51
|
Calibasi-Kocal G, Mashinchian O, Basbinar Y, Ellidokuz E, Cheng CW, Yilmaz ÖH. Nutritional Control of Intestinal Stem Cells in Homeostasis and Tumorigenesis. Trends Endocrinol Metab 2021; 32:20-35. [PMID: 33277157 DOI: 10.1016/j.tem.2020.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Food and nutrition have a profound impact on organismal health and diseases, and tissue-specific adult stem cells play a crucial role in coordinating tissue maintenance by responding to dietary cues. Emerging evidence indicates that adult intestinal stem cells (ISCs) actively adjust their fate decisions in response to diets and nutritional states to drive intestinal adaptation. Here, we review the signaling mechanisms mediating the dietary responses imposed by caloric intake and nutritional composition (i.e., macronutrients and micronutrients), fasting-feeding patterns, diet-induced growth factors, and microbiota on ISCs and their relevance to the beginnings of intestinal tumors.
Collapse
Affiliation(s)
- Gizem Calibasi-Kocal
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Omid Mashinchian
- Nestlé Research, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland; School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Ender Ellidokuz
- Department of Gastroenterology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Chia-Wei Cheng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| | - Ömer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biology, MIT, Cambridge, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Departments of Pathology, Gastroenterology, and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
52
|
Deligiorgi MV, Liapi C, Trafalis DT. How Far Are We from Prescribing Fasting as Anticancer Medicine? Int J Mol Sci 2020; 21:ijms21239175. [PMID: 33271979 PMCID: PMC7730661 DOI: 10.3390/ijms21239175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: the present review provides a comprehensive and up-to date overview of the potential exploitation of fasting as an anticancer strategy. The rationale for this concept is that fasting elicits a differential stress response in the setting of unfavorable conditions, empowering the survival of normal cells, while killing cancer cells. (2) Methods: the present narrative review presents the basic aspects of the hormonal, molecular, and cellular response to fasting, focusing on the interrelationship of fasting with oxidative stress. It also presents nonclinical and clinical evidence concerning the implementation of fasting as adjuvant to chemotherapy, highlighting current challenges and future perspectives. (3) Results: there is ample nonclinical evidence indicating that fasting can mitigate the toxicity of chemotherapy and/or increase the efficacy of chemotherapy. The relevant clinical research is encouraging, albeit still in its infancy. The path forward for implementing fasting in oncology is a personalized approach, entailing counteraction of current challenges, including: (i) patient selection; (ii) fasting patterns; (iii) timeline of fasting and refeeding; (iv) validation of biomarkers for assessment of fasting; and (v) establishment of protocols for patients’ monitoring. (4) Conclusion: prescribing fasting as anticancer medicine may not be far away if large randomized clinical trials consolidate its safety and efficacy.
Collapse
|
53
|
Althubyani SA, Alkhuriji AF, Al Omar SY, El-Khadragy MF. A preliminary study of cytokine gene polymorphism effects on Saudi patients with colorectal cancer. Saudi Med J 2020; 41:1292-1300. [PMID: 33294886 PMCID: PMC7841582 DOI: 10.15537/smj.2020.12.25543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To determine the possible associations of polymorphisms in interleukin (IL)-8 (rs4073 T/A), IL-10 (rs1800896 A/G), IL-22 (rs1179251 C/G and rs2227485 C/T), IL-27 (rs17855750 T/G), and transforming growth factor beta 1 (TGFß1) (rs1800469 C/T) with colorectal cancer (CRC) susceptibility in Saudi patients. METHODS The case-control study was carried out between July 2019 and January 2020 in King Khaled University Hospital, Riyadh, Saudi Arabia. A total of 70 patients with CRC and 70 healthy controls were included in the study. Single nucleotide polymorphisms of promoter regions were determined using TaqMan genotyping assays. RESULTS A statistically significant reduction in CRC risk was identified for carriers of the IL-10 (rs1800896 A/G) AG genotype, IL-22 (rs1179251 C/G) G allele, IL-27 (rs17855750 T/G) G allele and TGFß1 (rs1800469 C/T) CT and TT genotype. While IL-10 (rs1800896 A/G) AA genotype and TGFß1 (rs1800469 C/T) CC genotype were significantly associated with increased susceptibility to CRC. No significant associations were identified between the cytokine polymorphisms of IL-8 (rs4073 T/A) and IL-22 (rs2227485 C/T), and CRC risk. Conclusion: Our findings indicate a significant impact of IL-10 (rs1800896 A/G), IL-22 (rs1179251 C/G), IL-27 (rs17855750 T/G) and TGF-ß1 (rs1800469 C/T) polymorphisms on risk of CRC; while the IL-8 (rs4073 T/A) and IL-22 (rs2227485 C/T) and polymorphisms were not associated with CRC risk.
Collapse
Affiliation(s)
- Sarah A Althubyani
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | |
Collapse
|
54
|
Pistollato F, Forbes-Hernandez TY, Iglesias RC, Ruiz R, Elexpuru Zabaleta M, Dominguez I, Cianciosi D, Quiles JL, Giampieri F, Battino M. Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: Possible implications for cancer treatment. Semin Cancer Biol 2020; 73:45-57. [PMID: 33271317 DOI: 10.1016/j.semcancer.2020.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Fasting, caloric restriction and foods or compounds mimicking the biological effects of caloric restriction, known as caloric restriction mimetics, have been associated with a lower risk of age-related diseases, including cardiovascular diseases, cancer and cognitive decline, and a longer lifespan. Reduced calorie intake has been shown to stimulate cancer immunosurveillance, reducing the migration of immunosuppressive regulatory T cells towards the tumor bulk. Autophagy stimulation via reduction of lysine acetylation, increased sensitivity to chemo- and immunotherapy, along with a reduction of insulin-like growth factor 1 and reactive oxygen species have been described as some of the major effects triggered by caloric restriction. Fasting and caloric restriction have also been shown to beneficially influence gut microbiota composition, modify host metabolism, reduce total cholesterol and triglyceride levels, lower diastolic blood pressure and elevate morning cortisol level, with beneficial modulatory effects on cardiopulmonary fitness, body fat and weight, fatigue and weakness, and general quality of life. Moreover, caloric restriction may reduce the carcinogenic and metastatic potential of cancer stem cells, which are generally considered responsible of tumor formation and relapse. Here, we reviewed in vitro and in vivo studies describing the effects of fasting, caloric restriction and some caloric restriction mimetics on immunosurveillance, gut microbiota, metabolism, and cancer stem cell growth, highlighting the molecular and cellular mechanisms underlying these effects. Additionally, studies on caloric restriction interventions in cancer patients or cancer risk subjects are discussed. Considering the promising effects associated with caloric restriction and caloric restriction mimetics, we think that controlled-randomized large clinical trials are warranted to evaluate the inclusion of these non-pharmacological approaches in clinical practice.
Collapse
Affiliation(s)
- Francesca Pistollato
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), Santander, Spain
| | - Tamara Yuliett Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | | | - Roberto Ruiz
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), Santander, Spain
| | | | - Irma Dominguez
- Universidad Internacional Iberoamericana (UNINI), Camphece, Mexico; Universidade Internacional do Cuanza, Cuito, Angola
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Josè L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Center, University of Granada, Granada, 18000, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
55
|
Plotti F, Terranova C, Luvero D, Bartolone M, Messina G, Feole L, Cianci S, Scaletta G, Marchetti C, Di Donato V, Fagotti A, Scambia G, Benedetti Panici P, Angioli R. Diet and Chemotherapy: The Effects of Fasting and Ketogenic Diet on Cancer Treatment. Chemotherapy 2020; 65:77-84. [PMID: 33197913 DOI: 10.1159/000510839] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Diet may influence various aspects of human health. In fact, it is well known that diet can favour or not the development of various human pathologies, like diabetes, hypertension, and hypercholesterolaemia. Interestingly, diet has an influence in cancer development too (e.g., this relation has been studied for pancreatic, colonic, gastric, and breast cancers). Between the mechanisms that could explain this relation, there is epigenetic. In fact, thanks to epigenetic reprogramming, certain substances introduced with diet could affect gene expression, especially of those genes involved in cells' proliferation and growth. In recent years, some studies have been published about the role that diet could have on chemotherapy outcome. Especially, various studies have analysed the effects of fasting and ketogenic diet (KD) during chemotherapy. The aim of this study is to summarize scientific evidences about diet and its effects on chemotherapy on humans and to better understand if these approaches deserve to be further investigated and might be suitable and beneficial during cancer treatment. MATERIALS AND METHODS We performed an electronic literature search of the PubMed database, using the combination of following terms: "fasting" or "ketogenic" with "chemotherapy," "cancer treatment." We included studies on humans about fasting and KD during chemotherapy, excluding reviews, case series including <10 patients, studies conducted on animals or limited to radiotherapy treatment, and studies that were mostly about molecular mechanisms. Results/Discussion In our analysis we included 4 studies (1 randomized controlled trial, 1 retrospective study, and 2 prospective pilot studies) about KD and 4 studies (1 prospective cohort study, 1 case series report, and 2 randomized trials) about fasting during oncological treatments. Authors suggested an improvement of quality of life (QoL) and fatigue in patients under chemotherapy, especially in the 8 days after chemotherapy treatment. We found that both fasting and KD demonstrated to be tolerable and feasible during oncological treatments. Conversely, data about survival outcomes are still controversial, but it should be underlined that it was not the outcome of these preliminary studies. CONCLUSIONS All comparatives studies have demonstrated that even fasting then KD results in a reduction of collateral effects of adjuvant chemotherapy (due to reduction of drugs toxicity) and a better QoL than in patients that follow no diet. Unfortunately, despite the fact that various laboratory and animal studies confirm advantages from KD and fasting, few data are today disposable on humans: further studies are needed to confirm data exposed in this review.
Collapse
Affiliation(s)
- Francesco Plotti
- Department of Obstetrics and Gynaecology, Campus Bio-Medico, University of Rome, Rome, Italy,
| | - Corrado Terranova
- Department of Obstetrics and Gynaecology, Campus Bio-Medico, University of Rome, Rome, Italy
| | - Daniela Luvero
- Department of Obstetrics and Gynaecology, Campus Bio-Medico, University of Rome, Rome, Italy
| | - Martina Bartolone
- Department of Obstetrics and Gynaecology, Campus Bio-Medico, University of Rome, Rome, Italy
| | - Giuseppe Messina
- Department of Obstetrics and Gynaecology, Campus Bio-Medico, University of Rome, Rome, Italy
| | - Laura Feole
- Department of Obstetrics and Gynaecology, Campus Bio-Medico, University of Rome, Rome, Italy
| | - Stefano Cianci
- Gynecologic Oncology Unit, Women Wealth Area, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Scaletta
- Gynecologic Oncology Unit, Women Wealth Area, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Marchetti
- Gynecologic Oncology Unit, Women Wealth Area, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Violante Di Donato
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Anna Fagotti
- Gynecologic Oncology Unit, Women Wealth Area, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Women Wealth Area, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pierluigi Benedetti Panici
- Department of Gynecological and Obstetric Sciences, and Urological Sciences, University of Rome "Sapienza", Umberto I Hospital, Rome, Italy
| | - Roberto Angioli
- Department of Obstetrics and Gynaecology, Campus Bio-Medico, University of Rome, Rome, Italy
| |
Collapse
|
56
|
Ibrahim EM, Al-Foheidi MH, Al-Mansour MM. Energy and caloric restriction, and fasting and cancer: a narrative review. Support Care Cancer 2020; 29:2299-2304. [PMID: 33190181 PMCID: PMC7981322 DOI: 10.1007/s00520-020-05879-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Dietary interventions have a significant impact on body metabolism. The sensitivity of cancer cells to nutrient and energy deficiency is an evolving characteristic of cancer biology. Preclinical studies provided robust evidence that energy and caloric restrictions could hinder both cancer growth and progression, besides enhancing the efficacy of chemotherapy and radiation therapy. Moreover, several, albeit low-powered, clinical trials have demonstrated clinical benefits in cancer patients. Future research will inform and firmly establish the potential efficacy and safety of these dietary interventions. Here, we review the current evidence and ongoing research investigating the relationship between various dietary restriction approaches and cancer outcomes.
Collapse
Affiliation(s)
- Ezzeldin M Ibrahim
- Oncology Center, International Medical Center, Jeddah, Kingdom of Saudi Arabia
| | - Meteb H Al-Foheidi
- Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs-Western Region (MNGHA-WR), Jeddah, Kingdom of Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Mubarak M Al-Mansour
- Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs-Western Region (MNGHA-WR), Jeddah, Kingdom of Saudi Arabia. .,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Kingdom of Saudi Arabia. .,Adult Medical Oncology, Princess Noorah Oncology Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs-Western Region, PO Box 9515, Jeddah, 21423, Kingdom of Saudi Arabia.
| |
Collapse
|
57
|
Sadeghian M, Rahmani S, Khalesi S, Hejazi E. A review of fasting effects on the response of cancer to chemotherapy. Clin Nutr 2020; 40:1669-1681. [PMID: 33153820 DOI: 10.1016/j.clnu.2020.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/17/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Studies suggest that fasting before or during chemotherapy may induce differential stress resistance, reducing the adverse effects of chemotherapy and enhancing the efficacy of drugs. In this article, we review the effects of fasting, including intermittent, periodic, water-only short-term fasting, and caloric restriction on the responsiveness of tumor cells to cytotoxic drugs, their protective effect on normal cells, and possible mechanisms of action. METHODS We could not perform a systematic review due to the wide variation in the study population, design, dependent measures, and outcomes (eg, type of cancer, treatment variation, experimental setting, etc.). However, a systematic approach to search and review literature was used. The electronic databases PubMed (MEDLINE), Scopus, and Embase were searched up to July 2020. RESULTS Fasting potentially improves the response of tumor cells to chemotherapy by (1) repairing DNA damage in normal tissues (but not tumor cells); (2) upregulating autophagy flux as a protection against damage to organelles and some cancer cells; (3) altering apoptosis and increasing tumor cells' sensitivity to the apoptotic stimuli, and preventing apoptosis-mediated damage to normal cells; (4) depleting regulatory T cells and improving the stimulation of CD8 cells; and (5) accumulating unfolded proteins and protecting cancer cells from immune surveillance. We also discuss how 'fasting-mimicking diet' as a modified form of fasting enables patients to eat a low calorie, low protein, and low sugar diet while achieving similar metabolic outcomes of fasting. CONCLUSION This review suggests the potential benefits of fasting in combination with chemotherapy to reduce tumor progression and increase the effectiveness of chemotherapy. However, with limited human trials, it is not possible to generalize the findings from animal and in vitro studies. More human studies with adequate sample size and follow-ups are required to confirm these findings.
Collapse
Affiliation(s)
- Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sepideh Rahmani
- Department of Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saman Khalesi
- Physical Activity Research Group, Appleton Institute & School of Health Medical and Applied Sciences, Central Queensland University, Brisbane, Australia
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
58
|
Zhang N, Liu C, Jin L, Zhang R, Wang T, Wang Q, Chen J, Yang F, Siebert HC, Zheng X. Ketogenic Diet Elicits Antitumor Properties through Inducing Oxidative Stress, Inhibiting MMP-9 Expression, and Rebalancing M1/M2 Tumor-Associated Macrophage Phenotype in a Mouse Model of Colon Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11182-11196. [PMID: 32786841 DOI: 10.1021/acs.jafc.0c04041] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many advanced cancers are characterized by metabolic disorders. A dietary therapeutic strategy was proposed to inhibit tumor growth through administration of low-carbohydrate, average-protein, and high-fat diet, which is also known as ketogenic diet (KD). In vivo antitumor efficacy of KD on transplanted CT26+ tumor cells in BALB/c mice was investigated. The results showed that the KD group had significantly higher blood β-hydroxybutyrate and lower blood glucose levels when compared with the normal diet group. Meanwhile, KD increased intratumor oxidative stress, and TUNEL staining showed KD-induced apoptosis against tumor cells. Interestingly, the distribution of CD16/32+ and iNOS+ M1 tumor-associated macrophages (TAMs) increased in the KD-treated group, with concomitantly less arginase-1+ M2 TAMs. Moreover, KD treatment downregulated the protein expression of matrix metalloproteinase-9 in CT26+ tumor-bearing mice. Western blot analysis demonstrated that the expression levels of HDAC3/PKM2/NF-κB 65/p-Stat3 proteins were reduced in the KD-treated group. Taken together, our results indicated that KD can prevent the progression of colon tumor via inducing intratumor oxidative stress, inhibiting the expression of the MMP-9, and enhancing M2 to M1 TAM polarization. A novel potential mechanism was identified that KD can prevent the progression of colon cancer by regulating the expression of HDAC3/PKM2/NF-κB65/p-Stat3 axis.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ting Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Liaocheng 252059, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jingchao Chen
- Chengdu Kanghong Pharmaceutical Co., Ltd., No. 355, Tengfei Second Road, Shuangliu District, Chengdu 610200, Sichuan Province, China
| | - Fang Yang
- Department of Clinical Nutrition Laboratory, Liaocheng People's Hospital, Liaocheng 252059, China
| | - Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, Kiel 24118, Germany
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
59
|
Pignatta S, Cortesi M, Arienti C, Zanoni M, Cocchi C, Sarnelli A, Arpa D, Piccinini F, Tesei A. Effects of radiotherapy and short-term starvation combination on metastatic and non-tumor cell lines. DNA Repair (Amst) 2020; 95:102949. [PMID: 32890865 DOI: 10.1016/j.dnarep.2020.102949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Since its discovery in the late 19th century, radiotherapy has been one of the most important medical treatments in oncology. Recently, fasting or short-term starvation (STS) in cancer patients undergoing chemotherapy has been studied to determine its potential for enhancing the therapeutic index and for preventing side- effects, but no data are available in the radiotherapy setting. We thus decided to investigate the effects in vitro of STS in combination with radiotherapy in metastatic cancer cells and non-cancer cells. METHODS Cells were incubated in short-term starvation medium (STS medium, 0·5 g/L glucose + 1% FBS) or in control medium (CM medium, 1 g/L glucose + 10 % FBS) for 24 h and then treated with single high-dose radiation. A plexiglass custom-built phantom was used to irradiate cells. DNA damage was evaluated using alkaline comet assay and theCometAnalyser software. The cell surviving fraction was assessed by clonogenic assay. FINDING STS followed by single high-dose radiation significantly increased DNA damage in metastatic cancer cell lines but not in normal cells. Furthermore, STS reduced the surviving fraction of irradiated tumor cells, indicating a good radio-sensitizing effect on metastatic cell lines. This effect was not observed in non-tumor cells. INTERPRETATION Our results suggest that STS may alter cellular processes, enhancing the efficacy of radiotherapy in metastatic cancer cellsin vitro. Interestingly, STS has radioprotective effect on the survival of healthy cells.
Collapse
Affiliation(s)
- Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy.
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Claudia Cocchi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Anna Sarnelli
- Medical Physics Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Donatella Arpa
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Filippo Piccinini
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy.
| |
Collapse
|
60
|
Is Host Metabolism the Missing Link to Improving Cancer Outcomes? Cancers (Basel) 2020; 12:cancers12092338. [PMID: 32825010 PMCID: PMC7564800 DOI: 10.3390/cancers12092338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
For the past 100 years, oncologists have relentlessly pursued the destruction of tumor cells by surgical, chemotherapeutic or radiation oncological means. Consistent with this focus, treatment plans are typically based on key characteristics of the tumor itself such as disease site, histology and staging based on local, regional and systemic dissemination. Precision medicine is similarly built on the premise that detailed knowledge of molecular alterations of tumor cells themselves enables better and more effective tumor cell destruction. Recently, host factors within the tumor microenvironment including the vasculature and immune systems have been recognized as modifiers of disease progression and are being targeted for therapeutic gain. In this review, we argue that—to optimize the impact of old and new treatment options—we need to take account of an epidemic that occurs independently of—but has major impact on—the development and treatment of malignant diseases. This is the rapidly increasing number of patients with excess weight and its’ attendant metabolic consequences, commonly described as metabolic syndrome. It is well established that patients with altered metabolism manifesting as obesity, metabolic syndrome and chronic inflammation have an increased incidence of cancer. Here, we focus on evidence that these patients also respond differently to cancer therapy including radiation and provide a perspective how exercise, diet or pharmacological agents may be harnessed to improve therapeutic responses in this patient population.
Collapse
|
61
|
Marini C, Cossu V, Bonifacino T, Bauckneht M, Torazza C, Bruno S, Castellani P, Ravera S, Milanese M, Venturi C, Carlone S, Piccioli P, Emionite L, Morbelli S, Orengo AM, Donegani MI, Miceli A, Raffa S, Marra S, Signori A, Cortese K, Grillo F, Fiocca R, Bonanno G, Sambuceti G. Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis. EJNMMI Res 2020; 10:76. [PMID: 32638178 PMCID: PMC7340686 DOI: 10.1186/s13550-020-00666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. Methods The study included 15 SOD1G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts. Results FDG retention was significantly higher in hindlimb skeletal muscles of symptomatic SOD1G93A mice with respect to control ones. This difference was not explained by any acceleration in glucose degradation through glycolysis or cytosolic pentose phosphate pathway (PPP). Similarly, it was independent of inflammatory infiltration. Rather, the high FDG retention in SOD1G93A skeletal muscle was associated with an accelerated generation of reactive oxygen species. This redox stress selectively involved the ER and the local PPP triggered by hexose-6P-dehydrogenase. ER involvement was confirmed by the colocalization of the 2-NBDG with a vital ER tracker. The oxidative damage in transgenic skeletal muscle was associated with a severe impairment in the crosstalk between ER and mitochondria combined with alterations in mitochondrial ultrastructure and fusion/fission balance. The expected respiratory damage was confirmed by a deceleration in ATP synthesis and oxygen consumption rate. These same abnormalities were represented to a markedly lower degree in the myocardium, as a sample of non-voluntary striated muscle. Conclusion Skeletal muscle of SOD1G93A mice reproduces the increased FDG uptake observed in ALS patients. This finding reflects the selective activation of the ER-PPP in response to significant redox stress associated with alterations of mitochondrial ultrastructure, networking, and connection with the ER itself. This scenario is less severe in cardiomyocytes suggesting a relevant role for either communication with synaptic plaque or contraction dynamics.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milano, Italy. .,Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Carola Torazza
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Consuelo Venturi
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | | | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | | | - Alberto Miceli
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Marra
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Roberto Fiocca
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy.,Pharmacology and Toxicology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
62
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:126. [PMID: 32631382 PMCID: PMC7336654 DOI: 10.1186/s13046-020-01629-4] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Liver cancer has become the sixth most diagnosed cancer and the fourth leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is responsible for up to 75–85% of primary liver cancers, and sorafenib is the first targeted drug for advanced HCC treatment. However, sorafenib resistance is common because of the resultant enhancement of aerobic glycolysis and other molecular mechanisms. Aerobic glycolysis was firstly found in HCC, acts as a hallmark of liver cancer and is responsible for the regulation of proliferation, immune evasion, invasion, metastasis, angiogenesis, and drug resistance in HCC. The three rate-limiting enzymes in the glycolytic pathway, including hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), and pyruvate kinases type M2 (PKM2) play an important role in the regulation of aerobic glycolysis in HCC and can be regulated by many mechanisms, such as the AMPK, PI3K/Akt pathway, HIF-1α, c-Myc and noncoding RNAs. Because of the importance of aerobic glycolysis in the progression of HCC, targeting key factors in its pathway such as the inhibition of HK2, PFK or PKM2, represent potential new therapeutic approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China. .,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
63
|
Abstract
Despite great advances in treatment, cancer remains a leading cause of death worldwide. Diet can greatly impact health, while caloric restriction and fasting have putative benefits for disease prevention and longevity. Strong epidemiological associations exist between obesity and cancer, whereas healthy diets can reduce cancer risk. However, less is known about how diet might impact cancer once it has been diagnosed and particularly how diet can impact cancer treatment. In the present review, we discuss the links between obesity, diet, and cancer. We explore potential mechanisms by which diet can improve cancer outcomes, including through hormonal, metabolic, and immune/inflammatory effects, and present the limited clinical research that has been published in this arena. Though data are sparse, diet intervention may reduce toxicity, improve chemotherapy efficacy, and lower the risk of long-term complications in cancer patients. Thus, it is important that we understand and expand the science of this important but complex adjunctive cancer treatment strategy.
Collapse
Affiliation(s)
- Steven D Mittelman
- Division of Pediatric Endocrinology, University of California, Los Angeles (UCLA), Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA;
| |
Collapse
|
64
|
Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Nat Commun 2020; 11:2332. [PMID: 32393788 PMCID: PMC7214421 DOI: 10.1038/s41467-020-16243-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Fasting-mimicking diets delay tumor progression and sensitize a wide range of tumors to chemotherapy, but their therapeutic potential in combination with non-cytotoxic compounds is poorly understood. Here we show that vitamin C anticancer activity is limited by the up-regulation of the stress-inducible protein heme-oxygenase-1. The fasting-mimicking diet selectivity reverses vitamin C-induced up-regulation of heme-oxygenase-1 and ferritin in KRAS-mutant cancer cells, consequently increasing reactive iron, oxygen species, and cell death; an effect further potentiated by chemotherapy. In support of a potential role of ferritin in colorectal cancer progression, an analysis of The Cancer Genome Atlas Database indicates that KRAS mutated colorectal cancer patients with low intratumor ferritin mRNA levels display longer 3- and 5-year overall survival. Collectively, our data indicate that the combination of a fasting-mimicking diet and vitamin C represents a promising low toxicity intervention to be tested in randomized clinical trials against colorectal cancer and possibly other KRAS mutated tumors. Fasting diets are emerging as an approach to delay tumor progression and improve cancer therapies. Here, the authors show that the combination of fasting-mimicking diet with vitamin C decreases tumor development and increases chemotherapy efficacy in KRAS-mutant cancer.
Collapse
|
65
|
Zhang J, Deng Y, Khoo BL. Fasting to enhance Cancer treatment in models: the next steps. J Biomed Sci 2020; 27:58. [PMID: 32370764 PMCID: PMC7201989 DOI: 10.1186/s12929-020-00651-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Short-term fasting (STF) is a technique to reduce nutrient intake for a specific period. Since metabolism plays a pivotal role in tumor progression, it can be hypothesized that STF can improve the efficacy of chemotherapy. Recent studies have demonstrated the efficacy of STF in cell and animal tumor models. However, large-scale clinical trials must be conducted to verify the safety and effectiveness of these diets. In this review, we re-examine the concept of how metabolism affects pathophysiological pathways. Next, we provided a comprehensive discussion of the specific mechanisms of STF on tumor progression, derived through studies carried out with tumor models. There are currently at least four active clinical trials on fasting and cancer treatment. Based on these studies, we highlight the potential caveats of fasting in clinical applications, including the onset of metabolic syndrome and other metabolic complications during chemotherapy, with a particular focus on the regulation of the epithelial to mesenchymal pathway and cancer heterogeneity. We further discuss the advantages and disadvantages of the current state-of-art tumor models for assessing the impact of STF on cancer treatment. Finally, we explored upcoming fasting strategies that could complement existing chemotherapy and immunotherapy strategies to enable personalized medicine. Overall, these studies have the potential for breakthroughs in cancer management.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
66
|
Weng ML, Chen WK, Chen XY, Lu H, Sun ZR, Yu Q, Sun PF, Xu YJ, Zhu MM, Jiang N, Zhang J, Zhang JP, Song YL, Ma D, Zhang XP, Miao CH. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun 2020; 11:1869. [PMID: 32313017 PMCID: PMC7170903 DOI: 10.1038/s41467-020-15795-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that fasting exerts extensive antitumor effects in various cancers, including colorectal cancer (CRC). However, the mechanism behind this response is unclear. We investigate the effect of fasting on glucose metabolism and malignancy in CRC. We find that fasting upregulates the expression of a cholesterogenic gene, Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1), during the inhibition of CRC cell aerobic glycolysis and proliferation. In addition, the downregulation of FDFT1 is correlated with malignant progression and poor prognosis in CRC. Moreover, FDFT1 acts as a critical tumor suppressor in CRC. Mechanistically, FDFT1 performs its tumor-inhibitory function by negatively regulating AKT/mTOR/HIF1α signaling. Furthermore, mTOR inhibitor can synergize with fasting in inhibiting the proliferation of CRC. These results indicate that FDFT1 is a key downstream target of the fasting response and may be involved in CRC cell glucose metabolism. Our results suggest therapeutic implications in CRC and potential crosstalk between a cholesterogenic gene and glycolysis. The molecular mechanisms underpinning how fasting inhibits tumourigenesis are not completely elucidated. Here, the authors show that fasting upregulates the cholesterogenic gene FDFT1 which leads to decreased AKT/mTOR/HIF1a signalling and glycolysis reduction in colorectal cancer.
Collapse
Affiliation(s)
- Mei-Lin Weng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wan-Kun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang-Yuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Rong Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng-Fei Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ya-Jun Xu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Min Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China.,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Jian-Ping Zhang
- Institute of Modern Physics, Fudan University; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuan-Lin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Science, School of Basic Medical Science, Fudan University, Shanghai, 200032, China. .,Institute of Biomedical Science, Fudan University, Shanghai, 200032, China. .,Children's Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiao-Ping Zhang
- The Institute of Intervention Vessel, Tongji University School of Medicine, Shanghai, 200092, China. .,Shanghai Center of Thyroid Diseases, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Chang-Hong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
67
|
Krstic J, Pieber TR, Prokesch A. Stratifying nutritional restriction in cancer therapy: Next stop, personalized medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:231-259. [PMID: 32475475 DOI: 10.1016/bs.ircmb.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary interventions combined with cancer drugs represent a clinically valid polytherapy. In particular nutrient restriction (NR) in the form of varied fasting or caloric restriction regimens holds great clinical promise, conceptually due to the voracious anabolic appetite of cancer cells. This metabolic dependency is driven by a strong selective pressure to increasingly acquire biomass of a proliferating tumor and can be therapeutically exploited as vulnerability. A host of preclinical data suggest that NR can potentiate the efficacy of, or alleviate resistance to, cancer drugs. However, complicating clinical implementation are the many variables involved, such as host biology, cancer stage and type, oncogenic mutation landscape, tumor heterogeneity, variations in treatment modalities, and patient compliance to NR protocols. This calls for systematic preclinical screens and co-clinical studies to predict effective combinations of NR with cancer drugs and to allow for patient stratification regarding responsiveness to polytherapy. Such screen-and-stratify pipelines should consider tumor heterogeneity as well as the role of immune effectors in the tumor microenvironment and may lead to biomarker discovery advancing the oncology field toward personalized options with improved translatability to clinical settings. This opinion-based review provides a critical overview of recent literature investigating NR for cancer treatment, pinpoints limitations of current studies, and suggests standardizations and refinements for future studies and trials. The proposed measures aim to increase the translational value of preclinical data and effectively harness the vast potential of NR as adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; Health Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
68
|
Fasting Induces Hepatocellular Carcinoma Cell Apoptosis by Inhibiting SET8 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3985089. [PMID: 32273943 PMCID: PMC7115168 DOI: 10.1155/2020/3985089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a life-threatening cancer, and the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signalling pathway plays a crucial role in apoptosis resistance in cancer cells. Fasting is reported to mediate tumour growth reduction and apoptosis. SET8 is involved in cancer proliferation, invasiveness, and migration. However, whether SET8 participates in fasting-mediated apoptosis in HCC remains unclear. Methods We used immunohistochemical staining to analyse the expression of SET8, Keap1, and Nrf2 in HCC tissues. Cell viability, apoptosis, and cellular reactive oxygen species (ROS) were assessed, and Western blot and qPCR analyses were used to examine the expression of Keap1/Nrf2 in HCC cells under fasting, SET8 overexpression, and PGC1α overexpression conditions. Mass spectrometry, coimmunoprecipitation, and confocal microscopy were used to determine whether PGC1α overexpression conditions. Mass spectrometry, coimmunoprecipitation, and confocal microscopy were used to determine whether PGC1In vivo experiments were performed to verify the conclusions from the in vitro experiments. Results Our data indicate that SET8 expression is associated with poor survival in HCC patients. Both in vitro experiments. in vivo experiments were performed to verify the conclusions from the α overexpression conditions. Mass spectrometry, coimmunoprecipitation, and confocal microscopy were used to determine whether PGC1α overexpression conditions. Mass spectrometry, coimmunoprecipitation, and confocal microscopy were used to determine whether PGC1 Conclusions The results of our study demonstrate that fasting induces HCC apoptosis by inhibiting SET8 expression and that SET8 interacts with PGC1α to activate the Nrf2/ARE signalling pathway by inhibiting Keap1 expression.α overexpression conditions. Mass spectrometry, coimmunoprecipitation, and confocal microscopy were used to determine whether PGC1
Collapse
|
69
|
Lorenzato A, Magrì A, Matafora V, Audrito V, Arcella P, Lazzari L, Montone M, Lamba S, Deaglio S, Siena S, Bertotti A, Trusolino L, Bachi A, Di Nicolantonio F, Bardelli A, Arena S. Vitamin C Restricts the Emergence of Acquired Resistance to EGFR-Targeted Therapies in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12030685. [PMID: 32183295 PMCID: PMC7140052 DOI: 10.3390/cancers12030685] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023] Open
Abstract
The long-term efficacy of the Epidermal Growth Factor Receptor (EGFR)-targeted antibody cetuximab in advanced colorectal cancer (CRC) patients is limited by the emergence of drug-resistant (persister) cells. Recent studies in other cancer types have shown that cells surviving initial treatment with targeted agents are often vulnerable to alterations in cell metabolism including oxidative stress. Vitamin C (VitC) is an antioxidant agent which can paradoxically trigger oxidative stress at pharmacological dose. Here we tested the hypothesis that VitC in combination with cetuximab could restrain the emergence of secondary resistance to EGFR blockade in CRC RAS/BRAF wild-type models. We found that addition of VitC to cetuximab impairs the emergence of drug persisters, limits the growth of CRC organoids, and significantly delays acquired resistance in CRC patient-derived xenografts. Mechanistically, proteomic and metabolic flux analysis shows that cetuximab blunts carbohydrate metabolism by blocking glucose uptake and glycolysis, beyond promoting slow but progressive ROS production. In parallel, VitC disrupts iron homeostasis and further increases ROS levels ultimately leading to ferroptosis. Combination of VitC and cetuximab orchestrates a synthetic lethal metabolic cell death program triggered by ATP depletion and oxidative stress, which effectively limits the emergence of acquired resistance to anti-EGFR antibodies. Considering that high-dose VitC is known to be safe in cancer patients, our findings might have clinical impact on CRC patients treated with anti-EGFR therapies.
Collapse
Affiliation(s)
- Annalisa Lorenzato
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Alessandro Magrì
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Vittoria Matafora
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, Milan 20139, Italy; (V.M.); (L.L.); (A.B.)
| | - Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin 10126, Italy; (V.A.); (S.D.)
| | - Pamela Arcella
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Luca Lazzari
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, Milan 20139, Italy; (V.M.); (L.L.); (A.B.)
| | - Monica Montone
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
| | - Simona Lamba
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin 10126, Italy; (V.A.); (S.D.)
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy;
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan 20133, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, Milan 20139, Italy; (V.M.); (L.L.); (A.B.)
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060 (TO), Italy; (A.L.); (A.M.); (P.A.); (M.M.); (S.L.); (A.B.); (L.T.); (F.D.N.); (A.B.)
- Department of Oncology, University of Turin, Candiolo 10060 (TO), Italy
- Correspondence:
| |
Collapse
|
70
|
Antunes F, Pereira GJS, Saito RF, Buri MV, Gagliardi M, Bincoletto C, Chammas R, Fimia GM, Piacentini M, Corazzari M, Smaili SS. Effective Synergy of Sorafenib and Nutrient Shortage in Inducing Melanoma Cell Death through Energy Stress. Cells 2020; 9:E640. [PMID: 32155825 PMCID: PMC7140454 DOI: 10.3390/cells9030640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
Skin melanoma is one of the most aggressive and difficult-to-treat human malignancies, characterized by poor survival rates, thus requiring urgent novel therapeutic approaches. Although metabolic reprogramming has represented so far, a cancer hallmark, accumulating data indicate a high plasticity of cancer cells in modulating cellular metabolism to adapt to a heterogeneous and continuously changing microenvironment, suggesting a novel therapeutic approach for dietary manipulation in cancer therapy. To this aim, we exposed melanoma cells to combined nutrient-restriction/sorafenib. Results indicate that cell death was efficiently induced, with apoptosis representing the prominent feature. In contrast, autophagy was blocked in the final stage by this treatment, similarly to chloroquine, which also enhanced melanoma cell sensitization to combined treatment. Energy stress was evidenced by associated treatment with mitochondrial dysfunction and glycolysis impairment, suggesting metabolic stress determining melanoma cell death. A reduction of tumor growth after cycles of intermittent fasting together with sorafenib treatment was also observed in vivo, reinforcing that the nutrient shortage can potentiate anti-melanoma therapy. Our findings showed that the restriction of nutrients by intermittent fasting potentiates the effects of sorafenib due to the modulation of cellular metabolism, suggesting that it is possible to harness the energy of cancer cells for the treatment of melanoma.
Collapse
Affiliation(s)
- Fernanda Antunes
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Gustavo J. S. Pereira
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Renata F. Saito
- Center for Translational Research in Oncology, Department of Radiology and Oncology, Faculty of Medicine of the University of São Paulo and Cancer Institute of the State of São Paulo, São Paulo 04021-001, Brazil; (R.F.S.); (R.C.)
| | - Marcus V. Buri
- Department of Molecular Biology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil;
| | - Mara Gagliardi
- Department of Health Sciences (DISS), University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
| | - Claudia Bincoletto
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| | - Roger Chammas
- Center for Translational Research in Oncology, Department of Radiology and Oncology, Faculty of Medicine of the University of São Paulo and Cancer Institute of the State of São Paulo, São Paulo 04021-001, Brazil; (R.F.S.); (R.C.)
| | - Gian Maria Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy; (G.M.F.); (M.P.)
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘Lazzaro Spallanzani’, 00149 Rome, Italy; (G.M.F.); (M.P.)
- Institute of Cytology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Marco Corazzari
- Department of Health Sciences (DISS), University of Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), 28100 Novara, Italy
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Federal University of São Paulo, Paulista School of Medicine, São Paulo 04021-001, Brazil; (F.A.); (G.J.S.P.); (C.B.); (S.S.S.)
| |
Collapse
|
71
|
Castejón M, Plaza A, Martinez-Romero J, Fernandez-Marcos PJ, de Cabo R, Diaz-Ruiz A. Energy Restriction and Colorectal Cancer: A Call for Additional Research. Nutrients 2020; 12:E114. [PMID: 31906264 PMCID: PMC7019819 DOI: 10.3390/nu12010114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
: Colorectal cancer has the second highest cancer-related mortality rate, with an estimated 881,000 deaths worldwide in 2018. The urgent need to reduce the incidence and mortality rate requires innovative strategies to improve prevention, early diagnosis, prognostic biomarkers, and treatment effectiveness. Caloric restriction (CR) is known as the most robust nutritional intervention that extends lifespan and delays the progression of age-related diseases, with remarkable results for cancer protection. Other forms of energy restriction, such as periodic fasting, intermittent fasting, or fasting-mimicking diets, with or without reduction of total calorie intake, recapitulate the effects of chronic CR and confer a wide range of beneficial effects towards health and survival, including anti-cancer properties. In this review, the known molecular, cellular, and organismal effects of energy restriction in oncology will be discussed. Energy-restriction-based strategies implemented in colorectal models and clinical trials will be also revised. While energy restriction constitutes a promising intervention for the prevention and treatment of several malignant neoplasms, further investigations are essential to dissect the interplay between fundamental aspects of energy intake, such as feeding patterns, fasting length, or diet composition, with all of them influencing health and disease or cancer effects. Currently, effectiveness, safety, and practicability of different forms of fasting to fight cancer, particularly colorectal cancer, should still be contemplated with caution.
Collapse
Affiliation(s)
- Maria Castejón
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
| | - Adrian Plaza
- Bioactive Products and Metabolic Syndrome Group-BIOPROMET, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (A.P.); (P.J.F.-M.)
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, Institute IMDEA Food (CEI, UAM/CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain;
| | - Pablo Jose Fernandez-Marcos
- Bioactive Products and Metabolic Syndrome Group-BIOPROMET, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (A.P.); (P.J.F.-M.)
| | - Rafael de Cabo
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Alberto Diaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, E-28049 Madrid, Spain; (M.C.); (R.d.C.)
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
72
|
Yadav S, Bhagat SD, Gupta A, Samaiya A, Srivastava A, Shukla S. Dietary-phytochemical mediated reversion of cancer-specific splicing inhibits Warburg effect in head and neck cancer. BMC Cancer 2019; 19:1031. [PMID: 31675998 PMCID: PMC6823945 DOI: 10.1186/s12885-019-6257-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The deregulated alternative splicing of key glycolytic enzyme, Pyruvate Kinase muscle isoenzyme (PKM) is implicated in metabolic adaptation of cancer cells. The splicing switch from normal PKM1 to cancer-specific PKM2 isoform allows the cancer cells to meet their energy and biosynthetic demands, thereby facilitating the cancer cells growth. We have investigated the largely unexplored epigenetic mechanism of PKM splicing switch in head and neck cancer (HNC) cells. Considering the reversible nature of epigenetic marks, we have also examined the utility of dietary-phytochemical in reverting the splicing switch from PKM2 to PKM1 isoform and thereby inhibition of HNC tumorigenesis. METHODS We present HNC-patients samples, showing the splicing-switch from PKM1-isoform to PKM2-isoform analyzed via immunoblotting and qRT-PCR. We performed methylated-DNA-immunoprecipitation to examine the DNA methylation level and chromatin-immunoprecipitation to assess the BORIS (Brother of Regulator of Imprinted Sites) recruitment and polII enrichment. The effect of dietary-phytochemical on the activity of denovo-DNA-methyltransferase-3b (DNMT3B) was detected by DNA-methyltransferase-activity assay. We also analyzed the Warburg effect and growth inhibition using lactate, glucose uptake assay, invasion assay, cell proliferation, and apoptosis assay. The global change in transcriptome upon dietary-phytochemical treatment was assayed using Human Transcriptome Array 2.0 (HTA2.0). RESULTS Here, we report the role of DNA-methylation mediated recruitment of the BORIS at exon-10 of PKM-gene regulating the alternative-splicing to generate the PKM2-splice-isoform in HNC. Notably, the reversal of Warburg effect was achieved by employing a dietary-phytochemical, which inhibits the DNMT3B, resulting in the reduced DNA-methylation at exon-10 and hence, PKM-splicing switch from cancer-specific PKM2 to normal PKM1. Global-transcriptome-analysis of dietary-phytochemical-treated cells revealed its effect on alternative splicing of various genes involved in HNC. CONCLUSION This study identifies the epigenetic mechanism of PKM-splicing switch in HNC and reports the role of dietary-phytochemical in reverting the splicing switch from cancer-specific PKM2 to normal PKM1-isoform and hence the reduced Warburg effect and growth inhibition of HNC. We envisage that this approach can provide an effective way to modulate cancer-specific-splicing and thereby aid in the treatment of HNC.
Collapse
Affiliation(s)
- Sandhya Yadav
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Somnath D Bhagat
- Dept of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Amit Gupta
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Atul Samaiya
- Bansal Hospital, Bhopal, Madhya Pradesh, 462016, India
| | - Aasheesh Srivastava
- Dept of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Dept of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
73
|
Abstract
The way cancer cells utilize nutrients to support their growth and proliferation is determined by cancer cell-intrinsic and cancer cell-extrinsic factors, including interactions with the environment. These interactions can define therapeutic vulnerabilities and impact the effectiveness of cancer therapy. Diet-mediated changes in whole-body metabolism and systemic nutrient availability can affect the environment that cancer cells are exposed to within tumours, and a better understanding of how diet modulates nutrient availability and utilization by cancer cells is needed. How diet impacts cancer outcomes is also of great interest to patients, yet clear evidence for how diet interacts with therapy and impacts tumour growth is lacking. Here we propose an experimental framework to probe the connections between diet and cancer metabolism. We examine how dietary factors may affect tumour growth by altering the access to and utilization of nutrients by cancer cells. Our growing understanding of how certain cancer types respond to various diets, how diet impacts cancer cell metabolism to mediate these responses and whether dietary interventions may constitute new therapeutic opportunities will begin to provide guidance on how best to use diet and nutrition to manage cancer in patients.
Collapse
Affiliation(s)
- Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
74
|
de Groot S, Pijl H, van der Hoeven JJM, Kroep JR. Effects of short-term fasting on cancer treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:209. [PMID: 31113478 PMCID: PMC6530042 DOI: 10.1186/s13046-019-1189-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022]
Abstract
Growing preclinical evidence shows that short-term fasting (STF) protects from toxicity while enhancing the efficacy of a variety of chemotherapeutic agents in the treatment of various tumour types. STF reinforces stress resistance of healthy cells, while tumor cells become even more sensitive to toxins, perhaps through shortage of nutrients to satisfy their needs in the context of high proliferation rates and/or loss of flexibility to respond to extreme circumstances. In humans, STF may be a feasible approach to enhance the efficacy and tolerability of chemotherapy. Clinical research evaluating the potential of STF is in its infancy. This review focuses on the molecular background, current knowledge and clinical trials evaluating the effects of STF in cancer treatment. Preliminary data show that STF is safe, but challenging in cancer patients receiving chemotherapy. Ongoing clinical trials need to unravel if STF can also diminish toxicity and increase efficacy of chemotherapeutic regimes in daily practice.
Collapse
Affiliation(s)
- Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Jacobus J M van der Hoeven
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands.
| |
Collapse
|
75
|
Klement RJ, Pazienza V. Impact of Different Types of Diet on Gut Microbiota Profiles and Cancer Prevention and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E84. [PMID: 30934960 PMCID: PMC6524347 DOI: 10.3390/medicina55040084] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
Abstract
: Diet is frequently considered as a food regimen focused on weight loss, while it is actually the sum of food consumed by the organism. Western diets, modern lifestyle, sedentary behaviors, smoking habits, and drug consumption have led to a significant reduction of gut microbial diversity, which is linked to many non-communicable diseases (NCDs). The latter kill 40 million people each year, equivalent to more than 70% of all deaths globally. Among NCDs, tumors play a major role, being responsible for 29% of deaths from NCDs. A link between diet, microbiota, and cancer prevention and treatment has recently been unveiled, underlining the importance of a new food culture based on limiting dietary surplus and on preferring healthier foods. Here, we review the effects of some of the most popular "cancer-specific" diets on microbiota composition and their potential impact on cancer prevention and treatment.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422 Schweinfurt, Germany.
| | - Valerio Pazienza
- Gastroenterology Unit IRCCS "Casa Sollievo della Sofferenza", Hospital San Giovanni Rotondo, 71013 Foggia, Italy.
| |
Collapse
|
76
|
Bianchi G, Ravera S, Traverso C, Amaro A, Piaggio F, Emionite L, Bachetti T, Pfeffer U, Raffaghello L. Curcumin induces a fatal energetic impairment in tumor cells in vitro and in vivo by inhibiting ATP-synthase activity. Carcinogenesis 2019; 39:1141-1150. [PMID: 29860383 DOI: 10.1093/carcin/bgy076] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
Curcumin has been reported to inhibit inflammation, tumor growth, angiogenesis and metastasis by decreasing cell growth and by inducing apoptosis mainly through the inhibition of nuclear factor kappa-B (NFκB), a master regulator of inflammation. Recent reports also indicate potential metabolic effects of the polyphenol, therefore we analyzed whether and how it affects the energy metabolism of tumor cells. We show that curcumin (10 µM) inhibits the activity of ATP synthase in isolated mitochondrial membranes leading to a dramatic drop of ATP and a reduction of oxygen consumption in in vitro and in vivo tumor models. The effects of curcumin on ATP synthase are independent of the inhibition of NFκB since the IκB Kinase inhibitor, SC-514, does not affect ATP synthase. The activities of the glycolytic enzymes hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase are only slightly affected in a cell type-specific manner. The energy impairment translates into decreased tumor cell viability. Moreover, curcumin induces apoptosis by promoting the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), a marker of lipid oxidation, and autophagy, at least in part due to the activation of the AMP-activated protein kinase (AMPK). According to the in vitro anti-tumor effect, curcumin (30 mg/kg body weight) significantly delayed in vivo cancer growth likely due to an energy impairment but also through the reduction of tumor angiogenesis. These results establish the ATP synthase, a central enzyme of the cellular energy metabolism, as a target of the antitumoral polyphenol leading to inhibition of cancer cell growth and a general reprogramming of tumor metabolism.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Pharmacy, University of Genova, Genova, Italy
| | | | | | | | - Laura Emionite
- Animal Facility, Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Bachetti
- Department of Medical Genetics, Istituto G. Gaslini, Genova, Italy.,Biochemistry Laboratory, University of Genova, Genova, Italy
| | | | | |
Collapse
|
77
|
Song S, Dang M, Kumar M. Anti-inflammatory and renal protective effect of gingerol in high-fat diet/streptozotocin-induced diabetic rats via inflammatory mechanism. Inflammopharmacology 2019; 27:1243-1254. [DOI: 10.1007/s10787-019-00569-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
78
|
Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS. Autophagy and intermittent fasting: the connection for cancer therapy? Clinics (Sao Paulo) 2018; 73:e814s. [PMID: 30540126 PMCID: PMC6257056 DOI: 10.6061/clinics/2018/e814s] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an important goal in cancer research. Macroautophagy (herein referred to as autophagy) is a conserved lysosomal degradation pathway for the intracellular recycling of macromolecules and clearance of damaged organelles and misfolded proteins to ensure cellular homeostasis. Dysfunctional autophagy contributes to many diseases, including cancer. Autophagy can suppress or promote tumors depending on the developmental stage and tumor type, and modulating autophagy for cancer treatment is an interesting therapeutic approach currently under intense investigation. Nutritional restriction is a promising protocol to modulate autophagy and enhance the efficacy of anticancer therapies while protecting normal cells. Here, the description and role of autophagy in tumorigenesis will be summarized. Moreover, the possibility of using fasting as an adjuvant therapy for cancer treatment, as well as the molecular mechanisms underlying this approach, will be presented.
Collapse
Affiliation(s)
- Fernanda Antunes
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Adolfo Garcia Erustes
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Angélica Jardim Costa
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Ana Carolina Nascimento
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | | | - Gustavo José Silva Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Soraya Soubhi Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
79
|
Abstract
The vulnerability of cancer cells to nutrient deprivation and their dependency on specific metabolites are emerging hallmarks of cancer. Fasting or fasting-mimicking diets (FMDs) lead to wide alterations in growth factors and in metabolite levels, generating environments that can reduce the capability of cancer cells to adapt and survive and thus improving the effects of cancer therapies. In addition, fasting or FMDs increase resistance to chemotherapy in normal but not cancer cells and promote regeneration in normal tissues, which could help prevent detrimental and potentially life-threatening side effects of treatments. While fasting is hardly tolerated by patients, both animal and clinical studies show that cycles of low-calorie FMDs are feasible and overall safe. Several clinical trials evaluating the effect of fasting or FMDs on treatment-emergent adverse events and on efficacy outcomes are ongoing. We propose that the combination of FMDs with chemotherapy, immunotherapy or other treatments represents a potentially promising strategy to increase treatment efficacy, prevent resistance acquisition and reduce side effects.
Collapse
Affiliation(s)
- Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
80
|
An Apoptotic and Endosymbiotic Explanation of the Warburg and the Inverse Warburg Hypotheses. Int J Mol Sci 2018; 19:ijms19103100. [PMID: 30308966 PMCID: PMC6213112 DOI: 10.3390/ijms19103100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Otto Warburg, a Nobel prize winner, observed that cancer cells typically “switch” from aerobic to anaerobic respiration. He hypothesized that mitochondrial damage induces neoplastic transformation. In contrast, pathological aging is observed mainly in neuron cells in neurodegenerative diseases. Oxidative respiration is particularly active in neurons. There is inverse comorbidity between cancer and neurodegenerative diseases. This led to the creation of the “inverse Warburg hypothesis”, according to which excessive mitochondrial activity induces pathological aging. The findings of our studies suggest that both the Warburg effect and the “inverse Warburg hypothesis” can be elucidated by the activation or suppression of apoptosis through oxidative respiration. The key outcome of our phylogenetic studies was the discovery that apoptosis and apoptosis-like cell death evolved due to an evolutionary “arms race” conducted between “prey” protomitochondrion and “predator” primitive eukaryotes. The ancestral protomitochondrial machinery produces and releases toxic mitochondrial proteins. Extant apoptotic factors evolved from these toxins. Our experiments indicate that the mitochondrial machinery is directly involved in adaptation to aerobic conditions. Additionally, our hypothesis is supported by the fact that different apoptotic factors are directly involved in respiration.
Collapse
|
81
|
Abstract
Dietary composition and calorie intake are major determinants of health and disease. Calorie restriction promotes metabolic changes that favor tissue regeneration and is arguably the most successful and best-conserved antiaging intervention. Obesity, in contrast, impairs tissue homeostasis and is a major risk factor for the development of diseases including cancer. Stem cells, the central mediators of tissue regeneration, integrate dietary and energy cues via nutrient-sensing pathways to maintain growth or respond to stress. We discuss emerging data on the effects of diet and nutrient-sensing pathways on intestinal stem cells, as well as their potential application in the development of regenerative and therapeutic interventions.
Collapse
Affiliation(s)
- Salvador Alonso
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ömer H. Yilmaz
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
82
|
Wang Y, Wu S, Huang C, Li Y, Zhao H, Kasim V. Yin Yang 1 promotes the Warburg effect and tumorigenesis via glucose transporter GLUT3. Cancer Sci 2018; 109:2423-2434. [PMID: 29869834 PMCID: PMC6113438 DOI: 10.1111/cas.13662] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer cells typically shift their metabolism to aerobic glycolysis to fulfill the demand of energy and macromolecules to support their proliferation. Glucose transporter (GLUT) family‐mediated glucose transport is the pacesetter of aerobic glycolysis and, thus, is critical for tumor cell metabolism. Yin Yang 1 (YY1) is an oncogene crucial for tumorigenesis; however, its role in tumor cell glucose metabolism remains unclear. Here, we revealed that YY1 activates GLUT3 transcription by directly binding to its promoter and, concomitantly, enhances tumor cell aerobic glycolysis. This regulatory effect of YY1 on glucose entry into the cells is critical for YY1‐induced tumor cell proliferation and tumorigenesis. Intriguingly, YY1 regulation of GLUT3 expression, and, subsequently, of tumor cell aerobic glycolysis and tumorigenesis, occurs p53‐independently. Our results also showed that clinical drug oxaliplatin suppresses colon carcinoma cell proliferation by inhibiting the YY1/GLUT3 axis. Together, these results link YY1's tumorigenic potential with the critical first step of aerobic glycolysis. Thus, our novel findings not only provide new insights into the complex role of YY1 in tumorigenesis but also indicate the potential of YY1 as a target for cancer therapy irrespective of the p53 status.
Collapse
Affiliation(s)
- Yali Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Can Huang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yanjun Li
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hezhao Zhao
- Cancer Hospital and Chongqing Cancer Institute, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| |
Collapse
|
83
|
Guidi N, Longo VD. Periodic fasting starves cisplatin-resistant cancers to death. EMBO J 2018; 37:embj.201899815. [PMID: 29875131 DOI: 10.15252/embj.201899815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Novella Guidi
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.,IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| |
Collapse
|
84
|
Lettieri-Barbato D, Aquilano K. Pushing the Limits of Cancer Therapy: The Nutrient Game. Front Oncol 2018; 8:148. [PMID: 29868472 PMCID: PMC5951973 DOI: 10.3389/fonc.2018.00148] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
The standard cancer treatments include chemotherapy, radiotherapy, or their combination, which are generally associated with a multitude of side effects ranging from discomfort to the development of secondary tumors and severe toxicity to multiple systems including immune system. Mounting evidence has highlighted that the fine-tuning of nutrients may selectively sensitize cancer cells to conventional cancer therapies, while simultaneously protecting normal cells from their side effects. Nutrient modulation through diet also improves cancer immunesurveillance in a way that severe immunosuppression could be avoided or even the immune response or immune-based cancer therapies be potentiated also through patient microbiota remodeling. Here, we review recent advances in cancer therapy focusing on the effects of adjuvant dietary interventions (e.g., ketogenic diets, fasting) on the metabolic pathways within cancer cells and tumor environment (e.g., microbiota, immune system, tumor microenvironment) that are involved in cancer progression and resistance as well as cancer cell death. Finally, based on the overall literature data, we designed a nutritional intervention consisting in a plant-based moderate ketogenic diet that could be exploited for future preclinical research in cancer therapy.
Collapse
|
85
|
O'Connell JD, Paulo JA, O'Brien JJ, Gygi SP. Proteome-Wide Evaluation of Two Common Protein Quantification Methods. J Proteome Res 2018; 17:1934-1942. [PMID: 29635916 DOI: 10.1021/acs.jproteome.8b00016] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteomics experiments commonly aim to estimate and detect differential abundance across all expressed proteins. Within this experimental design, some of the most challenging measurements are small fold changes for lower abundance proteins. While bottom-up proteomics methods are approaching comprehensive coverage of even complex eukaryotic proteomes, failing to reliably quantify lower abundance proteins can limit the precision and reach of experiments to much less than the identified-let alone total-proteome. Here we test the ability of two common methods, a tandem mass tagging (TMT) method and a label-free quantitation method (LFQ), to achieve comprehensive quantitative coverage by benchmarking their capacity to measure 3 different levels of change (3-, 2-, and 1.5-fold) across an entire data set. Both methods achieved comparably accurate estimates for all 3-fold-changes. However, the TMT method detected changes that reached statistical significance three times more often due to higher precision and fewer missing values. These findings highlight the importance of refining proteome quantitation methods to bring the number of usefully quantified proteins into closer agreement with the number of total quantified proteins.
Collapse
Affiliation(s)
- Jeremy D O'Connell
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jonathon J O'Brien
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Steven P Gygi
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
86
|
Liu Z, Li L, Xue B. Effect of ganoderic acid D on colon cancer Warburg effect: Role of SIRT3/cyclophilin D. Eur J Pharmacol 2018; 824:72-77. [PMID: 29374515 DOI: 10.1016/j.ejphar.2018.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/31/2017] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
Ganoderic acid D (GAD) is a highly oxygenated tetracyclic triterpenoid. This study aims to assess the effects of GAD on the energy metabolism of colon cancer through the regulation of SIRT3 expression and whether this effect is related to acetylated cyclophilin D. The results demonstrated that GAD inhibits the energy reprogramming of colon cancer cells including glucose uptake, lactate production, pyruvate and acetyl-coenzyme production in colon cancer cells. Meanwhile, GAD upregulated the protein expression of SIRT3. Furthermore, the interruption of SIRT3 expression significantly reversed all the effects of SIRT3 on the energy reprogramming of colon cancer. In addition, GAD induced the deacetylated cyclophilin D (CypD) by SIRT3, whereas SIRT3-shRNA inhibited its combining effect on CypD. The energy reprogramming effects of GAD on colon cancer seem to be mediated by SIRT3 upregulation via acetylated CypD inhibition.
Collapse
Affiliation(s)
- Zhendong Liu
- Tibet Agriculture and Animal Husbandry University, China
| | - Liang Li
- Tibet Agriculture and Animal Husbandry University, China
| | - Bei Xue
- Tibet Agriculture and Animal Husbandry University, China.
| |
Collapse
|
87
|
Ravera S, Podestà M, Sabatini F, Fresia C, Columbaro M, Bruno S, Fulcheri E, Ramenghi LA, Frassoni F. Mesenchymal stem cells from preterm to term newborns undergo a significant switch from anaerobic glycolysis to the oxidative phosphorylation. Cell Mol Life Sci 2018; 75:889-903. [PMID: 28975370 PMCID: PMC11105169 DOI: 10.1007/s00018-017-2665-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
We evaluated the energy metabolism of human mesenchymal stem cells (MSC) isolated from umbilical cord (UC) of preterm (< 37 weeks of gestational age) and term (≥ 37 weeks of gestational age) newborns, using MSC from adult bone marrow as control. A metabolic switch has been observed around the 34th week of gestational age from a prevalently anaerobic glycolysis to the oxidative phosphorylation. This metabolic change is associated with the organization of mitochondria reticulum: preterm MSCs presented a scarcely organized mitochondrial reticulum and low expression of proteins involved in the mitochondrial fission/fusion, compared to term MSCs. These changes seem governed by the expression of CLUH, a cytosolic messenger RNA-binding protein involved in the mitochondria biogenesis and distribution inside the cell; in fact, CLUH silencing in term MSC determined a metabolic fingerprint similar to that of preterm MSC. Our study discloses novel information on the production of energy and mitochondrial organization and function, during the passage from fetal to adult life, providing useful information for the management of preterm birth.
Collapse
Affiliation(s)
- Silvia Ravera
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| | - Marina Podestà
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Fresia
- Section of Biochemistry, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, IRCCS Rizzoli Orthopedic Institute, 40136, Bologna, Italy
| | - Silvia Bruno
- Section of Human Anatomy, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Ezio Fulcheri
- Laboratory Medicine and Diagnostic Services, Division of Perinatal Pathology, Department of Translational Research, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | | | - Francesco Frassoni
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
88
|
Colla R, Izzotti A, De Ciucis C, Fenoglio D, Ravera S, Speciale A, Ricciarelli R, Furfaro AL, Pulliero A, Passalacqua M, Traverso N, Pronzato MA, Domenicotti C, Marengo B. Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oncotarget 2018; 7:70715-70737. [PMID: 27683112 PMCID: PMC5342585 DOI: 10.18632/oncotarget.12209] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma, a paediatric malignant tumor, is initially sensitive to etoposide, a drug to which many patients develop chemoresistance. In order to investigate the molecular mechanisms responsible for etoposide chemoresistance, HTLA-230, a human MYCN-amplified neuroblastoma cell line, was chronically treated with etoposide at a concentration that in vitro mimics the clinically-used dose. The selected cells (HTLA-Chr) acquire multi-drug resistance (MDR), becoming less sensitive than parental cells to high doses of etoposide or doxorubicin. MDR is due to several mechanisms that together contribute to maintaining non-toxic levels of H2O2. In fact, HTLA-Chr cells, while having an efficient aerobic metabolism, are also characterized by an up-regulation of catalase activity and higher levels of reduced glutathione (GSH), a thiol antioxidant compound. The combination of such mechanisms contributes to prevent membrane lipoperoxidation and cell death. Treatment of HTLA-Chr cells with L-Buthionine-sulfoximine, an inhibitor of GSH biosynthesis, markedly reduces their tumorigenic potential that is instead enhanced by the exposure to N-Acetylcysteine, able to promote GSH synthesis. Collectively, these results demonstrate that GSH and GSH-related responses play a crucial role in the acquisition of MDR and suggest that GSH level monitoring is an efficient strategy to early identify the onset of drug resistance and to control the patient's response to therapy.
Collapse
Affiliation(s)
- Renata Colla
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genova, Genova, Italy.,IRCCS AOU San Martino IST Genova, Genova, Italy
| | - Chiara De Ciucis
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Silvia Ravera
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Andrea Speciale
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Nicola Traverso
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
89
|
Wang T, Ning K, Sun X, Zhang C, Jin LF, Hua D. Glycolysis is essential for chemoresistance induced by transient receptor potential channel C5 in colorectal cancer. BMC Cancer 2018; 18:207. [PMID: 29463225 PMCID: PMC5819689 DOI: 10.1186/s12885-018-4123-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/12/2018] [Indexed: 12/23/2022] Open
Abstract
Background Elevated intracellular Ca2+ ([Ca2+]i) level could lead to [Ca2+]i overload and promote apoptosis via different pathways. In our previously study, up-regulated expression of transient receptor potential canonical channel (TRPC5) was proven to increase [Ca2+]i level, and resulted in chemoresistance whereas not apoptosis in human colorectal cancer (CRC) cells. The ATP-dependent homeostatic maintenance of resting [Ca2+]i should be important in this process. Increased glycolysis was found to be an important adenosine triphosphate (ATP) source in cancer. This study aimed to explore the potential mechanism of aerobic glycolysis in transient receptor potential channel TRPC5 induced chemoresistance. Methods In this study, we examined glucose transporter 1 (GLUT1) expression, glucose consumption and celluar ATP production to determine glycolytic activity. Real-time PCR and western blot were analyzed to determine TRPC5 expression at the mRNA and protein levels in human CRC cells (HCT-8, LoVo), and fluorouracil (5-Fu) resistant CRC cells (HCT-8/5-Fu, LoVo/5-Fu). 3-bromopyruvate (3-BP) and 2-Deoxy-D-glucose (2DG) were used to inhibit glycolysis. Glycolytic activity, intracellular Ca2+ ([Ca2+]i) and the half maximal inhibitory concentration of 5-Fu (5-Fu IC50) were measured. Western blot was analyzed to determine cleaved Caspase-3 protein level. Flow cytometry was performed to detect the apoptosis rates. Immunohistochemistry staining was performed to determine TRPC5 and GLUT1 expression level in human CRC tissues. Results Overproduced of TRPC5 and increased glycolysis were found in HCT-8/5-Fu and LoVo/5-Fu than in HCT-8 and LoVo cells. Compared to HCT-8 cells, the HCT-8/5-Fu cells showed higher [Ca2+]i levels which decreased after treated with TRPC5-specific shRNA. Furthemore, inhibition of glycolysis resulted in decreased ATP production, elevation of [Ca2+]i level and cleaved caspase-3, increased apoptotic cells rate, and a remarkable reversal of 5-Fu resistance in HCT-8/5-Fu cells, while showed no effect in HCT-8 cells. BAPTA-AM, a [Ca2+]i chelator, could reduce the elevation of cleaved caspase-3 and increased apoptotic cells rate due to glycolysis inhibition. Advanced CRC patients with high expression of TRPC5/GLUT1 displayed poorer chemotherapy outcome, and notably, the significant association between high TRPC5 expression and chemoresistance is GLUT1 expression level dependent. Conclusions We demonstrated the essential role of glycolysis in TRPC5 induced chemoresistance in human CRC cells via maintaining [Ca2+]i homeostasis.
Collapse
Affiliation(s)
- Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Kuan Ning
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xu Sun
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chun Zhang
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lin-Fang Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214062, China.
| |
Collapse
|
90
|
Sun J, Li J, Guo Z, Sun L, Juan C, Zhou Y, Gu H, Yu Y, Hu Q, Kan Q, Yu Z. Overexpression of Pyruvate Dehydrogenase E1α Subunit Inhibits Warburg Effect and Induces Cell Apoptosis Through Mitochondria-Mediated Pathway in Hepatocellular Carcinoma. Oncol Res 2018; 27:407-414. [PMID: 29444744 PMCID: PMC7848459 DOI: 10.3727/096504018x15180451872087] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most cancers rely disproportionately on glycolysis for energy even in the presence of an adequate oxygen supply, a condition known as “aerobic glycolysis,” or the “Warburg effect.” Pyruvate dehydrogenase E1α subunit (PDHA1) is one of the main factors for the metabolic switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and has been suggested to be closely associated with tumorigenesis. Here we observed that the PDHA1 protein was reduced in hepatocellular carcinoma (HCC) specimens by immunohistochemistry and Western blot, which was significantly associated with poor overall survival. To further analyze the function of PDHA1 in cancer cells, PDHA1 was upregulated in the HCC cell lines SMMC-7721 and HepG2. The results demonstrated that overexpression of the PDHA1 gene inhibited aerobic glycolysis with lower lactate via increased PDH activity; meanwhile, mitochondrial OXPHOS was enhanced accompanied with higher ATP and lower glucose consumption. We also found that apoptosis was promoted and intrinsic pathway proteins were increased in PDHA1-overexpressing cells. Collectively, our data indicate that reduced PDHA1 protein expression is associated with the poor clinical outcome of HCC. Upregulated PDHA1 gene expression can inhibit the Warburg effect and enhance the mitochondria-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Jihong Sun
- Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jingjing Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zhixian Guo
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Lu Sun
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Chenghui Juan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Hongli Gu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yan Yu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Qiuyue Hu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Quancheng' Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zujiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
91
|
Rieger J, Steinbach JP. To diet or not to diet - that is still the question. Neuro Oncol 2018; 18:1035-6. [PMID: 27382118 DOI: 10.1093/neuonc/now131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt, Germany (J.R., J.P.S.); Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany (J.R.)
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt, Germany (J.R., J.P.S.); Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Tübingen, Germany (J.R.)
| |
Collapse
|
92
|
Antunes F, Pereira GJ, Jasiulionis MG, Bincoletto C, Smaili SS. Nutritional shortage augments cisplatin-effects on murine melanoma cells. Chem Biol Interact 2017; 281:89-97. [PMID: 29273566 DOI: 10.1016/j.cbi.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/25/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
Abstract
Melanoma incidence increases every year worldwide and is responsible for 80% of skin cancer deaths. Due to its metastatic potential and resistance to almost any treatments such as chemo, radio, immune and targeted-therapy, the patients still have a poor prognosis, especially at metastatic stage. Considering that, it is crucial to find new therapeutic approaches to overcome melanoma resistance. Here we investigated the effect of cisplatin (CDDP), one of the chemotherapeutic agents used for melanoma treatment, in association with nutritional deprivation in murine melanoma cell lines. Cell death and autophagy were evaluated after the treatment with cisplatin, nutritional deprivation and its association using an in vitro model of murine melanocytes malignant transformation to metastatic melanoma. Our results showed that nutritional deprivation augmented cell death induced by cisplatin in melanoma cells, especially at the metastatic subtype, with slight effects on melanocytes. Mechanistic studies revealed that although autophagy was present at high levels in basal conditions in melanoma cells, was not essential for cell death process that involved mitochondrial damage, reactive oxygen species production and possible glycolysis inhibition. In conclusion, nutritional shortage in combination with chemotherapeutic drugs as cisplatin can be a valuable new therapeutic strategy to overcome melanoma resistance.
Collapse
Affiliation(s)
- F Antunes
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - G J Pereira
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil.
| | - M G Jasiulionis
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - C Bincoletto
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - S S Smaili
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
93
|
Alterations in PGC1α expression levels are involved in colorectal cancer risk: a qualitative systematic review. BMC Cancer 2017; 17:731. [PMID: 29121859 PMCID: PMC5679491 DOI: 10.1186/s12885-017-3725-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is a major global public health problem and the second leading cause of cancer-related death. Mitochondrial dysfunction has long been suspected to be involved in this type of tumorigenesis, as supported by an accumulating body of research evidence. However, little is known about how mitochondrial alterations contribute to tumorigenesis. Mitochondrial biogenesis is a fundamental cellular process required to maintain functional mitochondria and as an adaptive mechanism in response to changing energy requirements. Mitochondrial biogenesis is regulated by peroxisome proliferator-activated receptor gamma coactivator 1-α (PPARGC1A or PGC1α). In this paper, we report a systematic review to summarize current evidence on the role of PGC1α in the initiation and progression of CRC. The aim is to provide a basis for more comprehensive research. Methods The literature search, data extraction and quality assessment were performed according to the document Guidance on the Conduct of Narrative Synthesis in Systematic Reviews and the PRISMA declaration. Results The studies included in this review aimed to evaluate whether increased or decreased PGC1α expression affects the development of CRC. Each article proposes a possible molecular mechanism of action and we create two concept maps. Conclusion Our systematic review indicates that altered expression of PGC1α modifies CRC risk. Most studies showed that overexpression of this gene increases CRC risk, while some studies indicated that lower than normal expression levels could increase CRC risk. Thus, various authors propose PGC1α as a good candidate molecular target for cancer therapy. Reducing expression of this gene could help to reduce risk or progression of CRC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3725-3) contains supplementary material, which is available to authorized users.
Collapse
|
94
|
Klement RJ. Fasting, Fats, and Physics: Combining Ketogenic and Radiation Therapy against Cancer. Complement Med Res 2017; 25:102-113. [DOI: 10.1159/000484045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiotherapy (RT) is a mainstay in the treatment of solid tumors and works by physicochemical reactions inducing oxidative stress in cells. Because in practice the efficacy of RT is limited by its toxicity to normal tissues, any strategy that selectively increases the radiosensitivity of tumor cells or boosts the radioresistance of normal cells is a valuable adjunct to RT. In this review, I summarize preclinical and clinical data supporting the hypothesis that ketogenic therapy through fasting and/or ketogenic diets can be utilized as such an adjunct in order to improve the outcome after RT, in terms of both higher tumor control and lower normal-tissue complication probability. The first effect relates to the metabolic shift from glycolysis towards mitochondrial metabolism, which selectively increases reactive oxygen species (ROS) production and impairs adenoside triphosphate (ATP) production in tumor cells. The second effect is based on the differential stress resistance phenomenon describing the reprogramming of normal cells, but not tumor cells, from proliferation towards maintenance and stress resistance when glucose and growth factor levels are decreased and ketone body levels are elevated. Underlying both effects are metabolic differences between normal and tumor cells. Ketogenic therapy is a non-toxic and cost-effective complementary treatment option that exploits these differences and deserves further clinical investigation.
Collapse
|
95
|
Abstract
PURPOSE Radiotherapy (RT) is a mainstay in the treatment of solid tumors and works by inducing free radical stress in tumor cells, leading to loss of reproductive integrity. The optimal treatment strategy has to consider damage to both tumor and normal cells and is determined by five factors known as the 5 R's of radiobiology: Reoxygenation, DNA repair, radiosensitivity, redistribution in the cell cycle and repopulation. The aim of this review is (i) to present evidence that these 5 R's are strongly influenced by cellular and whole-body metabolism that in turn can be modified through ketogenic therapy in form of ketogenic diets and short-term fasting and (ii) to stimulate new research into this field including some research questions deserving further study. CONCLUSIONS Preclinical and some preliminary clinical data support the hypothesis that ketogenic therapy could be utilized as a complementary treatment in order to improve the outcome after RT, both in terms of higher tumor control and in terms of lower normal tissue complication probability. The first effect relates to the metabolic shift from glycolysis toward mitochondrial metabolism that selectively increases ROS production and impairs ATP production in tumor cells. The second effect is based on the differential stress resistance phenomenon, which is achieved when glucose and growth factors are reduced and ketone bodies are elevated, reprogramming normal but not tumor cells from proliferation toward maintenance and stress resistance. Underlying both effects are metabolic differences between normal and tumor cells that ketogenic therapy seeks to exploit. Specifically, the recently discovered role of the ketone body β-hydroxybutyrate as an endogenous class-I histone deacetylase inhibitor suggests a dual role as a radioprotector of normal cells and a radiosensitzer of tumor cells that opens up exciting possibilities to employ ketogenic therapy as a cost-effective adjunct to radiotherapy against cancer.
Collapse
Affiliation(s)
- Rainer J Klement
- a Department of Radiotherapy and Radiation Oncology , Leopoldina Hospital , Schweinfurt , Germany
| |
Collapse
|
96
|
Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res Rev 2017; 39:68-77. [PMID: 28216454 DOI: 10.1016/j.arr.2017.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/09/2023]
Abstract
Reduced caloric intake including fasting, as well as the dietary composition or the timing of food intake, impact longevity, likely through a modification in the onset or the severity of chronic aging-related diseases such as cancer. As with pre- and post-operative dietary recommendations, evidence-based nutritional advice from healthcare professionals during and after cancer treatment is often vague or conflicting. We hypothesize that preventive dietary recommendations can help in the context of both chronic cancer treatment efficacy and the avoidance of development of secondary malignancies, as well as in the context of protection from the acute stress of surgery. In this perspective review, we will discuss the latest findings on the potential role of short-term dietary restriction in cancer treatment and improvement of surgical outcome.
Collapse
|
97
|
Ferraresi A, Titone R, Follo C, Castiglioni A, Chiorino G, Dhanasekaran DN, Isidoro C. The protein restriction mimetic Resveratrol is an autophagy inducer stronger than amino acid starvation in ovarian cancer cells. Mol Carcinog 2017; 56:2681-2691. [PMID: 28856729 DOI: 10.1002/mc.22711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
Abstract
The potential benefit of nutrient starvation in the prevention and treatment of cancer is presently under consideration. Resveratrol (RV), a dietary polyphenol acting as a protein (caloric) restriction mimetic, could substitute for amino acid starvation. The effects of starvation and of caloric restriction are mediated, among others, by autophagy, a process that contributes to cell homeostasis by promoting the lysosomal degradation of damaged and redundant self-constituents. Up-regulation of autophagy favors cell survival under nutrient shortage situation, and may drive cancer cells into a non-replicative, dormant state. Both RV and amino acid starvation effectively induced the aminoacid response and autophagy. These processes were associated with inhibition of the mTOR pathway and disruption of the BECLIN1-BCL-2 complex. The number of transcripts positively impinging on the autophagy pathway was higher in RV-treated than in starved cancer cells. Consistent with our data, it appears that RV treatment is more effective than and can substitute for starvation for inducing autophagy in cancer cells. The present findings are clinically relevant because of the potential therapeutic implications.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Rossella Titone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
98
|
Ravera S, Cossu V, Tappino B, Nicchia E, Dufour C, Cavani S, Sciutto A, Bolognesi C, Columbaro M, Degan P, Cappelli E. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells. J Cell Physiol 2017; 233:1736-1751. [PMID: 28681917 DOI: 10.1002/jcp.26085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Vanessa Cossu
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Barbara Tappino
- Centro di Diagnostica Genetica e Biochimica Delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Elena Nicchia
- Department of Medical Sciences University of Trieste, Trieste, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Cavani
- Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genova, Italy
| | - Andrea Sciutto
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Paolo Degan
- U.O. Mutagenesi e Prevenzione Oncologica, IRCCS AOU San Martino-IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | | |
Collapse
|
99
|
Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, Yuan Y, Liu J, Li H, Zhang M, Ji Z, Fan D, Wen J, Goscinski MA, Yuan L, Hao B, Nesland JM, Suo Z. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget 2017; 8:13344-13356. [PMID: 28076853 PMCID: PMC5355102 DOI: 10.18632/oncotarget.14527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Cells generate adenosine-5′-triphosphate (ATP), the major currency for energy-consuming reactions, through mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis. One of the remarkable features of cancer cells is aerobic glycolysis, also known as the “Warburg Effect”, in which cancer cells rely preferentially on glycolysis instead of mitochondrial OXPHOS as the main energy source even in the presence of high oxygen tension. One of the main players in controlling OXPHOS is the mitochondrial gatekeeperpyruvate dehydrogenase complex (PDHc) and its major subunit is E1α (PDHA1). To further analyze the function of PDHA1 in cancer cells, it was knock out (KO) in the human prostate cancer cell line LnCap and a stable KO cell line was established. We demonstrated that PDHA1 gene KO significantly decreased mitochondrial OXPHOS and promoted anaerobic glycolysis, accompanied with higher stemness phenotype including resistance to chemotherapy, enhanced migration ability and increased expression of cancer stem cell markers. We also examined PDHA1 protein expression in prostate cancer tissues by immunohistochemistry and observed that reduced PDHA1 protein expression in clinical prostate carcinomas was significantly correlated with poor prognosis. Collectively, our results show that negative PDHA1 gene expressionis associated with significantly higher cell stemness in prostate cancer cells and reduced protein expression of this gene is associated with shorter clinical outcome in prostate cancers.
Collapse
Affiliation(s)
- Yali Zhong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yasai Ji
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoran Li
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yaqing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dandan Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuan Yuan
- Department of Pathology, Capital Medical University, Beijing, China
| | - Jian Liu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou
| | - Jianguo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Mariusz Adam Goscinski
- Department of Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Long Yuan
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Hao
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jahn M Nesland
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway.,Department of Pathology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
100
|
Sun P, Wang H, He Z, Chen X, Wu Q, Chen W, Sun Z, Weng M, Zhu M, Ma D, Miao C. Fasting inhibits colorectal cancer growth by reducing M2 polarization of tumor-associated macrophages. Oncotarget 2017; 8:74649-74660. [PMID: 29088814 PMCID: PMC5650369 DOI: 10.18632/oncotarget.20301] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022] Open
Abstract
Dietary restriction has been recognized as a healthy and natural therapy for cancer. It is reported that different forms of dietary restriction can promote anti-tumor immunity. However, it is not clear how fasting affects tumor-associated macrophages (TAMs). This study aims to investigate the relationship between fasting and antitumor immunity in terms of tumor-associated macrophages. In vivo, the results showed that alternate day fasting for 2 weeks inhibitted the tumor growth of mice without causing a reduction of body weight. Meanwhile, M2 polarization of tumor-associated macrophages in tumor tissues of alternate day fasting group was also decreased. In vitro, fasting induced the autophagy of CT26 cells, decreased the generation of extracellular adenosine by supressing the expression of CD73 in CT26 cells. Decreasing adenosine inhibitted M2 polarization of RAW264.7 cells through inactivating JAK1/STAT3 signal pathway in fasting condition. Eventually, the proliferation of CT26 cancer cells declined on account of fasting-facilitated antitumor immunity. These results suggested that fasting suppressed M2 polarization of tumor-associated macrophages to inhibit tumor growth through decreasing the level of adenosine in the tumor microenvironment both in vivo and in vitro. This process was associated with increasing autophagy of tumor cells.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huihui Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiyong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangyuan Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qichao Wu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhirong Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meilin Weng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minmin Zhu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|