51
|
Jin W, Mulas F, Gaertner B, Sui Y, Wang J, Matta I, Zeng C, Vinckier N, Wang A, Nguyen-Ngoc KV, Chiou J, Kaestner KH, Frazer KA, Carrano AC, Shih HP, Sander M. A Network of microRNAs Acts to Promote Cell Cycle Exit and Differentiation of Human Pancreatic Endocrine Cells. iScience 2019; 21:681-694. [PMID: 31733514 PMCID: PMC6889369 DOI: 10.1016/j.isci.2019.10.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic endocrine cell differentiation is orchestrated by the action of transcription factors that operate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappropriate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in endocrine cell differentiation has not been systematically explored. Here we characterize miRNA-regulatory networks active in human endocrine cell differentiation by combining small RNA sequencing, miRNA over-expression, and network modeling approaches. Our analysis identified Let-7g, Let-7a, miR-200a, miR-127, and miR-375 as endocrine-enriched miRNAs that drive endocrine cell differentiation-associated gene expression changes. These miRNAs are predicted to target different transcription factors, which converge on genes involved in cell cycle regulation. When expressed in human embryonic stem cell-derived pancreatic progenitors, these miRNAs induce cell cycle exit and promote endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differentiation and identifies miRNAs that could facilitate endocrine cell reprogramming.
Collapse
Affiliation(s)
- Wen Jin
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bjoern Gaertner
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jinzhao Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ileana Matta
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chun Zeng
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kim-Vy Nguyen-Ngoc
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Chiou
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly A Frazer
- Department of Pediatrics, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrea C Carrano
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
52
|
Abstract
A comprehensive understanding of mechanisms that underlie the development and function of human cells requires human cell models. For the pancreatic lineage, protocols have been developed to differentiate human pluripotent stem cells (hPSCs) into pancreatic endocrine and exocrine cells through intermediates resembling in vivo development. In recent years, this differentiation system has been employed to decipher mechanisms of pancreatic development, congenital defects of the pancreas, as well as genetic forms of diabetes and exocrine diseases. In this review, we summarize recent insights gained from studies of pancreatic hPSC models. We discuss how genome-scale analyses of the differentiation system have helped elucidate roles of chromatin state, transcription factors, and noncoding RNAs in pancreatic development and how the analysis of cells with disease-relevant mutations has provided insight into the molecular underpinnings of genetically determined diseases of the pancreas.
Collapse
Affiliation(s)
- Bjoern Gaertner
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Andrea C Carrano
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
53
|
Qadir MMF, Klein D, Álvarez-Cubela S, Domínguez-Bendala J, Pastori RL. The Role of MicroRNAs in Diabetes-Related Oxidative Stress. Int J Mol Sci 2019; 20:E5423. [PMID: 31683538 PMCID: PMC6862492 DOI: 10.3390/ijms20215423] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3'untranslated region (3'UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
54
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
Affiliation(s)
- Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bruna B Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
55
|
Qi H, Yao L, Liu Q. MicroRNA-96 regulates pancreatic β cell function under the pathological condition of diabetes mellitus through targeting Foxo1 and Sox6. Biochem Biophys Res Commun 2019; 519:294-301. [PMID: 31506178 DOI: 10.1016/j.bbrc.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 01/13/2023]
Abstract
To elucidate the potential function of microRNA-96 in protecting pancreatic β cell function under the pathological condition of T2DM and the underlying mechanism. Relative levels of microRNA-96 and genes associated with β cell function in the in vivo and in vitro T2DM and obesity models were detected by qRT-PCR. Insulin functions, including fasting blood glucose, plasma insulin, HOMA-IR, HOMA-%b, glucose tolerance and insulin tolerance, were assessed in microRNA-96 KO mice and wild-type mice fed with normal diet or high-fat diet. Downstream targets of microRNA-96 were verified by dual-luciferase reporter gene assay. Finally, regulatory effects of microRNA-96 on proliferation and apoptosis of MIN6 cells were determined. MicroRNA-96 was upregulated in mice fed with high-fat diet, db/db mice, high-level glucose-treated cells, TNF-α-treated cells, pancreatic cells isolated from the obesity and T2DM patients. Increased fasting blood glucose and HOMA-IR, as well as decreased plasma insulin and HOMA-%b were observed in microRNA-96 KO mice. IPGTT and IPITT results indicated that knockout of microRNA-96 led to pancreatic β cell dysfunction under the pathological condition of T2DM. Dual-luciferase reporter gene assay confirmed that microRNA-96 could bind Foxo1 and Sox6. MicroRNA-96 negatively regulated Foxo1 and Sox6 levels. Moreover, overexpression of microRNA-96 promoted proliferative ability and inhibited apoptosis in MIN6 cells. Relative levels of Pdx1, Nkx6.1, Cyclin D1 and Cyclin E1 were upregulated in MIN6 cells overexpressing microRNA-96. Opposite results were obtained after knockdown of microRNA-96 in MIN6 cells. MicroRNA-96 is upregulated in pancreatic β cells under the pathological condition of T2DM. Overexpression of microRNA-96 promotes proliferative ability and inhibits apoptosis in pancreatic β cells through targeting Foxo1 and Sox6.
Collapse
Affiliation(s)
- Huimeng Qi
- Department of General Practice, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Qiang Liu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW The influence of environmental factors on type 2 diabetes (T2D) risk is now well recognized and highlights the contribution of epigenetic mechanisms. This review will focus on the role of epigenetic factors in the risk and pathogenesis of T2D. RECENT FINDINGS Epigenetic dysregulation has emerged as a key mechanism underpinning the pathogenesis of T2D and its complications. Environmental variations, including alterations in lifestyle, nutrition, and metabolic demands during prenatal and postnatal life can induce epigenetic changes that may impact glucose homeostasis and the function of different metabolic organs. Accumulating data continues to uncover the specific pathways that are epigenetically dysregulated in T2D, providing an opportunity for therapeutic targeting. Environmental changes can disrupt specific epigenetic mechanisms underlying metabolic homeostasis, thus contributing to T2D pathogenesis. Such epigenetic changes can be transmitted to the next generation, contributing to the inheritance of T2D risk. Recent advances in epigenome-wide association studies and epigenetic editing tools present the attractive possibility of identifying epimutations associated with T2D, correcting specific epigenetic alterations, and designing novel epigenetic biomarkers and interventions for T2D.
Collapse
Affiliation(s)
- Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
57
|
Fei H, Shi M, Chen L, Wang Z, Suo L. MicroRNA-18 promotes apoptosis of islet β-cells via targeting NAV1. Exp Ther Med 2019; 18:389-396. [PMID: 31258677 PMCID: PMC6566057 DOI: 10.3892/etm.2019.7527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
The detailed pathogenesis of diabetes mellitus (DM) remains to be fully elucidated. The purpose of the present study was to explore the role of microRNA (miR)-18 in DM and its underlying mechanisms, providing novel ideas for the treatment of the disease. After inflammatory factor-mediated induction, miR-18 expression in the islet β-cell line MIN6 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). miR-18 mimics and miR-18 inhibitor were then constructed and transfected into MIN6 cells. The mRNA levels of pro-insulin in MIN6 cells were also detected by RT-qPCR. Released insulin levels and insulin secretion function of MIN6 cells were accessed by ELISA and glucose-stimulated insulin secretion assay, respectively. Apoptosis of MIN6 cells was detected by a terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end labeling assay and western blot analysis of apoptotic proteins. The binding interaction of miR-18 and neuron navigator 1(NAV1), a constituent of the phosphoinositide 3-kinase (PI3K)/AKT pathway, was assessed using a dual-luciferase reporter gene assay. Finally, the regulatory effect of miR-18 on the PI3K/AKT pathway was determined by western blot analysis. After induction of inflammatory factors in MIN6 cells, miR-18 expression was markedly upregulated. Transfection with miR-18 mimics inhibited pro-insulin levels, as well as insulin production and secretion capacity. miR-18 knockdown partially abrogated the inhibited insulin secretion capacity induced by interleukin-1β (IL-1β) treatment. In addition, apoptosis of MIN6 cells was increased by miR-18 mimics. The dual-luciferase reporter gene assay confirmed the direct binding of miR-18 to NAV1. Western blot analysis suggested that miR-18 markedly inhibited the PI3K/AKT pathway in MIN6 cells. In conclusion, miR-18 expression is upregulated by IL-1β induction in islet β-cells. It was demonstrated that miR-18 promotes apoptosis of islet β-cells at least partially by inhibiting NAV1 expression and insulin production via suppression of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Honghua Fei
- Department of Endocrinology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Mingyan Shi
- Department of Blood Transfusion, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Lianhong Chen
- Department of Endocrinology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Zhe Wang
- Department of Endocrinology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Lihua Suo
- Department of Endocrinology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
58
|
Guay C, Kruit JK, Rome S, Menoud V, Mulder NL, Jurdzinski A, Mancarella F, Sebastiani G, Donda A, Gonzalez BJ, Jandus C, Bouzakri K, Pinget M, Boitard C, Romero P, Dotta F, Regazzi R. Lymphocyte-Derived Exosomal MicroRNAs Promote Pancreatic β Cell Death and May Contribute to Type 1 Diabetes Development. Cell Metab 2019; 29:348-361.e6. [PMID: 30318337 DOI: 10.1016/j.cmet.2018.09.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease initiated by the invasion of pancreatic islets by immune cells that selectively kill the β cells. We found that rodent and human T lymphocytes release exosomes containing the microRNAs (miRNAs) miR-142-3p, miR-142-5p, and miR-155, which can be transferred in active form to β cells favoring apoptosis. Inactivation of these miRNAs in recipient β cells prevents exosome-mediated apoptosis and protects non-obese diabetic (NOD) mice from diabetes development. Islets from protected NOD mice display higher insulin levels, lower insulitis scores, and reduced inflammation. Looking at the mechanisms underlying exosome action, we found that T lymphocyte exosomes trigger apoptosis and the expression of genes involved in chemokine signaling, including Ccl2, Ccl7, and Cxcl10, exclusively in β cells. The induction of these genes may promote the recruitment of immune cells and exacerbate β cell death during the autoimmune attack. Our data point to exosomal-miRNA transfer as a communication mode between immune and insulin-secreting cells.
Collapse
Affiliation(s)
- Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Janine K Kruit
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophie Rome
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA), University of Lyon, Faculté de Médecine de Lyon Sud, Lyon, France
| | - Véronique Menoud
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Niels L Mulder
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Angelika Jurdzinski
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Umberto Di Mario ONLUS Foundation - Toscana Life Science Park, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Umberto Di Mario ONLUS Foundation - Toscana Life Science Park, Siena, Italy
| | - Alena Donda
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Bryan J Gonzalez
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Michel Pinget
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Christian Boitard
- Institut National de Santé et de Recherche Médicale U1016, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pedro Romero
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy; Umberto Di Mario ONLUS Foundation - Toscana Life Science Park, Siena, Italy
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| |
Collapse
|
59
|
Dusaulcy R, Handgraaf S, Visentin F, Vesin C, Philippe J, Gosmain Y. miR-132-3p is a positive regulator of alpha-cell mass and is downregulated in obese hyperglycemic mice. Mol Metab 2019; 22:84-95. [PMID: 30711402 PMCID: PMC6437597 DOI: 10.1016/j.molmet.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 01/07/2023] Open
Abstract
Objective Diabetes is a complex disease implicating several organs and cell types. Within the islets, dysregulation occurs in both alpha- and beta-cells, leading to defects of insulin secretion and increased glucagon secretion. Dysregulation of alpha-cells is associated with transcriptome changes. We hypothesized that microRNAs (miRNAs) which are negative regulators of mRNA stability and translation could be involved in alpha-cell alterations or adaptations during type 2 diabetes. Methods miRNA microarray analyses were performed on pure alpha- and beta-cells from high-fat diet fed obese hyperglycemic mice and low-fat diet fed controls. Then, the most regulated miRNA was overexpressed or inhibited in primary culture of mouse and human alpha-cells to determine its molecular and functional impact. Results 16 miRNAs were significantly regulated in alpha-cells of obese hyperglycemic mice and 28 in beta-cells. miR-132-3p had the strongest regulation level in alpha-cells, where it was downregulated, while we observed an opposite upregulation in beta-cells. In vitro experiments showed that miR-132-3p, which is inversely regulated by somatostatin and cAMP, is a positive modulator of alpha-cell proliferation and implicated in their resistance to apoptosis. These effects are associated with the regulation of a series of genes, including proliferation and stress markers Mki67 and Bbc3 in mouse and human alpha-cells, potentially involved in miR-132-3p functions. Conclusions Downregulation of miR-132-3p in alpha-cells of obese diabetic mice may constitute a compensatory mechanism contributing to keep glucagon-producing cell number constant in diabetes. Alpha- and beta-cells present specific microRNA signatures. 16 microRNAs are significantly regulated in alpha-cells of obese hyperglycemic mice. miR-132-3p is downregulated in alpha-cells of obese hyperglycemic mice. miR-132-3p stimulates alpha-cells proliferation and resistance to apoptosis. miR-132-3p is regulated by somatostatin in alpha-cells.
Collapse
Affiliation(s)
- Rodolphe Dusaulcy
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland.
| | - Sandra Handgraaf
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Florian Visentin
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Christian Vesin
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Jacques Philippe
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Yvan Gosmain
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
60
|
Wong WKM, Sørensen AE, Joglekar MV, Hardikar AA, Dalgaard LT. Non-Coding RNA in Pancreas and β-Cell Development. Noncoding RNA 2018; 4:E41. [PMID: 30551650 PMCID: PMC6315983 DOI: 10.3390/ncrna4040041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and β-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and β-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and β-cell differentiation as well as in the perinatal period, where a burst of β-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and β-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or β-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with β-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and β-cell function. Altogether, these observations support significant and important actions of ncRNAs in β-cell development and function.
Collapse
Affiliation(s)
- Wilson K M Wong
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Anja E Sørensen
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark.
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Anand A Hardikar
- NHMRC Clinical Trials Center, University of Sydney, Camperdown NSW 2050, Sydney, Australia.
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark.
| |
Collapse
|
61
|
Li J, Zhang Q, Zeng W, Wu Y, Luo M, Zhu Y, Guo AY, Yang X. Integrating Transcriptome and Experiments Reveals the Anti-diabetic Mechanism of Cyclocarya paliurus Formula. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:419-430. [PMID: 30388616 PMCID: PMC6205057 DOI: 10.1016/j.omtn.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is generally regarded as a metabolic disorder disease with various phenotypic expressions. Traditional Chinese medicine (TCM) has been widely used for preventing and treating diabetes. In our study, we demonstrated that Cyclocarya paliurus formula extractum (CPE), a compound of TCM, can ameliorate diabetes in diabetic rats. Transcriptome profiles were performed to elucidate the anti-diabetic mechanisms of CPE on pancreas and liver. Pancreatic transcriptome analysis showed CPE treatment significantly inhibited gene expressions related to inflammation and apoptosis pathways, among which the transcription factors (TFs) nuclear factor κB (NF-κB), STAT, and miR-9a/148/200 may serve as core regulators contributing to ameliorate diabetes. Biochemical studies also demonstrated CPE treatment decreased pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin [IL]-1β, and IL-6) and reduced β cell apoptosis. In liver tissue, our transcriptome and biochemical experiments showed that CPE treatment reduced lipid accumulation and liver injury, and it promoted glycogen synthesis, which may be regulated by TFs Srebf1, Mlxipl, and miR-122/128/192. Taken together, our findings revealed CPE could be used as a potential therapeutic agent to prevent and treat diabetes. It is the first time to combine transcriptome and regulatory network analyses to study the mechanism of CPE in preventing diabetes, giving a demonstration of exploring the mechanism of TCM on complex diseases.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Zeng
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Wu
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
62
|
Yaribeygi H, Katsiki N, Behnam B, Iranpanah H, Sahebkar A. MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism 2018; 87:48-55. [PMID: 30253864 DOI: 10.1016/j.metabol.2018.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/13/2022]
Abstract
The incidence of type 2 diabetes mellitus (T2DM), the most prevalent metabolic disease, is rapidly growing worldwide. T2DM has several underlying causes involved in its development. In recent decades, there is compelling evidence demonstrating that microRNAs (miRs) are implicated in the pathophysiology of T2DM. miRs are small non-coding RNAs which serve as endogenous gene regulators by binding to specific sequences in RNA and modifying gene expression toward up- or down-regulation. T2DM occurrence and complications may be influenced by increasing or decreasing the activity of some miRs. In the present narrative review, we comment on four molecular pathways/mechanisms that mediate the link between T2DM and different forms of miRs. These mechanisms include involvement of miRs in beta cells development, insulin sensitivity/resistance, insulin production/secretion and insulin signaling. The effects of antidiabetic drugs on miRs are also discussed.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Helia Iranpanah
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
63
|
Esguerra JLS, Nagao M, Ofori JK, Wendt A, Eliasson L. MicroRNAs in islet hormone secretion. Diabetes Obes Metab 2018; 20 Suppl 2:11-19. [PMID: 30230181 DOI: 10.1111/dom.13382] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic islet hormone secretion is central in the maintenance of blood glucose homeostasis. During development of hyperglycaemia, the β-cell is under pressure to release more insulin to compensate for increased insulin resistance. Failure of the β-cells to secrete enough insulin results in type 2 diabetes (T2D). MicroRNAs (miRNAs) are short non-coding RNA molecules suitable for rapid regulation of the changes in target gene expression needed in β-cell adaptations. Moreover, miRNAs are involved in the maintenance of α-cell and β-cell phenotypic identities via cell-specific, or cell-enriched expression. Although many of the abundant miRNAs are highly expressed in both cell types, recent research has focused on the role of miRNAs in β-cells. It has been shown that highly abundant miRNAs, such as miR-375, are involved in several cellular functions indispensable in maintaining β-cell phenotypic identity, almost acting as "housekeeping genes" in the context of hormone secretion. Despite the abundance and importance of miR-375, it has not been shown to be differentially expressed in T2D islets. On the contrary, the less abundant miRNAs such as miR-212/miR-132, miR-335, miR-130a/b and miR-152 are deregulated in T2D islets, wherein the latter three miRNAs were shown to play key roles in regulating β-cell metabolism. In this review, we focus on β-cell function and describe miRNAs involved in insulin biosynthesis and processing, glucose uptake and metabolism, electrical activity and Ca2+ -influx and exocytosis of the insulin granules. We present current status on miRNA regulation in α-cells, and finally we discuss the involvement of miRNAs in β-cell dysfunction underlying T2D pathogenesis.
Collapse
Affiliation(s)
- Jonathan L S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Mototsugu Nagao
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Jones K Ofori
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| |
Collapse
|
64
|
Mohan R, Baumann D, Alejandro EU. Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. Am J Physiol Regul Integr Comp Physiol 2018; 315:R867-R878. [PMID: 30110175 DOI: 10.1152/ajpregu.00072.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of obesity and type 2 (T2D) diabetes is a major health concern in the United States and around the world. T2D is a complex disease characterized by pancreatic β-cell failure in association with obesity and insulin resistance in peripheral tissues. Although several genes associated with T2D have been identified, it is speculated that genetic variants account for only <10% of the risk for this disease. A strong body of data from both human epidemiological and animal studies shows that fetal nutrient factors in utero confer significant susceptibility to T2D. Numerous studies done in animals have shown that suboptimal maternal environment or placental insufficiency causes intrauterine growth restriction (IUGR) in the fetus, a critical factor known to predispose offspring to obesity and T2D, in part by causing permanent consequences in total functional β-cell mass. This review will focus on the potential contribution of the placenta in fetal programming of obesity and TD and its likely impact on pancreatic β-cell development and growth.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Emilyn Uy Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
65
|
Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol 2018; 234:231-245. [PMID: 30076721 DOI: 10.1002/jcp.26856] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
MiR-214 belongs to a family of microRNA (small, highly conserved noncoding RNA molecules) precursors that play a pivotal role in biological functions, such as cellular function, tissue development, tissue homeostasis, and pathogenesis of diseases. Recently, miR-214 emerged as a critical regulator of musculoskeletal metabolism. Specifically, miR-214 can mediate skeletal muscle myogenesis and vascular smooth muscle cell proliferation, migration, and differentiation. MiR-214 also modulates osteoblast function by targeting specific molecular pathways and the expression of various osteoblast-related genes; promotes osteoclast activity by targeting phosphatase and tensin homolog (Pten); and mediates osteoclast-osteoblast intercellular crosstalk via an exosomal miRNA paracrine mechanism. Importantly, dysregulation in miR-214 expression is associated with pathological bone conditions such as osteoporosis, osteosarcoma, multiple myeloma, and osteolytic bone metastasis of breast cancer. This review discusses the cellular targets of miR-214 in bone, the molecular mechanisms governing the activities of miR-214 in the musculoskeletal system, and the putative role of miR-214 in skeletal diseases. Understanding the biology of miR-214 could potentially lead to the development of miR-214 as a possible biomarker and a therapeutic target for musculoskeletal diseases.
Collapse
Affiliation(s)
- Youqiang Sun
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Vincent Kuek
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yuhao Liu
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Yuan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, China
| | - Leilei Chen
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Shao
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
66
|
López-Beas J, Capilla-González V, Aguilera Y, Mellado N, Lachaud CC, Martín F, Smani T, Soria B, Hmadcha A. miR-7 Modulates hESC Differentiation into Insulin-Producing Beta-like Cells and Contributes to Cell Maturation. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:463-477. [PMID: 30195784 PMCID: PMC6070677 DOI: 10.1016/j.omtn.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cells retain the extraordinary capacity to differentiate into pancreatic beta cells. For this particular lineage, more effort is still required to stress the importance of developing an efficient, reproducible, easy, and cost-effective differentiation protocol to obtain more mature, homogeneous, and functional insulin-secreting cells. In addition, microRNAs (miRNAs) have emerged as a class of small non-coding RNAs that regulate many cellular processes, including pancreatic differentiation. Some miRNAs are known to be preferentially expressed in islets. Of note, miR-375 and miR-7 are two of the most abundant pancreatic miRNAs, and they are necessary for proper pancreatic islet development. Here we provide new insight into specific miRNAs involved in pancreatic differentiation. We found that miR-7 is differentially expressed during the differentiation of human embryonic stem cells (hESCs) into a beta cell-like phenotype and that its modulation plays an important role in generating mature pancreatic beta cells. This strategy may be exploited to optimize the potential for in vitro differentiation of hESCs into insulin-producing beta-like cells for use in preclinical studies and future clinical applications as well as the prospective uses of miRNAs to improve this process.
Collapse
Affiliation(s)
- Javier López-Beas
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Vivian Capilla-González
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Yolanda Aguilera
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Nuria Mellado
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Christian C Lachaud
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Diabetes y Enfermedades Metabólicas-CIBERDEM, Madrid, Spain
| | - Tarik Smani
- Instituto de Biomedicina de Sevilla-IBiS, Universidad de Sevilla/HUVR/Junta de Andalucía/CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovaculares-CIBERCV, Madrid, Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Diabetes y Enfermedades Metabólicas-CIBERDEM, Madrid, Spain
| | - Abdelkrim Hmadcha
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Diabetes y Enfermedades Metabólicas-CIBERDEM, Madrid, Spain.
| |
Collapse
|
67
|
Chen R, Chen M, Xiao Y, Liang Q, Cai Y, Chen L, Fang M. Bioinformatics analysis of microRNAs related to blood stasis syndrome in diabetes mellitus patients. Biosci Rep 2018; 38:BSR20171208. [PMID: 29437903 PMCID: PMC5861324 DOI: 10.1042/bsr20171208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
In traditional Chinese medicine (TCM), blood stasis syndrome (BSS) is mainly manifested by the increase of blood viscosity, platelet adhesion rate and aggregation, and the change of microcirculation, resulting in vascular endothelial injury. It is an important factor in the development of diabetes mellitus (DM). The aim of the present study was to screen out the potential candidate microRNAs (miRNAs) in DM patients with BSS by high-throughput sequencing (HTS) and bioinformatics analysis. Human umbilical vein endothelial cells (HUVECs) were incubated with 10% human serum to establish models of DM with BSS, DM without BSS (NBS), and normal control (NC). Total RNA of each sample was extracted and sequenced by the Hiseq2000 platform. Differentially expressed miRNAs (DE-miRNAs) were screened between samples and compared with known changes in mRNA abundance. Target genes of miRNAs were predicted by softwares. Gene Ontology (GO) and pathway enrichment analysis of the target genes were conducted. According to the significantly enriched GO annotations and pathways (P-value ≤ 0.001), we selected the key miRNAs of DM with BSS. It showed that the number of DE-miRNAs in BSS was 32 compared with non-blood stasis syndrome (NBS) and NC. The potential candidate miRNAs were chosen from GO annotations in which target genes were significantly enriched (-log10 (P-value) > 5), which included miR-140-5p, miR-210, miR-362-5p, miR-590-3p, and miR-671-3p. The present study screened out the potential candidate miRNAs in DM patients with BSS by HTS and bioinformatics analysis. The miRNAs will be helpful to provide valuable suggestions on clinical studies of DM with BSS at the gene level.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Minghao Chen
- Reproductive Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511400, China
| | - Ya Xiao
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qiuer Liang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yunfei Cai
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Liguo Chen
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Meixia Fang
- Institute of Laboratory Animals, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
68
|
Abstract
The frequency of prediabetes is increasing as the prevalence of obesity rises worldwide. In prediabetes, hyperglycemia, insulin resistance, and inflammation and metabolic derangements associated with concomitant obesity cause endothelial vasodilator and fibrinolytic dysfunction, leading to increased risk of cardiovascular and renal disease. Importantly, the microvasculature affects insulin sensitivity by affecting the delivery of insulin and glucose to skeletal muscle; thus, endothelial dysfunction and extracellular matrix remodeling promote the progression from prediabetes to diabetes mellitus. Weight loss is the mainstay of treatment in prediabetes, but therapies that improved endothelial function and vasodilation may not only prevent cardiovascular disease but also slow progression to diabetes mellitus.
Collapse
Affiliation(s)
- David H Wasserman
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas J Wang
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J Brown
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
69
|
Pan G, Hao H, Liu J. Induction of hepatocytes-derived insulin-producing cells using small molecules and identification of microRNA profiles during this procedure. Biochem Biophys Res Commun 2018. [PMID: 29524422 DOI: 10.1016/j.bbrc.2018.03.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transplantation of insulin-producing cells (IPCs) or pancreatic progenitor cells is a theoretical therapy for diabetes with insulin insufficiency. Isolated hepatocytes from newborn rats (within 24 h after birth) were progressively induced into IPCs using 5-aza-2'-deoxycytidine, Trichostatin A, retinoic acid, insulin-transferrin-selenium, and nicotinamide. We transplanted Pdx1+ pancreatic progenitors into STZ-induced diabetic mice and found the decreased blood glucose and increased insulin level in comparison with diabetic model. The dynamic expression profiles of microRNAs (miRNAs) were identified using microarray. We found 67 miRNAs were decreasingly expressed; 52 miRNAs were increasingly expressed; 27 miRNAs were specially inhibited in Stage 1 cells (multipotent progenitor cells); and 58 miRNAs were specially inhibited in Pdx1+ cells (Stage 2). Further analysis showed these miRNAs' targets were associated with genetic recombination, stem cell pluripotency maintenance, cellular structure reorganization and insulin secretion. Enrichment analysis using KEGG pathway showed the differentiation of IPCs from hepatocytes was massively more likely not mediated by canonical Wnt/β-catenin signaling. In addition, the BMP/Smad signaling was involved in this progression. We found the dysregulated miRNAs profiles were inconsistent with cell phenotypes and might be responsible for small molecule-mediated cell differentiation during IPCs induction.
Collapse
Affiliation(s)
- Gui Pan
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | | | - Jianping Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
70
|
Solarski M, Rotondo F, Foulkes WD, Priest JR, Syro LV, Butz H, Cusimano MD, Kovacs K. DICER1 gene mutations in endocrine tumors. Endocr Relat Cancer 2018; 25:R197-R208. [PMID: 29330195 DOI: 10.1530/erc-17-0509] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/02/2023]
Abstract
In this review, the importance of the DICER1 gene in the function of endocrine cells is discussed. There is conclusive evidence that DICER1 mutations play a crucial role in the development, progression, cell proliferation, therapeutic responsiveness and behavior of several endocrine tumors. We review the literature of DICER1 gene mutations in thyroid, parathyroid, pituitary, pineal gland, endocrine pancreas, paragangliomas, medullary, adrenocortical, ovarian and testicular tumors. Although significant progress has been made during the last few years, much more work is needed to fully understand the significance of DICER1 mutations.
Collapse
Affiliation(s)
- Michael Solarski
- Division of NeurosurgeryDepartment of Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fabio Rotondo
- Division of PathologyDepartment of Laboratory Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - William D Foulkes
- Department of Human GeneticsMedicine and Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis InstituteJewish General Hospital and Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Luis V Syro
- Department of NeurosurgeryHospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia
| | - Henriett Butz
- Molecular Medicine Research GroupHungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Michael D Cusimano
- Division of NeurosurgeryDepartment of Surgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kalman Kovacs
- Division of PathologyDepartment of Laboratory Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
71
|
Martinez-Sanchez A, Nguyen-Tu MS, Cebola I, Yavari A, Marchetti P, Piemonti L, de Koning E, Shapiro AMJ, Johnson P, Sakamoto K, Smith DM, Leclerc I, Ashrafian H, Ferrer J, Rutter GA. MiR-184 expression is regulated by AMPK in pancreatic islets. FASEB J 2018; 32:2587-2600. [PMID: 29269398 PMCID: PMC6207280 DOI: 10.1096/fj.201701100r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AMPK is a critical energy sensor and target for widely used antidiabetic drugs. In β cells, elevated glucose concentrations lower AMPK activity, and the ablation of both catalytic subunits [β-cell–specific AMPK double-knockout (βAMPKdKO) mice] impairs insulin secretion in vivo and β-cell identity. MicroRNAs (miRNAs) are small RNAs that silence gene expression that are essential for pancreatic β-cell function and identity and altered in diabetes. Here, we have explored the miRNAs acting downstream of AMPK in mouse and human β cells. We identified 14 down-regulated and 9 up-regulated miRNAs in βAMPKdKO vs. control islets. Gene ontology analysis of targeted transcripts revealed enrichment in pathways important for β-cell function and identity. The most down-regulated miRNA was miR-184 (miR-184-3p), an important regulator of β-cell function and compensatory expansion that is controlled by glucose and reduced in diabetes. We demonstrate that AMPK is a potent regulator and an important mediator of the negative effects of glucose on miR-184 expression. Additionally, we reveal sexual dimorphism in miR-184 expression in mouse and human islets. Collectively, these data demonstrate that glucose-mediated changes in AMPK activity are central for the regulation of miR-184 and other miRNAs in islets and provide a link between energy status and gene expression in β cells.—Martinez-Sanchez, A., Nguyen-Tu, M.-S., Cebola, I., Yavari, A., Marchetti, P., Piemonti, L., de Koning, E., Shapiro, A. M. J., Johnson, P., Sakamoto, K., Smith, D. M., Leclerc, I., Ashrafian, H., Ferrer, J., Rutter, G. A. MiR-184 expression is regulated by AMPK in pancreatic islets.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ines Cebola
- Beta Cell Genome Regulation Laboratory, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Arash Yavari
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute (SR-DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Eelco de Koning
- Hubrecht Institute, Utrecht, The Netherlands.,Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - A M James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Kei Sakamoto
- Nestle Institute of Health Sciences, Lausanne, Switzerland
| | - David M Smith
- AstraZeneca Research and Development, Innovative Medicines and Early Development, Discovery Sciences, Cambridge, United Kingdom
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Houman Ashrafian
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jorge Ferrer
- Beta Cell Genome Regulation Laboratory, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
72
|
Pomatto MAC, Gai C, Deregibus MC, Tetta C, Camussi G. Noncoding RNAs Carried by Extracellular Vesicles in Endocrine Diseases. Int J Endocrinol 2018; 2018:4302096. [PMID: 29808089 PMCID: PMC5902008 DOI: 10.1155/2018/4302096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are essential and fine regulators of important biological processes. Their role is well documented also in the endocrine system, both in physiological and pathological conditions. Increasing interest is arising about the function and the importance of noncoding RNAs shuttled by extracellular vesicles (EVs). In fact, EV membrane protects nucleic acids from enzyme degradation. Nowadays, the research on EVs and their cargoes, as well as their biological functions, faces the lack of standardization in EV purification. Here, the main techniques for EV isolation are discussed and compared for their advantages and vulnerabilities. Despite the possible discrepancy due to methodological variability, EVs and their RNA content are reported to be key mediators of intercellular communication in pathologies of main endocrine organs, including the pancreas, thyroid, and reproductive system. In particular, the present work describes the role of RNAs contained in EVs in pathogenesis and progression of several metabolic dysfunctions, including obesity and diabetes, and their related manifestations. Their importance in the establishment and progression of thyroid autoimmunity disorders and complicated pregnancy is also discussed. Preliminary studies highlight the attractive possibility to use RNAs contained in EVs as biomarkers suggesting their exploitation for new diagnostic approaches in endocrinology.
Collapse
Affiliation(s)
| | - Chiara Gai
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Scarl, Univerity of Turin, Turin, Italy
| | - Ciro Tetta
- Unicyte AG, Oberdorf, Nidwalden, Switzerland
| | - Giovanni Camussi
- Stem Cell Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Scarl, Univerity of Turin, Turin, Italy
| |
Collapse
|
73
|
Atkin SL, Ramachandran V, Yousri NA, Benurwar M, Simper SC, McKinlay R, Adams TD, Najafi-Shoushtari SH, Hunt SC. Changes in Blood microRNA Expression and Early Metabolic Responsiveness 21 Days Following Bariatric Surgery. Front Endocrinol (Lausanne) 2018; 9:773. [PMID: 30687230 PMCID: PMC6338028 DOI: 10.3389/fendo.2018.00773] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Early metabolic responses following bariatric surgery appear greater than expected given the initial weight loss and coincide with improvement in diabetes. We hypothesized that small non-coding microRNA changes might contribute to regulating mechanisms for metabolic changes and weight loss in patients with severe obesity and diabetes. Methods: Twenty-nine type 2 patients with severe obesity (mean BMI 46.2 kg/m2) and diabetes underwent Roux-en-Y gastric bypass (RYGB) surgery. Clinical measurements and fasting blood samples were taken preoperatively and at day 21 postoperatively. Normalization of fasting glucose and HbA1c following bariatric surgery (short-term diabetes remission) was defined as withdrawal of anti-diabetic medication and fasting glucose < 100 mg/dL (5.6 mmol/L) or HbA1c < 6.0%. MicroRNA expression was determined by quantitative polymerase chain reaction and tested for significant changes after surgery. Results: BMI decreased by 3.8 kg/m2 21 days postoperatively. Eighteen of 29 RYGB (62%) had short-term diabetes remission. Changes from pre- to post-surgery in 32 of 175 microRNAs were nominally significant (p < 0.05). Following multiple comparison adjustment, changes in seven microRNAs remained significant: miR-7-5p, let-7f-5p, miR-15b-5p, let-7i-5p, miR-320c, miR-205-5p, and miR-335-5p. Four pathways were over-represented by these seven microRNAs, including diabetes and insulin resistance pathways. Conclusion: Seven microRNAs showed significant changes 21 days after bariatric surgery. Functional pathways of the altered microRNAs were associated with diabetes-, pituitary-, and liver-related disease, with expression in natural killer cells, and pivotal intestinal pathology suggesting possible mechanistic roles in early diabetes responses following bariatric surgery.
Collapse
Affiliation(s)
- Stephen L. Atkin
- Department of Medicine, Weill Cornell Medicine, Doha, Qatar
- *Correspondence: Stephen L. Atkin
| | - Vimal Ramachandran
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Doha, Qatar
- MicroRNA Core Laboratory, Weill Cornell Medicine, Doha, Qatar
| | - Noha A. Yousri
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Manasi Benurwar
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Doha, Qatar
- MicroRNA Core Laboratory, Weill Cornell Medicine, Doha, Qatar
| | - Steven C. Simper
- Rocky Mountain Associated Physicians, Inc., Salt Lake City, UT, United States
| | - Rodrick McKinlay
- Rocky Mountain Associated Physicians, Inc., Salt Lake City, UT, United States
| | - Ted D. Adams
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Intermountain LiveWell Center, Intermountain Healthcare, Salt Lake City, UT, United States
| | - S. Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Doha, Qatar
- MicroRNA Core Laboratory, Weill Cornell Medicine, Doha, Qatar
| | - Steven C. Hunt
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
74
|
Saliani N, Montazersaheb S, Montasser Kouhsari S. Micromanaging Glucose Tolerance and Diabetes. Adv Pharm Bull 2017; 7:547-556. [PMID: 29399544 PMCID: PMC5788209 DOI: 10.15171/apb.2017.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that have significant roles in biological processes such as glucose homoeostasis. MiRNAs fine-tune target genes expression via sequence-specific binding of their seed sequence to the untranslated region of mRNAs and degrade target mRNAs. MicroRNAs in islet β-cells regulate β-cell differentiation, proliferation, insulin transcription and glucose-stimulated insulin secretion. Furthermore, miRNAs play key roles in the regulation of glucose and lipid metabolisms and modify insulin sensitivity by controlling metabolic functions in main target organs of insulin such as skeletal muscle, liver and adipose tissue. Moreover, since circulating miRNAs are detectable and stable in serum, levels of certain miRNAs seem to be novel biomarkers for prediction of diabetes mellitus. In this article, due to the prominent impact of miRNAs on diabetes, we overviewed the microRNAs regulatory functions in organs related to insulin resistance and diabetes and shed light on their potential as diagnostic and therapeutic markers for diabetes.
Collapse
Affiliation(s)
- Negar Saliani
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | | | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
75
|
Eliasson L. The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol 2017; 456:95-101. [PMID: 28254488 DOI: 10.1016/j.mce.2017.02.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
The pathophysiology of diabetes is complex and recent research put focus on the pancreatic islets of Langerhans and the insulin-secreting beta cells as central in the development of the disease. MicroRNAs (miRNAs), the small non-coding RNAs regulating post-transcriptional gene expression, are significant regulators of beta cell function. One of the most abundant miRNAs in the islets is miR-375. This review focus on the role of miR-375 in beta cell function, including effects in development and differentiation, proliferation and regulation of insulin secretion. It also discusses the regulation of miR-375 expression, miR-375 as a potential circulating biomarker in type 1 and type 2 diabetes, and the need for the beta cell to keep expression of miR-375 within optimal levels. The summed picture of miR-375 is a miRNA with multiple functions with importance in the formation of beta cell identity, control of beta cell mass and regulation of insulin secretion.
Collapse
Affiliation(s)
- Lena Eliasson
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, CRC, SUS Malmö, Malmö, Sweden.
| |
Collapse
|
76
|
Kamalden TA, Macgregor-Das AM, Kannan SM, Dunkerly-Eyring B, Khaliddin N, Xu Z, Fusco AP, Yazib SA, Chow RC, Duh EJ, Halushka MK, Steenbergen C, Das S. Exosomal MicroRNA-15a Transfer from the Pancreas Augments Diabetic Complications by Inducing Oxidative Stress. Antioxid Redox Signal 2017; 27:913-930. [PMID: 28173719 PMCID: PMC5649125 DOI: 10.1089/ars.2016.6844] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIMS MicroRNAs (miRNAs), one type of noncoding RNA, modulate post-transcriptional gene expression in various pathogenic pathways in type 2 diabetes (T2D). Currently, little is known about how miRNAs influence disease pathogenesis by targeting cells at a distance. The purpose of this study was to investigate the role of exosomal miRNAs during T2D. RESULTS We show that miR-15a is increased in the plasma of diabetic patients, correlating with disease severity. miR-15 plays an important role in insulin production in pancreatic β-cells. By culturing rat pancreatic β-cells (INS-1) cells in high-glucose media, we identified a source of increased miR-15a in the blood as exosomes secreted by pancreatic β-cells. We postulate that miR-15a, produced in pancreatic β-cells, can enter the bloodstream and contribute to retinal injury. miR-15a overexpression in Müller cells can be induced by exposing Müller cells to exosomes derived from INS-1 cells under high-glucose conditions and results in oxidative stress by targeting Akt3, which leads to apoptotic cell death. The in vivo relevance of these findings is supported by results from high-fat diet and pancreatic β-cell-specific miR-15a-/- mice. INNOVATION This study highlights an important and underappreciated mechanism of remote cell-cell communication (exosomal transfer of miRNA) and its influence on the development of T2D complications. CONCLUSION Our findings suggest that circulating miR-15a contributes to the pathogenesis of diabetes and supports the concept that miRNAs released by one cell type can travel through the circulation and play a role in disease progression via their transfer to different cell types, inducing oxidative stress and cell injury. Antioxid. Redox Signal. 27, 913-930.
Collapse
Affiliation(s)
- Tengku Ain Kamalden
- 1 University of Malaya Eye Research Centre, Department of Ophthalmology, University of Malaya , Kuala Lumpur, Malaysia
| | | | - Sangeetha Marimuthu Kannan
- 2 Department of Pathology, Johns Hopkins University , Baltimore, Maryland.,3 School of Life Sciences, B.S. Abdur Rahman University , Chennai, India
| | | | - Nurliza Khaliddin
- 1 University of Malaya Eye Research Centre, Department of Ophthalmology, University of Malaya , Kuala Lumpur, Malaysia
| | - Zhenhua Xu
- 4 Department of Ophthalmology, Johns Hopkins University , Baltimore, Maryland
| | | | - Syatirah Abu Yazib
- 1 University of Malaya Eye Research Centre, Department of Ophthalmology, University of Malaya , Kuala Lumpur, Malaysia
| | - Rhuen Chiou Chow
- 1 University of Malaya Eye Research Centre, Department of Ophthalmology, University of Malaya , Kuala Lumpur, Malaysia
| | - Elia J Duh
- 4 Department of Ophthalmology, Johns Hopkins University , Baltimore, Maryland
| | - Marc K Halushka
- 2 Department of Pathology, Johns Hopkins University , Baltimore, Maryland
| | | | - Samarjit Das
- 2 Department of Pathology, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
77
|
Xu K, Bian D, Hao L, Huang F, Xu M, Qin J, Liu Y. microRNA-503 contribute to pancreatic beta cell dysfunction by targeting the mTOR pathway in gestational diabetes mellitus. EXCLI JOURNAL 2017; 16:1177-1187. [PMID: 29285014 PMCID: PMC5735340 DOI: 10.17179/excli2017-738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
Loss of pancreatic β cells is involved in pathogenesis of gestational diabetes mellitus (GDM). Recently, several studies have elucidated the connection between microRNAs (miRNAs) and diabetes mellitus (DM), but the role of miRNAs in GDM remains unclear. The aim of this study was to evaluate the potential functions of miRNAs in GDM and to investigate the underlying mechanisms of action. First, we explored the expression profile of miRNAs in placenta tissue from GDM patients using microarray. Validation analysis was performed in peripheral blood specimens using quantitative reverse transcription PCR (qRT-PCR). Then the role and regulating mechanism of miR-503 in weaken the function of pancreatic β cell was investigated. We found that miR-503 was markedly upregulated in placenta tissue from GDM patients, as elevated in peripheral blood specimens, and the high level was positively correlated to blood glucose concentration. Knockdown of miR-503 enhanced insulin secretion of pancreatic β-cells, promoted cell proliferation and protected cells from apoptosis, whereas overexpression of miR-503 showed the opposite effects. Furthermore, mammalian target of rapamycin (mTOR) was identified as a direct target of miR-503 and mTOR silencing could reverse the improving effects of miR-503 knockdown on insulin secretion and pancreatic β-cells proliferation. High expression of miR-503 in peripheral blood may be acted as a diagnosis biomarker of GDM. MiR-503 regulated functions of pancreatic β-cells by targeting the mTOR pathway, suggesting that targeting miR-503/mTOR axis could serve as a novel therapeutic target for GDM.
Collapse
Affiliation(s)
- Ke Xu
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Dezhi Bian
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Lanxiang Hao
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Fei Huang
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Min Xu
- Department of Obstetrics and Gynecology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Jie Qin
- Department of Pediatrics, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| | - Yanmei Liu
- Department of Endocrinology, Yancheng First City Hospital of Jiangsu Province, Yancheng, China
| |
Collapse
|
78
|
Engelmann I, Alidjinou EK, Bertin A, Bossu J, Villenet C, Figeac M, Sane F, Hober D. Persistent coxsackievirus B4 infection induces microRNA dysregulation in human pancreatic cells. Cell Mol Life Sci 2017; 74:3851-3861. [PMID: 28601984 PMCID: PMC11107484 DOI: 10.1007/s00018-017-2567-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/16/2017] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Abstract
Enterovirus infections are implicated in the development of type 1 diabetes (T1D). MicroRNAs as regulators of gene expression are involved in many physiological and pathological processes. Given that viral infections dysregulate cellular microRNAs, we investigated the impact of persistent coxsackievirus B4 infection on microRNA expression of human pancreatic cells. Next-generation sequencing was used to determine microRNA expression in PANC-1 cells persistently infected (for several weeks) with coxsackievirus B4 and uninfected control cells. Target prediction restricted to T1D risk genes was performed with miRWalk2.0. Functional annotation analysis was performed with DAVID6.7. Expression of selected microRNAs and T1D risk genes was measured by quantitative reverse-transcription polymerase chain reaction. Eighty-one microRNAs were dysregulated in persistently infected PANC-1 cells. Forty-nine of the known fifty-five T1D risk genes were predicted as putative targets of at least one of the dysregulated microRNAs. Most functional annotation terms that were enriched in these 49 putative target genes were related to the immune response or autoimmunity. mRNA levels of AFF3, BACH2, and IL7R differed significantly between persistently infected cells and uninfected cells. This is the first characterization of the microRNA expression profile changes induced by persistent coxsackievirus B4 infection in pancreatic cells. The predicted targeting of genes involved in the immune response and autoimmunity by the dysregulated microRNAs as well as the dysregulated expression of diabetes risk genes shows that persistent coxsackievirus B4 infection profoundly impacts the host cell. These data support the hypothesis of a possible link between persistent coxsackievirus B4 infection and the development of T1D.
Collapse
Affiliation(s)
- Ilka Engelmann
- Univ Lille Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, F-59000, France
| | - Enagnon K Alidjinou
- Univ Lille Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, F-59000, France
| | - Antoine Bertin
- Univ Lille Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, F-59000, France
| | - Johann Bossu
- Univ Lille Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, F-59000, France
| | - Céline Villenet
- CHU Lille, Plate-forme de Génomique Fonctionnelle et Structurale, Lille, F-59000, France
| | - Martin Figeac
- CHU Lille, Plate-forme de Génomique Fonctionnelle et Structurale, Lille, F-59000, France
| | - Famara Sane
- Univ Lille Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, F-59000, France
| | - Didier Hober
- Univ Lille Faculté de Médecine, CHU Lille, Laboratoire de Virologie EA3610, Lille, F-59000, France.
| |
Collapse
|
79
|
Cheng Q, Han LH, Zhao HJ, Li H, Li JB. Abnormal alterations of miR-1 and miR-214 are associated with clinicopathological features and prognosis of patients with PDAC. Oncol Lett 2017; 14:4605-4612. [PMID: 29085459 PMCID: PMC5649611 DOI: 10.3892/ol.2017.6819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignant disease with a poor prognosis. PDAC is known to be difficult to diagnose at an early stage and to exhibit poor recurrence-free prognosis, but there is also a lack of effective treatment and limited knowledge of its biological characteristics. Therefore, there is an urgent requirement for an improved understanding of the cellular or molecular properties associated with PDAC, and to explore novel avenues for the diagnosis and treatment of this disease. In the present study, the microRNA (miRNA/miR) profiles of sera and tumor samples from patients with PDAC and healthy controls were investigated by miRNA microarray, and the potential role of miR-1 expression in PDAC was determined. A total of 43 patients attending the clinic diagnosed with PDAC at Changzhi City People's Hospital were invited to participate. Blood and surgical tumor samples were obtained for analysis by miRNA microarray and the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The surgical tumor tissue was additionally used to determine miRNAs status by in situ hybridization (ISH). The results of microarray revealed that: i) 27 miRNAs in the sera and 23 miRNAs in the tumor tissues obtained from patients with PDAC were different compared with their matched controls; ii) miR-1, miR-10b and miR-214 were significantly altered in the PDAC group, either in the sera or tumor tissue samples. Results from the RT-qPCR, which detected the levels of miRNAs in patients with PDAC, confirmed those obtained from the miRNA microarray. In particular, the results of the present study revealed that decreased miR-1 and increased miR-214 in the PDAC tissues were associated with the clinicopathological features and survival rates of patients with PDAC. The results of the present study indicated that miRNAs serve an important role in PDAC carcinogenic progression and supplied useful markers, including miR-1, miR-214 and miR-10b, for determining PDAC prognosis using noninvasive methods.
Collapse
Affiliation(s)
- Qing Cheng
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Li-Hua Han
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Hai-Juan Zhao
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Hui Li
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Jian-Bing Li
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
80
|
LaPierre MP, Stoffel M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Mol Metab 2017; 6:1010-1023. [PMID: 28951825 PMCID: PMC5605735 DOI: 10.1016/j.molmet.2017.06.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNAs have emerged as important regulatory non-coding RNAs that tune cellular responses to physiological perturbations and disease conditions. An increasing body of literature underlines the important roles of miRNA function in pancreatic β-cells in response to metabolic, genetic and inflammatory stress. Lessons from genetic loss- and gain-of-function studies have implicated several highly expressed and evolutionary conserved miRNAs in stress signal modulation, resolution and buffering, thereby forming stabilizing miRNA networks that preserve β-cell differentiation, function, proliferation and cell survival. Scope of Review This review will summarize our current knowledge of how biologically relevant miRNAs regulate stress responses in pancreatic β-cells, discuss the challenges and opportunities associated with using secreted miRNAs as biomarkers and forecast how mechanistic knowledge of miRNA function can be exploited in developing miRNA-based therapeutics. Major Conclusions miRNAs play important roles in the function, differentiation, proliferation, and survival of pancreatic β-cells. Many miRNA families that are regulated by metabolic, genetic, and inflammatory stressors have been found to coordinate the adaptive responses of β-cells in vivo in conditions such as obesity and diabetes.
Collapse
Affiliation(s)
| | - Markus Stoffel
- Corresponding author. Swiss Federal Institute of Technology, ETH Zürich, Institute for Molecular Health Science, Laboratory for Metabolic Diseases, Otto-Stern Weg 7, HPL H36, CH 8093 Zürich, Switzerland. Fax: +41 44 633 1362.Federal Institute of TechnologyETH ZürichInstitute for Molecular Health ScienceLaboratory for Metabolic DiseasesOtto-Stern Weg 7HPL H36ZürichCH 8093Switzerland
| |
Collapse
|
81
|
Dicer expression is impaired in diabetic cutaneous wound healing. Int J Diabetes Dev Ctries 2017. [DOI: 10.1007/s13410-017-0572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
82
|
Sims EK, Lakhter AJ, Anderson-Baucum E, Kono T, Tong X, Evans-Molina C. MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia 2017; 60:1057-1065. [PMID: 28280903 PMCID: PMC5425307 DOI: 10.1007/s00125-017-4237-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS The role of beta cell microRNA (miR)-21 in the pathophysiology of type 1 diabetes has been controversial. Here, we sought to define the context of beta cell miR-21 upregulation in type 1 diabetes and the phenotype of beta cell miR-21 overexpression through target identification. METHODS Islets were isolated from NOD mice and mice treated with multiple low doses of streptozotocin, as a mouse model of diabetes. INS-1 832/13 beta cells and human islets were treated with IL-1β, IFN-γ and TNF-α to mimic the milieu of early type 1 diabetes. Cells and islets were transfected with miR-21 mimics or inhibitors. Luciferase assays and polyribosomal profiling (PRP) were performed to define miR-21-target interactions. RESULTS Beta cell miR-21 was increased in in vivo models of type 1 diabetes and cytokine-treated cells/islets. miR-21 overexpression decreased cell count and viability, and increased cleaved caspase 3 levels, suggesting increased cell death. In silico prediction tools identified the antiapoptotic mRNA BCL2 as a conserved miR-21 target. Consistent with this, miR-21 overexpression decreased BCL2 transcript and B cell lymphoma 2 (BCL2) protein production, while miR-21 inhibition increased BCL2 protein levels and reduced cleaved caspase 3 levels after cytokine treatment. miR-21-mediated cell death was abrogated in 828/33 cells, which constitutively overexpress Bcl2. Luciferase assays suggested a direct interaction between miR-21 and the BCL2 3' untranslated region. With miR-21 overexpression, PRP revealed a shift of the Bcl2 message towards monosome-associated fractions, indicating inhibition of Bcl2 translation. Finally, overexpression in dispersed human islets confirmed a reduction in BCL2 transcripts and increased cleaved caspase 3 production. CONCLUSIONS/INTERPRETATION In contrast to the pro-survival role reported in other systems, our results demonstrate that miR-21 increases beta cell death via BCL2 transcript degradation and inhibition of BCL2 translation.
Collapse
Affiliation(s)
- Emily K Sims
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Alexander J Lakhter
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily Anderson-Baucum
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatsuyoshi Kono
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xin Tong
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, MS2031, Indianapolis, IN, 46202, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
83
|
Golson ML, Kaestner KH. Epigenetics in formation, function, and failure of the endocrine pancreas. Mol Metab 2017; 6:1066-1076. [PMID: 28951829 PMCID: PMC5605720 DOI: 10.1016/j.molmet.2017.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Background Epigenetics, in the broadest sense, governs all aspects of the life of any multicellular organism, as it controls how differentiated cells arrive at their unique phenotype during development and differentiation, despite having a uniform (with some exceptions such as T-cells and germ cells) genetic make-up. The endocrine pancreas is no exception. Transcriptional regulators and epigenetic modifiers shape the differentiation of the five major endocrine cell types from their common precursor in the fetal pancreatic bud. Beyond their role in cell differentiation, interactions of the organism with the environment are also often encoded into permanent or semi-permanent epigenetic marks and affect cellular behavior and organismal health. Epigenetics is defined as any heritable – at least through one mitotic cell division – change in phenotype or trait that is not the result of a change in genomic DNA sequence, and it forms the basis that mediates the environmental impact on diabetes susceptibility and islet function. Scope of review We will summarize the impact of epigenetic regulation on islet cell development, maturation, function, and pathophysiology. We will briefly recapitulate the major epigenetic marks and their relationship to gene activity, and outline novel strategies to employ targeted epigenetic modifications as a tool to improve islet cell function. Major conclusions The improved understanding of the epigenetic underpinnings of islet cell differentiation, function and breakdown, as well as the development of innovative tools for their manipulation, is key to islet cell biology and the discovery of novel approaches to therapies for islet cell failure.
Collapse
Affiliation(s)
- Maria L Golson
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| | - Klaus H Kaestner
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| |
Collapse
|
84
|
Zheng Y, Wang Z, Zhou Z. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cell Mol Immunol 2017; 14:488-496. [PMID: 28317889 DOI: 10.1038/cmi.2017.7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a series of conserved, short, non-coding RNAs that modulate gene expression in a posttranscriptional manner. miRNAs are involved in almost every physiological and pathological process. Type 1 diabetes (T1D) is an autoimmune disease that is the result of selective destruction of pancreatic β-cells driven by the immune system. miRNAs are also important participants in T1D pathogenesis. Herein, we review the most recent data on the potential involvement of miRNAs in T1D. Specifically, we focus on two aspects: the roles of miRNAs in maintaining immune homeostasis and regulating β-cell survival and/or functions in T1D. We also discuss circulating miRNAs as potent biomarkers for the diagnosis and prediction of T1D and investigate potential therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Ying Zheng
- Center for Medical Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhen Wang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, Hunan 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
85
|
Sebastiani G, Valentini M, Grieco GE, Ventriglia G, Nigi L, Mancarella F, Pellegrini S, Martino G, Sordi V, Piemonti L, Dotta F. MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetol 2017; 54:265-281. [PMID: 28039581 DOI: 10.1007/s00592-016-0955-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
AIMS MicroRNAs are a class of small noncoding RNAs, which control gene expression by inhibition of mRNA translation. MicroRNAs are involved in the control of biological processes including cell differentiation. Here, we aim at characterizing microRNA expression profiles during differentiation of human induced pluripotent stem cells (hiPSCs) into insulin-producing cells. METHODS We differentiated hiPSCs toward endocrine pancreatic lineage following a 18-day protocol. We analyzed genes and microRNA expression levels using RT real-time PCR and TaqMan microRNA arrays followed by bioinformatic functional analysis. RESULTS MicroRNA expression profiles analysis of undifferentiated hiPSCs during pancreatic differentiation revealed that 347/768 microRNAs were expressed at least in one time point of all samples. We observed 18 microRNAs differentially expressed: 11 were upregulated (miR-9-5p, miR-9-3p, miR-10a, miR-99a-3p, miR-124a, miR-135a, miR-138, miR-149, miR-211, miR-342-3p and miR-375) and 7 downregulated (miR-31, miR-127, miR-143, miR-302c-3p, miR-373, miR-518b and miR-520c-3p) during differentiation into insulin-producing cells. Selected microRNAs were further evaluated during differentiation of Sendai-virus-reprogrammed hiPSCs using an improved endocrine pancreatic beta cell derivation protocol and, moreover, in differentiated NKX6.1+ sorted cells. Following Targetscan7.0 analysis of target genes of differentially expressed microRNAs and gene ontology classification, we found that such target genes belong to categories of major significance in pancreas organogenesis and development or exocytosis. CONCLUSIONS We detected a specific hiPSCs microRNAs signature during differentiation into insulin-producing cells and demonstrated that differentially expressed microRNAs target several genes involved in pancreas organogenesis.
Collapse
Affiliation(s)
- Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Marco Valentini
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Hospital, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
- Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
86
|
Vienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in metabolism. Acta Physiol (Oxf) 2017; 219:346-361. [PMID: 27009502 PMCID: PMC5297868 DOI: 10.1111/apha.12681] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/06/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) have within the past decade emerged as key regulators of metabolic homoeostasis. Major tissues in intermediary metabolism important during development of the metabolic syndrome, such as β-cells, liver, skeletal and heart muscle as well as adipose tissue, have all been shown to be affected by miRNAs. In the pancreatic β-cell, a number of miRNAs are important in maintaining the balance between differentiation and proliferation (miR-200 and miR-29 families) and insulin exocytosis in the differentiated state is controlled by miR-7, miR-375 and miR-335. MiR-33a and MiR-33b play crucial roles in cholesterol and lipid metabolism, whereas miR-103 and miR-107 regulates hepatic insulin sensitivity. In muscle tissue, a defined number of miRNAs (miR-1, miR-133, miR-206) control myofibre type switch and induce myogenic differentiation programmes. Similarly, in adipose tissue, a defined number of miRNAs control white to brown adipocyte conversion or differentiation (miR-365, miR-133, miR-455). The discovery of circulating miRNAs in exosomes emphasizes their importance as both endocrine signalling molecules and potentially disease markers. Their dysregulation in metabolic diseases, such as obesity, type 2 diabetes and atherosclerosis stresses their potential as therapeutic targets. This review emphasizes current ideas and controversies within miRNA research in metabolism.
Collapse
Affiliation(s)
- S. Vienberg
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - J. Geiger
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - S. Madsen
- Center for Basic Metabolic ResearchFaculty of HealthUniversity of CopenhagenCopenhagenDenmark
| | - L. T. Dalgaard
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| |
Collapse
|
87
|
Eliasson L, Esguerra JLS, Wendt A. Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications. Diabetol Int 2017; 8:139-152. [PMID: 30603317 DOI: 10.1007/s13340-017-0304-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
The changes in life-style with increased access of food and reduced physical activity have resulted in the global epidemic of obesity. Consequently, individuals with type 2 diabetes and cardiovascular disease have also escalated. A central organ in the development of diabetes is the pancreas, and more specifically the pancreatic beta cells within the islets of Langerhans. Beta cells have been assigned the important task of secreting insulin when blood glucose is increased to lower the glucose level. An early sign of diabetes pathogenesis is lack of first phase insulin response and reduced second phase secretion. In this review, which is based on the foreign investigator award lecture given at the JSDC meeting in Sendai in October 2016, we discuss a possible cellular explanation for the reduced first phase insulin response and how this can be influenced by lipids. Moreover, since patients with cardiovascular disease and high levels of cholesterol are often treated with statins, we summarize recent data regarding effects on statins on glucose homeostasis and insulin secretion. Finally, we suggest microRNAs (miRNAs) as central players in the adjustment of beta cell function during the development of diabetes. We specifically discuss miRNAs regarding their involvement in insulin secretion regulation, differential expression in type 2 diabetes, and potential as biomarkers for prediction of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| |
Collapse
|
88
|
Dalgaard LT, Eliasson L. An 'alpha-beta' of pancreatic islet microribonucleotides. Int J Biochem Cell Biol 2017; 88:208-219. [PMID: 28122254 DOI: 10.1016/j.biocel.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are cellular, short, non-coding ribonucleotides acting as endogenous posttranscriptional repressors following incorporation in the RNA-induced silencing complex. Despite being chemically and mechanistically very similar, miRNAs exert a multitude of different cellular effects by acting on mRNA species, whose gene-products partake in a wide array of processes. Here, the aim was to review the knowledge of miRNA expression and action in the islet of Langerhans. We have focused on: 1) physiological consequences of islet or beta cell specific inhibition of miRNA processing, 2) mechanisms regulating processing of miRNAs in islet cells, 3) presence and function of miRNAs in alpha versus beta cells - the two main cell types of islets, and 4) miRNA mediators of beta cell decompensation. It is clear that miRNAs regulate pancreatic islet development, maturation, and function in vivo. Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding miRNA expression and function in pancreatic alpha cells. Progress in this area would be enhanced by improved in vitro alpha cell models and better tools for islet cell sorting.
Collapse
Affiliation(s)
| | - Lena Eliasson
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, CRC, SUS, Malmö, Sweden.
| |
Collapse
|
89
|
Intersections of post-transcriptional gene regulatory mechanisms with intermediary metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:349-362. [PMID: 28088440 DOI: 10.1016/j.bbagrm.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
Intermediary metabolism studies have typically concentrated on four major regulatory mechanisms-substrate availability, allosteric enzyme regulation, post-translational enzyme modification, and regulated enzyme synthesis. Although transcriptional control has been a big focus, it is becoming increasingly evident that many post-transcriptional events are deeply embedded within the core regulatory circuits of enzyme synthesis/breakdown that maintain metabolic homeostasis. The prominent post-transcriptional mechanisms affecting intermediary metabolism include alternative pre-mRNA processing, mRNA stability and translation control, and the more recently discovered regulation by noncoding RNAs. In this review, we discuss the latest advances in our understanding of these diverse mechanisms at the cell-, tissue- and organismal-level. We also highlight the dynamics, complexity and non-linear nature of their regulatory roles in metabolic decision making, and deliberate some of the outstanding questions and challenges in this rapidly expanding field.
Collapse
|
90
|
Martinez-Sanchez A, Rutter GA, Latreille M. MiRNAs in β-Cell Development, Identity, and Disease. Front Genet 2017; 7:226. [PMID: 28123396 PMCID: PMC5225124 DOI: 10.3389/fgene.2016.00226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/21/2016] [Indexed: 12/22/2022] Open
Abstract
Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London London, UK
| | - Mathieu Latreille
- Cellular Identity and Metabolism Group, MRC London Institute of Medical SciencesLondon, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
91
|
Bernstein D, Golson ML, Kaestner KH. Epigenetic control of β-cell function and failure. Diabetes Res Clin Pract 2017; 123:24-36. [PMID: 27918975 PMCID: PMC5250585 DOI: 10.1016/j.diabres.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is a highly heritable disease, but only ∼15% of this heritability can be explained by known genetic variant loci. In fact, body mass index is more predictive of diabetes than any of the common risk alleles identified by genome-wide association studies. This discrepancy may be explained by epigenetic inheritance, whereby changes in gene regulation can be passed along to offspring. Epigenetic changes throughout an organism's lifetime, based on environmental factors such as chemical exposures, diet, physical activity, and age, can also affect gene expression and susceptibility to diabetes. Recently, novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics, epigenetics, and the environment interact in the development and inheritance of diabetes.
Collapse
Affiliation(s)
- Diana Bernstein
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
92
|
Sharma S, Mathew AB, Chugh J. miRNAs: Nanomachines That Micromanage the Pathophysiology of Diabetes Mellitus. Adv Clin Chem 2017; 82:199-264. [PMID: 28939211 DOI: 10.1016/bs.acc.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) refers to a combination of heterogeneous complex metabolic disorders that are associated with episodes of hyperglycemia and glucose intolerance occurring as a result of defects in insulin secretion, action, or both. The prevalence of DM is increasing at an alarming rate, and there exists a need to develop better therapeutics and prognostic markers for earlier detection and diagnosis. In this review, after giving a brief introduction of diabetes mellitus and microRNA (miRNA) biogenesis pathway, we first describe various in vitro and animal model systems that have been developed to study diabetes. Further, we elaborate on the significant roles played by miRNAs as regulators of gene expression in the context of development of diabetes and its secondary complications. The different approaches to quantify miRNAs and their potential to be used as therapeutic targets for alleviation of diabetes have also been discussed.
Collapse
|
93
|
Abstract
Diabetes is a severe condition worldwide. It is characterized by chronic hyperglycemia and is caused by defects in insulin production, secretion, and action. Both genetic and environmental factors contribute to the development of type 1 and type 2 diabetes. The pathogenesis of diabetes is complex and the underlying molecular mechanisms are only partially understood. MicroRNAs (miRNAs) play a fundamental role in diabetes and its complications. This chapter focuses on the dysregulation of miRNAs involved in the regulation of pancreatic islet insulin production and secretion as well as action and signaling in peripheral tissues. The roles of miRNAs in the development of diabetic complications are also discussed. Modulating miRNA expression, by either upregulation or inhibition, holds a promise as a strategy for treating this metabolic disease.
Collapse
Affiliation(s)
- Bin Wu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, 295 Xichang Rd., Wuhua Qu, Kunming, Yunnan, 650031, China.
| | - Daniel Miller
- School of Computing, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
94
|
Shantikumar S, Rovira-Llopis S, Spinetti G, Emanueli C. MicroRNAs in Diabetes and Its Vascular Complications. CARDIAC AND VASCULAR BIOLOGY 2017:39-59. [DOI: 10.1007/978-3-319-52945-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
95
|
Alterations of Epigenetic Regulators in Pancreatic Cancer and Their Clinical Implications. Int J Mol Sci 2016; 17:ijms17122138. [PMID: 27999365 PMCID: PMC5187938 DOI: 10.3390/ijms17122138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancer types with a five-year survival less than 7%. Emerging evidence revealed that many genetic alterations in pancreatic cancer target epigenetic regulators. Some of these mutations are driver mutations in cancer development. Several most important mechanisms of epigenetic regulations include DNA methylation, histone modifications (methylation, acetylation, and ubiquitination), chromatin remodeling, and non-coding ribonucleic acids (RNAs). These modifications can alter chromatin structure and promoter accessibility, and thus lead to aberrant gene expression. However, exactly how these alterations affect epigenetic reprogramming in pancreatic cancer cells and in different stages of tumor development is still not clear. This mini-review summarizes the current knowledge of epigenetic alterations in pancreatic cancer development and progression, and discusses the clinical applications of epigenetic regulators as diagnostic biomarkers and therapeutic targets in pancreatic cancer.
Collapse
|
96
|
Chen Y, Tian L, Wan S, Xie Y, Chen X, Ji X, Zhao Q, Wang C, Zhang K, Hock JM, Tian H, Yu X. MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol Cell Endocrinol 2016; 437:213-223. [PMID: 27568466 DOI: 10.1016/j.mce.2016.08.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
MiR-17-92 cluster contributes to the regulation of mammalian development, aging and tumorigenesis. The functional roles of miR-17-92 in pancreatic beta-cells are largely unknown. In this study, we found that conditional deletion of miR-17-92 in mouse pancreatic beta-cells (miR-17-92βKO) significantly reduces glucose tolerance and the first phase of insulin secretion, despite normal ad libitum fed and fasting glucose levels. Proliferation is down-regulated in pancreatic beta-cells after deleting miR-17-92. MiR-17-92βKO mice show higher phosphatase and tensin homologue (PTEN) and lower phosphorylated AKT in islets. Under high fat diet challenge for 16 weeks, miR-17-92βKO mice lose compensation and exhibit higher glucose levels, and lower insulin secretion. Collectively, these data suggest that miR-17-92 is a critical contributor to molecular mechanisms regulating glucose-stimulated insulin secretion and pancreatic beta-cell adaptation under metabolic stress.
Collapse
Affiliation(s)
- Yaxi Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Shan Wan
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Xiao Ji
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Qian Zhao
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Chunyu Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Kun Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Janet M Hock
- The Polis Center, Indiana University-Purdue University Indianapolis, 1200 Waterway Blvd # 100, Indianapolis, IN 46202, USA
| | - Haoming Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, PR China.
| |
Collapse
|
97
|
Isaacs SR, Wang J, Kim KW, Yin C, Zhou L, Mi QS, Craig ME. MicroRNAs in Type 1 Diabetes: Complex Interregulation of the Immune System, β Cell Function and Viral Infections. Curr Diab Rep 2016; 16:133. [PMID: 27844276 DOI: 10.1007/s11892-016-0819-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery of the first mammalian microRNA (miRNA) more than two decades ago, a plethora of miRNAs has been identified in humans, now amounting to more than 2500. Essential for post-transcriptional regulation of gene networks integral for developmental pathways and immune response, it is not surprising that dysregulation of miRNAs is often associated with the aetiology of complex diseases including cancer, diabetes and autoimmune disorders. Despite massive expansion of small RNA studies and extensive investigation in diverse disease contexts, the role of miRNAs in type 1 diabetes has only recently been explored. Key studies using human islets have recently implicated virus-induced miRNA dysregulation as a pivotal mechanism of β cell destruction, while the interplay between miRNAs, the immune system and β cell survival has been illustrated in studies using animal and cellular models of disease. The role of specific miRNAs as major players in immune system homeostasis highlights their exciting potential as therapeutics and prognostic biomarkers of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R Isaacs
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Ki Wook Kim
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Congcong Yin
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Qing Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Maria E Craig
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia.
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
98
|
Guay C, Regazzi R. New emerging tasks for microRNAs in the control of β-cell activities. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2121-2129. [DOI: 10.1016/j.bbalip.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/26/2022]
|
99
|
Calderari S, Diawara MR, Garaud A, Gauguier D. Biological roles of microRNAs in the control of insulin secretion and action. Physiol Genomics 2016; 49:1-10. [PMID: 27815534 DOI: 10.1152/physiolgenomics.00079.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 02/03/2023] Open
Abstract
microRNAs (miRNAs) are intracellular and circulating molecular components contributing to genome expression control through binding mRNA targets, which generally results in downregulated mRNA expression. One miRNA can target several mRNAs, and one transcript can be targeted by several miRNAs, resulting in complex fine-tuning of regulation of gene networks and signaling pathways. miRNAs regulate metabolism, adipocyte differentiation, pancreatic development, β-cell mass, insulin biosynthesis, secretion, and signaling, and their role in diabetes and obesity is emerging. Their pathophysiological effects are essentially dependent on cellular coexpression with their mRNA targets, which can show tissue-specific transcriptional responses to disease conditions and environmental challenges. Current knowledge of miRNA biology and their impact on the pathogenesis of diabetes and obesity is based on experimental data documenting miRNA expression generally in single tissue types that can be correlated with expression of target mRNAs to integrate miRNA in functional pathways and gene networks. Here we present results from the most significant studies dealing with miRNA function in liver, fat, skeletal muscle, and endocrine pancreas and their implication in diabetes and obesity.
Collapse
Affiliation(s)
- Sophie Calderari
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France; and.,Institut National de la Recherche Agronomique, ENVA, University Paris Saclay, Jouy en Josas, France
| | - Malika R Diawara
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France; and
| | - Alois Garaud
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France; and
| | - Dominique Gauguier
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S 1138, Cordeliers Research Centre, Paris, France; and
| |
Collapse
|
100
|
Asada K, Canestrari E, Paroo Z. A druggable target for rescuing microRNA defects. Bioorg Med Chem Lett 2016; 26:4942-4946. [PMID: 27641467 DOI: 10.1016/j.bmcl.2016.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/15/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
Despite immense promise, development of microRNA (miRNA) therapeutics remains limited by pharmacodynamic challenges that have hindered progress of related oligonucleotide-based technologies. Recent discovery of enzymes that mediate miRNA metabolism represent potential pharmacological targets for directing miRNA function, circumventing barriers associated with oligonucleotides. We previously identified the Translin/Trax (TN/TX) ribonuclease complex as a pre-miRNA degrading enzyme that competes with pre-miRNA processing by Dicer. Here, we establish a high-throughput TN/TX assay and screened 2320 drug and natural product compounds for inhibitors of TN/TX. Secondary analyses demonstrate small molecule mediated inhibition of pre-miRNA degradation by TN/TX and enhanced miRNA processing by Dicer. This application of traditional enzyme-inhibitor pharmacology to the miRNA pathway establishes a druggable target for rescuing global miRNA defects, providing an important complement to current approaches towards miRNA therapeutics. More broadly, demonstrating feasibility of pharmacological targeting of the 'ribonucleome' is particularly important given emerging classes of regulatory RNA and growing understanding of their importance in health and disease.
Collapse
Affiliation(s)
- Ken Asada
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emanuele Canestrari
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zain Paroo
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|