51
|
Cornier MA, Melanson EL, Salzberg AK, Bechtell JL, Tregellas JR. The effects of exercise on the neuronal response to food cues. Physiol Behav 2011; 105:1028-34. [PMID: 22155218 DOI: 10.1016/j.physbeh.2011.11.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023]
Abstract
Increased physical activity is associated with successful long-term weight loss maintenance due to mechanisms likely more complex than simply increased energy expenditure. The impact of physical activity on the central regulation of food intake may be an important mechanism of this effect. The objective of this study was to examine the effects of exercise training and acute exercise on the neuronal response to food cues as well as eating behaviors. fMRI was performed in the fasted state at baseline and again after a 6 month progressive exercise intervention (supervised, 5 days/wk) both with and without an acute exercise bout in 12 overweight/obese (5 women, 7 men; BMI 33 ± 4 kg/m(2)) healthy adults. fMRI data were acquired while subjects were presented with visual stimuli of foods of high hedonic value as compared to neutral control objects. Questionnaires on eating behaviors, ratings of appeal and desire for foods, and ratings of appetite (hunger, satiety, prospective intake) using visual analog scales were also performed at baseline and again after the 6-month exercise intervention. While only a trend was observed for a reduction in body weight (102 ± 5 to 99 ± 6 kg, p=0.09), a significant reduction in fat mass was observed (36.4 ± 2.8 to 33.7 ± 3.2 kg, p=0.04), although as expected changes in fat mass were variable (-10.0 to +3.7 kg). Chronic exercise was associated with a reduction in the neuronal response to food, primarily in the posterior attention network and insula. A significant positive correlation between the change in fat/body mass and the change in insula response to food cues with chronic exercise was observed. An acute exercise bout attenuated the effects of chronic exercise. The exercise intervention, however, did not impact any of the measures of appetitive behavior. In summary, despite no effects on behavioral measures of appetite, chronic exercise training was associated with attenuation in the response to visual food cues in brain regions known to be important in food intake regulation. The insula, in particular, appears to play an important role in the potential exercise-induced weight loss and weight loss maintenance.
Collapse
Affiliation(s)
- Marc-Andre Cornier
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
52
|
Deibert P, Solleder F, König D, Vitolins MZ, Dickhuth HH, Gollhofer A, Berg A. Soy protein based supplementation supports metabolic effects of resistance training in previously untrained middle aged males. Aging Male 2011; 14:273-9. [PMID: 22066824 DOI: 10.3109/13685538.2011.565091] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To determine changes in body composition, physical performance, metabolic and hormonal parameters induced by lifestyle counselling, resistance training and resistance training with soy protein based supplemention in middle aged males. DESIGN Randomised controlled study consisting of resistance training without (RT-G) or with (RTS-G) a soy protein based supplement and a control group with lifestyle education only (LE-G). SUBJECTS Forty healthy middle aged men (50-65 years, BMI 25-29.9 kg/m2). MEASUREMENTS Changes in body weight (BW) and waist circumference (WC) were measured and body composition (BC), fat mass (FM), lean body mass (LBM) were measured by skin fold anthropometry at baseline and after 12 weeks of intervention. In addition, changes in physical fitness, metabolic and hormonal parameters (lipids, glucose, fructosamines, insulin, insulin-like growth factor-1, Leptin, human growth hormone, dehydroepiandrosterone, testosterone, hs-CRP, Il-6) were evaluated. RESULTS Thirty-five participants completed the 12 week study. No significant changes in BW were noted although RM and WC dropped and LBM increased after training, particularly in the RTS group (FM 22.6 ± 5.5 kg to 21.2 ± 4.7 kg; LBM 68.5 ± 7.2 kg to 70.1 ± 7.4; p < 0.01). Subjects in the RTS group experienced more pronounced improvements in the strength measurements than the RT group. After the training intervention there were significant changes in hormonal and metabolic parameters as well as in glycemic control, particularly in the RTS group. CONCLUSIONS Our data suggest that resistance training, particularly in combination with a soy protein based supplement improves body composition and metabolic function in middle aged untrained and moderately overweight males.
Collapse
Affiliation(s)
- Peter Deibert
- Department of Rehabilitative and Preventive Sports Medicine, University Hospital, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Lira FS, Yamashita AS, Rosa JC, Tavares FL, Caperuto E, Carnevali LC, Pimentel GD, Santos RV, Batista ML, Laviano A, Rossi-Fanelli F, Seelaender M. Hypothalamic inflammation is reversed by endurance training in anorectic-cachectic rats. Nutr Metab (Lond) 2011; 8:60. [PMID: 21861927 PMCID: PMC3257200 DOI: 10.1186/1743-7075-8-60] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/24/2011] [Indexed: 11/25/2022] Open
Abstract
Aim We tested the effects of a cancer cachexia-anorexia sydrome upon the balance of anti and pro-inflammatory cytokines in the hypothalamus of sedentary or trained tumour-bearing (Walker-256 carcinosarcoma) rats. Methods Animals were randomly assigned to a sedentary control (SC), sedentary tumour-bearing (ST), and sedentary pair-fed (SPF) groups or, exercised control (EC), exercised tumour-bearing (ET) and exercised pair-fed (EPF) groups. Trained rats ran on a treadmill (60%VO2max) for 60 min/d, 5 days/wk, for 8 wks. We evaluated food intake, leptin and cytokine (TNF-α, IL1β) levels in the hypothalamus. Results The cumulative food intake and serum leptin concentration were reduced in ST compared to SC. Leptin gene expression in the retroperitoneal adipose tissue (RPAT) was increased in SPF in comparison with SC and ST, and in the mesenteric adipose tissue (MEAT) the same parameter was decreased in ST in relation to SC. Leptin levels in RPAT and MEAT were decreased in ST, when compared with SC. Exercise training was also able to reduce tumour weight when compared to ST group. In the hypothalamus, IL-1β and IL-10 gene expression was higher in ST than in SC and SPF. Cytokine concentration in hypothalamus was higher in ST (TNF-α and IL-1β, p < 0.05), compared with SC and SPF. These pro-inflammatory cytokines concentrations were restored to control values (p < 0.05), when the animals were submitted to endurance training. Conclusion Cancer-induced anorexia leads towards a pro-inflammatory state in the hypothalamus, which is prevented by endurance training which induces an anti-inflammatory state, with concomitant decrease of tumour weight.
Collapse
Affiliation(s)
- Fábio S Lira
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP - Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Steig AJ, Jackman MR, Giles ED, Higgins JA, Johnson GC, Mahan C, Melanson EL, Wyatt HR, Eckel RH, Hill JO, MacLean PS. Exercise reduces appetite and traffics excess nutrients away from energetically efficient pathways of lipid deposition during the early stages of weight regain. Am J Physiol Regul Integr Comp Physiol 2011; 301:R656-67. [PMID: 21715696 DOI: 10.1152/ajpregu.00212.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of regular exercise on energy balance, fuel utilization, and nutrient availability, during weight regain was studied in obese rats, which had lost 17% of their weight by a calorie-restricted, low-fat diet. Weight reduced rats were maintained for 6 wk with and without regular treadmill exercise (1 h/day, 6 days/wk, 15 m/min). In vivo tracers and indirect calorimetry were then used in combination to examine nutrient metabolism during weight maintenance (in energy balance) and during the first day of relapse when allowed to eat ad libitum (relapse). An additional group of relapsing, sedentary rats were provided just enough calories to create the same positive energy imbalance as the relapsing, exercised rats. Exercise attenuated the energy imbalance by 50%, reducing appetite and increasing energy requirements. Expenditure increased beyond the energetic cost of the exercise bout, as exercised rats expended more energy to store the same nutrient excess in sedentary rats with the matched energy imbalance. Compared with sedentary rats with the same energy imbalance, exercised rats exhibited the trafficking of dietary fat toward oxidation and away from storage in adipose tissue, as well as a higher net retention of fuel via de novo lipogenesis in adipose tissue. These metabolic changes in relapse were preceded by an increase in the skeletal muscle expression of genes involved in lipid uptake, mobilization, and oxidation. Our observations reveal a favorable shift in fuel utilization with regular exercise that increases the energetic cost of storing excess nutrients during relapse and alterations in circulating nutrients that may affect appetite. The attenuation of the biological drive to regain weight, involving both central and peripheral aspects of energy homeostasis, may explain, in part, the utility of regular exercise in preventing weight regain after weight loss.
Collapse
Affiliation(s)
- Amy J Steig
- Center for Human Nutrition, University of Colorado Denver, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Noradrenergic projections to the ventromedial hypothalamus regulate fat metabolism during endurance exercise. Neuroscience 2011; 190:239-50. [PMID: 21640797 DOI: 10.1016/j.neuroscience.2011.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 11/22/2022]
Abstract
The regulation of energy metabolism by the central nervous system during endurance exercise was examined. We conducted respiratory gas analysis by functionally paralyzing the ventromedial hypothalamus (VMH), the lateral hypothalamic area, and the paraventricular nucleus of the hypothalamus with local anaesthetic (lidocaine) during treadmill running at a velocity that allowed for efficient fatty acid oxidation. Our results showed that only the lidocaine treatment of the VMH attenuated fatty acid oxidation during endurance exercise. The monoaminergic neural activities at these nuclei during in vivo microdialysis in rats under the same conditions indicated a significant increase in the extracellular concentration of noradrenaline in all nuclei. Similarly, a significant increase in dopamine occurred at some points during exercise, but no change in serotonin concentration occurred regardless of exercise. Disruption of noradrenergic projections to the VMH by 6-hydroxydopamine attenuated the enhancement of fat oxidation during running. Blocker treatments clarified that noradrenergic inputs to the VMH are mediated by β-adrenoceptors. These data indicate that information about peripheral tissues status is transmitted via noradrenergic projections originating in the medulla oblongata, which may be an important contribution by the VMH and its downstream mechanisms to enhanced fatty acid oxidation during exercise.
Collapse
|
56
|
Differential effects of treadmill exercise in early and chronic diabetic stages on parvalbumin immunoreactivity in the hippocampus of a rat model of type 2 diabetes. Neurochem Res 2011; 36:1526-32. [PMID: 21516442 DOI: 10.1007/s11064-011-0480-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2011] [Indexed: 12/23/2022]
Abstract
In the present study, we investigated the effects of treadmill exercise in early and chronic diabetic stages on parvalbumin (PV) immunoreactivity in the subgranular zone of the dentate gyrus of Zucker diabetic fatty (ZDF) and its lean control rats (ZLC). To investigate the effects, ZLC and ZDF rats at 6 or 23 weeks of age were put on a treadmill with or without running for 1 h/day/5 consecutive days at 16-22 m/min for 5 weeks or 12-16 m/min for 7 weeks, respectively. Physical exercise in pre-diabetic rats prevented onset of diabetes, while exercise in rats at chronic diabetic stage significantly reduced blood glucose levels. In addition, physical exercise in the pre-diabetic rats significantly increased PV immunoreactive fibers in the strata oriens and radiatum of the CA1-3 region and in the polymorphic and molecular layers of the dentate gyrus compared to that in sedentary controls. However, in rats at chronic stages, PV immunoreactivity was slightly increased in the CA1-3 region as well as in the dentate gyrus compared to that in the sedentary controls. These results suggest that physical exercise has differential effects on blood glucose levels and PV immunoreactivity according to diabetic stages. Early exercise improves diabetic phenotype and PV immunoreactive fibers in the rat hippocampus.
Collapse
|
57
|
Abstract
Energy homeostasis involves a complex network of hypothalamic and extra-hypothalamic neurons that transduce hormonal, nutrient and neuronal signals into responses that ultimately match caloric intake to energy expenditure and thereby promote stability of body fat stores. Growing evidence suggests that rather than reflecting a failure to regulate caloric intake, common forms of obesity involve fundamental changes to this homeostatic system that favor the defense of an elevated level of body adiposity. This article reviews emerging evidence that during high-fat feeding, obesity pathogenesis involves fundamental alteration of hypothalamic systems that regulate food intake and energy expenditure.
Collapse
|
58
|
The role of oestrogen in the pathogenesis of obesity, type 2 diabetes, breast cancer and prostate disease. Eur J Cancer Prev 2011; 19:256-71. [PMID: 20535861 DOI: 10.1097/cej.0b013e328338f7d2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A detailed review of the literature was performed in a bid to identify the presence of a common link between specific hormone interactions and the increasing prevalence of global disease. The synergistic action of unopposed oestrogen and leptin, compounded by increasing insulin, cortisol and xeno-oestrogen exposure directly initiate, promote and exacerbate obesity, type 2 diabetes, uterine overgrowth, prostatic enlargement, prostate cancer and breast cancer. Furthermore these hormones significantly contribute to the incidence and intensity of anxiety and depression, Alzheimer's disease, heart disease and stroke. This review, in collaboration with hundreds of evidence-based clinical researchers, correlates the significant interactions these hormones exert upon the upregulation of p450 aromatase, oestrogen, leptin and insulin receptor function; the normal status quo of their binding globulins; and how adduct formation alters DNA sequencing to ultimately produce an array of metabolic conditions ranging from menopausal symptoms and obesity to Alzheimer's disease and breast and prostate cancer. It reveals the way that poor diet, increased stress, unopposed endogenous oestrogens, exogenous oestrogens, pesticides, xeno-oestrogens and leptin are associated with increased aromatase activity, and how its products, increased endogenous oestrogen and lowered testosterone, are associated with obesity, type 2 diabetes, Alzheimer's disease and oestrogenic disease. This controversial break-through represents a paradigm shift in medical thinking, which can prevent the raging pandemic of diabetes, obesity and cancer currently sweeping the world, and as such, it will reshape health initiatives, reduce suffering, prevent waste of government expenditure and effectively transform preventative medicine and global health care for decades.
Collapse
|
59
|
Zoppi CC, Calegari VC, Silveira LR, Carneiro EM, Boschero AC. Exercise training enhances rat pancreatic islets anaplerotic enzymes content despite reduced insulin secretion. Eur J Appl Physiol 2011; 111:2369-74. [PMID: 21287194 DOI: 10.1007/s00421-011-1842-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/14/2011] [Indexed: 01/09/2023]
Abstract
Endurance exercise has been shown to reduce pancreatic islets glucose-stimulated insulin secretion (GSIS). Anaplerotic/cataplerotic pathways are directly related to GSIS signaling. However, the effect of endurance training upon pancreatic islets anaplerotic enzymes is still unknown. In this sense, we tested the hypothesis that endurance exercise decreases GSIS by reducing anaplerotic/cataplerotic enzymes content. Male Wistar rats were randomly assigned to one of the four experimental groups as follows: control sedentary group (CTL), trained 1 day per week (TRE1×), trained 3 days per week (TRE3×) and trained 5 days per week (TRE5x) and submitted to an 8 weeks endurance-training protocol. After the training protocol, pancreatic islets were isolated and incubated with basal (2.8 mM) and stimulating (16.7 mM) glucose concentrations for GSIS measurement by radioimmunoassay. In addition, pyruvate carboxylase (PYC), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), ATP-citrate lyase (ACL) and glutamate dehydrogenase (GDH) content were quantified by western blotting. Our data showed that 8 weeks of chronic endurance exercise reduced GSIS by 50% in a dose-response manner according to weekly exercise frequency. PYC showed significant twofold increase in TRE3×. PYC enhancement was even higher in TRE5× (p < 0.0001). PDH and PDK4 reached significant 25 and 50% enhancement, respectively compared with CTL. ACL and GDH also reported significant 50 and 75% increase, respectively. The absence of exercise-induced correlations among GSIS and anaplerotic/cataplerotic enzymes suggests that exercise may control insulin release by activating other signaling pathways. The observed anaplerotic and cataplerotic enzymes enhancement might be related to β-cell surviving rather than insulin secretion.
Collapse
Affiliation(s)
- Claudio C Zoppi
- Department of Anatomy, Cellular Biology and Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), P.O. Box 6109, Campinas, SP, CEP: 13083-865, Brazil.
| | | | | | | | | |
Collapse
|
60
|
Da Silva ASR, Pauli JR, Ropelle ER, Oliveira AG, Cintra DE, De Souza CT, Velloso LA, Carvalheira JBC, Saad MJA. Exercise intensity, inflammatory signaling, and insulin resistance in obese rats. Med Sci Sports Exerc 2010; 42:2180-2188. [PMID: 20473230 DOI: 10.1249/mss.0b013e3181e45d08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate the effects of intensity of exercise on insulin resistance and the expression of inflammatory proteins in the skeletal muscle of diet-induced obese (DIO) rats after a single bout of exercise. METHODS In the first exercise protocol, the rats swam for two 3-h bouts, separated by a 45-min rest period (with 6 h in duration--O + EXE), and in the second protocol, the rats were exercised with 45 min of swimming at 70% of the maximal lactate steady state--SS (DIO + MLSS). RESULTS Our data demonstrated that both protocols of exercise increased insulin sensitivity and increased insulin-stimulated tyrosine phosphorylation of insulin receptor and insulin receptor substrate 1 and serine phosphorylation of protein kinase B in the muscle of DIO rats by the same magnitude. In parallel, both exercise protocols also reduced protein tyrosine phosphatase 1B activity and insulin receptor substrate 1 serine phosphorylation, with concomitant reduction in c-jun N-terminal kinase and IJB kinase activities in the muscle of DIO rats in a similar fashion. CONCLUSIONS Thus, our data demonstrate that either exercise protocols with low intensity and high volume or exercise with moderate intensity and low volume represents different strategies to restore insulin sensitivity with the same efficacy.
Collapse
Affiliation(s)
- Adelino S R Da Silva
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Effect of treadmill exercise on blood glucose, serum corticosterone levels and glucocorticoid receptor immunoreactivity in the hippocampus in chronic diabetic rats. Neurochem Res 2010; 36:281-7. [PMID: 21076867 DOI: 10.1007/s11064-010-0315-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
Abnormal excess of glucocorticoid is one of feature characteristics in type 2 diabetes. In the present study, we investigated the effect of treadmill exercise at chronic diabetic stages on glucocorticoid receptor (GR) immunoreactivity in the hippocampal CA1 region and dentate gyrus, which are very vulnerable to diabetes. For this study, we used Zucker diabetic fatty (ZDF) rats and Zucker lean control (ZLC) rats. Twenty-three-week-old ZLC and ZDF rats were put on the treadmill with or without running for 7 weeks and sacrificed at 30 weeks of age. Treadmill exercise significantly decreased diabetes-induced blood glucose and serum corticosteroid levels although they did not drop to control levels. In sedentary ZLC rats, GR immunoreactivity was detected in pyramidal cells of the CA1 region as well as in granule cells of the dentate gyrus. In the sedentary ZDF rats, GR immunoreactivity was significantly increased in these regions. However, treadmill exercise significantly decreased GR immunoreactivity in these regions. These results indicate that treadmill exercise in chronic diabetic rats significantly decreased GR immunoreactivity in the hippocampal CA1 region and dentate gyrus, although blood glucose and serum corticosteroid levels did not fully recover to normal state.
Collapse
|
62
|
Hsu YW, Pan YJ, Cho YM, Liou TH, Chou P, Wang PS. Aging effects on exercise-induced alternations in plasma acylated ghrelin and leptin in male rats. Eur J Appl Physiol 2010; 111:809-17. [DOI: 10.1007/s00421-010-1704-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2010] [Indexed: 01/06/2023]
|
63
|
Kay EJ, Northstone K, Ness A, Duncan K, Crean SJ. Is there a relationship between birthweight and subsequent growth on the development of dental caries at 5 years of age? A cohort study. Community Dent Oral Epidemiol 2010; 38:408-14. [PMID: 20545719 DOI: 10.1111/j.1600-0528.2010.00548.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine the associations between childhood growth and the presence of dental caries at age 5. METHODS Data from the Avon Longitudinal Study of Parents and Children (ALSPAC) a population-based, prospective cohort study were used. We enrolled 14,541 pregnancies, and a 10% sample of these were dentally examined and measured at 61 months of age. Birthweight was obtained from medical records, and birth length and birthweight were assessed by trained ALSPAC measurers. A number of social and lifestyle factors were treated as potential confounding factors. RESULTS Of 985, children, 242 (24.6%) had caries at 61 months of age. After adjustment, increased weight at birth was associated with a small increased risk of caries at 61 months (OR: 1.08 (95% CI: 1.03, 1.13) per 100 g increase, P = 0.002). A similar association was noted with respect to increased length at birth. Current weight and height did not appear to be associated with caries risk. Children who had caries at 61 months had slower increases in weight and height between birth and 61 months than those without decay at 61 months. CONCLUSIONS The weak associations we have demonstrated between weight and length at birth and risk of caries at age 61 months cannot be considered causal, however, the relationship between the two variables warrants further investigation.
Collapse
Affiliation(s)
- Elizabeth Jane Kay
- Peninsula Dental School, Peninsula College of Medicine & Dentistry, Plymouth, UK.
| | | | | | | | | |
Collapse
|
64
|
Shapiro A, Cheng KY, Gao Y, Seo DO, Anton S, Carter CS, Zhang Y, Tumer N, Scarpace PJ. The act of voluntary wheel running reverses dietary hyperphagia and increases leptin signaling in ventral tegmental area of aged obese rats. Gerontology 2010; 57:335-42. [PMID: 20881371 PMCID: PMC3130980 DOI: 10.1159/000321343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 06/23/2010] [Indexed: 12/24/2022] Open
Abstract
To test the hypothesis that exercise increases central leptin signaling, and thus reduces dietary weight gain in an aged obese model, we assessed the effects of voluntary wheel running (WR) in 23-month-old F344×BN rats fed a 60% high-fat (HF) diet for 3 months. After 2 months on the HF diet, half of the rats were provided access to running wheels for 2 weeks while the other half remained sedentary. Following the removal of the wheels, physical performance was evaluated, and 4 weeks later leptin signaling was assessed in hypothalamus and VTA after an acute bout of WR. Introduction of a HF diet led to prolonged hyperphagia (63.9 ± 7.8 kcal/day on chow diet vs. 88.1 ± 8.2 kcal/day on high-fat diet (when food intake stabilized), p < 0.001). As little as 9 (ranging to 135) wheel revolutions per day significantly reduced caloric consumption of HF food (46.8 ± 11.2 kcal/day) to a level below that on chow diet (63.9 ± 7.8 kcal/day, p < 0.001). After 2 weeks of WR, body weight was significantly reduced (7.9 ± 2.1% compared with prerunning weight, p < 0.001), and physical performance (latency to fall from an incline plane) was significantly improved (p = 0.04). WR significantly increased both basal (p = 0.04) and leptin-stimulated (p = 0.001) STAT3 phosphorylation in the ventral tegmental area (VTA), but not in the hypothalamus. Thus, in aged dietary obese rats, the act but not the extent of voluntary WR is highly effective in reversing HF consumption, decreasing body weight, and improving physical performance. It appears to trigger a response that substitutes for the reward of highly palatable food that may be mediated by increased leptin signaling in the VTA.
Collapse
Affiliation(s)
- Alexandra Shapiro
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Muller AP, Gnoatto J, Moreira JD, Zimmer ER, Haas CB, Lulhier F, Perry ML, Souza DO, Torres-Aleman I, Portela LV. Exercise increases insulin signaling in the hippocampus: Physiological effects and pharmacological impact of intracerebroventricular insulin administration in mice. Hippocampus 2010; 21:1082-92. [DOI: 10.1002/hipo.20822] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2010] [Indexed: 01/05/2023]
|
66
|
Abstract
A novel mechanism explains how exercise exerts its beneficial effects on energy balance through an effect at the level of the hypothalamus.
Collapse
Affiliation(s)
- Pablo Blanco Martínez de Morentin
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
67
|
Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, de Souza CT, Moraes JC, Prada PO, Guadagnini D, Marin RM, Oliveira AG, Augusto TM, Carvalho HF, Velloso LA, Saad MJA, Carvalheira JBC. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 2010; 8:e1000465. [PMID: 20808781 PMCID: PMC2927536 DOI: 10.1371/journal.pbio.1000465] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 07/15/2010] [Indexed: 02/07/2023] Open
Abstract
Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKbeta activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKbeta/NF-kappaB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKbeta/NF-kappaB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKbeta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.
Collapse
Affiliation(s)
- Eduardo R. Ropelle
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo B. Flores
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E. Cintra
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José R. Pauli
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Joseane Morari
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudio T. de Souza
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliana C. Moraes
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Patrícia O. Prada
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodrigo M. Marin
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre G. Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Taize M. Augusto
- Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Hernandes F. Carvalho
- Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lício A. Velloso
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José B. C. Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
68
|
Abstract
An increase in proinflammatory cytokines, a decrease in endothelial nitric oxide and adiponectin levels and an alteration in hypothalamic peptides and gastrointestinal hormones that regulate satiety, hunger and food intake all occur in metabolic syndrome. Consumption of a diet that is energy dense and rich in saturated and trans-fats by pregnant women and lactating mothers, in childhood and adult life may trigger changes in the hypothalamic and gut peptides and hormones. Such changes modulate immune response and inflammation and lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point' and result in the initiation and development of the metabolic syndrome. Roux-en-gastric bypass induces weight loss, decreases the levels of cytokines and restores hypothalamic neuropeptides and gut hormones and the hypothalamic bodyweight/appetite/satiety set point to normal. Thus, metabolic syndrome is a low-grade systemic inflammatory condition with its origins in the perinatal period and childhood.
Collapse
Affiliation(s)
- Undurti N Das
- a UND Life Sciences, OH, USA and Jawaharlal Nehru Technological University, Kakinada-5330 003, Andhra Pradesh, India.
| |
Collapse
|
69
|
Gomez-Pinilla F, Ying Z. Differential effects of exercise and dietary docosahexaenoic acid on molecular systems associated with control of allostasis in the hypothalamus and hippocampus. Neuroscience 2010; 168:130-7. [PMID: 20303394 PMCID: PMC3225187 DOI: 10.1016/j.neuroscience.2010.02.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 01/01/2023]
Abstract
Given the robust influence of diet and exercise on brain plasticity and disease, we conducted studies to determine their effects on molecular systems important for control of brain homeostasis. Studies were centered on a battery of proteins implicated in metabolic homeostasis that have the potential to modulate brain plasticity and cognitive function, in rat hypothalamus and hippocampus. Adult male rats were exposed to a docosahexaenoic acid (DHA) enriched diet (1.25% DHA) with or without voluntary exercise for 14 days. Here we report that the DHA diet and exercise influence protein levels of molecular systems important for the control of energy metabolism (primarily phospho-AMPK, silent information regulator type 1), food intake (primarily leptin and ghrelin receptors), stress (primarily glucocorticoid receptors), and 11beta-hydroxysteroid dehydrogenase 1 (11betaHSD1). Exercise or DHA dietary supplementation had differential effects on several of these class proteins, and the concurrent application of both altered the pattern of response elicited by the single applications of diet or exercise. For example, exercise elevated levels of glucocorticoids receptors in the hypothalamus and the DHA diet had opposite effects, while the concurrent application of diet and exercise suppressed the single effects of diet or exercise. In most of the cases, the hypothalamus and the hippocampus had a distinctive pattern of response to the diet or exercise. The results harmonize with the concept that exercise and dietary DHA exert specific actions on the hypothalamus and hippocampus, with implications for the regulations of brain plasticity and cognitive function.
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Physiological Science, University of California Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
70
|
Andersson N, Strandberg L, Nilsson S, Adamovic S, Karlsson MK, Ljunggren Ö, Mellström D, Lane NE, Zmuda JM, Nielsen C, Orwoll E, Lorentzon M, Ohlsson C, Jansson JO. A variant near the interleukin-6 gene is associated with fat mass in Caucasian men. Int J Obes (Lond) 2010; 34:1011-9. [PMID: 20157327 PMCID: PMC2885503 DOI: 10.1038/ijo.2010.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CONTEXT Regulation of fat mass appears to be associated with immune functions. Studies of knockout mice show that endogenous interleukin (IL)-6 can suppress mature-onset obesity. OBJECTIVE To systematically investigate associations of single nucleotide polymorphisms (SNPs) near the IL-6 (IL6) and IL-6 receptor (IL6R) genes with body fat mass, in support for our hypothesis that variants of these genes can be associated with obesity. DESIGN AND STUDY SUBJECTS The Gothenburg Osteoporosis and Obesity Determinants (GOOD) study is a population-based cross-sectional study of 18- to 20-year-old men (n=1049), from the Gothenburg area (Sweden). Major findings were confirmed in two additional cohorts consisting of elderly men from the Osteoporotic Fractures in Men (MrOS) Sweden (n=2851) and MrOS US (n=5611) multicenter population-based studies. MAIN OUTCOME The genotype distributions and their association with fat mass in different compartments, measured with dual-energy X-ray absorptiometry. RESULTS Out of 18 evaluated tag SNPs near the IL6 and IL6R genes, a recently identified SNP rs10242595 G/A (minor allele frequency=29%) 3' of the IL6 gene was negatively associated with the primary outcome total body fat mass (effect size -0.11 standard deviation (s.d.) units per A allele, P=0.02). This negative association with fat mass was also confirmed in the combined MrOS Sweden and MrOS US cohorts (effect size -0.05 s.d. units per A allele, P=0.002). When all three cohorts were combined (n=8927, Caucasian subjects), rs10242595(*)A showed a negative association with total body fat mass (effect size -0.05 s.d. units per A allele, P<0.0002). Furthermore, the rs10242595(*)A was associated with low body mass index (effect size -0.03, P<0.001) and smaller regional fat masses. None of the other SNPs investigated in the GOOD study were reproducibly associated with body fat. CONCLUSIONS The IL6 gene polymorphism rs10242595(*)A is associated with decreased fat mass in three combined cohorts of 8927 Caucasian men.
Collapse
Affiliation(s)
- Niklas Andersson
- Institute of Neuroscience and Physiology/Endocrinology
- Food Science - Department of Chemical and Biological Engineering
| | | | - Staffan Nilsson
- Mathematical Statistics, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Magnus K Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, and Department of Orthopedics, Malmö University Hospital, Malmö, Sweden
| | - Östen Ljunggren
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Dan Mellström
- Center for Bone Research at The Sahlgrenska Academy, Departments of Geriatrics and Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nancy E Lane
- Department of Medicine, Center for Healthy Aging, University of California at Davis, Sacramento, California 95817, Unites States of America
| | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carrie Nielsen
- Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Eric Orwoll
- Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Mattias Lorentzon
- Center for Bone Research at The Sahlgrenska Academy, Departments of Geriatrics and Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Center for Bone Research at The Sahlgrenska Academy, Departments of Geriatrics and Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
71
|
Scarpace PJ, Matheny M, Zhang Y. Wheel running eliminates high-fat preference and enhances leptin signaling in the ventral tegmental area. Physiol Behav 2010; 100:173-9. [PMID: 20193697 PMCID: PMC2867328 DOI: 10.1016/j.physbeh.2010.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 01/21/2023]
Abstract
Voluntary wheel running (WR) is a form of physical activity in rodents that influences ingestive behavior. This study examined the effects of WR on dietary preference and the potential role of leptin in mediating these effects. In a two-diet choice paradigm in which both palatable high-fat (HF) food and standard laboratory chow were provided ad libitum, rats displayed a strong preference for the former and chose to eat almost exclusively the HF diet over chow in sedentary conditions. With free access to running wheels, however, rats exhibited no preference for the HF food and consumed equal gram amounts of both chow and HF diets. The total daily caloric consumption during WR in the dietary choice protocol was equivalent to the amount of calories consumed daily by WR rats with only chow or only HF diet available, yet significantly less than sedentary chow caloric consumption. Two days after initiating WR, leptin signal transduction was examined in multiple selected brain sites following leptin injection into the third cerebral ventricle. The maximal leptin-stimulated STAT3 phosphorylation was enhanced only in the ventral tegmental area (VTA), but not in the arcuate nucleus, lateral hypothalamus, dorsal medial or ventral medial hypothalamus, or substantia nigra. In conclusion, wheel running appears to act either as an independent reinforcing factor or as a more favored activity to substitute for the consumption of a palatable HF diet, thus eliminating the preference for the HF food. Moreover, WR enhances leptin signaling specifically in the VTA, suggestive of a WR-evoked mechanism of heightened leptin function in the VTA to curb the drive to consume palatable HF foods.
Collapse
Affiliation(s)
- P J Scarpace
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| | | | | |
Collapse
|
72
|
Pauli JR, Ropelle ER, Cintra DE, De Souza CT, da Silva ASR, Moraes JC, Prada PO, de Almeida Leme JAC, Luciano E, Velloso LA, Carvalheira JBC, Saad MJA. Acute exercise reverses aged-induced impairments in insulin signaling in rodent skeletal muscle. Mech Ageing Dev 2010; 131:323-329. [PMID: 20307567 DOI: 10.1016/j.mad.2010.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 02/07/2023]
Abstract
The insulin resistance associated with aging is improved by exercise, but the molecular mechanisms of this improvement are not fully understood. We investigated whether the improvement in insulin action, associated with acute exercise in old rats is dependent on the modulation of pIRS-1Ser307, JNK, IkBalpha and PTP-1B. Aging rats were subjected to swimming for two 1.5-h long bouts, separated by a 45min rest period. Sixteen hours after the exercise, the rats were killed and proteins from the insulin signaling pathway were analyzed by immunoblotting. Our results show that the reduction in glucose disappearance rate (Kitt), observed in aged rats, was restored at 16h after exercise. Aging led to an increase in Ser307 phosphorylation of IRS-1, and this was reversed by exercise in the skeletal muscle, in parallel with a reduction in pJNK and IkBalpha degradation. Moreover, aging induced an increase in the expression of PTP-1B and attenuated insulin signaling in the muscle of rats, a phenomenon that was reversed by exercise. Interestingly, the decrease in PTP-1B expression in the muscle of exercised old rats was accompanied by an increase in SIRT1 expression. These results provide new insights into the mechanisms by which exercise restores insulin sensitivity during aging.
Collapse
Affiliation(s)
- José R Pauli
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
De Souza CT, Frederico MJS, da Luz G, Cintra DE, Ropelle ER, Pauli JR, Velloso LA. Acute exercise reduces hepatic glucose production through inhibition of the Foxo1/HNF-4alpha pathway in insulin resistant mice. J Physiol 2010; 588:2239-53. [PMID: 20421289 DOI: 10.1113/jphysiol.2009.183996] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein hepatocyte nuclear factor 4alpha (HNF-4alpha) is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. HNF-4alpha and Foxo1 can physically interact with each other and represent an important signal transduction pathway that regulates the synthesis of glucose in the liver. Foxo1 and HNF-4alpha interact with their own binding sites in the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) promoters, and this binding is required for their effects on those promoters. However, the effect of physical activity on the HNF-4alpha/Foxo1 pathway is currently unknown. Here, we investigate the protein levels of HNF-4alpha and the HNF-4alpha/Foxo1 pathway in the liver of leptin-deficient (ob/ob) and diet-induced obese Swiss (DIO) mice after acute exercise. The ob/ob and DIO mice swam for four 30 min periods, with 5 min rest intervals for a total swimming time of 2h. Eight hours after the acute exercise protocol, the mice were submitted to an insulin tolerance test (ITT) and determination of biochemical and molecular parameters. Acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing HNF-4alpha protein levels in the liver of DIO and ob/ob mice under fasting conditions. These phenomena were accompanied by a reduction in the expression of gluconeogenesis genes, such as PEPCK and G6Pase. Importantly, the PI3K inhibitor LY292004 reversed the acute effect of exercise on fasting hyperglycaemia, confirming the involvement of the PI3K pathway. The present study shows that exercise acutely improves the action of insulin in the liver of animal models of obesity and diabetes, resulting in increased phosphorylation and nuclear exclusion of Foxo1, and a reduction in the Foxo1/HNF-4alpha pathway. Since nuclear localization and the association of these proteins is involved in the activation of PEPCK and G6Pase, we believe that the regulation of Foxo1 and HNF-4alpha activities are important mechanisms involved in exercise-induced improvement of glucose homeostasis in insulin resistant states.
Collapse
Affiliation(s)
- Cláudio T De Souza
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina - Criciăúma, SC, Brazil.
| | | | | | | | | | | | | |
Collapse
|
74
|
Sadagurski M, Norquay L, Farhang J, D’Aquino K, Copps K, White MF. Human IL6 enhances leptin action in mice. Diabetologia 2010; 53:525-35. [PMID: 19902173 PMCID: PMC2815798 DOI: 10.1007/s00125-009-1580-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 09/18/2009] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Interleukin-6 is an inflammatory cytokine with pleiotropic effects upon nutrient homeostasis. Many reports show that circulating IL6 correlates with obesity and contributes to insulin resistance; however, IL6 can promote energy expenditure that improves glucose homeostasis. METHODS We investigated nutrient homeostasis in C57BL/6J mice with sustained circulating human IL6 (hIL6) secreted predominantly from brain and lung (hIL6(tg) mice). RESULTS The hIL6(tg) mice displayed no features of systemic inflammation and were more insulin-sensitive than wild-type mice. On a high-fat diet, hIL6(tg) mice were lean, had low leptin concentrations, consumed less food and expended more energy than wild-type mice. Like ob/ob mice, the ob/ob (IL6) mice (generated by intercrossing ob/ob and hIL6(tg) mice) were obese and glucose-intolerant. However, low-dose leptin injections increased physical activity and reduced both body weight and food intake in ob/ob (IL6) mice, but was ineffective in ob/ob mice. Leptin increased hypothalamic signal transducer and activator of transcription-3 phosphorylation in ob/ob (IL6) mice, whereas ob/ob mice barely responded. CONCLUSIONS/INTERPRETATION Human IL6 enhanced central leptin action in mice, promoting nutrient homeostasis and preventing diet-induced obesity.
Collapse
Affiliation(s)
- M. Sadagurski
- Howard Hughes Medical Institute, Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Karp Family Research Laboratories, Rm 4210, 300 Longwood Avenue, Boston, MA 02115 USA
| | - L. Norquay
- Howard Hughes Medical Institute, Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Karp Family Research Laboratories, Rm 4210, 300 Longwood Avenue, Boston, MA 02115 USA
| | - J. Farhang
- Howard Hughes Medical Institute, Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Karp Family Research Laboratories, Rm 4210, 300 Longwood Avenue, Boston, MA 02115 USA
| | - K. D’Aquino
- Howard Hughes Medical Institute, Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Karp Family Research Laboratories, Rm 4210, 300 Longwood Avenue, Boston, MA 02115 USA
| | - K. Copps
- Howard Hughes Medical Institute, Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Karp Family Research Laboratories, Rm 4210, 300 Longwood Avenue, Boston, MA 02115 USA
| | - M. F. White
- Howard Hughes Medical Institute, Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Karp Family Research Laboratories, Rm 4210, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
75
|
Park S, Hong SM, Ahn IS. Exendin-4 and exercise improve hepatic glucose homeostasis by promoting insulin signaling in diabetic rats. Metabolism 2010; 59:123-33. [PMID: 19766272 DOI: 10.1016/j.metabol.2009.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/30/2009] [Indexed: 12/21/2022]
Abstract
Recently, it has been reported that a long-acting glucagon-like peptide-1 (exendin-4) and physical exercise improve hepatic insulin action in diabetic rats. However, this phenomenon remains poorly understood. We investigated the long-term effect that exendin-4 and exercise had on hepatic insulin resistance through the modulation of hepatic and/or hypothalamic insulin signaling in 90% pancreatectomized diabetic rats fed 40% energy fat diets. The rats were divided into 4 groups: exendin-4 only, exendin-4 plus exercise training, saline (control), or exercise training only. Rats in the exendin-4 groups were administered with 150 pmol/kg exendin-4 twice a day for 8 weeks, whereas those in the exercise groups ran on an uphill treadmill with a 15 degrees incline at 20 m/min for 30 minutes 5 days a week. Exendin-4 reduced serum glucagon levels in overnight-fasted rats. Exendin-4 treatment by itself decreased hepatic glucose output at hyperinsulinemic states, and exercise without exendin-4 treatment also had the same effect. Exendin-4 promoted hepatic insulin signaling by potentiating tyrosine phosphorylation of the insulin receptor substrate-2 without changing hypothalamic insulin signaling. Exendin-4 also enhanced hypothalamic glucose sensing. However, exercise improved both hepatic and hypothalamic insulin signaling by activating the phosphorylation of cyclic adenosine monophosphate-responding element binding proteins to induce insulin receptor substrate-2 expression. Exendin-4 and exercise decreased the expression of phosphoenolpyruvate carboxykinase, which in turn reduced hepatic glucose output. Exendin-4 in combination with exercise had no additive effects. In conclusion, exendin-4 and exercise improve hepatic glucose homeostasis by promoting hepatic insulin signaling in diabetic rats.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, College of Natural Science, Institute of Basic Science, Hoseo University, Asan-Si, Chungnam-Do 336-795, South Korea.
| | | | | |
Collapse
|
76
|
Das UN. Obesity: genes, brain, gut, and environment. Nutrition 2009; 26:459-73. [PMID: 20022465 DOI: 10.1016/j.nut.2009.09.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 01/04/2023]
Abstract
Obesity, which is assuming alarming proportions, has been attributed to genetic factors, hypothalamic dysfunction, and intestinal gut bacteria and an increase in the consumption of energy-dense food. Obesity predisposes to the development of type 2 diabetes mellitus, hypertension, coronary heart disease, and certain forms of cancer. Recent studies have shown that the intestinal bacteria in obese humans and mice differ from those in lean that could trigger a low-grade systemic inflammation. Consumption of a calorie-dense diet that initiates and perpetuates obesity could be due to failure of homeostatic mechanisms that regulate appetite, food consumption, and energy balance. Hypothalamic factors that regulate energy needs of the body, control appetite and satiety, and gut bacteria that participate in food digestion play a critical role in the onset of obesity. Incretins, cholecystokinin, brain-derived neurotrophic factor, leptin, long-chain fatty acid coenzyme A, endocannabinoids and vagal neurotransmitter acetylcholine play a role in the regulation of energy intake, glucose homeostasis, insulin secretion, and pathobiology of obesity and type 2 diabetes mellitus. Thus, there is a cross-talk among the gut, liver, pancreas, adipose tissue, and hypothalamus. Based on these evidences, it is clear that management of obesity needs a multifactorial approach.
Collapse
|
77
|
Lima AF, Ropelle ER, Pauli JR, Cintra DE, Frederico MJS, Pinho RA, Velloso LA, De Souza CT. Acute exercise reduces insulin resistance-induced TRB3 expression and amelioration of the hepatic production of glucose in the liver of diabetic mice. J Cell Physiol 2009; 221:92-7. [PMID: 19492410 DOI: 10.1002/jcp.21833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TRB3 (a mammalian homolog of Drosophila) is emerging as an important player in the regulation of insulin signaling. TRB3 can directly bind to Ser/Thr protein kinase Akt, the major downstream kinase of insulin signaling. Conversely, physical exercise has been linked to improved glucose homeostasis and enhanced insulin sensitivity; however, the molecular mechanisms by which exercise improves glucose homeostasis, particularly in the hepatic tissue, are only partially known. Here, we demonstrate that acute exercise reduces fasting glucose in two models diabetic mice. Western blot analysis showed that 8 h after a swimming protocol, TRB3 expression was reduced in the hepatic tissue from diet-induced obesity (Swiss) and leptin-deficient (ob/ob) mice, when compared with respective control groups at rest. In parallel, there was an increase in insulin responsiveness in the canonical insulin-signaling pathway in hepatic tissue from DIO and ob/ob mice after exercise. In addition, the PEPCK expression was reduced in the liver after the exercise protocol, suggesting that acute exercise diminished hepatic glucose production through insulin-signaling restoration. Thus, these results provide new insights into the mechanism by which physical activity improves glucose homeostasis in type 2 diabetes.
Collapse
Affiliation(s)
- Athos F Lima
- Universidade Cruzeiro do Sul, Unicsul, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Shin AC, Zheng H, Berthoud HR. An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav 2009; 97:572-80. [PMID: 19419661 PMCID: PMC2765252 DOI: 10.1016/j.physbeh.2009.02.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 01/01/2023]
Abstract
The traditional view of neural regulation of body energy homeostasis focuses on internal feedback signals integrated in the hypothalamus and brainstem and in turn leading to balanced activation of behavioral, autonomic, and endocrine effector pathways leading to changes in food intake and energy expenditure. Recent observations have demonstrated that many of these internal signals encoding energy status have much wider effects on the brain, particularly sensory and cortico-limbic systems that process information from the outside world by detecting and interpreting food cues, forming, storing, and recalling representations of experience with food, and assigning hedonic and motivational value to conditioned and unconditioned food stimuli. Thus, part of the metabolic feedback from the internal milieu regulates food intake and energy balance by acting on extrahypothalamic structures, leading to an expanded view of neural control of energy homeostasis taking into account the need to adapt to changing conditions in the environment. The realization that metabolic signals act directly on these non-traditional targets of body energy homeostasis brings opportunities for novel drug targets for the fight against obesity and eating disorders.
Collapse
Affiliation(s)
- Andrew C Shin
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | |
Collapse
|
79
|
MacLean PS, Higgins JA, Wyatt HR, Melanson EL, Johnson GC, Jackman MR, Giles ED, Brown IE, Hill JO. Regular exercise attenuates the metabolic drive to regain weight after long-term weight loss. Am J Physiol Regul Integr Comp Physiol 2009; 297:R793-802. [PMID: 19587114 DOI: 10.1152/ajpregu.00192.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Weight loss is accompanied by several metabolic adaptations that work together to promote rapid, efficient regain. We employed a rodent model of regain to examine the effects of a regular bout of treadmill exercise on these adaptations. Obesity was induced in obesity-prone rats with 16 wk of high-fat feeding and limited physical activity. Obese rats were then weight reduced (approximately 14% of body wt) with a calorie-restricted, low-fat diet and maintained at that reduced weight for 8 wk by providing limited provisions of the diet with (EX) or without (SED) a daily bout of treadmill exercise (15 m/min, 30 min/day, 6 days/wk). Weight regain, energy balance, fuel utilization, adipocyte cellularity, and humoral signals of adiposity were monitored during eight subsequent weeks of ad libitum feeding while the rats maintained their respective regimens of physical activity. Regular exercise decreased the rate of regain early in relapse and lowered the defended body weight. During weight maintenance, regular exercise reduced the biological drive to eat so that it came closer to matching the suppressed level of energy expenditure. The diurnal extremes in fuel preference observed in weight-reduced rats were blunted, since exercise promoted the oxidation of fat during periods of feeding (dark cycle) and promoted the oxidation of carbohydrate (CHO) later in the day during periods of deprivation (light cycle) . At the end of relapse, exercise reestablished the homeostatic steady state between intake and expenditure to defend a lower body weight. Compared with SED rats, relapsed EX rats exhibited a reduced turnover of energy, a lower 24-h oxidation of CHO, fewer adipocytes in abdominal fat pads, and peripheral signals that overestimated their adiposity. These observations indicate that regimented exercise altered several metabolic adaptations to weight reduction in a manner that would coordinately attenuate the propensity to regain lost weight.
Collapse
Affiliation(s)
- Paul S MacLean
- Center for Human Nutrition, Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Denver, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Ropelle ER, Pauli JR, Prada P, Cintra DE, Rocha GZ, Moraes JC, Frederico MJS, da Luz G, Pinho RA, Carvalheira JBC, Velloso LA, Saad MA, De Souza CT. Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats. J Physiol 2009; 587:2341-2351. [PMID: 19332486 PMCID: PMC2697302 DOI: 10.1113/jphysiol.2009.170050] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 03/25/2009] [Indexed: 02/05/2023] Open
Abstract
Insulin signalling in the hypothalamus plays a role in maintaining body weight. The forkhead transcription factor Foxo1 is an important mediator of insulin signalling in the hypothalamus. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase/Akt signalling pathway, but the role of hypothalamic Foxo1 in insulin resistance and obesity remains unclear. Here, we identify that a high-fat diet impaired insulin-induced hypothalamic Foxo1 phosphorylation and degradation, increasing the nuclear Foxo1 activity and hyperphagic response in rats. Thus, we investigated the effects of the intracerebroventricular (i.c.v.) microinfusion of Foxo1-antisense oligonucleotide (Foxo1-ASO) and evaluated the food consumption and weight gain in normal and diet-induced obese (DIO) rats. Three days of Foxo1-ASO microinfusion reduced the hypothalamic Foxo1 expression by about 85%. i.c.v. infusion of Foxo1-ASO reduced the cumulative food intake (21%), body weight change (28%), epididymal fat pad weight (22%) and fasting serum insulin levels (19%) and increased the insulin sensitivity (34%) in DIO but not in control animals. Collectively, these data showed that the Foxo1-ASO treatment blocked the orexigenic effects of Foxo1 and prevented the hyperphagic response in obese rats. Thus, pharmacological manipulation of Foxo1 may be used to prevent or treat obesity.
Collapse
Affiliation(s)
- Eduardo R Ropelle
- Departamento de Clínica Médica, FCM, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Ropelle ER, Pauli JR, Cintra DE, Frederico MJS, de Pinho RA, Velloso LA, De Souza CT. Acute exercise modulates the Foxo1/PGC-1alpha pathway in the liver of diet-induced obesity rats. J Physiol 2009; 587:2069-76. [PMID: 19273580 PMCID: PMC2689344 DOI: 10.1113/jphysiol.2008.164202] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 03/04/2009] [Indexed: 12/29/2022] Open
Abstract
PGC-1alpha expression is a tissue-specific regulatory feature that is extremely relevant to diabetes. Several studies have shown that PGC-1alpha activity is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. PGC-1alpha and Foxo1 can physically interact with one another and represent an important signal transduction pathway that governs the synthesis of glucose in the liver. However, the effect of physical activity on PGC-1alpha/Foxo1 association is unknown. Here we investigate the expression of PGC-1alpha and the association of PGC-1alpha/Foxo1 in the liver of diet-induced obese rats after acute exercise. Wistar rats swam for two 3 h-long bouts, separated by a 45 min rest period. Eight hours after the acute exercise protocol, the rats were submitted to an insulin tolerance test (ITT) and biochemical and molecular analysis. Results demonstrate that acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing PGC-1alpha expression and PGC-1alpha/Foxo1 interaction in the liver of diet-induced obesity rats under fasting conditions. These phenomena are accompanied by a reduction in the expression of gluconeogenesis genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase). Thus, these results provide new insights into the mechanism by which exercise could improve fasting hyperglycaemia.
Collapse
Affiliation(s)
- Eduardo R Ropelle
- Departamento de Clínica Médica, FCM, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
82
|
Contarteze RVL, de Alencar Mota CS, de Oliveira CAM, de Almeida Leme JAC, Bottcher LB, de Mello MAR, Luciano E. Exercise test and glucose homeostasis in rats treated with alloxan during the neonatal period or fed a high calorie diet. J Diabetes 2009; 1:65-72. [PMID: 20923522 DOI: 10.1111/j.1753-0407.2008.00003.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Animal models appear well-suited for studies into the role of exercise in the prevention of non-insulin-dependent diabetes mellitus (NIDDM). The aim of the present study was to analyze glucose homeostasis and blood lactate during an exercise swimming test in rats treated with alloxan during the neonatal period and/or fed a high calorie diet from weaning onwards. METHODS Rats were injected with alloxan (200 mg/kg, i.p.) or vehicle (citrate buffer) at 6 days of age. After weaning, rats were divided into four groups and fed either a balanced diet or a high-caloric diet as follows: C, control group (vehicle + normal diet); A, alloxan-treated rats fed the normal diet; H, vehicle-treated rats fed the high-caloric diet; and HA, alloxan-treated rats fed the high-caloric diet. RESULTS Fasting serum glucose levels were higher in groups A and AH compared with the control group. The Homeostatic Model Assessment index varied in the groups as follows: H>A>HA = C. There were no differences in free fatty acids or blood lactate concentrations during the swim test. CONCLUSIONS Alloxan-treated rats fed a normal or high-caloric diet have the potential to be used in studies analyzing the role physical exercise plays in the prevention of NIDDM.
Collapse
MESH Headings
- Age Factors
- Aging
- Animals
- Animals, Newborn
- Biomarkers/blood
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/prevention & control
- Energy Intake
- Fatty Acids, Nonesterified/blood
- Glucose Intolerance/blood
- Glucose Intolerance/etiology
- Glucose Intolerance/prevention & control
- Glucose Tolerance Test
- Homeostasis
- Insulin/blood
- Insulin Resistance
- Lactic Acid/blood
- Male
- Physical Exertion
- Rats
- Rats, Wistar
- Swimming
Collapse
|
83
|
REM sleep, energy balance and ‘optimal foraging’. Neurosci Biobehav Rev 2009; 33:466-74. [DOI: 10.1016/j.neubiorev.2008.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 11/30/2008] [Accepted: 12/08/2008] [Indexed: 11/21/2022]
|
84
|
Abstract
AMPK (AMP-activated protein kinase) is a phylogenetically conserved fuel-sensing enzyme that is present in all mammalian cells. During exercise, it is activated in skeletal muscle in humans, and at least in rodents, also in adipose tissue, liver and perhaps other organs by events that increase the AMP/ATP ratio. When activated, AMPK stimulates energy-generating processes such as glucose uptake and fatty acid oxidation and decreases energy-consuming processes such as protein and lipid synthesis. Exercise is perhaps the most powerful physiological activator of AMPK and a unique model for studying its many physiological roles. In addition, it improves the metabolic status of rodents with a metabolic syndrome phenotype, as does treatment with AMPK-activating agents; it is therefore tempting to attribute the therapeutic benefits of regular physical activity to activation of AMPK. Here we review the acute and chronic effects of exercise on AMPK activity in skeletal muscle and other tissues. We also discuss the potential role of AMPK activation in mediating the prevention and treatment by exercise of specific disorders associated with the metabolic syndrome, including Type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Erik A Richter
- Molecular Physiology Group, Department of Exercise and Sport Sciences, Copenhagen Muscle Research Centre, University of Copenhagen, August Krogh Building, 13 Universitetsparken, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
85
|
Patterson CM, Bouret SG, Dunn-Meynell AA, Levin BE. Three weeks of postweaning exercise in DIO rats produces prolonged increases in central leptin sensitivity and signaling. Am J Physiol Regul Integr Comp Physiol 2009; 296:R537-48. [PMID: 19158409 DOI: 10.1152/ajpregu.90859.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In rats selectively bred to develop diet-induced obesity (DIO) 3 wk of postweaning exercise reduces weight and adipose regain for 10 wk after exercise cessation, despite intake of 31% fat high-energy (HE) diet. To test the hypothesis that this effect is due to increased central leptin sensitivity, 4-wk-old DIO rats were fed the HE diet and left sedentary (Sed), exercised for 3 wk, and then remained sedentary for 10 additional weeks (Ex/Sed) or continued exercise for a full 13 wk (Ex). After 3 wk, leptin (5 mg/kg ip) induced a 36% decrease in 24-h food intake in Ex rats, while Sed rats had no change in 24-h intake. Ex rats also had 23% more leptin-induced phospho-STAT3 (pSTAT3)-expressing neurons in the arcuate nucleus (ARC) and 95% and 68% higher (125)I-labeled leptin receptor binding in the ventromedial and dorsomedial nuclei than did Sed rats, respectively. At 7 wk after onset, leptin decreased 24-h intake by 20% in Ex and 24% in Ex/Sed rats without altering Sed intake. After a total of 13 wk, compared with Sed rats, Ex and Ex/Sed rats had 58% and 38% less fat, respectively, but leptin failed to decrease food intake in any group. Nevertheless, Ex, but not Ex/Sed rats, still had 32% more ARC leptin-induced pSTAT3-expressing neurons than Sed rats. These data suggest that brief postweaning exercise in DIO rats that are inherently leptin resistant causes a sustained resistance to obesity on HE diet, which is, in part, due to increased central leptin sensitivity.
Collapse
Affiliation(s)
- Christa M Patterson
- Neurology Service (127C VA Medical Center, 385 Tremont Ave., E. Orange, NJ 07018-1095, USA
| | | | | | | |
Collapse
|
86
|
Ropelle ER, Fernandes MFA, Flores MBS, Ueno M, Rocco S, Marin R, Cintra DE, Velloso LA, Franchini KG, Saad MJA, Carvalheira JBC. Central exercise action increases the AMPK and mTOR response to leptin. PLoS One 2008; 3:e3856. [PMID: 19052642 PMCID: PMC2585815 DOI: 10.1371/journal.pone.0003856] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/06/2008] [Indexed: 11/19/2022] Open
Abstract
AMP-activated protein kinase (AMPK) and mammalian Target of Rapamycin (mTOR) are key regulators of cellular energy balance and of the effects of leptin on food intake. Acute exercise is associated with increased sensitivity to the effects of leptin on food intake in an IL-6-dependent manner. To determine whether exercise ameliorates the AMPK and mTOR response to leptin in the hypothalamus in an IL-6-dependent manner, rats performed two 3-h exercise bouts, separated by one 45-min rest period. Intracerebroventricular IL-6 infusion reduced food intake and pretreatment with AMPK activators and mTOR inhibitor prevented IL-6-induced anorexia. Activators of AMPK and fasting increased food intake in control rats to a greater extent than that observed in exercised ones, whereas inhibitor of AMPK had the opposite effect. Furthermore, the reduction of AMPK and ACC phosphorylation and increase in phosphorylation of proteins involved in mTOR signal transduction, observed in the hypothalamus after leptin infusion, were more pronounced in both lean and diet-induced obesity rats after acute exercise. Treatment with leptin reduced food intake in exercised rats that were pretreated with vehicle, although no increase in responsiveness to leptin-induced anorexia after pretreatment with anti-IL6 antibody, AICAR or Rapamycin was detected. Thus, the effects of leptin on the AMPK/mTOR pathway, potentiated by acute exercise, may contribute to appetite suppressive actions in the hypothalamus.
Collapse
Affiliation(s)
- Eduardo R. Ropelle
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Marcelo B. S. Flores
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mirian Ueno
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Silvana Rocco
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodrigo Marin
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys E. Cintra
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lício A. Velloso
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Kleber G. Franchini
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José B. C. Carvalheira
- Department of Internal Medicine, FCM, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
87
|
Bates HE, Sirek AS, Kiràly MA, Yue JTY, Goche Montes D, Matthews SG, Vranic M. Adaptation to mild, intermittent stress delays development of hyperglycemia in the Zucker diabetic Fatty rat independent of food intake: role of habituation of the hypothalamic-pituitary-adrenal axis. Endocrinology 2008; 149:2990-3001. [PMID: 18325996 DOI: 10.1210/en.2007-1473] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis hyperactivity occurs in type 2 diabetes, and stress is assumed to play a causal role. However, intermittent restraint stress, a model mimicking some mild stressors, delays development of hyperglycemia in Zucker diabetic fatty (ZDF) rats. We examine whether such stress delays hyperglycemia independent of stress-induced reductions in hyperphagia and is due to adaptations in gene expression of HPA-related peptides and receptors that ameliorate corticosteronemia and thus hyperglycemia. ZDF rats were intermittently restraint stressed (1 h/d, 5 d/wk) for 13 wk and compared with obese control, pair fed, and lean ZDF rats. After 13 wk, basal hormones were repeatedly measured over 24 h, and HPA-related gene expression was assessed by in situ hybridization. Although restraint initially induced hyperglycemia, this response habituated over time, and intermittent restraint delayed hyperglycemia. This delay was partly related to 5-15% decreased hyperphagia, which was not accompanied by decreased arcuate nucleus NPY or increased POMC mRNA expression, although expression was altered by obesity. Obese rats demonstrated basal hypercorticosteronemia and greater corticosterone responses to food/water removal. Basal hypercorticosteronemia was further exacerbated after 13 wk of pair feeding during the nadir. Importantly, intermittent restraint further delayed hyperglycemia independent of food intake, because glycemia was 30-40% lower than after 13 wk of pair feeding. This may be mediated by increased hippocampal MR mRNA, reduced anterior pituitary POMC mRNA levels, and lower adrenal sensitivity to ACTH, thus preventing basal and stress-induced hypercorticosteronemia. In contrast, 24-h catecholamines were unaltered. Thus, rather than playing a causal role, intermittent stress delayed deteriorations in glycemia and ameliorated HPA hyperactivity in the ZDF rat.
Collapse
Affiliation(s)
- Holly E Bates
- Departments of Physiology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | |
Collapse
|
88
|
Cintra DE, Pauli JR, Araújo EP, Moraes JC, de Souza CT, Milanski M, Morari J, Gambero A, Saad MJ, Velloso LA. Interleukin-10 is a protective factor against diet-induced insulin resistance in liver. J Hepatol 2008; 48:628-37. [PMID: 18267346 DOI: 10.1016/j.jhep.2007.12.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/26/2007] [Accepted: 12/17/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS The anti-inflammatory cytokine, interleukin-10 (IL-10), is known to exert a protective role in hepatic damage caused by viruses, alcohol, autoimmunity and a number of experimental aggressors. Recently, a protective role for IL-10 has also been proposed in diet-induced hepatic dysfunction. However, studies about the mechanisms involved in this process are controversial. The objective of this study was to evaluate the role of endogenous IL-10 in the development of hepatic insulin resistance, associated with diet-induced fatty liver disease. METHODS Male Swiss mice treated for eight weeks with a high-fat diet became diabetic and developed non-alcoholic fatty liver disease, which is characterized by increased hepatic fat deposition and liver infiltration by F4/80 positive cells. This was accompanied by an increased hepatic expression of TNF-alpha, IL-6, IL-1beta and IL-10, and by an impaired insulin signal transduction through the insulin receptor/IRS1-IRS2/PI3-kinase/Akt/FOXO1 signaling pathway. RESULTS Upon endogenous IL-10 inhibition for 5 days, using two distinct methods, a neutralizing anti-IL-10 antibody and an antisense oligonucleotide against IL-10, increased hepatic expression of the inflammatory markers TNF-alpha, IL-6, IL-1beta and F4/80 was observed. This was accompanied by a significant negative modulation of insulin signal transduction through insulin receptor/IRS1-IRS2/PI3-kinase/Akt/FOXO1, and by the stimulation of hepatic signaling proteins involved in gluconeogenesis and lipid synthesis. CONCLUSIONS Thus, in an animal model of diet-induced fatty liver disease, the inhibition of IL-10 promotes the increased expression of inflammatory cytokines, the worsening of insulin signaling and the activation of gluconeogenic and lipidogenic pathways.
Collapse
Affiliation(s)
- Dennys E Cintra
- Department of Internal Medicine, State University of Campinas, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Affiliation(s)
- Christopher Morrison
- Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA.
| |
Collapse
|
90
|
Shapiro A, Matheny M, Zhang Y, Tümer N, Cheng KY, Rogrigues E, Zolotukhin S, Scarpace PJ. Synergy between leptin therapy and a seemingly negligible amount of voluntary wheel running prevents progression of dietary obesity in leptin-resistant rats. Diabetes 2008; 57:614-22. [PMID: 18086903 DOI: 10.2337/db07-0863] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We examined whether chronic leptin treatment of diet-induced obese rats promotes or alleviates the susceptibility to continued high-fat feeding. Second, we examined if voluntary wheel running is beneficial in reducing the trajectory of weight gain in high-fat-raised leptin-resistant rats. RESEARCH DESIGN AND METHODS Sprague-Dawley rats were fed a standard diet or a high-fat diet for 5 months, and then hypothalamic leptin overexpression was induced through central administration of adeno-associated virus-encoding leptin while continuing either the standard or high-fat diet. Two weeks later, half of the rats in each group were provided access to running wheels for 38 days while being maintained on either a standard or high-fat diet. RESULTS; In standard diet-raised rats, either wheel running or leptin reduced the trajectory of weight gain, and the combined effect of both treatments was additive. In high-fat-raised leptin-resistant rats, leptin overexpression first transiently reduced weight gain but then accelerated the weight gain twofold over controls. Wheel running in high-fat-raised rats was sixfold less than in standard diet-raised rats and did not affect weight gain. Surprisingly, wheel running plus leptin completely prevented weight gain. This synergy was associated with enhanced hypothalamic signal transducer and activator of transcription (STAT) 3 phosphorylation and suppressor of cytokine signaling 3 expression in wheel running plus leptin compared with leptin-treated sedentary high-fat counterparts. This enhanced STAT3 signaling associated with the combination treatment occurred only in high-fat-raised, leptin-resistant rats and not in standard diet-raised, leptin-responsive rats. CONCLUSIONS Chronic leptin treatment in diet-induced obese rats accelerates dietary obesity. However, leptin combined with wheel running prevents further dietary weight gain. Thus, this combination therapy may be a viable antiobesity treatment.
Collapse
Affiliation(s)
- Alexandra Shapiro
- Department of Pharmacology and Therapeutics, Box 100267, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Interleukin-6 (IL-6) is a central player in the regulation of inflammation, haematopoiesis, immune response and host defense mechanisms. During the last decade, an accumulating amount of data suggested a pivotal role for IL-6 in metabolic processes, thus fortifying the picture of IL-6 as a multifaceted, pleiotropic cytokine. Because of its secretion by adipose tissue and contracting skeletal muscle and its broad action on central and peripheral organs, IL-6 has been termed an adipokine and a myokine. Its quantitative release from adipose tissue results in a subclinical, systemic elevation of IL-6 plasma levels with increasing body fat content, which may be implicated in the proinflammatory state leading to insulin resistance. On the other hand, IL-6 produced in the working muscle during physical activity could act as an energy sensor by activating AMP-activated kinase and enhancing glucose disposal, lipolysis and fat oxidation. In addition, both impaired IL-6 secretion and action are risk factors for weight gain. Thus, IL-6 clearly has lipolytic effects and anti-obesity potential. However, the application of IL-6 itself is at least limited by a narrow therapeutic range and its important function for a balanced inflammatory response. Further studies on the molecular basis of the metabolic effects of IL-6 could elucidate novel therapeutic strategies for custom-designed, IL-6-related substances.
Collapse
Affiliation(s)
- M Hoene
- Department of Internal Medicine, Division of Endocrinology, Metabolism, Nephrology, Angiology, Pathobiochemistry and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
92
|
Park S, Hong SM, Lee JE, Sung SR. Chlorpromazine exacerbates hepatic insulin sensitivity via attenuating insulin and leptin signaling pathway, while exercise partially reverses the adverse effects. Life Sci 2007; 80:2428-35. [PMID: 17512020 DOI: 10.1016/j.lfs.2007.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 02/20/2007] [Accepted: 04/09/2007] [Indexed: 12/23/2022]
Abstract
Investigated in this study are the effects and mechanisms of exercise and chlorpromazine (CPZ), a widely used conventional antipsychotic drug, on the hepatic insulin sensitivity of 90% pancreatectomized (Px) male Sprague-Dawley rats. The Px diabetic rats were provided with 0, 5, or 50 mg CPZ per kg of body weight (No-CPZ, LCPZ, or HCPZ) for 8 weeks, and half of each group had regular exercise. LCPZ did not exacerbate hepatic insulin sensitivity through insulin and leptin signaling in diabetic rats. However, HCPZ decreased whole-body glucose infusion rates in hyperinsulinemic clamped states, but not whole-body glucose uptake. This was due to the elevated hepatic glucose output in hyperinsulinemic states. The decreased hepatic insulin sensitivity was associated with insulin receptor substrate-2 (IRS2) protein levels in the liver. Decreased IRS2 levels attenuated hepatic insulin and leptin signaling pathways in hyperinsulinemic states, which elevated glucose production by inducing phosphoenolpyruvate carboxykinase expression. Long-term exercise recovered hepatic insulin sensitivity attenuated by HCPZ to reduce the hepatic glucose output in hyperinsulinemic clamped states. This recovery was related to enhanced insulin and leptin signaling via increased IRS2 gene and protein levels by activating the cAMP responding element-binding protein, but exercise improved only insulin signaling. In conclusion, HCPZ exacerbates hepatic insulin action by attenuating insulin and leptin signaling in type 2 diabetic rats, while regular exercise partially reverses the attenuation of hepatic insulin sensitivity by improving insulin signaling. Enhancement of insulin and leptin signaling through an induction of IRS2 may play an important role in improving hepatic glucose homeostasis.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, College of Natural Science, Hoseo University, Asan-Si, Chungnam-Do, Republic of Korea.
| | | | | | | |
Collapse
|
93
|
Abstract
Obesity and its related cluster of pathophysiologic conditions including insulin resistance, glucose intolerance, dyslipidemia, and hypertension are recognized as growing threats to world health. It is now estimated that 10% of the world's population is overweight or obese. As a result, new therapeutic options for the treatment of obesity are clearly warranted. Recent research has focused on the role that gp130 receptor ligands may play as potential therapeutic targets in obesity. One cytokine in particular, ciliary neurotrophic factor (CNTF), acts both centrally and peripherally and mimics the biologic actions of the appetite control hormone leptin, but unlike leptin, CNTF appears to be effective in obesity and as such may have therapeutic potential. In addition, CNTF suppresses inflammatory signaling cascades associated with lipid accumulation in liver and skeletal muscle. This review examines the potential role of gp130 receptor ligands as part of a therapeutic strategy to treat obesity.
Collapse
Affiliation(s)
- Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Division of Diabetes and Metabolism, Baker Heart Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|