51
|
Atmar RL, Baehner F, Cramer JP, Lloyd E, Sherwood J, Borkowski A, Mendelman PM. Persistence of Antibodies to 2 Virus-Like Particle Norovirus Vaccine Candidate Formulations in Healthy Adults: 1-Year Follow-up With Memory Probe Vaccination. J Infect Dis 2020; 220:603-614. [PMID: 31001633 DOI: 10.1093/infdis/jiz170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously reported the tolerability and immunogenicity 1 month after intramuscular administration of 2 bivalent virus-like particle (VLP)-based candidate norovirus vaccine formulations in adults. We now describe the persistence of immunity and responses to a memory probe vaccination 1 year later. METHODS A total of 454 healthy men and women aged 18-49 years in 3 equal groups received placebo (saline) or 15/50 or 50/50 vaccine formulations (ie, 15 or 50 µg of GI.1 genotype VLPs, respectively, and 50 µg of GII.4c VLPs) with MPL and Al(OH)3. Immunogenicity and safety were assessed up to day 365, when 351 participants received a memory probe vaccination of 15 µg each of GI.1 and GII.4c VLPs with Al(OH)3. RESULTS No safety signals were detected up to 1 year after the first vaccination. Pan-immunoglobulin, immunoglobulin A, and histo-blood group antigen-blocking (HBGA) antibody levels among vaccinees waned but remained higher than levels before vaccination and levels in placebo recipients on days 180 and 365. Memory probe vaccination increased all antibody titers. Levels of HBGA antibodies to GI.1 but not GII.4c were higher after the first vaccination in candidate vaccine groups, compared with those in the placebo group. CONCLUSION Levels of antibodies to both candidate norovirus VLP formulations persisted above baseline levels for at least 1 year after primary vaccination. HBGA-blocking responses to the memory probe for GI.1 but not GII.4c displayed characteristics of immune memory. CLINICAL TRIALS REGISTRATION NCT02142504.
Collapse
Affiliation(s)
- Robert L Atmar
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Frank Baehner
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | - Jakob P Cramer
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | | | - James Sherwood
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | | | | | | |
Collapse
|
52
|
Cates JE, Vinjé J, Parashar U, Hall AJ. Recent advances in human norovirus research and implications for candidate vaccines. Expert Rev Vaccines 2020; 19:539-548. [PMID: 32500763 PMCID: PMC10760411 DOI: 10.1080/14760584.2020.1777860] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Noroviruses are a leading cause of acute gastroenteritis worldwide. An estimated 21 million illnesses in the United States and upwards of 684 million illnesses worldwide are attributed to norovirus infection. There are no licensed vaccines to prevent norovirus, but several candidates are in development. AREAS COVERED We review recent advances in molecular epidemiology of noroviruses, immunology, and in-vitro cultivation of noroviruses using human intestinal enteroids. We also provide an update on the status of norovirus vaccine candidates. EXPERT OPINION Molecular epidemiological studies confirm the tremendous genetic diversity of noroviruses, the continuous emergence of new recombinant strains, and the predominance of GII.4 viruses worldwide. Duration of immunity, extent of cross protection between different genotypes, and differences in strain distribution for young children compared with adults remain key knowledge gaps. Recent discoveries regarding which epitopes are targeted by neutralizing antibodies using the novel in vitro culture of human noroviruses in human intestinal enteroids are enhancing our understanding of mechanisms of protection and providing guidance for vaccine development. A future norovirus vaccine has the potential to substantially reduce the burden of illnesses due to this ubiquitous virus.
Collapse
Affiliation(s)
- Jordan E Cates
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Aron J Hall
- Division of Viral Diseases, Centers for Disease Control and Prevention , Atlanta, GA, USA
| |
Collapse
|
53
|
Molecular Detection and Epidemiology of Etiologic Agents among Children with Acute Gastroenteritis at a Secondary Hospital from 2015 to 2018. ACTA ACUST UNITED AC 2020. [DOI: 10.14776/piv.2020.27.e13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
das Neves Costa LCP, Teixeira DM, Portela ACR, de Lima ICG, da Silva Bandeira R, Sousa Júnior EC, Siqueira JAM, Resque HR, da Silva LD, Gabbay YB. Molecular and evolutionary characterization of norovirus GII.17 in the northern region of Brazil. BMC Infect Dis 2019; 19:1021. [PMID: 31791261 PMCID: PMC6889554 DOI: 10.1186/s12879-019-4628-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2023] Open
Abstract
Background Currently, norovirus (NoV) is associated with one-fifth of all acute gastroenteritis (AGE) cases worldwide. The NoV GII.17_2014 variant has been associated with gastroenteritis outbreaks in several Asian countries, replacing the previously dominant Sydney 2012 variant. There is limited data about circulation of this new strain in Brazil. This study aimed to describe the phylogenetic and evolutionary characteristics of the GII.17_2014 strains in the Northern region of Brazil. Methods NoV was detected by enzyme immunoassay (EIA) in 645 stool samples of AGE cases that were reported in Pará and Amazonas states during 2015–2016. All positive samples were tested for NoV GI and GII by reverse transcription polymerase chain reaction (RT-PCR) and the amplicons were subjected to genome sequencing. The GII.17-positive samples were retested by PCR using different sets of designed primers, which target a highly conserved capsid gene region. Next, the amplicons were sequenced and phylogenetically analyzed using Bayesian inferences. Results Of the 645 samples tested, 208 (32.2%) tested were positive for NoV by EIA, among which 95 (45.7%) were genotyped. Among the genotyped samples, 12 (12.6%) were characterized as GII.17_2014 with the first case detected in November 2015 (1/30, 3.3%) and the others in 2016 (11/65, 16.9%). All strains found in our study were clustered in clade D (epidemic strain). The uncorrelated log-normal model estimations calculated the rate of evolution for GII-17 strains as 1.95 × 10− 3 (1.28 × 10− 3–2.63 × 10− 3). In total, 36 nucleotide changes were observed after analyzing the VP1 sequence, among which 28 occurred in the P2 region. Conclusions These data demonstrate the evolutionary dynamics in NoV GII.17_2014 strains, which indicated high mutation rates with nucleotide substitutions and indels that are related to the elevated levels of antigenic diversity. This partly explains the increase in viral prevalence.
Collapse
Affiliation(s)
- Larissa Cristina Prado das Neves Costa
- Postgraduate Program in Parasitic Biology in the Amazon, Universidade do Estado do Pará, Instituto Evandro Chagas, Belém, PA, Brazil. .,Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, Ananindeua, Pará, 67030-000, Brazil.
| | - Dielle Monteiro Teixeira
- Postgraduate Program in Virology, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil
| | - Ana Caroline Rodrigues Portela
- Virology Section, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil
| | - Ian Carlos Gomes de Lima
- Virology Section, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil
| | - Renato da Silva Bandeira
- Postgraduate Program in Virology, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil
| | - Edivaldo Costa Sousa Júnior
- Postgraduate Program in Virology, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil
| | | | - Hugo Reis Resque
- Virology Section, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil
| | - Luciana Damascena da Silva
- Virology Section, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil
| | - Yvone Benchimol Gabbay
- Virology Section, Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, PA, Brazil
| |
Collapse
|
55
|
Atmar RL, Cramer JP, Baehner F, Han C, Borkowski A, Mendelman PM. An Exploratory Study of the Salivary Immunoglobulin A Responses to 1 Dose of a Norovirus Virus-Like Particle Candidate Vaccine in Healthy Adults. J Infect Dis 2019; 219:410-414. [PMID: 30203081 DOI: 10.1093/infdis/jiy529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 01/08/2023] Open
Abstract
As noroviruses are transmitted through the fecal-oral route, we investigated humoral and mucosal (salivary immunoglobulin A [IgA]) immune responses in a phase 2 trial of Takeda's bivalent norovirus virus-like particle (VLP) vaccine candidate in 50 healthy 18- to 49-year-olds. The vaccine had an acceptable tolerability profile and induced rapid, robust humoral immune responses after 1 intramuscular dose of vaccine candidate. Seroresponses were evident 8 days after vaccination as panimmunoglobulin, IgA, and histo-blood group antigen-blocking antibodies against both vaccine GI.1 and GII.4c genotypes. Salivary IgA levels were approximately 1000-fold lower than serum concentrations, and moderately or strongly correlated with the serum IgA titers at all time-points.
Collapse
Affiliation(s)
- Robert L Atmar
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jakob P Cramer
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Frank Baehner
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Cong Han
- Takeda Vaccines, Inc, Deerfield, Illinois
| | | | | |
Collapse
|
56
|
Abstract
BACKGROUND Based on the impact public health of norovirus and the current progress in norovirus vaccine development, it is necessary to continuously monitor the epidemiology of norovirus infection, especially in children who are more susceptible to norovirus. OBJECTIVES To monitor the activity and genotypes of norovirus infection in sporadic diarrhea in Shanghainese children during 2014-2018. STUDY DESIGN Acute diarrheal cases were prospectively enrolled in the outpatient setting. Real-time reverse transcription-polymerase chain reaction was used for screening norovirus GI and GII genogroups. Dual norovirus genotypes were identified based on the partial capsid and polymerase gene sequences. RESULTS Of the 3422 children with diarrhea, 510 (14.9%) were positive for noroviruses with 13 (2.5%) strains being GI genogroup and 497 (97.5%) strains being GII genogroup. Five distinct capsid GII genotypes were identified, including GII.4-Sydney/2012 (71.8%), GII.3 (13.8%), GII.17 (7.8%), GII.2 (6.0%), GII.6 (0.3%) and GII.8 (0.3%). Seven polymerase GII genotypes were identified, including GII.Pe (77.0%), GII.P12 (11.0%), GII.P17 (9.0%), GII.P16 (2.1%), and GII.P7, GII.P8 and GII.P2 in each (0.3%). Eleven distinct polymerase/capsid genotypes were identified with GII.Pe/GII.4-Sydney/2012 (74.2%), GII.P12/GII.3 (11.7%) and GII.P17/GII.17 (7.7%) being common. GII.P17/GII.17 strains were detected since September 2014. Recombinant GII.P16/GII.2 strains were detected since December 2016. CONCLUSIONS Norovirus is a major pathogen causing diarrhea in Shanghainese children. GII.Pe/GII.4-Sydney/2012 strains remained the predominant genotype. The emergence of GII.P17/GII.17 and GII.P16/GII.2 strains in sporadic diarrhea was consistent with norovirus-associated outbreaks attributable to these 2 novel variants in China. Continuous monitoring norovirus genotypes circulating in pediatric population is needed for current vaccine development.
Collapse
|
57
|
Li B, Xiao D, Li Y, Wu X, Qi L, Tang W, Li Q. Epidemiological analysis of norovirus infectious diarrhea outbreaks in Chongqing, China, from 2011 to 2016. J Infect Public Health 2019; 13:46-50. [PMID: 31548166 DOI: 10.1016/j.jiph.2019.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We investigated the epidemiological characteristics of norovirus infection from 2011 to 2016 in Chongqing, China, in order to provide evidence for strategies on epidemic prevention and control. METHODS We collected data on norovirus infectious diarrhea epidemics in 38 districts and counties, and analyzed the information using descriptive epidemiological methods. RESULTS In 2011, the first case of norovirus infectious diarrhea in Chongqing was reported. From 2011 to 2015, 38 districts and counties in Chongqing reported a total of 4 epidemics. In 2016, however, the city reported 117 outbreaks. From 2011 to 2016, there were 1637 cases of norovirus infection but no deaths. In 2016, most outbreaks occurred over a 5-month period with a clear peak in December and higher incidence in major urban areas than smaller communities (83.61% vs. 16.39%). Of these 1637 cases, 99.18% occurred in urban schools and nurseries, and 80% were transmitted person-to-person. Infection by genogroup II genotype 2 (GII.2) viruses accounted for 98.71% of cases. Leukocytes were increased in 67.81% of patients, neutrophils in 65%, and lymphocytes in 50%. Medical treatment was sought by 70% of patients or guardians but only 3.66% of cases were hospitalized. The most frequent misdiagnosis was "suspected food poisoning". CONCLUSION The frequency of norovirus infectious diarrhea epidemics increased over 20-fold from 2011 to 2016 in Chongqing, China. These epidemics occurred predominantly in urban schools and nurseries. However, epidemics showed little spread to outlying districts and counties, so prevention and control pressures were relatively high. SUGGESTIONS Healthcare professionals and institutions should strengthen health education for groups at high-risk of norovirus infection, such as school children, and increase norovirus testing capacity to further improve emergency investigation. Prevention and control knowledge should be disseminated to the general public to reduce transmission risk and total disease burden. Finally, governments and health administrative departments should invest special funds to prevent and control norovirus epidemics.
Collapse
Affiliation(s)
- Baisong Li
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China
| | - Dayong Xiao
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China
| | - Yanlin Li
- Hainan Medical University, Haikou 570100, China
| | - Xianlan Wu
- The Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Li Qi
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China
| | - Wenge Tang
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China
| | - Qin Li
- Infectious Disease Control Office, The Chongqing Center for Disease Control and Prevention, Chongqing 400010, China.
| |
Collapse
|
58
|
Lu L, Zhong H, Xu M, Su L, Cao L, Jia R, Xu J. Genetic diversity and epidemiology of Genogroup II noroviruses in children with acute sporadic gastroenteritis in Shanghai, China, 2012-2017. BMC Infect Dis 2019; 19:736. [PMID: 31438883 PMCID: PMC6704660 DOI: 10.1186/s12879-019-4360-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Noroviruses (NoVs) are considered an important cause of acute gastroenteritis (AGE) across all age groups, especially in children under 5 years of age. We investigated the epidemiology of noroviruses in outpatient children from the Children's Hospital of Fudan University in Shanghai, China. METHODS Stool specimens were collected between January 2012 and December 2017 from 1433 children under 5 years of age with acute gastroenteritis. All samples were analysed by conventional reverse transcription-polymerase chain reaction (RT-PCR) for genogroup II NoVs amplifying both the RNA-dependent RNA polymerase (RdRp) and partial capsid genes. The Norovirus Genotyping Tool v.2.0 ( https://www.rivm.nl/mpf/typingtool/norovirus/ ) was used for genotyping the strains, and phylogenetic analyses were conducted by MEGA 6.0. RESULTS From 2012 to 2017, GII NoVs were detected in 15.4% (220/1433) of the samples, with the highest detection rate in children aged 7-12 months (19.2%, 143/746). The seasons with the highest prevalence of GII NoVs infection were autumn and winter. Based on genetic analysis of RdRp, GII.Pe (74.5%%, 137/184) was the most predominant RdRp genotype from 2013 to 2017, while GII.P4 played a dominant role in 2012 (55.6%, 21/36). Among the capsid genotypes, the most prevalent NoV genotype from 2012 to 2017 was GII.4 (74.1%, 163/220). On the basis of genetic analysis of RdRp and capsid sequences, the strains were clustered into - 19 RdRp/capsid genotypes, and 12 of them were discordant, such as GII.Pe/GII.4-Sydney_2012, GII.P12/GII.3, GII.P7/GII.6, GII.Pe/GII.3, and GII.P16/GII.2. Starting with 2013, GII.Pe/GII.4-Sydney_2012 had completely replaced the pandemic GII.P4-2006b/GII.4-2006b subtype and was detected in children across all age groups. CONCLUSIONS The present study shows high detection rates and the genetic diversity of circulating NoV GII genotypes in paediatric AGE samples from Shanghai. The findings emphasize the importance of continuous molecular surveillance of emerging NoV strains.
Collapse
Affiliation(s)
- Lijuan Lu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Huaqing Zhong
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Menghua Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Liyun Su
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Lingfeng Cao
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
59
|
Popovici ED, Negru DG, Olariu T, Nagy M, Dinu S, Oprisan G, Zota L, Baditoiu LM. Application of the susceptible-infected-recovered deterministic model in a GII.P17 emergent norovirus strain outbreak in Romania in 2015. Infect Drug Resist 2019; 12:2543-2551. [PMID: 31496766 PMCID: PMC6701636 DOI: 10.2147/idr.s204175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose This study shows the epidemiological profile of the first gastroenteritis outbreak of GII.P17 in the Romanian territory. An outbreak with such large amplitude in a European territory was previously undocumented. Patients and methods Using a cross-sectional design, with the susceptible-infected-recovered (SIR) deterministic compartmental model for a fixed population, and the cluster method for establishing the high-incidence zones, we carried out our investigation by means of questionnaires containing personal data, affected collectivities, disease onset and duration, symptoms displayed, medical assistance provided, previous antibiotic intake where applicable, food consumption and water sources, and sanitation conditions. The confirmation of cases was done based on the typical norovirus gastroenteritis symptomatology and using three laboratory confirmations (by molecular diagnosis) for GII.P17-GII.17 genotype noroviruses from three patients. Results A gastroenteritis outbreak occurred in October-November 2015, affecting 328 people in Arad, a county in Western Romania, covering 44 neighbouring localities with a total population of 35,440 people. The study detected an inter-human transmission of the infection, with an intrafamilial risk of disease of 2.26 (95% CI 1.76 to 2.90) compared with the community transmission (in school collectivity). The basic reproduction number Ro dropped from 1.26 to 0.18 during weeks 43:44, after controlling the transmission by decontamination and isolation. Conclusion SIR made it possible to highlight the expansion of the emerging norovirus strain infection from community to family collectivities. This study provides practical solutions to limit disease cases, even in the absence of etiology, and shows the importance of sometimes underestimated traditional control methods.
Collapse
Affiliation(s)
- Emilian Damian Popovici
- Epidemiology Department, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania.,National Institute of Public Health, Regional Public Health Centre, Timişoara, Romania
| | | | | | - Mariana Nagy
- Department of Mathematics and Computer Science, "Aurel Vlaicu" University of Arad, Arad, Romania
| | - Sorin Dinu
- Molecular Epidemiology Laboratory, Cantacuzino National Medical - Military Institute of Research and Development, Bucharest, Romania
| | - Gabriela Oprisan
- Molecular Epidemiology Laboratory, Cantacuzino National Medical - Military Institute of Research and Development, Bucharest, Romania.,Faculty of Pharmacy, "Titu Maiorescu" University, Bucharest, Romania
| | - Lavinia Zota
- National Institute of Public Health, National Centre for Surveillance and Control of Communicable Diseases, Bucharest, Romania
| | | |
Collapse
|
60
|
Diakoudi G, Lanave G, Catella C, Medici MC, De Conto F, Calderaro A, Loconsole D, Chironna M, Bonura F, Giammanco GM, Bányai K, Tohma K, Parra GI, Martella V, De Grazia S. Analysis of GII.P7 and GII.6 noroviruses circulating in Italy during 2011-2016 reveals a replacement of lineages and complex recombination history. INFECTION GENETICS AND EVOLUTION 2019; 75:103991. [PMID: 31394293 DOI: 10.1016/j.meegid.2019.103991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 01/22/2023]
Abstract
Noroviruses are important human enteric pathogens and monitoring their genetic diversity is important for epidemiological surveillance, vaccine development, and understanding of RNA viruses evolution. Epidemiological investigations have revealed that genogroup II, genotype 6 noroviruses (GII.6) are common agents of gastroenteritis. Upon sequencing of the ORF2 (encoding the viral capsid), GII.6 viruses have been distinguished into three variants. Sentinel hospital-based surveillance in Italy revealed that GII.6 noroviruses were the second most common capsid genotype in 2015, mostly in association with a GII.P7 ORF1 (encoding the viral polymerase). Upon molecular characterization of the ORF1 and ORF2, the GII.P7_GII.6 epidemic viruses circulating in 2014-2015 (variant GII.6b) were different from those that circulated sporadically in 2011-2013 (variant GII.6a). Analysis of the ORF1 (GII.P7) and ORF2 (GII.6) sequences available in the databases unveiled marked genetic diversity and peculiarities in the phylogenetic segregation patterns, suggesting multiple recombination events. Phylogenetic analyses suggest that recent GII.P7_GII.6b viruses were circulating as early as 2008, and formed a genetically homogenous group that emerged globally.
Collapse
Affiliation(s)
- Georgia Diakoudi
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Italy
| | - Gianvito Lanave
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Italy
| | - Cristiana Catella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Italy
| | | | - Flora De Conto
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | - Adriana Calderaro
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | - Daniela Loconsole
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università Aldo Moro di Bari, Italy
| | - Maria Chironna
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università Aldo Moro di Bari, Italy
| | - Floriana Bonura
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Italy
| | - Giovanni Maurizio Giammanco
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Italy
| | - Kristián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kentaro Tohma
- Division of Viral Products, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Italy.
| | - Simona De Grazia
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Italy
| |
Collapse
|
61
|
Iritani N, Yamamoto SP, Abe N, Kanbayashi D, Kubo H, Uema M, Noda M, Kaida A. GII.17 norovirus infections in outbreaks of acute nonbacterial gastroenteritis in Osaka City, Japan during two decades. J Med Virol 2019; 91:2101-2107. [PMID: 31368535 DOI: 10.1002/jmv.25560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Norovirus (NoV) is a major cause of viral gastroenteritis, and GII.4 has been the predominant genotype worldwide since the mid-1990s. During the 2014 to 2015 winter, a rare genotype, NoV GII.17, emerged and became prevalent mainly in East Asia. Over the past two decades, NoV molecular surveillance in Osaka City, Japan, has revealed that NoV GII.17 was detected for the first time in February 2001 and that NoV GII.17-associated outbreaks remarkably increased during the 2014 to 2015 season, with higher incidence recorded in January to March 2015. Genetic analysis indicated that 28 GII.17 outbreak strains were closely related to the novel GII.P17-GII.17 variants represented by the Kawasaki308/2015/JP strain, similar to that in other regions. Statistical analysis showed that NoV GII.17 infections were more common in adults than GII.3 and GII.4 infections, suggesting that the affected adults most likely did not have antibodies against NoV GII.17 and the novel GII.17 variant had recently appeared. Regarding transmission, food was one of the most important factors involved in the spread of NoV GII.17 among adults; 61% of GII.17 outbreaks were foodborne, with oysters being the most common vehicle. Interplay between pathogens, hosts, and environmental factors was considered to be important in the 2014 to 2015 NoV GII.17 epidemic.
Collapse
Affiliation(s)
- Nobuhiro Iritani
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Seiji P Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Niichiro Abe
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Daiki Kanbayashi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Hideyuki Kubo
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Masashi Uema
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Mamoru Noda
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Atsushi Kaida
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
62
|
Kuang X, Teng Z, Zhang X. Genotypic prevalence of norovirus GII in gastroenteritis outpatients in Shanghai from 2016 to 2018. Gut Pathog 2019; 11:40. [PMID: 31372183 PMCID: PMC6660925 DOI: 10.1186/s13099-019-0321-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/20/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND With the help of an existing citywide comprehensive surveillance on gastroenteritis outpatients, although norovirus genogroup II (NoV GII) was tested routinely, its genotypes were never investigated systematically on a municipal level. This study aimed to understand the prevalence, major genotypes and evolutional trends of NoV GII in Shanghai during the period of 2016-2018, and to provide molecular bases for early warning for any potential NoV outbreaks. METHODS 27 sentinel hospitals from all 16 districts were recruited by stratified probability proportional to size (PPS) method in Shanghai comprehensive diarrhea surveillance programme. Stool samples were collected and screened for NoV GII by real-time reverse transcription polymerase chain reaction (qRT-PCR). For samples that were positive in qRT-PCR, conventional RT-PCR was performed to amplify the ORF1-ORF2 junction of NoV GII gene. Generated sequences were typed by RIVM online genotyping tool, and then strains of interest were analyzed phylogenetically using MEGA 6.0. RESULTS A total of 7883 stool samples were collected from diarrhea outpatients, among which 6474 were from adults and 1409 were from children. 13.66% (1077 cases) were screened positive in qRT-PCR for NoV GII, from which 71.96% (775 cases) were sequenced successfully. The top three genotypes were GII.Pe/GII.4 (37%), GII.P17/GII.17 (26%) and GII.P16/GII.2 (17%). While GII.Pe/GII.4 detection rate decreased significantly over the 3 years (from 48.4 to 20.9%); GII.P16/GII.2 appeared for the first time in October 2016 and rose rapidly to 27.0% in 2017, but fell back to 23.4% in 2018. Meanwhile there was a significant increase for both GII.P12/GII.3 and GII.P7/GII.6 recombinant genotypes detected in adult population in 2018. Phylogenic analysis revealed the existence of multiple gene clusters within both of these recombinant genotypes. CONCLUSION Unlike the alternating circulation of GII.4 and non-GII.4 NoV observed in 2016 or 2017, the genotype profile of NoV GII in 2018 was characterized by the co-prevalence of multiple recombinant genotypes. A recent increase in detection rate in less reported recombinant genotypes such as GII.P12/GII.3 and GII.P7/GII.6 among adult population calls for a continuing close monitoring on NoV GII genotypes in case of potential local outbreaks.
Collapse
Affiliation(s)
- Xiaozhou Kuang
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Road (west), Shanghai, 200336 China
| | - Zheng Teng
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Road (west), Shanghai, 200336 China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Road (west), Shanghai, 200336 China
| |
Collapse
|
63
|
Netzler NE, Enosi Tuipulotu D, White PA. Norovirus antivirals: Where are we now? Med Res Rev 2019; 39:860-886. [PMID: 30584800 PMCID: PMC7168425 DOI: 10.1002/med.21545] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022]
Abstract
Human noroviruses inflict a significant health burden on society and are responsible for approximately 699 million infections and over 200 000 estimated deaths worldwide each year. Yet despite significant research efforts, approved vaccines or antivirals to combat this pathogen are still lacking. Safe and effective antivirals are not available, particularly for chronically infected immunocompromised individuals, and for prophylactic applications to protect high-risk and vulnerable populations in outbreak settings. Since the discovery of human norovirus in 1972, the lack of a cell culture system has hindered biological research and antiviral studies for many years. Recent breakthroughs in culturing human norovirus have been encouraging, however, further development and optimization of these novel methodologies are required to facilitate more robust replication levels, that will enable reliable serological and replication studies, as well as advances in antiviral development. In the last few years, considerable progress has been made toward the development of norovirus antivirals, inviting an updated review. This review focuses on potential therapeutics that have been reported since 2010, which were examined across at least two model systems used for studying human norovirus or its enzymes. In addition, we have placed emphasis on antiviral compounds with a defined chemical structure. We include a comprehensive outline of direct-acting antivirals and offer a discussion of host-modulating compounds, a rapidly expanding and promising area of antiviral research.
Collapse
Affiliation(s)
- Natalie E. Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, SydneyNew South WalesAustralia
| |
Collapse
|
64
|
Fumian TM, Fioretti JM, Lun JH, Dos Santos IAL, White PA, Miagostovich MP. Detection of norovirus epidemic genotypes in raw sewage using next generation sequencing. ENVIRONMENT INTERNATIONAL 2019; 123:282-291. [PMID: 30553201 DOI: 10.1016/j.envint.2018.11.054] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 05/23/2023]
Abstract
Noroviruses are a leading cause of epidemic and pandemic acute gastroenteritis (AGE) worldwide, and contaminated food and water are important routes for its transmission. Raw sewage has been used for viral surveillance to monitor the emergence of new norovirus strains with the potential to cause epidemics. In this study, we investigated norovirus occurrence and norovirus RNA levels in 156 samples collected from May 2013 to May 2014, across three different stages (52 samples each) of a wastewater treatment plant (WWTP) in Rio de Janeiro, Brazil. We also explored norovirus GII diversity in raw sewage samples by next-sequencing generation (NGS). In addition, we examined norovirus prevalence and molecular epidemiology from acute gastroenteritis cases. Using RT-qPCR, norovirus GI and GII was detected in 38.5% and 96.1% of raw sewage samples, 40.4% and 96.1% of primary effluent samples and 1.9% and 5.8% of final effluent samples, respectively. Norovirus RNA levels varied from 4 to 6.2 log10 genome copies per litre (gc L-1) for GI and from 4.4 to 7.3 log10 gc L-1 for GII. Using MiSeq NGS, we identified 13 norovirus genotypes over the one-year period, with six dominant capsid genotypes, including GII.4, GII.17, GII.5, GII.2, GII.3 and GII.1. GII.4 noroviruses were the most prevalent in wastewater samples (68.5%), and a similar trend was observed in AGE cases (71%). The emergent GII.17 was the second most prevalent genotype (14.3%) identified in the raw sewage samples, however, it was not detected in clinical cases. Due to the high burden of norovirus outbreaks and the lack of vaccine and antiviral drugs, it is essential to understand the genotypic diversity of norovirus at the population level. Complementary data obtained from both clinical and environmental (sewage) samples proved to be an effective strategy to monitor the circulation and emergence of norovirus epidemic genotypes.
Collapse
Affiliation(s)
- Tulio M Fumian
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil.
| | - Julia M Fioretti
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Jennifer H Lun
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ingrid A L Dos Santos
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| | - Peter A White
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marize P Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
65
|
Nearly Complete Genome Sequence of a Human Norovirus GII.P17-GII.17 Strain Isolated from Brazil in 2015. Microbiol Resour Announc 2019; 8:MRA01376-18. [PMID: 30714031 PMCID: PMC6357637 DOI: 10.1128/mra.01376-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are the most common cause of nonbacterial acute gastroenteritis worldwide. We report here the nearly complete genome sequence (7,551 nucleotides) of a human norovirus GII.P17-GII.17 strain detected in July 2015 in the stool sample from an adult with acute gastroenteritis in Brazil. Human noroviruses are the most common cause of nonbacterial acute gastroenteritis worldwide. We report here the nearly complete genome sequence (7,551 nucleotides) of a human norovirus GII.P17-GII.17 strain detected in July 2015 in the stool sample from an adult with acute gastroenteritis in Brazil.
Collapse
|
66
|
Qian Y, Song M, Jiang X, Xia M, Meller J, Tan M, Chen Y, Li X, Rao Z. Structural Adaptations of Norovirus GII.17/13/21 Lineage through Two Distinct Evolutionary Paths. J Virol 2019; 93:e01655-18. [PMID: 30333166 PMCID: PMC6288326 DOI: 10.1128/jvi.01655-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (huNoVs), which cause epidemic acute gastroenteritis, recognize histo-blood group antigens (HBGAs) as host attachment factors affecting host susceptibility. HuNoVs are genetically diverse, containing at least 31 genotypes in the two major genogroups (genogroup I [GI] and GII). Three GII genotypes, GII genotype 17 (GII.17), GII.13, and GII.21, form a unique genetic lineage, in which the GII.17 genotype retains the conventional GII HBGA binding site (HBS), while the GII.13/21 genotypes acquire a completely new HBS. To understand the molecular bases behind these evolutionary changes, we solved the crystal structures of the HBGA binding protruding domains of (i) an early GII.17 variant (the 1978 variant) that does not bind or binds weakly to HBGAs, (ii) the new GII.17 variant (the 2014/15 variant) that binds A/B/H antigens strongly via an optimized GII HBS, and (iii) a GII.13 variant (the 2010 variant) that binds the Lewis a (Lea) antigen via the new HBS. These serial, high-resolution structural data enable a comprehensive structural comparison to understand the evolutionary changes of the GII.17/13/21 lineage, including the emergence of the new HBS of the GII.13/21 sublineage and the possible HBS optimization of the recent GII.17 variant for an enhanced HBGA binding ability. Our study elucidates the structural adaptations of the GII.17/13/21 lineage through distinct evolutionary paths, which may allow a theory explaining huNoV adaptations and evolutions to be put forward.IMPORTANCE Our understanding of the molecular bases behind the interplays between human noroviruses and their host glycan ligands, as well as their evolutionary changes over time with alterations in their host ligand binding capability and host susceptibility, remains limited. By solving the crystal structures of the glycan ligand binding protruding (P) domains with or without glycan ligands of three representative noroviruses of the GII.17/13/21 genetic lineage, we elucidated the molecular bases of the human norovirus-glycan interactions of this special genetic lineage. We present solid evidence on how noroviruses of this genetic lineage evolved via different evolutionary paths to (i) optimize their glycan binding site for higher glycan binding function and (ii) acquire a completely new glycan binding site for new ligands. Our data shed light on the mechanism of the structural adaptations of human noroviruses through different evolutionary paths, facilitating our understanding of human norovirus adaptations, evolutions, and epidemiology.
Collapse
Affiliation(s)
- Ying Qian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohan Song
- College of Life Science, Nankai University, Tianjin, China
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jarek Meller
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
67
|
Hata A, Hanamoto S, Ihara M, Shirasaka Y, Yamashita N, Tanaka H. Comprehensive Study on Enteric Viruses and Indicators in Surface Water in Kyoto, Japan, During 2014-2015 Season. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:353-364. [PMID: 30151619 DOI: 10.1007/s12560-018-9355-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Certain enteric viruses that are present in the water environment are potential risk factors of waterborne infections. To better understand the impact of viruses in water, both enteric viruses and their potential indicators should be comparatively investigated. In this study, occurrences of GI- and GII-noroviruses (NoVs), sapovirus (SaV), rotavirus (RoV), Aichi virus 1 (AiV-1), enterovirus (EV), and pepper mild mottle virus (PMMoV) were quantitatively determined in surface water samples in Japan. Additionally, the genotype distribution of GI- and GII-NoVs was determined using a next-generation amplicon sequencing. PMMoV was the most abundant virus regardless of season and location, indicating its usefulness as an indicator for the viral contamination of water. Other potential indicators, AiV and EV, were less abundant than GII-NoV. Viruses other than PMMoV showed seasonality, i.e., EV and other viruses (NoVs, SaV, RoV, and AiV-1) became prevalent during summer and winter, respectively. SaV showed a relatively high abundance at a location that was affected by untreated wastewater. Regarding NoV genotypes, GI.1, GI.2, GI.4, GI.5, GI.6, GII.3, GII.4, GII.6, and GII.17 were found from the surface water samples. GII.4 and GII.17 seemed to have contributed to the high abundance of GII-NoV in the samples. Interestingly, GII.17 strains became prevalent in the water samples before becoming prevalent among gastroenteritis patients in Japan. These findings provide further insights into the properties of viruses as contaminants in the water environment.
Collapse
Affiliation(s)
- Akihiko Hata
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Seiya Hanamoto
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
- Water Quality Research Team, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki, 305-8516, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Yuya Shirasaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Naoyuki Yamashita
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| |
Collapse
|
68
|
Prevalence of human Norovirus by genotype in contaminated groundwater in Korea over the last decade (2007–2016). J Microbiol 2018; 56:926-931. [DOI: 10.1007/s12275-018-8340-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
|
69
|
Supadej K, Khamrin P, Kumthip K, Malasao R, Chaimongkol N, Saito M, Oshitani H, Ushijima H, Maneekarn N. Distribution of norovirus and sapovirus genotypes with emergence of NoV GII.P16/GII.2 recombinant strains in Chiang Mai, Thailand. J Med Virol 2018; 91:215-224. [PMID: 29995327 DOI: 10.1002/jmv.25261] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/25/2018] [Indexed: 11/06/2022]
Abstract
Norovirus (NoV) and sapovirus (SaV) are recognized as the causative agents of acute gastroenteritis, and NoV is one of the leading pathogens reported worldwide. This study reports on the distribution of NoV and SaV genotypes in children hospitalized with acute gastroenteritis in Chiang Mai, Thailand, from January 2015 to February 2017. From a total of 843 stool samples, 170 (20.2%) and 16 (1.9%) were identified as having NoV and SaV infections, respectively. Two samples (0.2%) were positive for both NoV and SaV. Of these, NoV GII.4 (57.2%) was the dominant genotype, followed by GII.2, GII.3, GII.17, GII.6, GII.7, GII.13, GII.14, GII.15, GII.21, GI.6, and GI.5. Among the NoV GII.4 variants, Sydney 2012 was the dominant variant during the period 2015-2016, while the other variants detected in this study were Asia 2003 and New Orleans 2009. Interestingly, an increase of NoV GII.2 was observed in 2016 and 2017. Characterization of partial RNA-dependent RNA polymerase and VP1 nucleotide sequences of GII.2 strains revealed that more than half of the GII.2 strains circulating in 2016 and 2017 were recombinant strains of GII.P16/GII.2. For SaV, the majority of strains belonged to GI.1 (55.6%) and GI.2 (33.3%), while GII.5 accounted for 11.1%. In conclusion, this study demonstrates the diversity of NoV and SaV, and the emergence of NoV GII.P16/GII.2 recombinant strains in 2016 and 2017 in Chiang Mai, Thailand.
Collapse
Affiliation(s)
- Kanittapon Supadej
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Rungnapa Malasao
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Natthawan Chaimongkol
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
70
|
Wang Y, Hao L, Pan L, Xue C, Liu Q, Zhao X, Zhu W. Age, primary symptoms, and genotype characteristics of norovirus outbreaks in Shanghai schools in 2017. Sci Rep 2018; 8:15238. [PMID: 30323290 PMCID: PMC6189194 DOI: 10.1038/s41598-018-33724-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/02/2018] [Indexed: 01/05/2023] Open
Abstract
Sixty norovirus outbreaks that occurred in Pudong District, Shanghai in 2017 and affected 959 people were summarised. Of the outbreaks, 29 (48.3%), 27 (45.0%), and 4 (6.7%) occurred in kindergartens, primary schools, and middle schools, respectively. Although the total number of outbreaks peaked in March (13/60, 21.7%), outbreaks in kindergartens and primary schools peaked in April (6/29, 20.7%) and March (8/27, 29.6%), respectively. Primary schools had the highest median number of cases per outbreak (19) and the highest proportion of cases (54.6%). The male-to-female case ratio differed among school classifications, with the highest male case ratio (69.2%) occurring in middle schools. Primary symptoms also differed across the school classifications. Molecular virology analysis showed that a single viral strain caused each outbreak at each school. In turn, 50.6, 28.8, and 20.6% of cases were infected by GII.4, GII.2, and GII.17, respectively. Vomiting was seen in 98.2, 97.3, and 88.6% of the subjects infected with noroviruses GII.17, GII.4, and GII.2, respectively, and nausea in 73.6, 43.9, and 39.0%. In conclusion, noroviruses mainly affect primary school and kindergarten students. GII.4, GII.2, and GII.17 are the main epidemic strains in the local area, and the primary symptoms differed by age and genotype.
Collapse
Affiliation(s)
- Yuanping Wang
- Center for Disease Control and Prevention of Pudong, 3039 Zhangyang Road, Pudong District, Shanghai, 200136, China
| | - Lipeng Hao
- Center for Disease Control and Prevention of Pudong, 3039 Zhangyang Road, Pudong District, Shanghai, 200136, China
| | - Lifeng Pan
- Center for Disease Control and Prevention of Pudong, 3039 Zhangyang Road, Pudong District, Shanghai, 200136, China
| | - Caoyi Xue
- Center for Disease Control and Prevention of Pudong, 3039 Zhangyang Road, Pudong District, Shanghai, 200136, China
| | - Qing Liu
- Center for Disease Control and Prevention of Pudong, 3039 Zhangyang Road, Pudong District, Shanghai, 200136, China
| | - Xuetao Zhao
- Center for Disease Control and Prevention of Xuhui, 50 Yongchuan Road, Xuhui District, Shanghai, 200237, China.
| | - Weiping Zhu
- Center for Disease Control and Prevention of Pudong, 3039 Zhangyang Road, Pudong District, Shanghai, 200136, China.
| |
Collapse
|
71
|
Kim YE, Song M, Lee J, Seung HJ, Kwon EY, Yu J, Hwang Y, Yoon T, Park TJ, Lim IK. Phylogenetic characterization of norovirus strains detected from sporadic gastroenteritis in Seoul during 2014-2016. Gut Pathog 2018; 10:36. [PMID: 30181781 PMCID: PMC6112129 DOI: 10.1186/s13099-018-0263-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/19/2018] [Indexed: 11/29/2022] Open
Abstract
Background Phylogenetic analysis of norovirus (NoV) is efficient for tracking NoV transmission. To determine the widespread NoV strains in Seoul, we conducted an extensive phylogenetic characterization of NoV-positives from 1659 diarrheal specimens collected in 2014–2016 for the Seoul NoV-surveillance. Results When the large numbers of NoV partial VP1 genome sequences were analyzed in acute gastroenteritis patients along with the phylogenetic characterization, we could identify molecular epidemiologic patterns based on the genetic characteristics of sporadic NoV strains circulating in Seoul, which could provide a detailed description of the genome-wide and community-wide NoV evolution in each genotype. The average NoV detection rate in our study period was 16.34% that was increased by 7.44% from 13.17% in 2014 to 20.61% in 2016. Prevalence of NoV GI and GII was 4.43% and 93.36%, respectively, and the GII.4, GII.17, and GII.3 were found to be the major type among 17 genotypes of NoV. The most prevalent one was GII.4 (50.92%) that was followed by GII.17 (18.08%) and GII.3 (9.96%). According to an extensive phylogenetic analysis based on partial VP1 sequences of 1008 NoV (276 sporadic, 518 outbreak and 214 reference), pandemic strains of GII.17, GII.4 and GII.3 have emerged in succession during the 2014-2016 Seoul NoV-surveillance. GII.17 emerged as GII.17|Kawasaki323 in 2014, and became the predominant genotype in 2015 with GII.17|2014_Kawasaki lineages (CUHK-NS-616/Kawasaki308). The formerly predominant GII.4 remained high-level with GII.4|2012_Sydney in 2014 and internally replaced to GII.4|2016_Kawasaki194 lineage (NOR-2565/NOR-2558/OH16002) that caused the sporadic NoV explosion since December 2015. Sporadically prevalent GII.3|Hu/Aichio334-13/2013 failed to develop any outbreaks, whereas sporadic GII.3|Hu/3-28/2015/HNZZ/CHN caused heavy outbreaks in Seoul without preparation time since November 2016. Conclusions This is the first extensive phylogenetic study revealing the important events of NoV strains circulating in Seoul. Particularly, our study period from 2014 to 2016 was very dynamic with the emergences of the three main NoV strains (GII.17|2014_Kawasaki, GII.4|2016_Kawasaki194 and GII.3|Hu/3-28/2015/HNZZ/CHN) every year. We are sure that it is hard to detect above findings by simple conventional analysis. Our present study reports a future paradigm of the NoV molecular epidemiology, which might be highly valuable to track new strains and predict oncoming outbreaks. Electronic supplementary material The online version of this article (10.1186/s13099-018-0263-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Young Eun Kim
- 1Department of Infectious Disease Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, 30 Janggunmaeul 3-gil, Gwacheon, 13818 Republic of Korea.,2Department of Biochemistry and Molecular Biology, Ajou University School of Medicine and Graduate School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Miok Song
- 1Department of Infectious Disease Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, 30 Janggunmaeul 3-gil, Gwacheon, 13818 Republic of Korea
| | - Jaein Lee
- 1Department of Infectious Disease Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, 30 Janggunmaeul 3-gil, Gwacheon, 13818 Republic of Korea
| | - Hyun Jung Seung
- 1Department of Infectious Disease Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, 30 Janggunmaeul 3-gil, Gwacheon, 13818 Republic of Korea
| | - Eun-Young Kwon
- 1Department of Infectious Disease Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, 30 Janggunmaeul 3-gil, Gwacheon, 13818 Republic of Korea
| | - Jinkyung Yu
- 1Department of Infectious Disease Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, 30 Janggunmaeul 3-gil, Gwacheon, 13818 Republic of Korea
| | - Youngok Hwang
- 1Department of Infectious Disease Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, 30 Janggunmaeul 3-gil, Gwacheon, 13818 Republic of Korea
| | - Taeho Yoon
- 1Department of Infectious Disease Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, 30 Janggunmaeul 3-gil, Gwacheon, 13818 Republic of Korea
| | - Tae Jun Park
- 2Department of Biochemistry and Molecular Biology, Ajou University School of Medicine and Graduate School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - In Kyoung Lim
- 2Department of Biochemistry and Molecular Biology, Ajou University School of Medicine and Graduate School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| |
Collapse
|
72
|
Epidemiological characteristics of asymptomatic Norovirus infection in a population from oyster (Ostrea rivularis Gould) farms in southern China. Epidemiol Infect 2018; 146:1955-1964. [PMID: 30132423 DOI: 10.1017/s0950268818002212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The following paper investigates the prevalence and characteristics of asymptomatic norovirus infection in the population living around oyster farm sites. Two consecutive surveys were conducted from January 2014 to December 2014 and 4549 stool samples were screened during the same time period. The total asymptomatic infection rate was 4.04% (184/4549). Norovirus infection rate was 5.20% in oyster farming population which was significantly higher compared with non-farming population where the infection rate was 3.65% (χ2 = 5.49, P < 0.05). A total of 184 NoV positive samples were identified by real time-quantitative polymerase chain reaction (RT-qPCR) and semi-nested RT-PCR and 136 sequences were obtained. The sequences were clustered into 14 genotypes. GI strains were clustered into six genotypes, including GI.2, GI.3, GI.5, GI.6, GI.8 and GI.9; while GII strains were clustered into GII.2, GII.3, GII.4, GII.5, GII.6, GII.8 and GII.13. GI.9 and GII.17 were the predominant and most prevalent genotypes, respectively. The GII.17 genotype replaced GII.4 becoming the dominant genotype in the oyster farming area in 2014. To sum up, long-term monitoring of asymptomatic infection is crucial for the detection of new variant strains and for identifying outbreaks during the early stage.
Collapse
|
73
|
Molecular epidemiology of noroviruses in children in South Greece, 2013‐2015. J Med Virol 2018; 90:1703-1711. [DOI: 10.1002/jmv.25251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022]
|
74
|
Ji L, Chen L, Xu D, Wu X, Han J. Nearly complete genome sequence of one GII.17 Norovirus identified by direct sequencing from HuZhou, China. Mol Genet Genomic Med 2018; 6:796-804. [PMID: 29992776 PMCID: PMC6160709 DOI: 10.1002/mgg3.446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 01/29/2023] Open
Abstract
Background Human norovirus is the leading cause of acute gastroenteritis worldwide. However, in vitro culture system is complicated for human norovirus. Sequence analysis became more useful for norovirus research, particularly when using complete genomic sequences. Methods Real‐time RT‐PCR (qPCR) was performed for norovirus detection. Three modified paris of PCR primes were designed based on the alignment of the novel GII.17 norovirus complete sequence available in Genbank., which could amplify three overlapping fragments cover the whole genome. The PCR fragments were sequencing by Sanger sequence with Primer walking methods. Genogroup and genotype were assigned using the Norovirus Noronet typing tool and the strains were named according to the time of isolation. The phylogenetic analysis was conducted using MEGA software (ver. 6.06). Results One nearly complete genome sequence were obtained from sample collected from Huzhou, China. The partial genome sequence of the HuzhouNS2014603 strain is composed of 7556 nucleotides (nt).The strain was classified as GII.17 genotype both in ORF1 and ORF2, and was most closely related to the LC037415.1/Hu/GII.17/Kawasaki308 strain. Within the GII.17 cluster, the 2013/14 season strains were grouped separately from the GII.17 strains detected in 2014/15. HuzhouNS2014603 was clustered with the 2014/15 season strains. Compared with other strains selected, there are 98 variable residues across the VP1 domain. Among the 98 variable amino acids, 13 (13.3%) were observed in the shell domain and 22 (22.4%) in the P1domain; most of the substitutions and insertions were located in the P2 domain, account for 63 (64.3%). Conclusions This is the first report of the nearly complete genome of the novel GII.17 by direct sequencing method in the Huzhou area. The results of this study could be helpful for the study of the genetic evolution of the virus, the development of rapid diagnostic reagents and the design of vaccine.
Collapse
Affiliation(s)
- Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Jiankang Han
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| |
Collapse
|
75
|
Li J, Gao X, Ye YL, Wan T, Zang H, Mo PH, Song CL. An acute gastroenteritis outbreak associated with person-to-person transmission in a primary school in Shanghai: first report of a GI.5 norovirus outbreak in China. BMC Infect Dis 2018; 18:316. [PMID: 29986649 PMCID: PMC6038313 DOI: 10.1186/s12879-018-3224-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/29/2018] [Indexed: 01/15/2023] Open
Abstract
Background GII noroviruses are a common cause of acute gastroenteritis (AGE) outbreaks in institutional settings globally. However, AGE outbreaks caused by GI norovirus, especially the GI.5 genotype, are relatively uncommon. Methods In February 2017, an AGE outbreak occurred in a primary school in Shanghai, China. An outbreak investigation was undertaken, and fecal specimens, rectal swabs, and environmental swabs were collected. Pathogen detection was performed and the positive specimens were characterized by gene sequencing. Results The descriptive epidemiological analysis suggested that this outbreak, involving 19 cases in two classes (designated classes A and B), was a small-scale propagated epidemic and person-to-person transmission was the most plausible transmission mode. The outbreak comprised two peaks, with 15 cases occurring in class A during the main peak and four cases occurring in class B in the subsequent minor peak. The primary attack rate was 38% and the secondary attack rate was 10%. Univariable logistic regression indicated that contacting a suspect case was a risk factor for norovirus infection, with an unadjusted OR of 5.6 (95% CI: 1.6–20.1). Six fecal specimens were positive for GI norovirus, with a single genotype, GI.5 norovirus, being involved, as characterized by genotyping. This outbreak was the first reported outbreak of GI.5 norovirus in China. Conclusions This study implies that GI.5 norovirus is a potential agent of outbreaks spread by person-to-person transmission in institutional settings. The investigation highlights the importance of sensitive surveillance, timely isolation of individuals who are ill, adequate hand hygiene, and proper environmental disinfection for prevention and control of AGE outbreaks caused by norovirus.
Collapse
Affiliation(s)
- Jian Li
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Xia Gao
- Department of Acute Infectious Diseases Control, Jinshan District Center for Diseases Control and Prevention, 94 Weisheng Rd, Jinshan District, Shanghai, 201599, China
| | - Yu-Long Ye
- Department of Microbiology, Jinshan District Center for Diseases Control and Prevention, Shanghai, China
| | - Tang Wan
- Department of Acute Infectious Diseases Control, Jinshan District Center for Diseases Control and Prevention, 94 Weisheng Rd, Jinshan District, Shanghai, 201599, China
| | - Hao Zang
- Department of Acute Infectious Diseases Control, Jinshan District Center for Diseases Control and Prevention, 94 Weisheng Rd, Jinshan District, Shanghai, 201599, China
| | - Ping-Hua Mo
- Department of Acute Infectious Diseases Control, Jinshan District Center for Diseases Control and Prevention, 94 Weisheng Rd, Jinshan District, Shanghai, 201599, China
| | - Can-Lei Song
- Department of Acute Infectious Diseases Control, Jinshan District Center for Diseases Control and Prevention, 94 Weisheng Rd, Jinshan District, Shanghai, 201599, China.
| |
Collapse
|
76
|
Weekly variations in norovirus genogroup II genotypes in Japanese oysters. Int J Food Microbiol 2018; 284:48-55. [PMID: 29990639 DOI: 10.1016/j.ijfoodmicro.2018.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/01/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
Abstract
Increased levels of norovirus contamination in oysters were reportedly associated with a gastroenteritis epidemic occurring upstream of an oyster farming area. In this study, we monitored the norovirus concentration in oysters weekly between November 2014 and March 2015 and investigated the statistical relationship between norovirus genogroup II (GII) concentrations in oyster and sewage samples and the number of gastroenteritis cases in the area using cross-correlation analysis. A peak correlation coefficient (R = 0.76) at a time lag of +1 week was observed between the number of gastroenteritis cases and norovirus GII concentrations in oysters, indicating that oyster contamination is correlated with the number of gastroenteritis cases with a 1-week delay. Moreover, weekly variations in norovirus GII genotypes in oysters were evaluated using pyrosequencing. Only GII.3 was detected in November and December 2014, whereas GII.17 and GII.4 were present from January to March 2015. GII.17 Kawasaki 2014 strains were detected more frequently than GII.4 Sydney 2012 strains in oyster samples, as previously observed in stool and sewage samples collected during the same study period in Miyagi, Japan. Our observations indicate that there is a time lag between the circulation of norovirus genotypes in the human population and the detection of those genotypes in oysters.
Collapse
|
77
|
Suffredini E, Iaconelli M, Equestre M, Valdazo-González B, Ciccaglione AR, Marcantonio C, Della Libera S, Bignami F, La Rosa G. Genetic Diversity Among Genogroup II Noroviruses and Progressive Emergence of GII.17 in Wastewaters in Italy (2011-2016) Revealed by Next-Generation and Sanger Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:141-150. [PMID: 29185203 DOI: 10.1007/s12560-017-9328-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/24/2017] [Indexed: 05/28/2023]
Abstract
Noroviruses (NoV) are a major cause of gastroenteritis worldwide. Recently, a novel variant of NoV GII.17 (GII.P17_GII.17 NoV), termed Kawasaki 2014, has been increasingly reported in NoV outbreaks in Asia, and has also been described in Europe and North America. In this study, sewage samples were investigated to study the occurrence and genetic diversity of NoV genogroup II (GII) along a 6-year period. Moreover, the spread of GII.17 strains (first appearance and occurrence along time) was specifically assessed. A total of 122 sewage samples collected from 2011 to 2016 from four wastewater treatment plants in Rome (Italy) were initially tested using real-time RT-(q)PCR for GII NoV. Positive samples were subsequently subjected to genotypic characterization by RT-nested PCRs using broad-range primes targeting the region C of the capsid gene of GII NoV, and specific primers targeting the same region of GII.17 NoV. In total, eight different genotypes were detected with the broad-range assay: GII.1 (n = 6), GII.2 (n = 8), GII.3 (n = 3), GII.4 (n = 13), GII.6 (n = 3), GII.7 (n = 2), GII.13 (n = 2), and GII.17 (n = 3), with the latter two genotypes detected only in 2016. Specific amplification of GII.17 NoV was successful in 14 out of 110 positive samples, spanned over the years 2013-2016. The amplicons of the broad-range PCR, pooled per year, were further analyzed by next-generation sequencing (NGS) for a deeper analysis of the genotypes circulating in the study period. NGS confirmed the circulation of GII.17 NoV since 2013 and detected, beyond the eight genotypes identified by Sanger sequencing, three additional genotypes regarded as globally uncommon: GII.5, GII.16, and GII.21. This study provides evidence that GII.17 NoV Kawasaki has been circulating in the Italian population before its appearance and identification in clinical cases, and has become a major genotype in 2016. Our results confirm the usefulness of wastewater surveillance coupled with NGS to study the molecular epidemiology of NoV and to monitor the emergence of NoV strains.
Collapse
Affiliation(s)
- E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Equestre
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - B Valdazo-González
- The National Institute for Biological Standards and Control, The Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - A R Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - C Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - F Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
78
|
da Silva Ribeiro de Andrade J, Fumian TM, Leite JPG, de Assis MR, Fialho AM, Mouta S, Santiago CMP, Miagostovich MP. Norovirus GII.17 Associated with a Foodborne Acute Gastroenteritis Outbreak in Brazil, 2016. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:212-216. [PMID: 29150772 DOI: 10.1007/s12560-017-9326-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Foodborne transmission gastroenteritis (AGE) outbreak occurred during a celebration lunch in July, 2016, Brazil. All stool samples tested were positive for noroviruses (NoV) and phylogenetic analysis revealed that strains were genetically close to GII.17 Kawasaki_2014. These findings indicated circulation of NoV GII.17 Kawasaki_2014 in the Brazilian population, associated with AGE outbreak.
Collapse
Affiliation(s)
| | - Tulio Machado Fumian
- Oswaldo Cruz Institute, Fiocruz. Avenida Brasil, 4365, Manguinhos, 21040-900, Rio De Janeiro, RJ, Brazil
| | - José Paulo Gagliardi Leite
- Oswaldo Cruz Institute, Fiocruz. Avenida Brasil, 4365, Manguinhos, 21040-900, Rio De Janeiro, RJ, Brazil
| | | | - Alexandre Madi Fialho
- Oswaldo Cruz Institute, Fiocruz. Avenida Brasil, 4365, Manguinhos, 21040-900, Rio De Janeiro, RJ, Brazil
| | - Sergio Mouta
- Oswaldo Cruz Institute, Fiocruz. Avenida Brasil, 4365, Manguinhos, 21040-900, Rio De Janeiro, RJ, Brazil
| | | | | |
Collapse
|
79
|
Chan MCW, Hu Y, Chen H, Podkolzin AT, Zaytseva EV, Komano J, Sakon N, Poovorawan Y, Vongpunsawad S, Thanusuwannasak T, Hewitt J, Croucher D, Collins N, Vinjé J, Pang XL, Lee BE, de Graaf M, van Beek J, Vennema H, Koopmans MPG, Niendorf S, Poljsak-Prijatelj M, Steyer A, White PA, Lun JH, Mans J, Hung TN, Kwok K, Cheung K, Lee N, Chan PKS. Global Spread of Norovirus GII.17 Kawasaki 308, 2014-2016. Emerg Infect Dis 2018; 23:1359-1354. [PMID: 28726618 PMCID: PMC5547775 DOI: 10.3201/eid2308.161138] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Analysis of complete capsid sequences of the emerging norovirus GII.17 Kawasaki 308 from 13 countries demonstrated that they originated from a single haplotype since the initial emergence in China in late 2014. Global spread of a sublineage SL2 was identified. A new sublineage SL3 emerged in China in 2016.
Collapse
|
80
|
Giammanco GM, De Grazia S, Bonura F, Cappa V, Muli SL, Pepe A, Medici MC, Tummolo F, Calderaro A, Di Bernardo F, Dones P, Morea A, Loconsole D, Catella C, Terio V, Bànyai K, Chironna M, Martella V. Norovirus GII.17 as Major Epidemic Strain in Italy, Winter 2015-16. Emerg Infect Dis 2018. [PMID: 28628440 PMCID: PMC5512478 DOI: 10.3201/eid2307.161255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In winter 2015–16, norovirus GII.17 Kawasaki 2014 emerged as a cause of sporadic gastroenteritis in children in Italy. Median patient age was higher for those with GII.17 than GII.4 infection (55 vs. 24 months), suggesting limited cross-protection for older children.
Collapse
|
81
|
Mabasa VV, Meno KD, Taylor MB, Mans J. Environmental Surveillance for Noroviruses in Selected South African Wastewaters 2015-2016: Emergence of the Novel GII.17. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:16-28. [PMID: 28779481 DOI: 10.1007/s12560-017-9316-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Norovirus (NoV) GII.4 is the predominant genotype associated with gastroenteritis pandemics and new strains emerge every 2-3 years. Between 2008 and 2011, environmental studies in South Africa (SA) reported NoVs in 63% of the sewage-polluted river water samples. The aim of this study was to assess whether wastewater samples could be used for routine surveillance of NoVs, including GII.4 variants. From April 2015 to March 2016, raw sewage and effluent water samples were collected monthly from five wastewater treatment plants in SA. A total of 108 samples were screened for NoV GI and GII using real-time RT-qPCR. Overall 72.2% (78/108) of samples tested positive for NoVs with 4.6% (5/108) GI, 31.5% (34/108) GII and 36.1% (39/108) GI + GII strains being detected. Norovirus concentrations ranged from 1.02 × 102 to 3.41 × 106 genome copies/litre for GI and 5.00 × 103 to 1.31 × 106 genome copies/litre for GII. Sixteen NoV genotypes (GI.2, GI.3, GI.4, GI.5, GI.6, GII.2, GII.3, GII.4, GII.7, GII.9, GII.10, GII.14, GII.16, GII.17, GII.20, and GII.21) were identified. Norovirus GII.2 and GII.17 co-dominated and the majority of GII.17 strains clustered with the novel Kawasaki 2014 variant. Sewage surveillance facilitated detection of Kawasaki 2014 in SA, which to date has not been detected with surveillance in children with gastroenteritis <5 years of age. Combined surveillance in the clinical setting and environment appears to be a valuable strategy to monitor emergence of NoV strains in countries that lack NoV outbreak surveillance.
Collapse
Affiliation(s)
- V V Mabasa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Arcadia, Private Bag X323, Pretoria, 0007, South Africa
| | - K D Meno
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Arcadia, Private Bag X323, Pretoria, 0007, South Africa
| | - M B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Arcadia, Private Bag X323, Pretoria, 0007, South Africa
| | - Janet Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Arcadia, Private Bag X323, Pretoria, 0007, South Africa.
| |
Collapse
|
82
|
Boonchan M, Guntapong R, Sripirom N, Ruchusatsawat K, Singchai P, Rungnobhakhun P, Tacharoenmuang R, Mizushima H, Tatsumi M, Takeda N, Sangkitporn S, Mekmullica J, Motomura K. The dynamics of norovirus genotypes and genetic analysis of a novel recombinant GII.P12-GII.3 among infants and children in Bangkok, Thailand between 2014 and 2016. INFECTION GENETICS AND EVOLUTION 2018; 60:133-139. [PMID: 29471118 DOI: 10.1016/j.meegid.2018.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
Norovirus (NoV) is the leading cause of viral acute gastroenteritis among all age groups in the world. We performed a molecular epidemiological study of the NoVs prevalent in Bangkok between November 2014 and July 2016 to investigate the emergence of new NoV variants in Thailand. A total of 332 stool specimens were collected from hospitalized pediatric patients with acute gastroenteritis in Bangkok, Thailand. NoVs were detected by real-time PCR. The genome of the N-terminal/shell domain was amplified, the nucleotide sequence was determined, and phylogenetic analyses were performed. GII NoV was detected in 58 (17.5%) of the 332 specimens. GII.17, a genotype strain prevalent from 2014 to mid-2015, was hardly detected and replaced by the GII.3 genotype strain. Entire genome sequencing followed by phylogenetic analysis of the GII.3 genotype strains indicated that they are new recombinant viruses, because the genome encoding ORF1 is derived from a GII.12 genotype strain, whereas that encoding ORF2-3 is from a GII.3 genotype strain. The putative recombination breakpoints with the highest statistical significance were located around the border of 3Dpol and ORF2. The change in the prevalent strain of NoV seems to be linked to the emergence of new forms of recombinant viruses. These findings suggested that the swapping of the structural and non-structural proteins of NoV is a common mechanism by which new epidemic variants are generated in nature.
Collapse
Affiliation(s)
- Michittra Boonchan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | | | - Kriangsak Ruchusatsawat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Phakapun Singchai
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | | | - Ratana Tacharoenmuang
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Hiroto Mizushima
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand; Research Institute of Microbial Diseases, Osaka University, Suita, Osaka 565-0781, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand; Research Institute of Microbial Diseases, Osaka University, Suita, Osaka 565-0781, Japan
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand; Research Institute of Microbial Diseases, Osaka University, Suita, Osaka 565-0781, Japan
| | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | | | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand; Research Institute of Microbial Diseases, Osaka University, Suita, Osaka 565-0781, Japan; Osaka Institute of Public Health, Osaka 537-0025, Japan.
| |
Collapse
|
83
|
Abstract
Background During the winter of 2014–2015, a rarely reported norovirus (NoV) genotype GII.17 was found to have increased its frequency in norovirus outbreaks in East Asia, surpassing the GII.4 NoV infections. GII.17 genotype has been detected for over three decades in the world. The aim of this study is to examine the evolutionary dynamics of GII.17 over the last four decades. Methods NoV GII.17 sequences with complete or nearly complete VP1 were downloaded from GenBank and the phylogenetic analyses were then conducted. Results The maximum likelihood analysis showed that GII.17 genotype could be divided into four different clades (Clades A–D). The strains detected after 2012, which could be the cause of the outbreaks, were separated into Clades C–D with their mean amino acid distance being 4.5%. Bayesian Markov chain Monte Carlo analyses indicated that the rate of nucleotide substitution per sites was 1.68 × 10−3 nucleotide substitutions/site/year and the time of the most recent common ancestor was 1840. The P2 subdomain of GII.17 was highly variable with 44% (56/128) amino acids variations including two insertions at positions 295–296 and one deletion at position 385 (Clades C and D) and one insertion at position 375 (Clade D). Variations existed in Epitopes A, B and D corresponding to GII.4 and human histo-blood group antigens binding site I in P2 subdomain. Conclusion The novel GII.17 strains that caused outbreaks in 2013–2015 may have two new variants. The evolvement of HBGAs binding site and epitopes in P2 subdomain might contribute to the novel GII.17 strains predominance in some regions.
Collapse
Affiliation(s)
- Shaowei Sang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
84
|
Kumthip K, Khamrin P, Saikruang W, Supadej K, Ushijima H, Maneekarn N. Comparative Evaluation of Norovirus Infection in Children with Acute Gastroenteritis by Rapid Immunochromatographic Test, RT-PCR and Real-time RT-PCR. J Trop Pediatr 2017; 63:468-475. [PMID: 28334789 DOI: 10.1093/tropej/fmx014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Immunochromatographic (IC) test for norovirus detection is a rapid and simple detection method. This study evaluated the sensitivity and specificity of a recent version of R-Biopharm RIDA®QUICK Norovirus IC assay for norovirus detection in fecal specimens from children hospitalized with acute gastroenteritis. Fecal specimens were tested by IC kit in comparison with gold standard reverse transcription polymerase chain reaction (RT-PCR) and real-time RT-PCR. The IC kit showed high sensitivity and specificity comparable with PCR-based methods. None of false positive and false negative was found and the assay did not cross-react with other gastroenteritis viruses. The IC assay could detect genogroup I.5 (GI.5) and a wide range of genotypes in the GII noroviruses including GII.3, GII.4, GII.6, GII.7, GII.14, GII.15, GII.21, and also newly emerging GII.17 norovirus. In conclusion, this norovirus IC kit could be an alternative choice for rapid screening or a quick diagnostic tool for norovirus detection in fecal specimens of acute gastroenteritis patients.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wilaiporn Saikruang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanittapon Supadej
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
85
|
Dai YC, Xia M, Huang Q, Tan M, Qin L, Zhuang YL, Long Y, Li JD, Jiang X, Zhang XF. Characterization of Antigenic Relatedness between GII.4 and GII.17 Noroviruses by Use of Serum Samples from Norovirus-Infected Patients. J Clin Microbiol 2017; 55:3366-3373. [PMID: 28904188 PMCID: PMC5703803 DOI: 10.1128/jcm.00865-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022] Open
Abstract
A novel GII.17 norovirus variant caused major gastroenteritis epidemics in China in 2014 to 2016. To explore the host immune factors in selection of the emergence of this new variant, we characterized its antigenic relatedness with the GII.4 noroviruses that have dominated in China for decades. Through an enzyme-linked immunosorbent assay (ELISA) and a histo-blood group antigen (HBGA) blocking assay using sera from GII.4 and the GII.17 variant-infected patients, respectively, we observed limited cross-immune reactivity by the ELISA but little reactivity by the HBGA blocking assay between GII.4 norovirus and the new GII.17 variant. Our data suggest that, among other possible factors, GII.4-specific herd immunity had little role in the emergence of the new GII.17 variant. Thus, GII.17 may be an important active antigenic type or immunotype that needs to be considered for future vaccine strategies against human noroviruses.
Collapse
Affiliation(s)
- Ying-Chun Dai
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Qiong Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lin Qin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ya-Li Zhuang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yan Long
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Dong Li
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xu-Fu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
86
|
Cheng HY, Hung MN, Chen WC, Lo YC, Su YS, Wei HY, Chen MY, Tuan YC, Lin HC, Lin HY, Liu TY, Wang YY, Wu FT. Ice-associated norovirus outbreak predominantly caused by GII.17 in Taiwan, 2015. BMC Public Health 2017; 17:870. [PMID: 29116002 PMCID: PMC5688813 DOI: 10.1186/s12889-017-4869-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/20/2017] [Indexed: 12/28/2022] Open
Abstract
Background On 5 March 2015, Taiwan Centers for Disease Control was notified of more than 200 students with gastroenteritis at a senior high school during excursion to Kenting. We conducted an outbreak investigation to identify the causative agent and possible vehicle of the pathogen. Methods We conducted a retrospective cohort study by using a structured questionnaire to interview all students for consumed food items during their stay at the resort. Students were defined as a gastroenteritis case while having vomiting or diarrhea after the breakfast on 4 March. We inspected the environment to identify possible contamination route. We collected stool or vomitus samples from ill students, food handlers and environmental specimens for bacterial culture for common enteropathogens, reverse transcription polymerase chain reaction (RT-PCR) for norovirus and enzyme-linked immunosorbent assay (ELISA) for rotavirus. Norovirus PCR-positive products were then sequenced and genotyped. Results Of 267 students enrolled, 144 (54%) met our case definition. Regression analysis revealed elevated risk associated with iced tea, which was made from tea powder mixed with hot water and self-made ice (risk ratio 1.54, 95% confidence interval 1.22–1.98). Ice used for beverages, water before and after water filter of the ice machine and 16 stool and vomitus samples from ill students were tested positive for norovirus; Multiple genotypes were identified including GI.2, GI.4 and GII.17. GII.17 was the predominant genotype and phylogenetic analyses showed that noroviruses identified in ice, water and human samples were clustered into the same genotypes. Environmental investigation revealed the ice was made by inadequate-filtered and un-boiled water. Conclusions We identified the ice made by norovirus-contaminated un-boiled water caused the outbreak and the predominant genotype was GII.17. Adequately filtered or boiled water should be strongly recommended for making ice to avoid possible contamination.
Collapse
Affiliation(s)
- Hao-Yuan Cheng
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Min-Nan Hung
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Wan-Chin Chen
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Yi-Chun Lo
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Ying-Shih Su
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Hsin-Yi Wei
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Meng-Yu Chen
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Yen-Chang Tuan
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Hui-Chen Lin
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan
| | - Hsu-Yang Lin
- Taiwan Food and Drug Administration, No.161-2, Kunyang St, Nangang District, Taipei, Taiwan
| | - Tsung-Yen Liu
- Taiwan Food and Drug Administration, No.161-2, Kunyang St, Nangang District, Taipei, Taiwan
| | - Yu-Ying Wang
- Taiwan Food and Drug Administration, No.161-2, Kunyang St, Nangang District, Taipei, Taiwan
| | - Fang-Tzy Wu
- Taiwan Centers for Disease Control, No.6, Linsen S. Rd., Jhongjheng District, Taipei, Taiwan. .,Research and Diagnostic Center, Taiwan Centers for Disease Control, No.161, Kunyang St., Nangang Dist, Taipei City, 115, Taiwan.
| |
Collapse
|
87
|
Cui C, Pan L, Wang Y, Xue C, Zhu W, Zhu L, Ye C, Lu X, Song H, Fu Y, Sun Q. An outbreak of acute GII.17 norovirus gastroenteritis in a long-term care facility in China: The role of nursing assistants. J Infect Public Health 2017; 10:725-729. [DOI: 10.1016/j.jiph.2016.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 11/30/2022] Open
|
88
|
Wangchuk S, Matsumoto T, Iha H, Ahmed K. Surveillance of norovirus among children with diarrhea in four major hospitals in Bhutan: Replacement of GII.21 by GII.3 as a dominant genotype. PLoS One 2017; 12:e0184826. [PMID: 28910371 PMCID: PMC5599041 DOI: 10.1371/journal.pone.0184826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/24/2022] Open
Abstract
Background Diarrhea is a major cause of morbidity and mortality among Bhutanese children. The etiology of diarrhea is not well known due to the challenges of conducting routine surveillance with Bhutan’s modest research facilities. Establishing an etiology is crucial toward generating evidence that will contribute to policy discussions on a diarrheal disease control program. Our previous study, during 2010–2012, revealed that norovirus (NoV) is an important cause of diarrhea among Bhutanese children, and that GII.21 was the major genotype circulating at that time. In other countries, GII.4 is the major genotype responsible for NoV infections. In this update report, we provide new prevalence data to describe the progression of the transformation and distribution of the NoV genotype among Bhutanese children. Methods From June 2013 through May 2014, diarrheal stool samples were collected at one national referral hospital in Thimphu, two regional referral hospitals in the eastern and central regions, and one general hospital in the western region of Bhutan. NoV was detected by reverse transcription–polymerase chain reaction (RT–PCR), by amplifying the capsid gene. The RT–PCR results were confirmed by nucleotide sequencing of the amplicons. Results The proportion of NoV-positive stool samples was 23.6% (147/623), of which 76.9% were NoV GII and the remainders were NoV GI. The median age of infected children was 15.5 months, with a fairly balanced female: male ratio. NoV GII was most prevalent in the colder months (late November–mid April) and NoV GI had the highest prevalence in the summer (mid April–late September). Nucleotide sequencing was successful in 99 samples of GII strains. The most common genotypes were GII.3 (42.6%), GII.4 Sydney 2012 (15.8%), and GII.4 unassigned (11.9%). No GII.21 was found in any child in the present study. Phylogenetic analysis showed that GII.3 strains in the present study belonged to an independent cluster in lineage B. These strains shared an ancestor with those from different countries and Bhutanese strains circulating during 2010. Conclusion NoV remains an important cause of diarrhea among Bhutanese children. Genotype GII.3 from a single ancestor strain has spread, replacing the previously circulating GII.21. Current NoV genotypes are similar to the strains circulating worldwide but are primarily related to those in neighboring countries. NoV GII is prevalent during the cold season, while GI is prevalent during the summer. To develop a NoV infection control policy, further studies are needed.
Collapse
Affiliation(s)
- Sonam Wangchuk
- Dept. of Microbiology, Faculty of Medicine, Oita University, Yufu, Japan
- Royal Centre for Disease Control, Ministry of Health, Royal Government of Bhutan, Thimphu, Bhutan
| | - Takashi Matsumoto
- Dept. of Microbiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hidekatsu Iha
- Dept. of Microbiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kamruddin Ahmed
- Dept. of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- * E-mail:
| |
Collapse
|
89
|
La Rosa G, Della Libera S, Iaconelli M, Proroga YTR, De Medici D, Martella V, Suffredini E. Detection of Norovirus GII.17 Kawasaki 2014 in Shellfish, Marine Water and Underwater Sewage Discharges in Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:326-333. [PMID: 28258477 DOI: 10.1007/s12560-017-9290-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Norovirus (NoV) is a major cause of non-bacterial acute gastroenteritis worldwide, and the variants of genotype GII.4 are currently the predominant human strains. Recently, a novel variant of NoV GII.17 (GII.P17_GII.17 NoV), termed Kawasaki 2014, has been reported as the cause of gastroenteritis outbreaks in Asia, replacing the pandemic strain GII.4 Sydney 2012. The GII.17 Kawasaki 2014 variant has also been reported sporadically in patients with gastroenteritis outside of Asia, including Italy. In this study, 384 shellfish samples were subjected to screening for human NoVs using real-time PCR and 259 (67.4%) tested positive for Genogroup II (GII) NoV. Of these, 52 samples, selected as representative of different areas and sampling dates, were further amplified by conventional PCR targeting the capsid gene, using broad-range primers. Forty shellfish samples were characterized by amplicon sequencing as GII.4 (n = 29), GII.2 (n = 4), GII.6 (n = 2), GII.12 (n = 2), and GII.17 (n = 3). Sixty-eight water samples (39 seawater samples from the corresponding shellfish production areas and 29 water samples from nearby underwater sewage discharge points) were also tested using the above broad-range assay: eight NoV-positive samples were characterized as GII.1 (n = 3), GII.2 (n = 1), GII.4 (n = 2), and GII.6 (n = 2). Based on full genome sequences available in public databases, a novel RT-PCR nested assay specific for GII.17 NoVs was designed and used to re-test the characterized shellfish (40) and water (8) samples. In this second screening, the RNA of GII.17 NoV was identified in 17 additional shellfish samples and in one water sample. Upon phylogenetic analysis, these GII.17 NoV isolates were closely related to the novel GII.17 Kawasaki 2014. Interestingly, our findings chronologically matched the emergence of the Kawasaki 2014 variant in the Italian population (early 2015), as reported by hospital-based NoV surveillance. These results, showing GII.17 NoV strains to be widespread in shellfish samples collected in 2015 in Italy, provide indirect evidence that this strain has started circulating in the Italian population. Notably, using a specific assay, we were able to detect many more samples positive for GII.17 NoV, indicating that, in food and water matrices, broad-range assays for NoV may grossly underestimate the prevalence of some, less common, NoVs. The detection of the GII.17 strain Kawasaki 2014 in clinical, water and food samples in Italy highlights the need for more systematic surveillance for future disease control and prevention.
Collapse
Affiliation(s)
- G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy.
| | - S Della Libera
- Department of Environment and Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Y T R Proroga
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, via della Salute 2, 80055, Portici, Italy
| | - D De Medici
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - V Martella
- Faculty of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, BA, Italy
| | - E Suffredini
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
90
|
Lu J, Fang L, Sun L, Zeng H, Li Y, Zheng H, Wu S, Yang F, Song T, Lin J, Ke C, Zhang Y, Vinjé J, Li H. Association of GII.P16-GII.2 Recombinant Norovirus Strain with Increased Norovirus Outbreaks, Guangdong, China, 2016. Emerg Infect Dis 2017; 23:1188-1190. [PMID: 28430561 PMCID: PMC5512473 DOI: 10.3201/eid2307.170333] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
An unusual prevalence of recombinant GII.2 noroviruses (GII.P16-GII.2) in Guangdong, China, at the end of 2016 caused a sharp increase in outbreaks of acute gastroenteritis. This event was another non-GII.4 epidemic that emerged after the GII.17 viruses in 2014 and 2015 and warrants global surveillance.
Collapse
|
91
|
Ao Y, Wang J, Ling H, He Y, Dong X, Wang X, Peng J, Zhang H, Jin M, Duan Z. Norovirus GII.P16/GII.2-Associated Gastroenteritis, China, 2016. Emerg Infect Dis 2017; 23:1172-1175. [PMID: 28430563 PMCID: PMC5512504 DOI: 10.3201/eid2307.170034] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During October–December 2016, the number of norovirus outbreaks in China increased sharply from the same period during the previous 4 years. We identified a recombinant norovirus strain, GII.P16-GII.2, as the cause of 44 (79%) of the 56 outbreaks, signaling that this strain could replace the predominant GII.4 viruses.
Collapse
|
92
|
Full-genome sequence analysis of an uncommon norovirus genotype, GII.21, from South Korea. Epidemiol Infect 2017; 145:2231-2240. [PMID: 28651680 DOI: 10.1017/s0950268817001273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noroviruses (NoVs) are major causal agents of acute gastroenteritis in humans. NoV GII.4 is the predominant genotype globally. However, uncommon and minor types of NoVs are consistently detected and some have been shown to dominate over GII.4. Therefore, the prevalence of dominant and uncommon NoVs makes the identification of these viruses important for the prediction and prevention of pandemics. In this study, the full-genome sequence of a NoV (strain JW) detected in Korea was extensively characterized. The full-length genome was 7510 nucleotides long, and phylogenetic analysis based on the whole-genome sequences, including open reading frame (ORF)1, ORF2, and ORF3, indicated that it belonged to the GII.21 genotype. Strain JW showed maximum identity with strain YO284; however, comparison of the amino acid sequence of ORF2, which functions as an antigen, showed substitutions in several amino acids. GII.21 is not a prevalent epidemiological agent of acute gastroenteritis in humans, but it is consistently found in gastroenteritis patients from several countries. The present study provides the first full-genome sequence analysis of NoV GII.21 isolated from a patient in Korea. Our findings provide not only valuable genome information but also data for epidemiology studies, epidemic prevention, and vaccine development strategies.
Collapse
|
93
|
Boonchan M, Motomura K, Inoue K, Ode H, Chu P, Lin M, Iwatani Y, Ruchusatsawat K, Guntapong R, Tacharoenmuang R, Chantaroj S, Tatsumi M, Takeda N, Sangkitporn S. Distribution of norovirus genotypes and subtypes in river water by ultra-deep sequencing-based analysis. Lett Appl Microbiol 2017; 65:98-104. [DOI: 10.1111/lam.12750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- M. Boonchan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
| | - K. Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
- Research Institute of Microbial Diseases; Osaka University; Suita Japan
| | - K. Inoue
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
- Research Institute of Microbial Diseases; Osaka University; Suita Japan
| | - H. Ode
- National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - P.Y. Chu
- Department of Medical Laboratory Science and Biotechnology; Kaohsiung Medical University; Kaohsiung Taiwan
| | - M. Lin
- Department of Medical Laboratory Science and Biotechnology; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Y. Iwatani
- National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - K. Ruchusatsawat
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| | - R. Guntapong
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| | - R. Tacharoenmuang
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| | - S. Chantaroj
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| | - M. Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
- Research Institute of Microbial Diseases; Osaka University; Suita Japan
| | - N. Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI); Nonthaburi Thailand
- Research Institute of Microbial Diseases; Osaka University; Suita Japan
| | - S. Sangkitporn
- National Institute of Health; Department of Medical Science; Ministry of Public Health; Nonthaburi Thailand
| |
Collapse
|
94
|
Choi YS, Koo ES, Kim MS, Choi JD, Shin Y, Jeong YS. Re-emergence of a GII.4 Norovirus Sydney 2012 Variant Equipped with GII.P16 RdRp and Its Predominance over Novel Variants of GII.17 in South Korea in 2016. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:168-178. [PMID: 28120262 DOI: 10.1007/s12560-017-9278-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Noroviruses are major causative pathogen of nonbacterial acute gastroenteritis worldwide. Of the seven genogroups of noroviruses suggested recently, genogroup II genotype 4 (GII.4) had been the most common genotype identified in hospitalized patients in the last few decades. However, since the latter half of 2014, new variants of GII.17 have been reported as the main causes of outbreaks over GII.4 in East Asia and have also occurred in America and Europe. In this study, we monitored norovirus GII in coastal streams at South Gyeongsang province and South Jeolla province of South Korea from March 2015 to May 2016. Norovirus GII.17 capsid sequences were predominantly detected until September 2015 in water samples. However, we found that the number of positive cases of the norovirus GII.4 Sydney 2012 capsid sequence has been increasing since December 2015, overtaking that of GII.17 in 2016. The RdRp genotype of this predominant GII.4 variant in 2016 was identified as GII.P16. The emergence and predominance of the GII.4 pandemic capsid sequence harboring a different RdRp genotype suggested the potential for a future pandemic.
Collapse
Affiliation(s)
- Yong Seon Choi
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Eung Seo Koo
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Man Su Kim
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Duck Choi
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Gyeongnam, South Korea
| | - Yongsik Shin
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, South Korea
| | - Yong Seok Jeong
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
95
|
Sanchez MA, Corcostégui SP, De Broucker CA, Cabre O, Watier-Grillot S, Perelle S, Ambert-Balay K, Pommier de Santi V. Norovirus GII.17 Outbreak Linked to an Infected Post-Symptomatic Food Worker in a French Military Unit Located in France. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:234-237. [PMID: 27909946 DOI: 10.1007/s12560-016-9274-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
In February 2016, an outbreak of gastroenteritis occurred in a French military unit located in Poitiers, France. Attack rate was of 34% (103/300). A case-control study identified association between illness and cake consumption. Stool samples were tested positive for Norovirus GII.17 for one patient and one post-symptomatic food worker (FW). The FW presented vomiting one day before cake preparation. The NoV strain was probably spread through food worker hand contact. Prevention of Norovirus foodborne outbreaks implies new guidelines for FWs management in France and Europe.
Collapse
Affiliation(s)
- Marc-Antoine Sanchez
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France.
| | | | | | - Olivier Cabre
- Inspectorate of the Military Health Service, Paris, France
| | | | - Sylvie Perelle
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Laboratory for Food Safety, Paris-Est University, Maisons-Alfort, France
| | | | | |
Collapse
|
96
|
Phylogenetic Analyses Suggest that Factors Other Than the Capsid Protein Play a Role in the Epidemic Potential of GII.2 Norovirus. mSphere 2017; 2:mSphere00187-17. [PMID: 28529975 PMCID: PMC5437133 DOI: 10.1128/mspheredirect.00187-17] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/20/2022] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. For over two decades, a single genotype (GII.4) has been responsible for most norovirus-associated cases. However, during the winter of 2014 to 2015, the GII.4 strains were displaced by a rarely detected genotype (GII.17) in several countries of the Asian continent. Moreover, during the winter of 2016 to 2017, the GII.2 strain reemerged as predominant in different countries worldwide. This reemerging GII.2 strain is a recombinant virus that presents a GII.P16 polymerase genotype. In this study, we investigated the evolutionary dynamics of GII.2 to determine the mechanism of this sudden emergence in the human population. The phylogenetic analyses indicated strong linear evolution of the VP1-encoding sequence, albeit with minor changes in the amino acid sequence over time. Without major genetic differences among the strains, a clustering based on the polymerase genotype was observed in the tree. This association did not affect the substitution rate of the VP1. Phylogenetic analyses of the polymerase region showed that reemerging GII.P16-GII.2 strains diverged into a new cluster, with a small number of amino acid substitutions detected on the surface of the associated polymerase. Thus, besides recombination or antigenic shift, point mutations in nonstructural proteins could also lead to novel properties with epidemic potential in different norovirus genotypes. IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide. Currently, there is no vaccine or specific antiviral available to treat norovirus disease. Multiple norovirus strains infect humans, but a single genotype (GII.4) has been regarded as the most important cause of viral gastroenteritis outbreaks worldwide. Its persistence and predominance have been explained by the continuous replacement of variants that present new antigenic properties on their capsid protein, thus evading the herd immunity acquired to the previous variants. Over the last three seasons, minor genotypes have displaced the GII.4 viruses as the predominant strains. One of these genotypes, GII.2, reemerged as predominant during 2016 to 2017. Here we show that factors such as minor changes in the polymerase may have driven the reemergence of GII.2 during the last season. A better understanding of norovirus diversity is important for the development of effective treatments against noroviruses.
Collapse
|
97
|
Suzuki Y, Doan YH, Kimura H, Shinomiya H, Shirabe K, Katayama K. Predicting genotype compositions in norovirus seasons in Japan. Microbiol Immunol 2017; 60:418-26. [PMID: 27168450 DOI: 10.1111/1348-0421.12384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
Abstract
Noroviruses cause acute gastroenteritis. Since multiple genotypes of norovirus co-circulate in humans, changing the genotype composition and eluding host immunity, development of a polyvalent vaccine against norovirus in which the genotypes of vaccine strains match the major strains in circulation in the target season is desirable. However, this would require prediction of changes in the genotype composition of circulating strains. A fitness model that predicts the proportion of a strain in the next season from that in the current season has been developed for influenza A virus. Here, such a fitness model that takes into account the fitness effect of herd immunity was used to predict genotype compositions in norovirus seasons in Japan. In the current study, a model that assumes a decline in the magnitude of cross immunity between norovirus strains according to an increase in the divergence of the major antigenic protein VP1 was found to be appropriate for predicting genotype composition. Although it is difficult to predict the proportions of genotypes accurately, the model is effective in predicting the direction of change in the proportions of genotypes. The model predicted that GII.3 and GII.4 may contract, whereas GII.17 may expand and predominate in the 2015-2016 season. The procedure of predicting genotype compositions in norovirus seasons described in the present study has been implemented in the norovirus forecasting system (NOROCAST).
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Nagoya, Aichi, 467-8501
| | | | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011
| | - Hiroto Shinomiya
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanbancho, Matsuyama, Ehime, 790-0003
| | - Komei Shirabe
- Yamaguchi Prefectural Institute of Public Health and Environment, 2-5-67 Aoi, Yamaguchi, Yamaguchi, 753-0821, Japan
| | | |
Collapse
|
98
|
Andrade JSR, Fumian TM, Leite JPG, Assis MRD, Bello G, Mir D, Miagostovich MP. Detection and molecular characterization of emergent GII.P17/GII.17 Norovirus in Brazil, 2015. INFECTION GENETICS AND EVOLUTION 2017; 51:28-32. [PMID: 28300648 DOI: 10.1016/j.meegid.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
Abstract
A newly GII.17 Kawazaki_2014 variant strain was detected recently in Brazil. Phylogenetic analysis reveals at least four independent introduction events of this lineage into this country that took place throughout 2014, coinciding with FIFA World Cup in Brazil, 2014, and Hong Kong has been identified as the most likely source of introduction. This variant emerged in Asia causing outbreaks and replacing prevalent GII.4. Emergence of GII.P17/GII.17 variant emphasizes the need for active laboratory surveillance for NoV including molecular epidemiology and studies on virus evolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Daiana Mir
- Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
99
|
Jung S, Hwang BM, Jung H, Chung G, Yoo CK, Lee DY. Emergence of Norovirus GII.17-associated Outbreak and Sporadic Cases in Korea from 2014 to 2015. Osong Public Health Res Perspect 2017; 8:86-90. [PMID: 28443229 PMCID: PMC5402847 DOI: 10.24171/j.phrp.2017.8.1.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Human norovirus are major causative agent of nonbacterial acute gastroenteritis. In general, genogroup (G) II.4 is the most prominent major genotype that circulate in human population and the environment. However, a shift in genotypic trends was observed in Korea in December 2014. In this study, we investigated the trend of norovirus genotype in detail using the database of Acute Diarrhea Laboratory Surveillance (K-EnterNet) in Korea. GII.17 has since become a major contributor to outbreaks of norovirus-related infections and sporadic cases in Korea, although the reason for this shift remain unknown.
Collapse
Affiliation(s)
- Sunyoung Jung
- Division of Enteric Diseases, Center for Infectious Diseases, National Research Institute of Health, Osong, Korea
| | - Bo-Mi Hwang
- Division of Enteric Diseases, Center for Infectious Diseases, National Research Institute of Health, Osong, Korea
| | - HyunJu Jung
- Division of Enteric Diseases, Center for Infectious Diseases, National Research Institute of Health, Osong, Korea
| | - GyungTae Chung
- Division of Enteric Diseases, Center for Infectious Diseases, National Research Institute of Health, Osong, Korea
| | - Cheon-Kwon Yoo
- Division of Enteric Diseases, Center for Infectious Diseases, National Research Institute of Health, Osong, Korea
| | - Deog-Yong Lee
- Division of Enteric Diseases, Center for Infectious Diseases, National Research Institute of Health, Osong, Korea
| |
Collapse
|
100
|
Koo ES, Kim MS, Choi YS, Park KS, Jeong YS. Occurrence of novel GII.17 and GII.21 norovirus variants in the coastal environment of South Korea in 2015. PLoS One 2017; 12:e0172237. [PMID: 28199388 PMCID: PMC5310787 DOI: 10.1371/journal.pone.0172237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
Human norovirus (HNoV), a positive-sense RNA virus, is the main causative agent of acute viral gastroenteritis. Multiple pandemic variants of the genogroup II genotype 4 (GII.4) of NoV have attracted great attention from researchers worldwide. However, novel variants of GII.17 have been overtaking those pandemic variants in some areas of East Asia. To investigate the environmental occurrence of GII in South Korea, we collected water samples from coastal streams and a neighboring waste water treatment plant in North Jeolla province (in March, July, and December of 2015). Based on capsid gene region C analysis, four different genotypes (GII.4, GII.13, GII.17, and GII.21) were detected, with much higher prevalence of GII.17 than of GII.4. Additional sequence analyses of the ORF1-ORF2 junction and ORF2 from the water samples revealed that the GII.17 sequences in this study were closely related to the novel strains of GII.P17-GII.17, the main causative variants of the 2014-2015 HNoV outbreak in China and Japan. In addition, the GII.P21-GII.21 variants were identified in this study and they had new amino acid sequence variations in the blockade epitopes of the P2 domain. From these results, we present two important findings: 1) the novel GII.P17-GII.17 variants appeared to be predominant in the study area, and 2) new GII.21 variants have emerged in South Korea.
Collapse
Affiliation(s)
- Eung Seo Koo
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Man Su Kim
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Seon Choi
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Kwon-Sam Park
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan, Republic of Korea
| | - Yong Seok Jeong
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|