stimulation-evoked isolated NMDA receptor-mediated currents, but not isolated non-NMDA receptor-mediated currents or the response to exogenous NMDA application. The selective reduction of the NMDA receptor-mediated currents suggests that this effect occurs at a postsynaptic locus. Moreover, both D1 and NR1 were localized to postsynaptic surfaces of biocytin-filled and physiologically characterized projection neurons. Our results provide ultrastructural evidence for D1/NR1 endomembrane associations that may dynamically contribute to the attenuation of NMDA receptor-mediated currents following prior activation of D1 receptors in BLA projection neurons. The potential for postsynaptic cross-talk between D1 and NMDA receptors in BLA projection neurons as well as a similar interaction in presynaptic terminals could have important implications for the formation and extinction of affective memories.
Collapse
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, Room KB-410, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
88
|
Perez MF, White FJ, Hu XT. Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials. J Neurophysiol 2006; 96:2217-28. [PMID: 16885524 DOI: 10.1152/jn.00254.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc) is a forebrain area in the mesocorticolimbic dopamine (DA) system that regulates many aspects of drug addiction. Neuronal activity in the NAc is modulated by different subtypes of DA receptors. Although DA signaling has received considerable attention, the mechanisms underlying D(2)-class receptor (D(2)R) modulation of firing in medium spiny neurons (MSNs) localized within the NAc remain ambiguous. In the present study, we performed whole cell current-clamp recordings in rat brain slices to determine whether and how D(2)R modulation of K(+) channel activity regulates the intrinsic excitability of NAc neurons in the core region. D(2)R stimulation by quinpirole or DA significantly and dose-dependently decreased evoked Na(+) spikes. This D(2)R effect on inhibiting evoked firing was abolished by antagonism of D(2)Rs, reversed by blockade of voltage-sensitive, slowly inactivating A-type K(+) currents (I(As)), or eliminated by holding membrane potentials at levels in which I(As) was inactivated. It was also mimicked by inhibition of cAMP-dependent protein kinase (PKA) activity, but not phosphatidylinositol-specific phospholipase C (PI-PLC) activity. Moreover, D(2)R stimulation also reduced the inward rectification and depolarized the resting membrane potentials (RMPs) by decreasing "leak" K(+) currents. However, the D(2)R effects on inward rectification and RMP were blocked by inhibition of PI-PLC, but not PKA activity. These findings indicate that, with facilitated intracellular Ca(2+) release and activation of the D(2)R/G(q)/PLC/PIP(2) pathway, the D(2)R-modulated changes in the NAc excitability are dynamically regulated and integrated by multiple K(+) currents, including but are not limited to I(As), inwardly rectifying K(+) currents (I(Kir)), and "leak" currents (I(K-2P)).
Collapse
Affiliation(s)
- Mariela F Perez
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA
| | | | | |
Collapse
|
89
|
Yan Y, Nitta A, Mizuno T, Nakajima A, Yamada K, Nabeshima T. Discriminative-stimulus effects of methamphetamine and morphine in rats are attenuated by cAMP-related compounds. Behav Brain Res 2006; 173:39-46. [PMID: 16857277 DOI: 10.1016/j.bbr.2006.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 05/29/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Animal models of drug discrimination have been used to examine the subjective effects of addictive substances. The cAMP system is a crucial downstream signaling pathway implicated in the long-lasting neuroadaptations induced by addictive drugs. We examined effects of rolipram, nefiracetam, and dopamine D2-like receptor antagonists, all of which have been reported to modulate cAMP level in vivo, on the discriminative-stimulus effects of methamphetamine (METH) and morphine in rats. All these compounds inhibited the discriminative-stimulus effects of METH, while only rolipram and nefiracetam attenuated the discriminative-stimulus effects of morphine. In addition, neither nifedipine nor neomycin, two voltage-sensitive calcium channel blockers, was found to modulate the effect of nefiracetam on METH-associated discriminative stimuli, suggesting that the inhibitory effect of nefiracetam may not involve the activation of calcium channels. These findings suggest that the cAMP signaling cascade may play a key role in the discriminative-stimulus effects of METH and morphine and may be a potential target for the development of therapeutics to counter drugs of abuse.
Collapse
Affiliation(s)
- Yijin Yan
- Department of Neuropsychopharmacology & Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | | | |
Collapse
|
90
|
Schmidt HD, Pierce RC. Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Neuroscience 2006; 142:451-61. [PMID: 16844308 DOI: 10.1016/j.neuroscience.2006.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/31/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
Activation of D1-like (D1, D5) or D2-like (D1, D3, D4) dopamine receptors in the nucleus accumbens shell is sufficient to reinstate cocaine-seeking behavior in rats. The goal of these experiments was to assess whether cooperative activation of D1-like and D2-like dopamine receptors in the accumbens shell is required to promote cocaine reinstatement. Rats were initially trained to self-administer cocaine (0.25 mg, i.v.) using a fixed-ratio schedule of reinforcement for approximately 21 days. Animals subsequently underwent an extinction phase during which saline was substituted for cocaine. Once cocaine self-administration behavior was extinguished (defined as <15% of the total responses maintained during self-administration), dopamine receptor agonist-induced reinstatement of cocaine seeking was assessed. Administration of the selective D1/5 agonist R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297) (1.0 microg) or the D2/3 receptor agonist trans-(-)-(4aR)-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g]quinoline hydrochloride (quinpirole) (3.0 microg) directly into the nucleus accumbens shell promoted reinstatement of cocaine seeking. In order to determine if endogenous dopamine tone in the accumbens shell is required for dopamine receptor agonist-induced reinstatement of cocaine seeking, D1/5 or D2/3 dopamine receptor antagonists were administered into the nucleus accumbens shell prior to a selective dopamine receptor agonist. Microinfusion of the D2/3 dopamine receptor antagonist sulpiride ((S)-5-aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxybenzamide) (1.0 microg) into the nucleus accumbens shell 10 minutes prior to SKF-81297 (1.0 microg) blocked the ability of this D1-like dopamine receptor agonist to reinstate cocaine seeking. Similarly, administration of the selective D1/5 dopamine receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390) (1.0 microg) into the nucleus accumbens shell prior to quinpirole (3.0 microg) blocked reinstatement of drug-seeking behavior elicited by this D2/3 dopamine receptor agonist. Moreover, intra-accumbal shell co-administration of subthreshold doses of quinpirole (1.5 microg) and SKF-81297 (0.1 microg) promoted cocaine-seeking behavior. Collectively, these results indicate that cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is necessary to reinstate cocaine seeking in rats.
Collapse
Affiliation(s)
- H D Schmidt
- Department of Pharmacology, L-603, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
91
|
Ma J, Ye N, Cohen BM. Expression of noradrenergic alpha1, serotoninergic 5HT2a and dopaminergic D2 receptors on neurons activated by typical and atypical antipsychotic drugs. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:647-57. [PMID: 16487641 DOI: 10.1016/j.pnpbp.2005.11.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2005] [Indexed: 11/28/2022]
Abstract
Antipsychotic agents produce activation of a subset of largely dynorphinergic/GABAergic neurons in the shell of nucleus accumbens (AcbShB), central amygdaloid nucleus (CeA) and midline thalamic central medial nucleus (CM) in rats. It is not known why these particular neurons respond to antipsychotic drugs. The present study tested the hypothesis that activated neurons bear subtypes of monoamine receptors to which antipsychotic drug are known to bind, including dopaminergic D2, serotoninergic 5HT2a and noradrenergic alpha1 receptors. Rats were treated with the typical antipsychotic haloperidol or the atypical antipsychotic clozapine. Double immunofluorescence labeling was performed with antibodies directed against (1) the expression of Fos proteins, indicating drug-induced cell activation, and (2) each of the monoamine receptor proteins noted. All three receptors examined were expressed in haloperidol- and clozapine-activated neurons in AcbSh. Furthermore, noradrenergic alpha1 receptors were extensively expressed in activated neurons in CeA and CM, as well. The results suggest that bearing monoamine receptors with high binding affinity for typical and/or atypical antipsychotic drugs might be a key feature of neurons which respond to these drugs. In AcbSh, activated neurons appeared to bear each receptor and, therefore, it is possible that not only the individual but also the combined effect of antipsychotic drugs at multiple receptors may explain why they directly activate certain cells and not others. Also, bearing noradrenergic alpha1 receptor neurons was a shared feature of all activated cells in each location tested, suggesting inhibition of noradrenergic alpha1 receptors may contribute to antipsychotic drug action at these sites.
Collapse
Affiliation(s)
- Jianyi Ma
- Molecular Pharmacology Laboratory Mailman Research Center, McLean Hospital Belmont, 115 Mill Street, Belmont, MA 02478, USA
| | | | | |
Collapse
|
92
|
Bachtell RK, Whisler K, Karanian D, Self DW. Effects of intra-nucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology (Berl) 2005; 183:41-53. [PMID: 16163523 DOI: 10.1007/s00213-005-0133-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 07/05/2005] [Indexed: 11/29/2022]
Abstract
RATIONALE Dopamine signaling in the nucleus accumbens (NAc) plays an important role in regulating drug-taking and drug-seeking behaviors, but the role of D(1)- and D(2)-like receptors in this regulation remains unclear. OBJECTIVES Our objective was to study the role of NAc D(1)- and D(2)-like receptors in the reinstatement of cocaine-seeking behavior and the regulation of stabilized cocaine intake in rats. METHODS Using a within-session reinstatement procedure, whereby animals self-administer cocaine (90 min) and extinguish responding (150 min) in a single session, we assessed the ability of NAc microinfusions of the D(1) agonist SKF 81297 and the D(2) agonist 7-OH-DPAT to reinstate extinguished cocaine seeking. The effects of the D(1) antagonist SCH 23390 and the D(2) antagonist eticlopride pretreatment on agonist- and cocaine-primed reinstatement were also measured. Similar agonist and antagonist treatments were tested for their ability to modulate stabilized cocaine and sucrose self-administration. RESULTS Intra-NAc infusions of either SKF 81297 (0.3-3.0 microg) or 7-OH-DPAT (1.0-10.0 microg) dose-dependently reinstated cocaine seeking with greater efficacy in the medial core than in the shell subregion and at doses that also stimulated locomotor behavior. Intra-NAc shell infusions of SCH 23390 (1.0 microg) and eticlopride (3.0-10.0 microg) blocked cocaine-primed reinstatement (2.0 mg/kg, i.v.) and indiscriminately blocked reinstatement induced by either intra-NAc D(1) or D(2) agonists. Doses of agonists that triggered reinstatement failed to alter stabilized cocaine intake, whereas doses of antagonists that blocked reinstatement increased cocaine intake in the shell. CONCLUSIONS Both D(1) and D(2) receptors in the NAc play a prominent, and perhaps cooperative, role in regulating cocaine-taking and cocaine-seeking behaviors.
Collapse
Affiliation(s)
- Ryan K Bachtell
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | | | | | |
Collapse
|
93
|
Abstract
Drugs acting at dopamine D2 receptors (D2R) are commonly used to alleviate symptoms produced by diseases such as Parkinson's disease, schizophrenia, and depression. A limitation to the use of these drugs is that they sometimes afflict patients with severe side effects. This review discusses recent evidence for several proteins that represent novel mediators of the downstream consequences of D2R activation, since selective targeting of particular D2R-mediated signaling pathways could lead to the development of improved treatments for these devastating diseases.
Collapse
Affiliation(s)
- Antonello Bonci
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608, USA.
| | | |
Collapse
|
94
|
Bartlett SE, Enquist J, Hopf FW, Lee JH, Gladher F, Kharazia V, Waldhoer M, Mailliard WS, Armstrong R, Bonci A, Whistler JL. Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci U S A 2005; 102:11521-6. [PMID: 16049099 PMCID: PMC1183554 DOI: 10.1073/pnas.0502418102] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant dopaminergic signaling is a critical determinant in multiple psychiatric disorders, and in many disease states, dopamine receptor number is altered. Here we identify a molecular mechanism that selectively targets D2 receptors for degradation after their activation by dopamine. The degradative fate of D2 receptors is determined by an interaction with G protein coupled receptor-associated sorting protein (GASP). As a consequence of this GASP interaction, D2 responses in rat brain fail to resensitize after agonist treatment. Disruption of the D2-GASP interaction facilitates recovery of D2 responses, suggesting that modulation of the D2-GASP interaction is important for the functional down-regulation of D2 receptors.
Collapse
Affiliation(s)
- Selena E Bartlett
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, CA 94608, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Egli RE, Kash TL, Choo K, Savchenko V, Matthews RT, Blakely RD, Winder DG. Norepinephrine modulates glutamatergic transmission in the bed nucleus of the stria terminalis. Neuropsychopharmacology 2005; 30:657-68. [PMID: 15602500 DOI: 10.1038/sj.npp.1300639] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) and its adrenergic input are key components in stress-induced reinstatement and maintenance of drug use. Intra-BNST injections of either beta-adrenergic receptor (beta-AR) antagonists or alpha2-adrenergic receptor (alpha2-AR) agonists can inhibit footshock-induced reinstatement and maintenance of cocaine- and morphine-seeking. Using electrophysiological recording methods in an in vitro slice preparation from C57/Bl6j adult male mouse BNST, we have examined the effects of adrenergic receptor activation on excitatory synaptic transmission in the lateral dorsal supracommissural BNST (dBNST) and subcommissural BNST (vBNST). Alpha2-AR activation via UK-14,304 (10 microM) results in a decrease in excitatory transmission in both dBNST and vBNST, an effect predominantly dependent upon the alpha2A-AR subtype. Beta-AR activation via isoproterenol (1 microM) results in an increase in excitatory transmission in dBNST, but not in vBNST. Consistent with the work with receptor subtype specific agonists, application of the endogenous ligand norepinephrine (NE, 100 microM) elicits two distinct effects on glutamatergic transmission. In dBNST, NE elicits an increase in transmission (62% of dBNST NE experiments) or a decrease in transmission (38% of dBNST NE experiments). In vBNST, NE elicits a decrease in transmission in 100% of the experiments. In dBNST, the NE-induced increase in synaptic transmission is blocked by beta1/beta2- and beta2-, but not beta1-specific antagonists. In addition, this increase is also reduced by the alpha2-AR antagonist yohimbine and is absent in the alpha2A-AR knockout mouse. In vBNST, the NE-induced decrease in synaptic transmission is markedly reduced in the alpha2A-AR knockout mouse. Further experiments demonstrate that the actions of NE on glutamatergic transmission can be correlated with beta-AR function.
Collapse
Affiliation(s)
- Regula E Egli
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Lorétan K, Bissière S, Lüthi A. Dopaminergic modulation of spontaneous inhibitory network activity in the lateral amygdala. Neuropharmacology 2005; 47:631-9. [PMID: 15458834 DOI: 10.1016/j.neuropharm.2004.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/15/2004] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
There is converging evidence that dopamine (DA) receptor activation in the lateral amygdala (LA) is required for the acquisition of conditioned fear. Powerful inhibitory circuits exist in the LA shaping the activity of excitatory projection neurons and controlling the induction of associative plasticity, which is thought to underlie fear learning. In vivo and in vitro electrophysiological experiments indicate that DA suppresses inhibitory transmission triggered by excitatory afferent input. Conversely, DA increases the excitability of inhibitory interneurons in the LA. However, the mechanisms by which DA modulates inhibitory transmission are poorly understood. Using whole-cell recordings from LA projection neurons in coronal mouse brain slices, we found that DA strongly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs). In addition, DA application induced low-frequency (2-6 Hz) oscillatory activity of inhibitory circuits in the absence of excitatory input. The increase in sIPSC frequency required activation of D1-like receptors. Unlike D1 receptor-mediated transmission in other brain areas, this effect was independent of the cAMP/PKA signal transduction cascade, but involved activation of the protein tyrosine kinase Src. This indicates that DA orchestrates the activity of populations of interneurons in the LA by a D1-dependent, non-canonical signal transduction pathway.
Collapse
Affiliation(s)
- Karin Lorétan
- Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
97
|
Ikemoto S, Wise RA. Mapping of chemical trigger zones for reward. Neuropharmacology 2004; 47 Suppl 1:190-201. [PMID: 15464137 DOI: 10.1016/j.neuropharm.2004.07.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 06/15/2004] [Accepted: 06/30/2004] [Indexed: 11/30/2022]
Abstract
Addictive drugs are thought to activate brain circuitry that normally mediates more natural rewards such as food or water. Drugs activate this circuitry at synaptic junctions within the brain; identifying the junctions at which this occurs provides clues to the neurochemical and anatomical characteristics of the circuitry. One approach to identifying the junctions at which drugs interact with this circuitry is to determine if animals will lever-press for site-specific microinjections of addictive drugs. This approach has identified GABAergic, dopaminergic, glutamatergic, and cholinergic trigger zones within meso-corticolimbic circuitry important for natural reward function.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Branch, National Institute on Drug Abuse (NIDA), National Institutes of Health, Department of Health and Human Services, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
98
|
Self DW. Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system. Neuropharmacology 2004; 47 Suppl 1:242-55. [PMID: 15464141 DOI: 10.1016/j.neuropharm.2004.07.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/12/2004] [Accepted: 06/30/2004] [Indexed: 11/30/2022]
Abstract
Previous studies have identified several neuroadaptations to chronic drug use, but relatively few have been functionally linked to addiction-related changes in drug-taking and -seeking behaviors. This article summarizes our past and present studies on the contribution of drug-induced neuroadaptations in the mesolimbic dopamine system to addiction-related changes in drug self-administration and the propensity for relapse in drug withdrawal. Our studies suggest that drug-induced up-regulation in cyclic AMP (cAMP)-protein kinase A (PKA) signaling in the nucleus accumbens (NAc) contributes to escalating drug intake and a propensity for relapse by differentially altering the sensitivity of D1 and D2 dopamine receptors that regulate drug-taking and -seeking behaviors. In addition, our studies suggest that drug-induced neuroplasticity at excitatory synapses in both the ventral tegmental area (VTA) and the NAc also facilitates drug-seeking behavior and the propensity for relapse. Finally, the role of both transient and enduring neuroadaptations in regulating drug-seeking behavior is discussed in view of different learning- and memory-based interactions.
Collapse
Affiliation(s)
- David W Self
- Department of Psychiatry, The Seay Center for Basic and Applied Research in Psychiatric Illness, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA.
| |
Collapse
|
99
|
Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G. Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 2004; 93:1598-610. [PMID: 15537813 DOI: 10.1152/jn.00843.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala plays a role in affective behaviors, which are modulated by the dopamine (DA) innervation of the basolateral amygdala complex (BLA). Although in vivo studies indicate that activation of DA receptors alters BLA neuronal activity, it is unclear whether DA exerts direct effects on BLA neurons or whether it acts via indirect effects on BLA afferents. Using whole cell patch-clamp recordings in rat brain slices, we investigated the site and mechanisms through which DA regulates the excitability of BLA neurons. Dopamine enhanced the excitability of BLA projection neurons in response to somatic current injections via a postsynaptic effect. Dopamine D1 receptor activation increased excitability and evoked firing, whereas D2 receptor activation increased input resistance. Current- and voltage-clamp experiments in projection neurons showed that D1 receptor activation enhanced excitability by modulating a 4-aminopyridine- and alpha-dendrotoxin-sensitive, slowly inactivating K+ current. Furthermore, DA and D1 receptor activation increased evoked firing in fast-spiking BLA interneurons. Consistent with a postsynaptic modulation of interneuron excitability, DA also increased the frequency of spontaneous inhibitory postsynaptic currents recorded in projection neurons without changing release of GABA. These data demonstrate that DA exerts direct effects on BLA projection neurons and indirect actions via modulation of interneurons that may work in concert to enhance the neuronal response to large, suprathreshold inputs, while suppressing weaker inputs.
Collapse
Affiliation(s)
- Sven Kröner
- Center for Neural Basics Cognition, Deptartment of Neuroscience, University of Pittsburgh, Pittsburgh, Penssylvania.
| | | | | | | |
Collapse
|
100
|
Ethanol Effects on Dopaminergic ???Reward??? Neurons in the Ventral Tegmental Area and the Mesolimbic Pathway. Alcohol Clin Exp Res 2004. [DOI: 10.1097/01.alc.0000145976.64413.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|