51
|
Ozaki H, Suga H, Arima H. Hypothalamic-pituitary organoid generation through the recapitulation of organogenesis. Dev Growth Differ 2021; 63:154-165. [PMID: 33662152 DOI: 10.1111/dgd.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/26/2022]
Abstract
This paper overviews the development and differentiation of the hypothalamus and pituitary gland from embryonic stem (ES) and induced pluripotent stem (iPS) cells. It is important to replicate the developmental process in vivo to create specific cells/organoids from ES/iPS cells. We also introduce the latest findings and discuss future issues for clinical application. Neuroectodermal progenitors are induced from pluripotent stem cells by strictly removing exogenous patterning factors during the early differentiation period. The induced progenitors differentiate into rostral hypothalamic neurons, in particular magnocellular vasopressin+ neurons. In three-dimensional cultures, ES/iPS cells differentiate into hypothalamic neuroectoderm and nonneural head ectoderm adjacently. Rathke's pouch-like structures self-organize at the interface between the two layers and generate various endocrine cells, including corticotrophs and somatotrophs. Our next objective is to sophisticate our stepwise methodology to establish a novel transplantation treatment for hypopituitarism and apply it to developmental disease models.
Collapse
Affiliation(s)
- Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
52
|
Bielefeld P, Abbink MR, Davidson AR, Reijner N, Abiega O, Lucassen PJ, Korosi A, Fitzsimons CP. Early life stress decreases cell proliferation and the number of putative adult neural stem cells in the adult hypothalamus. Stress 2021; 24:189-195. [PMID: 33494651 DOI: 10.1080/10253890.2021.1879787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Stress is a potent environmental factor that can confer potent and enduring effects on brain structure and function. Exposure to stress during early life (ELS) has been linked to a wide range of consequences later in life. In particular, ELS exerts lasting effects on neurogenesis in the adult hippocampus, suggesting that ELS is a significant regulator of adult neural stem cell numbers and function. Here, we investigated the effect of ELS on cell proliferation and the numbers of neural stem/precursor cells in another neurogenic region: the hypothalamus of adult mice. We show that ELS has long-term suppressive effects on cell proliferation in the hypothalamic parenchyma and reduces the numbers of putative hypothalamic neural stem/precursor cells at 4 months of age. Specifically, ELS reduced the number of PCNA + cells present in hypothalamic areas surrounding the 3rd ventricle with a specific reduction in the proliferation of Sox2+/Nestin-GFP + putative stem cells present in the median eminence at the base of the 3rd ventricle. Furthermore, ELS reduced the total numbers of β-tanycytes lining the ventral 3rd ventricle, without affecting α-tanycyte numbers in more dorsal areas. These results are the first to indicate that ELS significantly reduces proliferation and β-tanycyte numbers in the adult hypothalamus, and may have (patho)physiological consequences for metabolic regulation or other hypothalamic functions in which β-tanycytes are involved.
Collapse
Affiliation(s)
- Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Maralinde R Abbink
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna R Davidson
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels Reijner
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlos P Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Fu J, Li L, Huo D, Zhi S, Yang R, Yang B, Xu B, Zhang T, Dai M, Tan C, Chen H, Wang X. Astrocyte-Derived TGFβ1 Facilitates Blood-Brain Barrier Function via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells. Brain Sci 2021; 11:brainsci11010077. [PMID: 33430164 PMCID: PMC7826596 DOI: 10.3390/brainsci11010077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier is a specialized structure in mammals, separating the brain from the bloodstream and maintaining the homeostasis of the central nervous system. The barrier is composed of various types of cells, and the communication between these cells is critical to blood-brain barrier (BBB) function. Here, we demonstrate the astrocyte-derived TGFβ1-mediated intercellular communication between astrocytes and brain microvascular endothelial cells (BMECs). By using an in vitro co-culture model, we observed that the astrocyte-derived TGFβ1 enhanced the tight junction protein ZO-1 expression in BMECs and the endothelial barrier function via a non-canonical hedgehog signaling. Gli2, the core transcriptional factor of the hedgehog pathway, was demonstrated to modulate ZO-1 expression directly. By the dual-luciferase reporter system and chromatin immunoprecipitation, we further identified the exact sites on Smad2/3 that bound to the gli2 promotor and on Gli2 that bound to the zo-1 promotor. Our work highlighted the TGFβ1-mediated intercellular communication of astrocytes with BMECs in BBB, which shall extend current knowledge on the BBB homeostasis physiologically, and more importantly suggests TGFβ1 as a potential effector for future prevention and amelioration of BBB dysfunction.
Collapse
Affiliation(s)
- Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dong Huo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shuli Zhi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Bo Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Bojie Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Menghong Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.L.); (D.H.); (S.Z.); (R.Y.); (B.Y.); (B.X.); (T.Z.); (M.D.); (C.T.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
54
|
Samodien E, Chellan N. Hypothalamic neurogenesis and its implications for obesity-induced anxiety disorders. Front Neuroendocrinol 2021; 60:100871. [PMID: 32976907 DOI: 10.1016/j.yfrne.2020.100871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/14/2023]
Abstract
Obesity and anxiety are public health problems that have no effective cure. Obesity-induced anxiety is also the most common behavioural trait exhibited amongst obese patients, with the mechanisms linking these disorders being poorly understood. The hypothalamus and hippocampus are reciprocally connected, important neurogenic brain regions that could be vital to understanding these disorders. Dietary, physical activity and lifestyle interventions have been shown to be able to enhance neurogenesis within the hippocampus, while the effects thereof within the hypothalamus is yet to be ascertained. This review describes hypothalamic neurogenesis, its impairment in obesity as well as the effect of interventional therapies. Obesity is characterized by a neurogenic shift towards neuropeptide Y neurons, promoting appetite and weight gain. While, nutraceuticals and exercise promote proopiomelanocortin neuron proliferation, causing diminished appetite and reduced weight gain. Through the furthered development of multimodal approaches targeting both these brain regions could hold an even greater therapeutic potential.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa.
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| |
Collapse
|
55
|
Tanycytes in the infundibular nucleus and median eminence and their role in the blood-brain barrier. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:253-273. [PMID: 34225934 DOI: 10.1016/b978-0-12-820107-7.00016-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier is generally attributed to endothelial cells. However, in circumventricular organs, such as the median eminence, tanycytes take over the barrier function. These ependymoglial cells form the wall of the third ventricle and send long extensions into the parenchyma to contact blood vessels and hypothalamic neurons. The shape and location of tanycytes put them in an ideal position to connect the periphery with central nervous compartments. In line with this, tanycytes control the transport of hormones and key metabolites in and out of the hypothalamus. They function as sensors of peripheral homeostasis for central regulatory networks. This chapter discusses current evidence that tanycytes play a key role in regulating glucose balance, food intake, endocrine axes, seasonal changes, reproductive function, and aging. The understanding of how tanycytes perform these diverse tasks is only just beginning to emerge and will probably lead to a more differentiated view of how the brain and the periphery interact.
Collapse
|
56
|
Sharif A, Fitzsimons CP, Lucassen PJ. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:125-140. [PMID: 34225958 DOI: 10.1016/b978-0-12-819975-6.00006-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.
Collapse
Affiliation(s)
- Ariane Sharif
- Lille Neuroscience & Cognition, University of Lille, Lille, France.
| | - Carlos P Fitzsimons
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Schlagal CR, Wu P. Alcohol and Cocaine Combined Substance Use on Adult Hypothalamic Neural Stem Cells and Neurogenesis. Brain Plast 2020; 6:41-46. [PMID: 33680845 PMCID: PMC7903003 DOI: 10.3233/bpl-190091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many advancements have been made over the years looking at the individual and combined effects of drugs of abuse on the brain, with one key area of research focusing on the effects on neurogenesis. An integral part of fetal brain development and, later, maintenance in the adult brain, neurogenesis occurs in three main regions: subventricularzone of the lateral ventricles (SVZ), subgranularzone of the dentate gyrus (SGZ), and the tanycyte layer in the hypothalamus (TL). We will review current literature on combined drugs of abuse and their effect on adult neurogenesis. More specifically, this review will focus on the effect of combining cocaine and alcohol. Additionally, the tanycyte layer will be explored in more depth and probed to look at the neurogenic properties of tanycytes and their role in neurogenesis.
Collapse
Affiliation(s)
- Caitlin R Schlagal
- Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
58
|
Kano M, Suga H, Arima H. Induction of Functional Hypothalamus and Pituitary Tissues From Pluripotent Stem Cells for Regenerative Medicine. J Endocr Soc 2020; 5:bvaa188. [PMID: 33604493 PMCID: PMC7880040 DOI: 10.1210/jendso/bvaa188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 12/22/2022] Open
Abstract
The hypothalamus and pituitary have been identified to play essential roles in maintaining homeostasis. Various diseases can disrupt the functions of these systems, which can often result in serious lifelong symptoms. The current treatment for hypopituitarism involves hormone replacement therapy. However, exogenous drug administration cannot mimic the physiological changes that are a result of hormone requirements. Therefore, patients are at a high risk of severe hormone deficiency, including adrenal crisis. Pluripotent stem cells (PSCs) self-proliferate and differentiate into all types of cells. The generation of endocrine tissues from PSCs has been considered as another new treatment for hypopituitarism. Our colleagues established a 3-dimensional (3D) culture method for embryonic stem cells (ESCs). In this culture, the ESC-derived aggregates exhibit self-organization and spontaneous formation of highly ordered patterning. Recent results have shown that strict removal of exogenous patterning factors during early differentiation efficiently induces rostral hypothalamic progenitors from mouse ESCs. These hypothalamic progenitors generate vasopressinergic neurons, which release neuropeptides upon exogenous stimulation. Subsequently, we reported adenohypophysis tissue self-formation in 3D cultures of mouse ESCs. The ESCs were found to differentiate into both nonneural oral ectoderm and hypothalamic neuroectoderm in adjacent layers. Interactions between the 2 tissues appear to be critically important for in vitro induction of a Rathke’s pouch-like developing embryo. Various endocrine cells were differentiated from nonneural ectoderm. The induced corticotrophs efficiently secreted adrenocorticotropic hormone when engrafted in vivo, which rescued hypopituitary hosts. For future regenerative medicine, generation of hypothalamic and pituitary tissues from human PSCs is necessary. We and other groups succeeded in establishing a differentiation method with the use of human PSCs. Researchers could use these methods for models of human diseases to elucidate disease pathology or screen potential therapeutics.
Collapse
Affiliation(s)
- Mayuko Kano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
59
|
Recabal A, Fernández P, López S, Barahona MJ, Ordenes P, Palma A, Elizondo-Vega R, Farkas C, Uribe A, Caprile T, Sáez JC, García-Robles MA. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway. J Neurochem 2020; 156:182-199. [PMID: 32936929 PMCID: PMC7894481 DOI: 10.1111/jnc.15188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
In the adult hypothalamus, the neuronal precursor role is attributed to the radial glia-like cells that line the third-ventricle (3V) wall called tanycytes. Under nutritional cues, including hypercaloric diets, tanycytes proliferate and differentiate into mature neurons that moderate body weight, suggesting that hypothalamic neurogenesis is an adaptive mechanism in response to metabolic changes. Previous studies have shown that the tanycyte glucosensing mechanism depends on connexin-43 hemichannels (Cx43 HCs), purine release, and increased intracellular free calcium ion concentration [(Ca2+ )i ] mediated by purinergic P2Y receptors. Since, Fibroblast Growth Factor 2 (FGF2) causes similar purinergic events in other cell types, we hypothesize that this pathway can be also activated by FGF2 in tanycytes to promote their proliferation. Here, we used bromodeoxyuridine (BrdU) incorporation to evaluate if FGF2-induced tanycyte cell division is sensitive to Cx43 HC inhibition in vitro and in vivo. Immunocytochemical analyses showed that cultured tanycytes maintain the expression of in situ markers. After FGF2 exposure, tanycytic Cx43 HCs opened, enabling release of ATP to the extracellular milieu. Moreover, application of external ATP was enough to induce their cell division, which could be suppressed by Cx43 HC or P2Y1-receptor inhibitors. Similarly, in vivo experiments performed on rats by continuous infusion of FGF2 and a Cx43 HC inhibitor into the 3V, demonstrated that FGF2-induced β-tanycyte proliferation is sensitive to Cx43 HC blockade. Thus, FGF2 induced Cx43 HC opening, triggered purinergic signaling, and increased β-tanycytes proliferation, highlighting some of the molecular mechanisms involved in the cell division response of tanycyte. This article has an Editorial Highlight see https://doi.org/10.1111/jnc.15218.
Collapse
Affiliation(s)
- Antonia Recabal
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Paola Fernández
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago
| | - Sergio López
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - María J Barahona
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Alejandra Palma
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | | | - Carlos Farkas
- Research Institute in Oncology and Hematology, Winnipeg, Manitoba, Canada
| | - Amparo Uribe
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
60
|
Bedont JL, Iascone DM, Sehgal A. The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annu Rev Cell Dev Biol 2020; 36:469-509. [PMID: 33021821 PMCID: PMC10826104 DOI: 10.1146/annurev-cellbio-100818-125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.
Collapse
Affiliation(s)
- Joseph Lewis Bedont
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Daniel Maxim Iascone
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- The Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
61
|
Yoo S, Cha D, Kim S, Jiang L, Cooke P, Adebesin M, Wolfe A, Riddle R, Aja S, Blackshaw S. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 2020; 68:1987-2000. [PMID: 32173924 PMCID: PMC7423758 DOI: 10.1002/glia.23817] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Tanycytes are radial glial cells located in the mediobasal hypothalamus. Recent studies have proposed that tanycytes play an important role in hypothalamic control of energy homeostasis, although this has not been directly tested. Here, we report the phenotype of mice in which tanycytes of the arcuate nucleus and median eminence were conditionally ablated in adult mice. Although the cerebrospinal fluid-hypothalamic barrier was rendered more permeable following tanycyte ablation, neither the blood-hypothalamic barrier nor leptin-induced pSTAT3 activation in hypothalamic parenchyma were affected. We observed a significant increase in visceral fat distribution accompanying insulin insensitivity in male mice, without significant effect on either body weight or food intake. A high-fat diet tended to accelerate overall body weight gain in tanycyte-ablated mice, but the development of visceral adiposity and insulin insensitivity was comparable to wildtype. Thermoneutral housing exacerbated fat accumulation and produced a shift away from fat oxidation in tanycyte-ablated mice. These results clarify the extent to which tanycytes regulate energy balance, and demonstrate a role for tanycytes in regulating fat metabolism.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Cha
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Soohyun Kim
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick Cooke
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mobolanie Adebesin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryan Riddle
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Susan Aja
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
62
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
63
|
Helfer G, Stevenson TJ. Pleiotropic effects of proopiomelanocortin and VGF nerve growth factor inducible neuropeptides for the long-term regulation of energy balance. Mol Cell Endocrinol 2020; 514:110876. [PMID: 32473184 DOI: 10.1016/j.mce.2020.110876] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.
Collapse
Affiliation(s)
- Gisela Helfer
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
64
|
Goodman T, Nayar SG, Clare S, Mikolajczak M, Rice R, Mansour S, Bellusci S, Hajihosseini MK. Fibroblast growth factor 10 is a negative regulator of postnatal neurogenesis in the mouse hypothalamus. Development 2020; 147:147/13/dev180950. [PMID: 32661019 PMCID: PMC7375484 DOI: 10.1242/dev.180950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
New neurons are generated in the postnatal rodent hypothalamus, with a subset of tanycytes in the third ventricular (3V) wall serving as neural stem/progenitor cells. However, the precise stem cell niche organization, the intermediate steps and the endogenous regulators of postnatal hypothalamic neurogenesis remain elusive. Quantitative lineage-tracing in vivo revealed that conditional deletion of fibroblast growth factor 10 (Fgf10) from Fgf10-expressing β-tanycytes at postnatal days (P)4-5 results in the generation of significantly more parenchymal cells by P28, composed mostly of ventromedial and dorsomedial neurons and some glial cells, which persist into adulthood. A closer scrutiny in vivo and ex vivo revealed that the 3V wall is not static and is amenable to cell movements. Furthermore, normally β-tanycytes give rise to parenchymal cells via an intermediate population of α-tanycytes with transient amplifying cell characteristics. Loss of Fgf10 temporarily attenuates the amplification of β-tanycytes but also appears to delay the exit of their α-tanycyte descendants from the germinal 3V wall. Our findings suggest that transience of cells through the α-tanycyte domain is a key feature, and Fgf10 is a negative regulator of postnatal hypothalamic neurogenesis. Summary: Generation of new hypothalamic neurons after birth is a multistep process involving cell division and cell movements that are controlled by Fgf10.
Collapse
Affiliation(s)
- Timothy Goodman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Stuart G Nayar
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Shaun Clare
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Marta Mikolajczak
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Ritva Rice
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Suzanne Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Saverio Bellusci
- Pediatrics, Saban Research Institute of Children's Hospital Los Angeles, University of California, Los Angeles, CA 90027, USA.,Excellence Cluster Cardio Pulmonary System, University Justus Liebig, 35392 Giessen, Germany
| | | |
Collapse
|
65
|
Engel DF, Bobbo VCD, Solon CS, Nogueira GA, Moura-Assis A, Mendes NF, Zanesco AM, Papangelis A, Ulven T, Velloso LA. Activation of GPR40 induces hypothalamic neurogenesis through p38- and BDNF-dependent mechanisms. Sci Rep 2020; 10:11047. [PMID: 32632088 PMCID: PMC7338363 DOI: 10.1038/s41598-020-68110-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Hypothalamic adult neurogenesis provides the basis for renewal of neurons involved in the regulation of whole-body energy status. In addition to hormones, cytokines and growth factors, components of the diet, particularly fatty acids, have been shown to stimulate hypothalamic neurogenesis; however, the mechanisms behind this action are unknown. Here, we hypothesized that GPR40 (FFAR1), the receptor for medium and long chain unsaturated fatty acids, could mediate at least part of the neurogenic activity in the hypothalamus. We show that a GPR40 ligand increased hypothalamic cell proliferation and survival in adult mice. In postnatal generated neurospheres, acting in synergy with brain-derived neurotrophic factor (BDNF) and interleukin 6, GPR40 activation increased the expression of doublecortin during the early differentiation phase and of the mature neuronal marker, microtubule-associated protein 2 (MAP2), during the late differentiation phase. In Neuro-2a proliferative cell-line GPR40 activation increased BDNF expression and p38 activation. The chemical inhibition of p38 abolished GPR40 effect in inducing neurogenesis markers in neurospheres, whereas BDNF immunoneutralization inhibited GPR40-induced cell proliferation in the hypothalamus of adult mice. Thus, GPR40 acts through p38 and BDNF to induce hypothalamic neurogenesis. This study provides mechanistic advance in the understating of how a fatty acid receptor regulates adult hypothalamic neurogenesis.
Collapse
Affiliation(s)
- Daiane F Engel
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil.
| | - Vanessa C D Bobbo
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Carina S Solon
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Guilherme A Nogueira
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Natalia F Mendes
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Ariane M Zanesco
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Athanasios Papangelis
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Licio A Velloso
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil.
| |
Collapse
|
66
|
Idelevich A, Sato K, Avihai B, Nagano K, Galien A, Rowe G, Gori F, Baron R. Both NPY-Expressing and CART-Expressing Neurons Increase Energy Expenditure and Trabecular Bone Mass in Response to AP1 Antagonism, But Have Opposite Effects on Bone Resorption. J Bone Miner Res 2020; 35:1107-1118. [PMID: 31995643 DOI: 10.1002/jbmr.3967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Energy metabolism and bone homeostasis share several neuronal regulatory pathways. Within the ventral hypothalamus (VHT), the orexigenic neurons co-express Agouti-related peptide (AgRP) and neuropeptide Y (NPY) and the anorexigenic neurons co-express, α-melanocyte stimulating hormone derived from proopiomelanocortin (POMC), and cocaine and amphetamine-regulated transcript (CART). These neurons regulate both processes, yet their relative contribution is unknown. Previously, using genetically targeted activator protein (AP1) alterations as a tool, we showed in adult mice that AgRP or POMC neurons are capable of inducing whole-body energy catabolism and bone accrual, with different effects on bone resorption. Here, we investigated whether co-residing neurons exert similar regulatory effects. We show that AP1 antagonists targeted to NPY-producing or CART-producing neurons in adult mice stimulate energy expenditure, reduce body weight gain and adiposity and promote trabecular bone formation and mass, yet again via different effects on bone resorption, as measured by serum level of carboxy-terminal collagen type I crosslinks (CTX). In addition, AP1 antagonists promote neurite expansion, increasing neurite number, length, and surface area in primary hypothalamic neuronal cultures. Overall, our data demonstrate that the orexigenic NPY and anorexigenic CART neurons both have the capacity to stimulate energy burning state and increase bone mass. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kazusa Sato
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Byron Avihai
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kenichi Nagano
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Antonin Galien
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Glenn Rowe
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit MGH, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
67
|
Langlet F. Targeting Tanycytes: Balance between Efficiency and Specificity. Neuroendocrinology 2020; 110:574-581. [PMID: 31986518 DOI: 10.1159/000505549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022]
Abstract
Tanycytes are peculiar ependymoglial cells lining the bottom and the lateral wall of the third ventricle. For a decade, the utilization of molecular genetic approaches allowed us to make important discoveries about their diverse physiological functions. Here, I review the current methods used to target tanycytes, focusing on their specificity, their efficiency, their limitations, as well as their potential future improvements.
Collapse
Affiliation(s)
- Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,
| |
Collapse
|
68
|
Eichele G, Bodenschatz E, Ditte Z, Günther AK, Kapoor S, Wang Y, Westendorf C. Cilia-driven flows in the brain third ventricle. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190154. [PMID: 31884922 DOI: 10.1098/rstb.2019.0154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The brain ventricles are interconnected, elaborate cavities that traverse the brain. They are filled with cerebrospinal fluid (CSF) that is, to a large part, produced by the choroid plexus, a secretory epithelium that reaches into the ventricles. CSF is rich in cytokines, growth factors and extracellular vesicles that glide along the walls of ventricles, powered by bundles of motile cilia that coat the ventricular wall. We review the cellular and biochemical properties of the ventral part of the third ventricle that is surrounded by the hypothalamus. In particular, we consider the recently discovered intricate network of cilia-driven flows that characterize this ventricle and discuss the potential physiological significance of this flow for the directional transport of CSF signals to cellular targets located either within the third ventricle or in the adjacent hypothalamic brain parenchyma. Cilia-driven streams of signalling molecules offer an exciting perspective on how fluid-borne signals are dynamically transmitted in the brain. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Gregor Eichele
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Eberhard Bodenschatz
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Zuzana Ditte
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ann-Kathrin Günther
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shoba Kapoor
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Yong Wang
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Christian Westendorf
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
69
|
Müller-Fielitz H, Schwaninger M. The Role of Tanycytes in the Hypothalamus-Pituitary-Thyroid Axis and
the Possibilities for Their Genetic Manipulation. Exp Clin Endocrinol Diabetes 2019; 128:388-394. [DOI: 10.1055/a-1065-1855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThyroid hormone (TH) regulation is important for development, energy homeostasis,
heart function, and bone formation. To control the effects of TH in target
organs, the hypothalamus-pituitary-thyroid (HPT) axis and the tissue-specific
availability of TH are highly regulated by negative feedback. To exert a central
feedback, TH must enter the brain via specific transport mechanisms and cross
the blood-brain barrier. Here, tanycytes, which are located in the ventral walls
of the 3rd ventricle in the mediobasal hypothalamus (MBH), function as
gatekeepers. Tanycytes are able to transport, sense, and modify the release of
hormones of the HPT axis and are involved in feedback regulation. In this
review, we focus on the relevance of tanycytes in thyrotropin-releasing hormone
(TRH) release and review available genetic tools to investigate the
physiological functions of these cells.
Collapse
Affiliation(s)
- Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology,
Lübeck, University of Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology,
Lübeck, University of Lübeck, Germany
| |
Collapse
|
70
|
Horiguchi K, Yoshida S, Hasegawa R, Takigami S, Ohsako S, Kato T, Kato Y. Isolation and characterization of cluster of differentiation 9-positive ependymal cells as potential adult neural stem/progenitor cells in the third ventricle of adult rats. Cell Tissue Res 2019; 379:497-509. [PMID: 31788760 DOI: 10.1007/s00441-019-03132-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Ependymal cells located above the ventricular zone of the lateral, third, and fourth ventricles and the spinal cord are thought to form part of the adult neurogenic niche. Many studies have focused on ependymal cells as potential adult neural stem/progenitor cells. To investigate the functions of ependymal cells, a simple method to isolate subtypes is needed. Accordingly, in this study, we evaluated the expression of cluster of differentiation (CD) 9 in ependymal cells by in situ hybridization and immunohistochemistry. Our results showed that CD9-positive ependymal cells were also immunopositive for SRY-box 2, a stem/progenitor cell marker. We then isolated CD9-positive ependymal cells from the third ventricle using the pluriBead-cascade cell isolation system based on antibody-mediated binding of cells to beads of different sizes and their isolation with sieves of different mesh sizes. As a result, we succeeded in isolating CD9-positive populations with 86% purity of ependymal cells from the third ventricle. We next assayed whether isolated CD9-positive ependymal cells had neurospherogenic potential. Neurospheres were generated from CD9-positive ependymal cells of adult rats and were immunopositve for neuron, astrocyte, and oligodendrocyte markers after cultivation. Thus, based on these findings, we suggest that the isolated CD9-positive ependymal cells from the third ventricle included tanycytes, which are special ependymal cells in the ventricular zone of the third ventricle that form part of the adult neurogenic and gliogenic niche. These current findings improve our understanding of tanycytes in the adult third ventricle in vitro.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
- Institute of Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Saishu Yoshida
- Institute of Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Rumi Hasegawa
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Shu Takigami
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Shunji Ohsako
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Takako Kato
- Institute of Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yukio Kato
- Institute of Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
71
|
McGrath EL, Schlagal CR, Cortez I, Dunn TJ, Gao J, Fox RG, Stutz SJ, Kuo YF, Hommel JD, Dineley KT, Cunningham KA, Kaphalia BS, Wu P. Chronic poly-drug administration damages adult mouse brain neural stem cells. Brain Res 2019; 1723:146425. [DOI: 10.1016/j.brainres.2019.146425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
|
72
|
Hagan AS, Boylan M, Smith C, Perez-Santamarina E, Kowalska K, Hung IH, Lewis RM, Hajihosseini MK, Lewandoski M, Ornitz DM. Generation and validation of novel conditional flox and inducible Cre alleles targeting fibroblast growth factor 18 (Fgf18). Dev Dyn 2019; 248:882-893. [PMID: 31290205 PMCID: PMC7029619 DOI: 10.1002/dvdy.85] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 18 (FGF18) functions in the development of several tissues, including the lung, limb bud, palate, skeleton, central nervous system, and hair follicle. Mice containing a germline knockout of Fgf18 (Fgf18 -/- ) die shortly after birth. Postnatally, FGF18 is being evaluated for pathogenic roles in fibrosis and several types of cancer. The specific cell types that express FGF18 have been difficult to identify, and the function of FGF18 in postnatal development and tissue homeostasis has been hampered by the perinatal lethality of Fgf18 null mice. RESULTS We engineered a floxed allele of Fgf18 (Fgf18 flox ) that allows conditional gene inactivation and a CreERT2 knockin allele (Fgf18 CreERT2 ) that allows the precise identification of cells that express Fgf18 and their lineage. We validated the Fgf18 flox allele by targeting it in mesenchymal tissue and primary mesoderm during embryonic development, resulting in similar phenotypes to those observed in Fgf18 null mice. We also use the Fgf18 CreERT2 allele, in combination with a conditional fluorescent reporter to confirm known and identify new sites of Fgf18 expression. CONCLUSION These alleles will be useful to investigate FGF18 function during organogenesis and tissue homeostasis, and to target specific cell lineages at embryonic and postnatal time points.
Collapse
Affiliation(s)
- Andrew S. Hagan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri
| | - Michael Boylan
- Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Craig Smith
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri
| | | | - Karolina Kowalska
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Irene H. Hung
- Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, Utah
| | - Renate M. Lewis
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri
| | | | - Mark Lewandoski
- Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
73
|
Kaminskas B, Goodman T, Hagan A, Bellusci S, Ornitz DM, Hajihosseini MK. Characterisation of endogenous players in fibroblast growth factor-regulated functions of hypothalamic tanycytes and energy-balance nuclei. J Neuroendocrinol 2019; 31:e12750. [PMID: 31111569 PMCID: PMC6772024 DOI: 10.1111/jne.12750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/01/2023]
Abstract
The mammalian hypothalamus regulates key homeostatic and neuroendocrine functions ranging from circadian rhythm and energy balance to growth and reproductive cycles via the hypothalamic-pituitary and hypothalamic-thyroid axes. In addition to its neurones, tanycytes are taking centre stage in the short- and long-term augmentation and integration of diverse hypothalamic functions, although the genetic regulators and mediators of their involvement are poorly understood. Exogenous interventions have implicated fibroblast growth factor (FGF) signalling, although the focal point of the action of FGF and any role for putative endogenous players also remains elusive. We carried out a comprehensive high-resolution screen of FGF signalling pathway mediators and modifiers using a combination of in situ hybridisation, immunolabelling and transgenic reporter mice, aiming to map their spatial distribution in the adult hypothalamus. Our findings suggest that β-tanycytes are the likely focal point of exogenous and endogenous action of FGF in the third ventricular wall, utilising FGF receptor (FGFR)1 and FGFR2 IIIc isoforms, but not FGFR3. Key IIIc-activating endogenous ligands include FGF1, 2, 9 and 18, which are expressed by a subset of ependymal and parenchymal cells. In the parenchymal compartment, FGFR1-3 show divergent patterns, with FGFR1 being predominant in neuronal nuclei and expression of FGFR3 being associated with glial cell function. Intracrine FGFs are also present, suggestive of multiple modes of FGF function. Our findings provide a testable framework for understanding the complex role of FGFs with respect to regulating the metabolic endocrine and neurogenic functions of hypothalamus in vivo.
Collapse
Affiliation(s)
| | - Timothy Goodman
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Andrew Hagan
- Department of Developmental BiologyWashington University School of MedicineSt LouisMissouri
| | - Saverio Bellusci
- Cardio‐Pulmonary InstituteJustus Liebig UniversityGiessenGermany
- International Collaborative Centre on Growth Factor ResearchLife Science InstituteWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - David M. Ornitz
- Department of Developmental BiologyWashington University School of MedicineSt LouisMissouri
| | - Mohammad K. Hajihosseini
- School of Biological SciencesUniversity of East AngliaNorwichUK
- International Collaborative Centre on Growth Factor ResearchLife Science InstituteWenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
74
|
Kano M, Suga H, Ishihara T, Sakakibara M, Soen M, Yamada T, Ozaki H, Mitsumoto K, Kasai T, Sugiyama M, Onoue T, Tsunekawa T, Takagi H, Hagiwara D, Ito Y, Iwama S, Goto M, Banno R, Arima H. Tanycyte-Like Cells Derived From Mouse Embryonic Stem Culture Show Hypothalamic Neural Stem/Progenitor Cell Functions. Endocrinology 2019; 160:1701-1718. [PMID: 31135891 DOI: 10.1210/en.2019-00105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023]
Abstract
Tanycytes have recently been accepted as neural stem/progenitor cells in the postnatal hypothalamus. Persistent retina and anterior neural fold homeobox (Rax) expression is characteristic of tanycytes in contrast to its transient expression of whole hypothalamic precursors. In this study, we found that Rax+ residual cells in the maturation phase of hypothalamic differentiation in mouse embryonic stem cell (mESC) cultures had similar characteristics to ventral tanycytes. They expressed typical neural stem/progenitor cell markers, including Sox2, vimentin, and nestin, and differentiated into mature neurons and glial cells. Quantitative RT-PCR analysis showed that Rax+ residual cells expressed Fgf-10, Fgf-18, and Lhx2, which are expressed by ventral tanycytes. They highly expressed tanycyte-specific genes Dio2 and Gpr50 compared with Rax+ early hypothalamic progenitor cells. Therefore, Rax+ residual cells in the maturation phase of hypothalamic differentiation were considered to be more differentiated and similar to late progenitor cells and tanycytes. They self-renewed and formed neurospheres when cultured with exogenous FGF-2. Additionally, these Rax+ neurospheres differentiated into three neuronal lineages (neurons, astrocytes, and oligodendrocytes), including neuropeptide Y+ neuron, that are reported to be differentiated from ventral tanycytes toward the arcuate nuclei. Thus, Rax+ residual cells were multipotent neural stem/progenitor cells. Rax+ neurospheres were stably passaged and retained high Sox2 expression even after multiple passages. These results suggest the successful induction of Rax+ tanycyte-like cells from mESCs [induced tanycyte-like (iTan) cells]. These hypothalamic neural stem/progenitor cells may have potential in regenerative medicine and as a research tool.
Collapse
Affiliation(s)
- Mayuko Kano
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Ishihara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Drug Discovery Technologies, Drug Discovery and Disease Research Laboratory, Shionogi and Co., Ltd., Osaka, Japan
| | - Mayu Sakakibara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mika Soen
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomiko Yamada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takatoshi Kasai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
75
|
Ghosh HS. Adult Neurogenesis and the Promise of Adult Neural Stem Cells. J Exp Neurosci 2019; 13:1179069519856876. [PMID: 31285654 PMCID: PMC6600486 DOI: 10.1177/1179069519856876] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
The adult brain, even though largely postmitotic, is now known to have dividing
cells that can make both glia and neurons. Of these, the precursor cells that
have the potential to make new neurons in the adult brain have attracted great
attention from researchers, anticipating their therapeutic potential for
neurodegenerative conditions. In this review, I will focus on adult
neurogenesis, from the perspective of the overall neurogenic potential in the
adult brain, current understanding of the ‘adult neural stem cell’, and the
importance of niche as a decisive factor for neurogenesis under
homeostasis and pathologic conditions.
Collapse
Affiliation(s)
- Hiyaa S Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
76
|
Dardente H, Wood S, Ebling F, Sáenz de Miera C. An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol 2019; 31:e12729. [PMID: 31059174 DOI: 10.1111/jne.12729] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022]
Abstract
Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid-stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF-amide neuropeptides kisspeptin and RFRP3 (RF-amide related peptide 3), are plausible relays between TH and the gonadotrophin-releasing hormone-pituitary-gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Shona Wood
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Francis Ebling
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
77
|
van Lingen M, Sidorova M, Alenina N, Klempin F. Lack of Brain Serotonin Affects Feeding and Differentiation of Newborn Cells in the Adult Hypothalamus. Front Cell Dev Biol 2019; 7:65. [PMID: 31106202 PMCID: PMC6498036 DOI: 10.3389/fcell.2019.00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT) is a crucial signal in the neurogenic niche microenvironment. Dysregulation of the 5-HT system leads to mood disorders but also to changes in appetite and metabolic rate. Tryptophan hydroxylase 2-deficient (Tph2-/-) mice depleted of brain 5-HT display alterations in these parameters, e.g., increased food consumption, modest impairment of sleep and respiration accompanied by a less anxious phenotype. The newly discovered neural stem cell niche of the adult hypothalamus has potential implications of mediating stress responses and homeostatic functions. Using Tph2-/- mice, we explore stem cell behavior and cell genesis in the adult hypothalamus. Specifically, we examine precursor cell proliferation and survival in Tph2-/- mice at baseline and following Western-type diet (WD). Our results show a decline in BrdU numbers with aging in the absence of 5-HT. Furthermore, wild type mice under dietary challenge decrease cell proliferation and survival in the hypothalamic niche. In contrast, increased high-calorie food intake by Tph2-/- mice does not come along with alterations in cell numbers. However, lack of brain 5-HT results in a shift of cell phenotypes that was abolished under WD. We conclude that precursor cells in the hypothalamus retain fate plasticity and respond to environmental challenges. A novel link between 5-HT signaling and cell genesis in the hypothalamus could be exploited as therapeutic target in metabolic disease.
Collapse
Affiliation(s)
- Marike van Lingen
- Department of Anatomy and Neurosciences, VU Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Sidorova
- The School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Friederike Klempin
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.,The School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
78
|
Rodríguez E, Guerra M, Peruzzo B, Blázquez JL. Tanycytes: A rich morphological history to underpin future molecular and physiological investigations. J Neuroendocrinol 2019; 31:e12690. [PMID: 30697830 DOI: 10.1111/jne.12690] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
Abstract
Tanycytes are located at the base of the brain and retain characteristics from their developmental origins, such as radial glial cells, throughout their life span. With transport mechanisms and modulation of tight junction proteins, tanycytes form a bridge connecting the cerebrospinal fluid with the external limiting basement membrane. They also retain the powers of self-renewal and can differentiate to generate neurones and glia. Similar to radial glia, they are a heterogeneous family with distinct phenotypes. Although the four subtypes so far distinguished display distinct characteristics, further research is likely to reveal new subtypes. In this review, we have re-visited the work of the pioneers in the field, revealing forgotten work that is waiting to inspire new research with today's cutting-edge technologies. We have conducted a systematic ultrastructural study of α-tanycytes that resulted in a wealth of new information, generating numerous questions for future study. We also consider median eminence pituicytes, a closely-related cell type to tanycytes, and attempt to relate pituicyte fine morphology to molecular and functional mechanism. Our rationale was that future research should be guided by a better understanding of the early pioneering work in the field, which may currently be overlooked when interpreting newer data or designing new investigations.
Collapse
Affiliation(s)
- Esteban Rodríguez
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Montserrat Guerra
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Bruno Peruzzo
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Luis Blázquez
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
79
|
Affiliation(s)
- Caitlin R Schlagal
- Department of Neuroscience, Cell Biology, and Anatomy, Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology, and Anatomy, Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
80
|
Langlet F. Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:286. [PMID: 31133987 PMCID: PMC6514105 DOI: 10.3389/fendo.2019.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression.
Collapse
|
81
|
Recabal A, Elizondo-Vega R, Philippot C, Salgado M, López S, Palma A, Tarifeño-Saldivia E, Timmermann A, Seifert G, Caprile T, Steinhäuser C, García-Robles MA. Connexin-43 Gap Junctions Are Responsible for the Hypothalamic Tanycyte-Coupled Network. Front Cell Neurosci 2018; 12:406. [PMID: 30534054 PMCID: PMC6275304 DOI: 10.3389/fncel.2018.00406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Tanycytes are hypothalamic radial glia-like cells that form the basal wall of the third ventricle (3V) where they sense glucose and modulate neighboring neuronal activity to control feeding behavior. This role requires the coupling of hypothalamic cells since transient decreased hypothalamic Cx43 expression inhibits the increase of brain glucose-induced insulin secretion. Tanycytes have been postulated as possible hypothalamic neuronal precursors due to their privileged position in the hypothalamus that allows them to detect mitogenic signals and because they share the markers and characteristics of neuronal precursors located in other neurogenic niches, including the formation of coupled networks through connexins. Using wild-type (WT), Cx30−/– and Cx30−/–, Cx43fl/fl:glial fibrillary acidic protein (GFAP)-Cre (double knockout, dKO) mouse lines, we demonstrated that tanycytes are highly coupled to each other and also give rise to a panglial network specifically through Cx43. Using the human GFAP (hGFAP)-enhanced green fluorescent protein (EGFP) transgenic mouse line, we provided evidence that the main parenchymal-coupled cells were astrocytes. In addition, electrophysiological parameters, such as membrane resistance, were altered when Cx43 was genetically absent or pharmacologically inhibited. Finally, in the dKO mouse line, we detected a significant decrease in the number of hypothalamic proliferative parenchymal cells. Our results demonstrate the importance of Cx43 in tanycyte homotypic and panglial coupling and show that Cx43 function influences the proliferative potential of hypothalamic cells.
Collapse
Affiliation(s)
- Antonia Recabal
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Roberto Elizondo-Vega
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Camille Philippot
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Magdiel Salgado
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Sergio López
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Alejandra Palma
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Teresa Caprile
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | | |
Collapse
|
82
|
Abstract
Animal models are valuable for the study of complex behaviours and physiology such as the control of appetite because genetic, pharmacological and surgical approaches allow the investigation of underlying mechanisms. However, the majority of such studies are carried out in just two species, laboratory mice and rats. These conventional laboratory species have been intensely selected for high growth rate and fecundity, and have a high metabolic rate and short lifespan. These aspects limit their translational relevance for human appetite control. This review will consider the value of studies carried out in a seasonal species, the Siberian hamster, which shows natural photoperiod-regulated annual cycles in appetite, growth and fattening. Such studies reveal that this long-term control is not simply an adjustment of the known hypothalamic neuronal systems that control hunger and satiety in the short term. Long-term cyclicity is probably driven by hypothalamic tanycytes, glial cells that line the ventricular walls of the hypothalamus. These unique cells sense nutrients and metabolic hormones, integrate seasonal signals and effect plasticity of surrounding neural circuits through their function as a stem cell niche in the adult. Studies of glial cell function in the hypothalamus offer new potential for identifying central targets for appetite and body weight control amenable to dietary or pharmacological manipulation.
Collapse
|
83
|
Wittmann G, Lechan RM. Prss56 expression in the rodent hypothalamus: Inverse correlation with pro-opiomelanocortin suggests oscillatory gene expression in adult rat tanycytes. J Comp Neurol 2018; 526:2444-2461. [PMID: 30242838 DOI: 10.1002/cne.24504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 11/11/2022]
Abstract
We recently reported that the number of hypothalamic tanycytes expressing pro-opiomelanocortin (Pomc) is highly variable among brains of adult rats. While its cause and significance remain unknown, identifying other variably expressed genes in tanycytes may help understand this curious phenomenon. In this in situ hybridization study, we report that the Prss56 gene, which encodes a trypsin-like serine protease and is expressed in neural stem/progenitor cells, shows a similarly variable mRNA expression in tanycytes of adult rats and correlates inversely with tanycyte Pomc mRNA. Prss56 was expressed in α1, β1, subsets of α2, and some median eminence γ tanycytes, but virtually absent from β2 tanycytes. Prss56 was also expressed in vimentin positive tanycyte-like cells in the parenchyma of the ventromedial and arcuate nuclei, and in thyrotropin beta subunit-expressing cells of the pars tuberalis of the pituitary. In contrast to adults, Prss56 expression was uniformly high in tanycytes in adolescent rats. In mice, Prss56-expressing tanycytes and parenchymal cells were also observed but fewer in number and without significant variations. The results identify Prss56 as a second gene that is expressed variably in tanycytes of adult rats. We propose that the variable, inversely correlating expression of Prss56 and Pomc reflect periodically oscillating gene expression in tanycytes rather than stable expression levels that vary between individual rats. A possible functional link between Prss56 and POMC, and Prss56 as a potential marker for migrating tanycytes are discussed.
Collapse
Affiliation(s)
- Gábor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
84
|
Gasser PJ, Lowry CA. Organic cation transporter 3: A cellular mechanism underlying rapid, non-genomic glucocorticoid regulation of monoaminergic neurotransmission, physiology, and behavior. Horm Behav 2018; 104:173-182. [PMID: 29738736 PMCID: PMC7137088 DOI: 10.1016/j.yhbeh.2018.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/11/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Corticosteroid hormones act at intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) to alter gene expression, leading to diverse physiological and behavioral responses. In addition to these classical genomic effects, corticosteroid hormones also exert rapid actions on physiology and behavior through a variety of non-genomic mechanisms, some of which involve GR or MR, and others of which are independent of these receptors. One such GR-independent mechanism involves corticosteroid-induced inhibition of monoamine transport mediated by "uptake2" transporters, including organic cation transporter 3 (OCT3), a low-affinity, high-capacity transporter for norepinephrine, epinephrine, dopamine, serotonin and histamine. Corticosterone directly and acutely inhibits OCT3-mediated transport. This review describes the studies that initially characterized uptake2 processes in peripheral tissues, and outlines studies that demonstrated OCT3 expression and corticosterone-sensitive monoamine transport in the brain. Evidence is presented supporting the hypothesis that corticosterone can exert rapid, GR-independent actions on neuronal physiology and behavior by inhibiting OCT3-mediated monoamine clearance. Implications of this mechanism for glucocorticoid-monoamine interactions in the context-dependent regulation of behavior are discussed.
Collapse
Affiliation(s)
- Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver Veterans Affairs Medical Center (VAMC), Denver, CO 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA.
| |
Collapse
|
85
|
Taetzsch T, Brayman VL, Valdez G. FGF binding proteins (FGFBPs): Modulators of FGF signaling in the developing, adult, and stressed nervous system. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2983-2991. [PMID: 29902550 DOI: 10.1016/j.bbadis.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
Members of the fibroblast growth factor (FGF) family are involved in a variety of cellular processes. In the nervous system, they affect the differentiation and migration of neurons, the formation and maturation of synapses, and the repair of neuronal circuits following insults. Because of the varied yet critical functions of FGF ligands, their availability and activity must be tightly regulated for the nervous system, as well as other tissues, to properly develop and function in adulthood. In this regard, FGF binding proteins (FGFBPs) have emerged as strong candidates for modulating the actions of secreted FGFs in neural and non-neural tissues. Here, we will review the roles of FGFBPs in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| | - Vanessa L Brayman
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA.
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
86
|
Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 2018; 39:333-368. [PMID: 29351662 DOI: 10.1210/er.2017-00235] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Ariane Sharif
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Philippe Ciofi
- Inserm, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| |
Collapse
|
87
|
Raikwar SP, Bhagavan SM, Ramaswamy SB, Thangavel R, Dubova I, Selvakumar GP, Ahmed ME, Kempuraj D, Zaheer S, Iyer S, Zaheer A. Are Tanycytes the Missing Link Between Type 2 Diabetes and Alzheimer's Disease? Mol Neurobiol 2018; 56:833-843. [PMID: 29797185 DOI: 10.1007/s12035-018-1123-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
Tanycytes are highly specialized bipolar ependymal cells that line the ventrolateral wall and the floor of the third ventricle in the brain and form a blood-cerebrospinal fluid barrier at the level of the median eminence. They play a pivotal role in regulating metabolic networks that control body weight and energy homeostasis. Due to the glucosensing function of tanycytes, they could be considered as a critical player in the pathogenesis of type 2 diabetes. Genetic fate mapping studies have established the role of tanycytes for the newly detected adult hypothalamic neurogenesis with important implications for metabolism as well as pathophysiology of various neurodegenerative diseases. We believe that a comprehensive understanding of the physiological mechanisms underlying their neuroplasticity, glucosensing, and cross talk with endothelial cells will enable us to achieve metabolic homeostasis in type 2 diabetes patients and possibly delay the progression of Alzheimer's disease and hopefully improve cognitive function.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.,U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Sachin M Bhagavan
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Swathi Beladakere Ramaswamy
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Ramasamy Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.,U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.,U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.,U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.,U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shankar Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.,U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA. .,U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA.
| |
Collapse
|
88
|
Cheng FY, Fleming JT, Chiang C. Bergmann glial Sonic hedgehog signaling activity is required for proper cerebellar cortical expansion and architecture. Dev Biol 2018; 440:152-166. [PMID: 29792854 DOI: 10.1016/j.ydbio.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023]
Abstract
Neuronal-glial relationships play a critical role in the maintenance of central nervous system architecture and neuronal specification. A deeper understanding of these relationships can elucidate cellular cross-talk capable of sustaining proper development of neural tissues. In the cerebellum, cerebellar granule neuron precursors (CGNPs) proliferate in response to Purkinje neuron-derived Sonic hedgehog (Shh) before ultimately exiting the cell cycle and migrating radially along Bergmann glial fibers. However, the function of Bergmann glia in CGNP proliferation remains not well defined. Interestingly, the Hh pathway is also activated in Bergmann glia, but the role of Shh signaling in these cells is unknown. In this study, we show that specific ablation of Shh signaling using the tamoxifen-inducible TNCYFP-CreER line to eliminate Shh pathway activator Smoothened in Bergmann glia is sufficient to cause severe cerebellar hypoplasia and a significant reduction in CGNP proliferation. TNCYFP-CreER; SmoF/- (SmoCKO) mice demonstrate an obvious reduction in cerebellar size within two days of ablation of Shh signaling. Mutant cerebella have severely reduced proliferation and increased differentiation of CGNPs due to a significant decrease in Shh activity and concomitant activation of Wnt signaling in SmoCKO CGNPs, suggesting that this pathway is involved in cross-talk with the Shh pathway in regulating CGNP proliferation. In addition, Purkinje cells are ectopically located, their dendrites stunted, and the Bergmann glial network disorganized. Collectively, these data demonstrate a previously unappreciated role for Bergmann glial Shh signaling activity in the proliferation of CGNPs and proper maintenance of cerebellar architecture.
Collapse
Affiliation(s)
- Frances Y Cheng
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA
| | - Jonathan T Fleming
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA.
| |
Collapse
|
89
|
Andreopoulou E, Arampatzis A, Patsoni M, Kazanis I. Being a Neural Stem Cell: A Matter of Character But Defined by the Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:81-118. [PMID: 29204830 DOI: 10.1007/978-3-319-69194-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cells that build the nervous system, either this is a small network of ganglia or a complicated primate brain, are called neural stem and progenitor cells. Even though the very primitive and the very recent neural stem cells (NSCs) share common basic characteristics that are hard-wired within their character, such as the expression of transcription factors of the SoxB family, their capacity to give rise to extremely different neural tissues depends significantly on instructions from the microenvironment. In this chapter we explore the nature of the NSC microenvironment, looking through evolution, embryonic development, maturity and even disease. Experimental work undertaken over the last 20 years has revealed exciting insight into the NSC microcosmos. NSCs are very capable in producing their own extracellular matrix and in regulating their behaviour in an autocrine and paracrine manner. Nevertheless, accumulating evidence indicates an important role for the vasculature, especially within the NSC niches of the postnatal brain; while novel results reveal direct links between the metabolic state of the organism and the function of NSCs.
Collapse
Affiliation(s)
- Evangelia Andreopoulou
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Asterios Arampatzis
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Melina Patsoni
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece.
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
90
|
Batailler M, Chesneau D, Derouet L, Butruille L, Segura S, Cognié J, Dupont J, Pillon D, Migaud M. Pineal-dependent increase of hypothalamic neurogenesis contributes to the timing of seasonal reproduction in sheep. Sci Rep 2018; 8:6188. [PMID: 29670193 PMCID: PMC5906660 DOI: 10.1038/s41598-018-24381-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
To survive in temperate latitudes, species rely on the photoperiod to synchronize their physiological functions, including reproduction, with the predictable changes in the environment. In sheep, exposure to decreasing day length reactivates the hypothalamo-pituitary-gonadal axis, while during increasing day length, animals enter a period of sexual rest. Neural stem cells have been detected in the sheep hypothalamus and hypothalamic neurogenesis was found to respond to the photoperiod. However, the physiological relevance of this seasonal adult neurogenesis is still unexplored. This longitudinal study, therefore aimed to thoroughly characterize photoperiod-stimulated neurogenesis and to investigate whether the hypothalamic adult born-cells were involved in the seasonal timing of reproduction. Results showed that time course of cell proliferation reached a peak in the middle of the period of sexual activity, corresponding to decreasing day length period. This enhancement was suppressed when animals were deprived of seasonal time cues by pinealectomy, suggesting a role of melatonin in the seasonal regulation of cell proliferation. Furthermore, when the mitotic blocker cytosine-b-D-arabinofuranoside was administered centrally, the timing of seasonal reproduction was affected. Overall, our findings link the cyclic increase in hypothalamic neurogenesis to seasonal reproduction and suggest that photoperiod-regulated hypothalamic neurogenesis plays a substantial role in seasonal reproductive physiology.
Collapse
Affiliation(s)
- Martine Batailler
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Didier Chesneau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Laura Derouet
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Lucile Butruille
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Stéphanie Segura
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Juliette Cognié
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Delphine Pillon
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France. .,CNRS, UMR7247, F-37380, Nouzilly, France. .,Université de Tours, F-37041, Tours, France. .,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France.
| |
Collapse
|
91
|
Yulyaningsih E, Rudenko IA, Valdearcos M, Dahlén E, Vagena E, Chan A, Alvarez-Buylla A, Vaisse C, Koliwad SK, Xu AW. Acute Lesioning and Rapid Repair of Hypothalamic Neurons outside the Blood-Brain Barrier. Cell Rep 2018; 19:2257-2271. [PMID: 28614713 DOI: 10.1016/j.celrep.2017.05.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 11/27/2022] Open
Abstract
Neurons expressing agouti-related protein (AgRP) are essential for feeding. The majority of these neurons are located outside the blood-brain barrier (BBB), allowing them to directly sense circulating metabolic factors. Here, we show that, in adult mice, AgRP neurons outside the BBB (AgRPOBBB) were rapidly ablated by peripheral administration of monosodium glutamate (MSG), whereas AgRP neurons inside the BBB and most proopiomelanocortin (POMC) neurons were spared. MSG treatment induced proliferation of tanycytes, the putative hypothalamic neural progenitor cells, but the newly proliferated tanycytes did not become neurons. Intriguingly, AgRPOBBB neuronal number increased within a week after MSG treatment, and newly emerging AgRP neurons were derived from post-mitotic cells, including some from the Pomc-expressing cell lineage. Our study reveals that the lack of protection by the BBB renders AgRPOBBB vulnerable to lesioning by circulating toxins but that the rapid re-emergence of AgRPOBBB is part of a reparative process to maintain energy balance.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ivan A Rudenko
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emma Dahlén
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eirini Vagena
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alvin Chan
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christian Vaisse
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suneil K Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison W Xu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
92
|
Yoo S, Blackshaw S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog Neurobiol 2018; 170:53-66. [PMID: 29631023 DOI: 10.1016/j.pneurobio.2018.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades, evidence has accumulated that neurogenesis can occur in both the juvenile and adult mammalian hypothalamus. Levels of hypothalamic neurogenesis can be regulated by dietary, environmental and hormonal signals. Since the hypothalamus has a central role in controlling a broad range of homeostatic physiological processes, these findings may have far ranging behavioral and medical implications. However, many questions in the field remain unresolved, including the cells of origin of newborn hypothalamic neurons and the extent to which these cells actually regulate hypothalamic-controlled behaviors. In this manuscript, we conduct a critical review of the literature on postnatal hypothalamic neurogenesis in mammals, lay out the main outstanding controversies in the field, and discuss how best to advance our knowledge of this fascinating but still poorly understood process.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
93
|
Pellegrino G, Trubert C, Terrien J, Pifferi F, Leroy D, Loyens A, Migaud M, Baroncini M, Maurage CA, Fontaine C, Prévot V, Sharif A. A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (Microcebus murinus). J Comp Neurol 2018; 526:1419-1443. [PMID: 29230807 DOI: 10.1002/cne.24376] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non-human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co-expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.
Collapse
Affiliation(s)
- Giuliana Pellegrino
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Claire Trubert
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Jérémy Terrien
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Fabien Pifferi
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Danièle Leroy
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Anne Loyens
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France; Université de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), Nouzilly, France
| | - Marc Baroncini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Claude-Alain Maurage
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neuropathology, Lille University Hospital, Lille, France
| | - Christian Fontaine
- University of Lille, School of Medicine, Lille Cedex, France.,Laboratory of Anatomy, Lille University Hospital, Lille, France
| | - Vincent Prévot
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| |
Collapse
|
94
|
Ebling FJP, Lewis JE. Tanycytes and hypothalamic control of energy metabolism. Glia 2018; 66:1176-1184. [DOI: 10.1002/glia.23303] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/21/2017] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Francis J. P. Ebling
- School of Life Sciences; University of Nottingham Medical School, Queen's Medical Centre; Nottingham NG7 2UH United Kingdom
| | - Jo E. Lewis
- School of Life Sciences; University of Nottingham Medical School, Queen's Medical Centre; Nottingham NG7 2UH United Kingdom
| |
Collapse
|
95
|
Hendrickson ML, Zutshi I, Wield A, Kalil RE. Nestin expression and in vivo proliferative potential of tanycytes and ependymal cells lining the walls of the third ventricle in the adult rat brain. Eur J Neurosci 2018; 47:284-293. [PMID: 29359828 DOI: 10.1111/ejn.13834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/10/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
There is a disagreement in the literature concerning the degree of proliferation of cells in the walls of the third ventricle (3rdV) under normal conditions in the adult mammalian brain. To address this issue, we mapped the cells expressing the neural stem/progenitor cell marker nestin along the entire rostrocaudal extent of the 3rdV in adult male rats and observed a complex distribution. Abundant nestin was present in tanycyte cell bodies and processes and also was observed in patches of ependymal cells as well as in isolated ependymal cells throughout the walls of the 3rdV. However, we observed very limited ependymal cell or tanycyte proliferation in normal adult rats as determined by bromodeoxyuridine (BrdU) incorporation or the expression of Ki-67. Moreover, fewer than 13% of the cells that were BrdU-positive (BrdU+) or Ki-67-positive (Ki-67+) expressed nestin. These observations stand in contrast to those made in the subventricular zone of the lateral ventricle (SVZ) and subgranular zone of the hippocampal formation (SGZ), where cell proliferation measured by BrdU incorporation or Ki-67 expression is observed frequently in cells that also express nestin. Thus, while ependymal cell or tanycyte cell proliferation can be promoted by the addition of mitogens, dietary modifications or other in vivo manipulations, the proliferation of ependymal cells and tanycytes in the walls of the 3rdV is very limited in the normal adult male rat brain.
Collapse
Affiliation(s)
- Michael L Hendrickson
- School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, USA
| | - Ipshita Zutshi
- Graduate Program in Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Alyssa Wield
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Ronald E Kalil
- School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, USA
| |
Collapse
|
96
|
Zhou YD. Glial Regulation of Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:105-121. [DOI: 10.1007/978-981-13-1286-1_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
97
|
Ubuka T, Moriya S, Soga T, Parhar I. Identification of Transmembrane Protease Serine 2 and Forkhead Box A1 As the Potential Bisphenol A Responsive Genes in the Neonatal Male Rat Brain. Front Endocrinol (Lausanne) 2018; 9:139. [PMID: 29643838 PMCID: PMC5882795 DOI: 10.3389/fendo.2018.00139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Perinatal exposure of Bisphenol A (BPA) to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH) promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2), an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1), an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir) cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by modifying Tmprss2 and Foxa1 expressions in the brain.
Collapse
|
98
|
Terauchi A, Gavin E, Wilson J, Umemori H. Selective Inactivation of Fibroblast Growth Factor 22 (FGF22) in CA3 Pyramidal Neurons Impairs Local Synaptogenesis and Affective Behavior Without Affecting Dentate Neurogenesis. Front Synaptic Neurosci 2017; 9:17. [PMID: 29311892 PMCID: PMC5742095 DOI: 10.3389/fnsyn.2017.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Various growth factors regulate synapse development and neurogenesis, and are essential for brain function. Changes in growth factor signaling are implicated in many neuropsychiatric disorders such as depression, autism and epilepsy. We have previously identified that fibroblast growth factor 22 (FGF22) is critical for excitatory synapse formation in several brain regions including the hippocampus. Mice with a genetic deletion of FGF22 (FGF22 null mice) have fewer excitatory synapses in the hippocampus. We have further found that as a behavioral consequence, FGF22 null mice show a depression-like behavior phenotype such as increased passive stress-coping behavior and anhedonia, without any changes in motor, anxiety, or social cognitive tests, suggesting that FGF22 is specifically important for affective behavior. Thus, addressing the precise roles of FGF22 in the brain will help understand how synaptogenic growth factors regulate affective behavior. In the hippocampus, FGF22 is expressed mainly by CA3 pyramidal neurons, but also by a subset of dentate granule cells. We find that in addition to synapse formation, FGF22 also contributes to neurogenesis in the dentate gyrus: FGF22 null mice show decreased dentate neurogenesis. To understand the cell type-specific roles of FGF22, we generated and analyzed CA3-specific FGF22 knockout mice (FGF22-CA3KO). We show that FGF22-CA3KO mice have reduced excitatory synapses on CA3 pyramidal neurons, but do not show changes in dentate neurogenesis. Behaviorally, FGF22-CA3KO mice still show increased immobility and decreased latency to float in the forced swim test and decreased preference for sucrose in the sucrose preference test, which are suggestive of a depressive-like phenotype similar to FGF22 null mice. These results demonstrate that: (i) CA3-derived FGF22 serves as a target-derived excitatory synaptic organizer in CA3 in vivo; (ii) FGF22 plays important roles in dentate neurogenesis, but CA3-derived FGF22 is not involved in neurogenesis; and (iii) a depression-like phenotype can result from FGF22 inactivation selectively in CA3 pyramidal neurons. Our results link the role of CA3-derived FGF22 in synapse development, and not in neurogenesis, to affective behavior.
Collapse
Affiliation(s)
- Akiko Terauchi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Elizabeth Gavin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Julia Wilson
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Hisashi Umemori
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
99
|
Nguyen T, Mao Y, Sutherland T, Gorrie CA. Neural progenitor cells but not astrocytes respond distally to thoracic spinal cord injury in rat models. Neural Regen Res 2017; 12:1885-1894. [PMID: 29239336 PMCID: PMC5745844 DOI: 10.4103/1673-5374.219051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a detrimental condition that causes loss of sensory and motor function in an individual. Many complex secondary injury cascades occur after SCI and they offer great potential for therapeutic targeting. In this study, we investigated the response of endogenous neural progenitor cells, astrocytes, and microglia to a localized thoracic SCI throughout the neuroaxis. Twenty-five adult female Sprague-Dawley rats underwent mild-contusion thoracic SCI (n = 9), sham surgery (n = 8), or no surgery (n = 8). Spinal cord and brain tissues were fixed and cut at six regions of the neuroaxis. Immunohistochemistry showed increased reactivity of neural progenitor cell marker nestin in the central canal at all levels of the spinal cord. Increased reactivity of astrocyte-specific marker glial fibrillary acidic protein was found only at the lesion epicenter. The number of activated microglia was significantly increased at the lesion site, and activated microglia extended to the lumbar enlargement. Phagocytic microglia and macrophages were significantly increased only at the lesion site. There were no changes in nestin, glial fibrillary acidic protein, microglia and macrophage response in the third ventricle of rats subjected to mild-contusion thoracic SCI compared to the sham surgery or no surgery. These findings indicate that neural progenitor cells, astrocytes and microglia respond differently to a localized SCI, presumably due to differences in inflammatory signaling. These different cellular responses may have implications in the way that neural progenitor cells can be manipulated for neuroregeneration after SCI. This needs to be further investigated.
Collapse
Affiliation(s)
- Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Yilin Mao
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Theresa Sutherland
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Catherine Anne Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
100
|
Hamilton LK, Fernandes KJL. Neural stem cells and adult brain fatty acid metabolism: Lessons from the 3xTg model of Alzheimer's disease. Biol Cell 2017; 110:6-25. [DOI: 10.1111/boc.201700037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Laura K. Hamilton
- Department of Neurosciences; Faculty of Medicine; University of Montreal; Montreal Canada
- The Research Center of the University of Montreal Hospital (CRCHUM); Montreal Canada
| | - Karl J. L. Fernandes
- Department of Neurosciences; Faculty of Medicine; University of Montreal; Montreal Canada
- The Research Center of the University of Montreal Hospital (CRCHUM); Montreal Canada
| |
Collapse
|