51
|
Mota SL, Dos Santos LO, Vidaletti MR, Rodrigues RO, Coppola MDM, Mayer FQ. Antimicrobial Resistance of Coagulase-positive Staphylococcus Isolated From Healthy Crioulo Horses and Associated Risk Factors. J Equine Vet Sci 2021; 107:103779. [PMID: 34802621 DOI: 10.1016/j.jevs.2021.103779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023]
Abstract
Antimicrobial resistance (AMR) is a global concern that must be addressed from a one health perspective. Horses are companion animals and their contact with humans facilitates exchange of resistant bacteria. This study aimed to evaluate AMR of coagulase-positive Staphylococcus (CoPS), including Staphylococcus aureus, isolated from healthy Crioulo horses. Swab samples from nostrils (n = 214) and skin (n = 107) of 107 horses from Porto Alegre, South Brazil, were used for CoPS isolation. The isolates were evaluated for AMR and a multivariate logistic regression was applied to identify the risk factors associated to this outcome, using information on horses' management and installations where they were maintained. A total of 143 CoPS were isolated from 79 horses (73.8%), of which 8 (5.6%) were S. aureus. The isolates showed resistance to seven of 10 tested antimicrobials and 38.5% (55/143) of them were resistant to at least one antimicrobial. One isolate (0.7%; 1/143) was classified as multidrug-resistant. Regarding S. aureus, 62.5 % (5/8) showed AMR, but none were methicillin-resistant. The risk factors associated with CoPS' antimicrobial resistance were lower frequency of bed changing (OR = 6.40; P = .001) and nonaccumulation of bed materials (OR = 3.47; P = .002). The results point that healthy horses have antimicrobial-resistant CoPS and S. aureus in their microbiota, which may be of concern for animal and human health. Moreover, bed management was associated with AMR, which can serve as a guide for best practices to be adopted to avoid the occurrence of resistant bacteria in these animals.
Collapse
Affiliation(s)
- Sabrina Lopes Mota
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Lays Oliveira Dos Santos
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Marina Roth Vidaletti
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Rogério Oliveira Rodrigues
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Mario de Menezes Coppola
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Brazil.
| |
Collapse
|
52
|
Silva V, Ferreira E, Manageiro V, Reis L, Tejedor-Junco MT, Sampaio A, Capelo JL, Caniça M, Igrejas G, Poeta P. Distribution and Clonal Diversity of Staphylococcus aureus and Other Staphylococci in Surface Waters: Detection of ST425-t742 and ST130-t843 mecC-Positive MRSA Strains. Antibiotics (Basel) 2021; 10:antibiotics10111416. [PMID: 34827354 PMCID: PMC8614751 DOI: 10.3390/antibiotics10111416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
Natural aquatic environments represent one of the most important vehicles of bacterial dissemination. Therefore, we aimed to isolate staphylococci from surface waters and to investigate the presence of antimicrobial resistance genes and virulence factors as well as the genetic lineages of all Staphylococcus aureus isolates. Staphylococci were recovered from water samples collected from 78 surface waters, including rivers, streams, irrigation ditches, dams, lakes, and fountains. The presence of antimicrobial resistance genes and virulence factors was investigated by PCR. Multilocus sequence typing and spa-typing were performed in all S. aureus isolates. From the 78 water samples, 33 S. aureus, one S. pseudintermedius, and 51 coagulase-negative staphylococci (CoNS) were identified. Among the S. aureus isolates, four MRSA were identified, and all harbored the mecC gene. Fourteen S. aureus were susceptible to all antimicrobials tested and the remaining showed resistance to penicillin, erythromycin and/or tetracycline encoded by the blaZ, ermT, msr(A/B), tetL, and vgaA genes. Regarding the clonal lineages, one mecC-MRSA isolate belonged to spa-type t843 and sequence type (ST) 130 and the other three to t742 and ST425. The remaining S. aureus were ascribed 14 spa-types and 17 sequence types. Eleven species of CoNS were isolated: S. sciuri, S. lentus, S. xylosus, S. epidermidis, S. cohnii spp. urealyticus, S. vitulinus, S. caprae, S. carnosus spp. Carnosus, S. equorum, S. simulans, and S. succinus. Thirteen CoNS isolates had a multidrug resistance profile and carried the following genes: mecA, msr(A/B), mph(C), aph(3′)-IIIa, aac(6′)-Ie–aph(2′’)-Ia, dfrA, fusB, catpC221, and tetK. A high diversity of staphylococci was isolated from surface waters including mecCMRSA strains and isolates presenting multidrug-resistance profiles. Studies on the prevalence of antibiotic-resistant staphylococci in surface waters are still very scarce but extremely important to estimate the contribution of the aquatic environment in the spread of these bacteria.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2825-466 Lisbon, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (E.F.); (V.M.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (E.F.); (V.M.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Lígia Reis
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (E.F.); (V.M.); (L.R.); (M.C.)
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain;
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain
| | - Ana Sampaio
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal
| | - José Luis Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal;
- Proteomass Scientific Society, 2825-466 Setubal, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (E.F.); (V.M.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2825-466 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2825-466 Lisbon, Portugal
- Correspondence: ; Tel.: +351-259350466
| |
Collapse
|
53
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Drozd R, Wardach M, Migdał P, Szymczyk-Ziółkowska P, Styburski D, Fijałkowski K. Rotating Magnetic Field Increases β-Lactam Antibiotic Susceptibility of Methicillin-Resistant Staphylococcus aureus Strains. Int J Mol Sci 2021; 22:ijms222212397. [PMID: 34830278 PMCID: PMC8618647 DOI: 10.3390/ijms222212397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have developed resistance to most β-lactam antibiotics and have become a global health issue. In this work, we analyzed the impact of a rotating magnetic field (RMF) of well-defined and strictly controlled characteristics coupled with β-lactam antibiotics against a total of 28 methicillin-resistant and sensitive S. aureus strains. The results indicate that the application of RMF combined with β-lactam antibiotics correlated with favorable changes in growth inhibition zones or in minimal inhibitory concentrations of the antibiotics compared to controls unexposed to RMF. Fluorescence microscopy indicated a drop in the relative number of cells with intact cell walls after exposure to RMF. These findings were additionally supported by the use of SEM and TEM microscopy, which revealed morphological alterations of RMF-exposed cells manifested by change of shape, drop in cell wall density and cytoplasm condensation. The obtained results indicate that the originally limited impact of β-lactam antibiotics in MRSA is boosted by the disturbances caused by RMF in the bacterial cell walls. Taking into account the high clinical need for new therapeutic options, effective against MRSA, the data presented in this study have high developmental potential and could serve as a basis for new treatment options for MRSA infections.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland;
| | - Daniel Styburski
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| |
Collapse
|
54
|
Naji Hasan R, Abdal Kareem Jasim S. Detection of Panton- Valentine leukocidin and MecA Genes in Staphylococcus aureus isolated from Iraqi Patients. ARCHIVES OF RAZI INSTITUTE 2021; 76:1054-1059. [PMID: 35096341 PMCID: PMC8790979 DOI: 10.22092/ari.2021.355962.1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
A gram-positive bacterium, Staphylococcus aureus, which is widely distributed is considered as a bacterial infection that commonly infects the skin and mucous membranes. Such infections can be the cause of death and illness. In the present study by using reverse transcription-polymerase chain reaction (rt-PCR) the Panton-Valentine leukocidin (PVL) and MecA genes of S. aureus which were isolated from skin and soft tissue infections (SSTIs) in Baghdad, Iraq were investigated. This study included 96 S. aureus isolated from SSTIs and identified by Vitek. The results showed that 61 (63.5%) and 48 (50%) of the isolates were positive for PVL and MecA genes, respectively. This work presented an effective real-time PCR technique for detecting PVL genes alone or in conjunction with MecA. The rt-PCR allows for easier reaction monitoring and eliminates the need for post-PCR processing, saving both resources and time. Moreover, it is ideal for diagnostic applications because of its high sensitivity, simplicity, and specificity. Besides, the rt-PCR has an option to do all the procedures in an automated mode of action.
Collapse
Affiliation(s)
- R Naji Hasan
- Biotechnology and Environmental Center, University of Fallujah, Al-Fallujah, Iraq
| | - S Abdal Kareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Anbar, Iraq
| |
Collapse
|
55
|
Neil JR, Verma A, Kronewitter SR, McGee WM, Mullen C, Viirtola M, Kotovuori A, Friedrich H, Finell J, Rannisto J, Syka JEP, Stephenson JL. Rapid MRSA detection via tandem mass spectrometry of the intact 80 kDa PBP2a resistance protein. Sci Rep 2021; 11:18309. [PMID: 34526615 PMCID: PMC8443585 DOI: 10.1038/s41598-021-97844-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Treatment of antibiotic-resistant infections is dependent on the detection of specific bacterial genes or proteins in clinical assays. Identification of methicillin-resistant Staphylococcus aureus (MRSA) is often accomplished through the detection of penicillin-binding protein 2a (PBP2a). With greater dependence on mass spectrometry (MS)-based bacterial identification, complementary efforts to detect resistance have been hindered by the complexity of those proteins responsible. Initial characterization of PBP2a indicates the presence of glycan modifications. To simplify detection, we demonstrate a proof-of-concept tandem MS approach involving the generation of N-terminal PBP2a peptide-like fragments and detection of unique product ions during top-down proteomic sample analyses. This approach was implemented for two PBP2a variants, PBP2amecA and PBP2amecC, and was accurate across a representative panel of MRSA strains with different genetic backgrounds. Additionally, PBP2amecA was successfully detected from clinical isolates using a five-minute liquid chromatographic separation and implementation of this MS detection strategy. Our results highlight the capability of direct MS-based resistance marker detection and potential advantages for implementing these approaches in clinical diagnostics.
Collapse
|
56
|
Sommer A, Fuchs S, Layer F, Schaudinn C, Weber RE, Richard H, Erdmann MB, Laue M, Schuster CF, Werner G, Strommenger B. Mutations in the gdpP gene are a clinically relevant mechanism for β-lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants. Microb Genom 2021; 7. [PMID: 34486969 PMCID: PMC8715439 DOI: 10.1099/mgen.0.000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In Staphylococcus aureus, resistance to β-lactamase stable β-lactam antibiotics is mediated by the penicillinbinding protein 2a, encoded by mecA or by its homologues mecB or mecC. However, a substantial number of meticillin-resistant isolates lack known mec genes and, thus, are called meticillin resistant lacking mec (MRLM). This study aims to identify the genetic mechanisms underlying the MRLM phenotype. A total of 141 MRLM isolates and 142 meticillin-susceptible controls were included in this study. Oxacillin and cefoxitin minimum inhibitory concentrations were determined by broth microdilution and the presence of mec genes was excluded by PCR. Comparative genomics and a genome-wide association study (GWAS) approach were applied to identify genetic polymorphisms associated with the MRLM phenotype. The potential impact of such mutations on the expression of PBP4, as well as on cell morphology and biofilm formation, was investigated. GWAS revealed that mutations in gdpP were significantly associated with the MRLM phenotype. GdpP is a phosphodiesterase enzyme involved in the degradation of the second messenger cyclic-di-AMP in S. aureus. A total of 131 MRLM isolates carried truncations, insertions or deletions as well as amino acid substitutions, mainly located in the functional DHH-domain of GdpP. We experimentally verified the contribution of these gdpP mutations to the MRLM phenotype by heterologous complementation experiments. The mutations in gdpP had no effect on transcription levels of pbp4; however, cell sizes of MRLM strains were reduced. The impact on biofilm formation was highly strain dependent. We report mutations in gdpP as a clinically relevant mechanism for β-lactam resistance in MRLM isolates. This observation is of particular clinical relevance, since MRLM are easily misclassified as MSSA (meticillin-susceptible S. aureus), which may lead to unnoticed spread of β-lactam-resistant isolates and subsequent treatment failure.
Collapse
Affiliation(s)
- Anna Sommer
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Stephan Fuchs
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Franziska Layer
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Christoph Schaudinn
- Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Robert E Weber
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Hugues Richard
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch Institute, Berlin, Germany
| | - Mareike B Erdmann
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Michael Laue
- Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Christopher F Schuster
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Birgit Strommenger
- Department of Infectious Diseases, Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
57
|
Nijsingh N, Munthe C, Lindblom A, Åhrén C. Screening for multi-drug-resistant Gram-negative bacteria: what is effective and justifiable? Monash Bioeth Rev 2021; 38:72-90. [PMID: 32356217 PMCID: PMC7749868 DOI: 10.1007/s40592-020-00113-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Effectiveness is a key criterion in assessing the justification of antibiotic resistance interventions. Depending on an intervention’s effectiveness, burdens and costs will be more or less justified, which is especially important for large scale population-level interventions with high running costs and pronounced risks to individuals in terms of wellbeing, integrity and autonomy. In this paper, we assess the case of routine hospital screening for multi-drug-resistant Gram-negative bacteria (MDRGN) from this perspective. Utilizing a comparison to screening programs for Methicillin-Resistant Staphylococcus aureus (MRSA) we argue that current screening programmes for MDRGN in low endemic settings should be reconsidered, as its effectiveness is in doubt, while general downsides to screening programs remain. To accomplish justifiable antibiotic stewardship, MDRGN screening should not be viewed as a separate measure, but rather as part of a comprehensive approach. The program should be redesigned to focus on those at risk of developing symptomatic infections with MDRGN rather than merely detecting those colonised.
Collapse
Affiliation(s)
- Niels Nijsingh
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden. .,Department of Philosophy, Linguistics and Theory of Science (FLoV), University of Gothenburg, Gothenburg, Sweden. .,Institute for Ethics, History and Theory of Medicine, Ludwig-Maximilians University, Lessingstr. 2, 80336, Munich, Germany.
| | - Christian Munthe
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Philosophy, Linguistics and Theory of Science (FLoV), University of Gothenburg, Gothenburg, Sweden
| | - Anna Lindblom
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christina Åhrén
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg, Sweden.,Swedish Strategic Program Against Antimicrobial Resistance (Strama), Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
58
|
Zehra A, Gulzar M, Singh R, Kaur S, Gill JPS. Comparative analysis of Methicillin-Resistant Staphylococcus aureus (MRSA) and Borderline Oxacillin Resistant Staphylococcus aureus (BORSA) in community and food of animal origin. FEMS Microbiol Lett 2021; 367:6024679. [PMID: 33278300 DOI: 10.1093/femsle/fnaa201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to illustrate the relative pervasiveness of Borderline Oxacillin Resistant Staphylococcus aureus (BORSA) and Methicillin-Resistant Staphylococcus aureus (MRSA) in community and food of animal origin and their relationship with other genetic determinants. Staphylococcus aureus isolates were subjected to E-test using the antibiotics: oxacillin, ceftriaxone, cotrimoxazole, vancomycin, genotypic tests for the genes mecA, vanA, blaZ, pvl gene and SCCmec typing. The prevalence of S. aureus (MRSA) in the food of animal origin and community settings was 21% (1.8% MRSA) and 21.9% (7.4% MRSA), respectively. SCCmec type V was prevalent among the food of animal origin, while SCCmec type IVa among the community isolates. The likelihood of MRSA presence among community isolates was three times more than in isolates from chicken and milk samples. Likewise, the likelihood of detecting pvl positive MRSA (pvl+MRSA) isolates was 4-fold higher in the community setting than in the food of animal origin. The mecA negative BORSA (mecA-BORSA) was a frequently observed phenotype among S. aureus isolates. Also, co-detection of pvl and cotrimoxazol resistance was reported in this study although there was no noteworthy correlation of cotrimoxazol resistance with the type of sample. Isolates from milk and community settings exhibit higher minimum inhibitory concentration to vancomycin (Vancomycin MIC creep, 2-4 µg/mL). SIGNIFICANCE Current study provides the information on the statistical relationship between the genetic determinants of S. aureus with respect to sample type, and additionally the correlation that exists between the pvl and MRSA, pvl and cotrimoxazol resistance, vancomycin MIC and MRSA/Methicillin-Susceptible S. aureus (MSSA).
Collapse
Affiliation(s)
- Asima Zehra
- PhD Scholar, School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animals Sciences University, Ludhiana, India
| | - Maliha Gulzar
- Master`s student, School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Randhir Singh
- Associate Professor, School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Simranpreet Kaur
- Associate Professor, School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - J P S Gill
- Research Director, Guru Angad Dev veterinary and Animals Sciences University, Ludhiana, India
| |
Collapse
|
59
|
Prevalence and Antimicrobial Susceptibility Profile of Staphylococcus aureus in Milk and Traditionally Processed Dairy Products in Addis Ababa, Ethiopia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5576873. [PMID: 34327229 PMCID: PMC8302372 DOI: 10.1155/2021/5576873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus is a contagious pathogen that can cause various diseases in both humans and animals. Antimicrobial-resistant S. aureus is becoming an extremely important global health problem. A cross-sectional study was conducted from December 2019 to May 2020 to assess the occurrence of S. aureus and its antimicrobial susceptibility profiles in milk and traditionally processed dairy products in selected subcities of Addis Ababa. A total of 255 dairy product samples (175 raw milk and 80 traditionally processed dairy products) were collected from farms and retail markets. Samples were cultured for S. aureus according to standard microbiology techniques, and the Kirby-Bauer disk diffusion method was used to assess antimicrobial susceptibility of isolates to a panel of 12 antimicrobials. Susceptibility to methicillin was determined based on the sensitivity of isolates to cefoxitin, and resistant isolates were investigated for the presence of mecA and mecC genes using PCR. Staphylococcus aureus was isolated from 43 (24.6%) of milk, 7 (17.5%) of yogurt, and 2 (5%) of cottage cheese. A significantly higher rate of contamination with S. aureus was recorded among milk samples compared to yogurt and cottage cheese (p = 0.019). Out of 52 S. aureus isolates investigated for susceptibility to 12 antimicrobials, 49 (94.2%) of the isolates were resistant to ampicillin and 42 (80.8%) to amoxicillin+clavulanic acid. Twenty (38.5%) of the isolates were methicillin-resistant S. aureus (MRSA) based on susceptibility to cefoxitin. However, only one of these isolates (5%) was positive for mecA gene, and none of them were positive for the mecC gene. There was no significant difference (p > 0.05) in the rate of occurrence of MRSA among isolates from different sources. In conclusion, this study demonstrated a significant level of contamination of milk and dairy products with S. aureus and most isolates were multidrug resistant. The occurrence of MRSA in raw milk and dairy products signifies a serious public health threat as the practice of consuming raw dairy products in the study area is widespread. The lack of agreement between phenotypic and genotypic detection of MRSA suggests the need for further study to identify the genetic basis for the observed resistance phenotype.
Collapse
|
60
|
Yui Eto K, Kwong SM, LaBreck PT, Crow JE, Traore DAK, Parahitiyawa N, Fairhurst HM, Merrell DS, Firth N, Bond CS, Ramsay JP. Evolving origin-of-transfer sequences on staphylococcal conjugative and mobilizable plasmids-who's mimicking whom? Nucleic Acids Res 2021; 49:5177-5188. [PMID: 33939800 PMCID: PMC8136818 DOI: 10.1093/nar/gkab303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022] Open
Abstract
In Staphylococcus aureus, most multiresistance plasmids lack conjugation or mobilization genes for horizontal transfer. However, most are mobilizable due to carriage of origin-of-transfer (oriT) sequences mimicking those of conjugative plasmids related to pWBG749. pWBG749-family plasmids have diverged to carry five distinct oriT subtypes and non-conjugative plasmids have been identified that contain mimics of each. The relaxasome accessory factor SmpO, encoded by each conjugative plasmid, determines specificity for its cognate oriT. Here we characterized the binding of SmpO proteins to each oriT. SmpO proteins predominantly formed tetramers in solution and bound 5′-GNNNNC-3′ sites within each oriT. Four of the five SmpO proteins specifically bound their cognate oriT. An F7K substitution in pWBG749 SmpO switched oriT-binding specificity in vitro. In vivo, the F7K substitution reduced but did not abolish self-transfer of pWBG749. Notably, the substitution broadened the oriT subtypes that were mobilized. Thus, this substitution represents a potential evolutionary intermediate with promiscuous DNA-binding specificity that could facilitate a switch between oriT specificities. Phylogenetic analysis suggests pWBG749-family plasmids have switched oriT specificity more than once during evolution. We hypothesize the convergent evolution of oriT specificity in distinct branches of the pWBG749-family phylogeny reflects indirect selection pressure to mobilize plasmids carrying non-cognate oriT-mimics.
Collapse
Affiliation(s)
- Karina Yui Eto
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.,Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick T LaBreck
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, MD 20814, USA
| | - Jade E Crow
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Daouda A K Traore
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Faculty of Natural Sciences, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK.,Life Sciences Group, Institut Laue Langevin, Grenoble 38000, France.,Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako BP E423, Mali
| | | | | | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, MD 20814, USA
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Charles S Bond
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Joshua P Ramsay
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.,Curtin Medical School, Curtin University, Perth, WA 6102, Australia.,School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
61
|
Mbindyo CM, Gitao GC, Plummer PJ, Kulohoma BW, Mulei CM, Bett R. Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow's Milk in Kenya. Antibiotics (Basel) 2021; 10:antibiotics10070772. [PMID: 34202836 PMCID: PMC8300721 DOI: 10.3390/antibiotics10070772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing numbers of potentially zoonotic multidrug-resistant (MDR) staphylococci strains, associated with mastitis in dairy cows, are being reported globally and threaten disease management in both animal and human health. However, the prevalence and antimicrobial resistance profiles of these strains, including methicillin-resistant staphylococci (MRS), in Kenya is not well known. This study investigated the drug resistance profiles and genes carried by 183 staphylococci isolates from 142 dairy cows representing 93 farms recovered from mastitis milk of dairy cows in two selected counties in Kenya. Staphylococci isolates were characterized by phenotypic characteristics, polymerase chain reaction (PCR) amplification, partial sequencing and susceptibility testing for 10 antimicrobial drugs. Detection of seven resistance genes to the various antimicrobial drugs was conducted using PCR. Overall, phenotypic resistance among the staphylococci ranged between 66.1% for ampicillin and 3.5% for fluoroquinolones. Twenty-five percent (25%) of S. aureus and 10.8% of the coagulase-negative staphylococci (CoNS) isolates, were methicillin-resistant staphylococci phenotypically (defined as resistance to cefoxitin disk diffusion). The most common genes found in S. aureus and CoNS were blaZ and strB at 44.3% and 26%, and 78% and 50%, respectively. MDR was observed in 29.67% and 16.3% of S. aureus and CoNS, respectively. These findings pose a threat to bovine mastitis treatment and management as well as human health.
Collapse
Affiliation(s)
- Christine M. Mbindyo
- Department of Veterinary Pathology, Microbiology and Parasitology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
- Correspondence: or
| | - George C. Gitao
- Department of Veterinary Pathology, Microbiology and Parasitology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| | - Paul Joseph Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- National Institute for Antimicrobial Resistance Research and Education, Ames, IA 50010, USA
| | - Benard W. Kulohoma
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Charles M. Mulei
- Department of Clinical Studies, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| | - Rawlynce Bett
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| |
Collapse
|
62
|
Fernandez JE, Perreten V, Schwendener S. The novel macrolide resistance genes mef(F) and msr(G) are located on a plasmid in Macrococcus canis and a transposon in Macrococcus caseolyticus. J Antimicrob Chemother 2021; 76:48-54. [PMID: 33118027 DOI: 10.1093/jac/dkaa405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/01/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To analyse macrolide resistance in a Macrococcus canis strain isolated from a dog with an ear infection, and determine whether the resistance mechanism is also present in other bacteria, and associated with mobile genetic elements. METHODS The whole genome of M. canis Epi0082 was sequenced using PacBio and Illumina technologies. Novel macrolide resistance determinants were identified through bioinformatic analysis, and functionality was demonstrated by expression in Staphylococcus aureus. Mobile genetic elements containing the novel genes were analysed in silico for strain Epi0082 as well as in other bacterial strains deposited in GenBank. RESULTS M. canis Epi0082 contained a 3212 bp operon with the novel macrolide resistance genes mef(F) and msr(G) encoding a efflux protein and an ABC-F ribosomal protection protein, respectively. Cloning in S. aureus confirmed that both genes individually confer resistance to the 14- and 15-membered ring macrolides erythromycin and azithromycin, but not the 16-membered ring macrolide tylosin. A reduced susceptibility to the streptogramin B pristinamycin IA was additionally observed when msr(G) was expressed in S. aureus under erythromycin induction. Epi0082 carried the mef(F)-msr(G) operon together with the chloramphenicol resistance gene fexB in a novel 39 302 bp plasmid pMiCAN82a. The mef(F)-msr(G) operon was also found in macrolide-resistant Macrococcus caseolyticus strains in the GenBank database, but was situated in the chromosome as part of a novel 13 820 bp or 13 894 bp transposon Tn6776. CONCLUSIONS The identification of mef(F) and msr(G) on different mobile genetic elements in Macrococcus species indicates that these genes hold potential for further dissemination of resistance to the clinically important macrolides in the bacterial population.
Collapse
Affiliation(s)
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sybille Schwendener
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
63
|
Asenjo A, Oteo-Iglesias J, Alós JI. What's new in mechanisms of antibiotic resistance in bacteria of clinical origin? ACTA ACUST UNITED AC 2021; 39:291-299. [PMID: 34088451 DOI: 10.1016/j.eimce.2020.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
The discovery, commercialization and administration of antibiotics revolutionized the world of medicine in the middle of the last century, generating a significant change in the therapeutic paradigm of the infectious diseases. Nevertheless, this great breakthrough was soon threatened due to the enormous adaptive ability that bacteria have, through which they are able to develop or acquire different mechanisms that allow them to survive the exposure to antibiotics. We are faced with a complex, multifactorial and inevitable but potentially manageable threat. To fight against it, a global and multidisciplinary approach is necessary, based on the support, guidance and training of the next generation of professionals. Nevertheless, the information published regarding the resistance mechanisms to antibiotics are abundant, varied and, unfortunately, not always well structured. The objective of this review is to structure the, in our opinion, most relevant and novel information regarding the mechanisms of resistance to antibiotics that has been published from January 2014 to September 2019, analysing their possible clinical and epidemiological impact.
Collapse
Affiliation(s)
- Alejandra Asenjo
- Servicio de Microbiología, Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | - Juan-Ignacio Alós
- Servicio de Microbiología, Hospital Universitario de Getafe, Getafe, Madrid, Spain.
| |
Collapse
|
64
|
Silva V, Gabriel SI, Borrego SB, Tejedor-Junco MT, Manageiro V, Ferreira E, Reis L, Caniça M, Capelo JL, Igrejas G, Poeta P. Antimicrobial Resistance and Genetic Lineages of Staphylococcus aureus from Wild Rodents: First Report of mecC-Positive Methicillin-Resistant S. aureus (MRSA) in Portugal. Animals (Basel) 2021; 11:1537. [PMID: 34070357 PMCID: PMC8229929 DOI: 10.3390/ani11061537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
The frequent carriage of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), by wild animals along with its zoonotic potential poses a public health problem. Furthermore, the repeated detection of the mecA gene homologue, mecC, in wildlife raises the question whether these animals may be a reservoir for mecC-MRSA. Thus, we aimed to isolate S. aureus and MRSA from wild rodents living in port areas and to characterize their antimicrobial resistance and genetic lineages. Mouth and rectal swab samples were recovered from 204 wild rodents. The samples were incubated in BHI broth with 6.5% of NaCl and after 24 h at 37 °C the inoculum was seeded onto Baird-Parker agar, Mannitol Salt agar and ORSAB (supplemented with 2 mg/L of oxacillin) plates. Species identification was confirmed by MALDI-TOF MS. The antimicrobial susceptibility testing was performed by the Kirby-Bauer disc diffusion method against 14 antibiotics. The presence of virulence and resistance genes was performed by PCR. The immune evasion cluster (IEC) system was investigated in all S. aureus. All isolates were characterized by MLST, spa- and agr typing. From 204 samples, 38 S. aureus were isolated of which six MRSA were detected. Among the six MRSA isolates, three harbored the mecC gene and the other three, the mecA gene. All mecC-MRSA isolates were ascribed to sequence type (ST) 1945 (which belongs to CC130) and spa-type t1535 whereas the mecA isolates belonged to ST22 and ST36 and spa-types t747 and t018. Twenty-five S. aureus were susceptible to all antibiotics tested. S. aureus isolates were ascribed to 11 MLST and 12 spa-types. S. aureus presents a great diversity of genetic lineages in wild rodents. This is the first report of mecC-MRSA in Portugal.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics’ Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Sofia I. Gabriel
- CESAM—Centro de Estudos do Ambiente e do Mar, Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia B. Borrego
- Direção Regional da Agricultura, Secretaria Regional da Agricultura e Desenvolvimento Rural, Quinta de São Gonçalo, 9500-343 Ponta Delgada, Portugal;
| | - Maria Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain;
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.M.); (E.F.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.M.); (E.F.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Lígia Reis
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.M.); (E.F.); (L.R.); (M.C.)
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.M.); (E.F.); (L.R.); (M.C.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - José L. Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal;
- Proteomass Scientific Society, 2825-466 Costa de Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics’ Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
65
|
Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes. Antibiotics (Basel) 2021; 10:antibiotics10060633. [PMID: 34070557 PMCID: PMC8228312 DOI: 10.3390/antibiotics10060633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Small ruminant mastitis is a serious problem, mainly caused by Staphylococcus spp. Different virulence factors affect mastitis pathogenesis. The aim of this study was to investigate virulence factors genes for biofilm production and antimicrobial resistance to β-lactams and tetracyclines in 137 staphylococcal isolates from goats (86) and sheep (51). The presence of coa, nuc, bap, icaA, icaD, blaZ, mecA, mecC, tetK, and tetM genes was investigated. The nuc gene was detected in all S. aureus isolates and in some coagulase-negative staphylococci (CNS). None of the S. aureus isolates carried the bap gene, while 8 out of 18 CNS harbored this gene. The icaA gene was detected in S. aureus and S. warneri, while icaD only in S. aureus. None of the isolates carrying the bap gene harbored the ica genes. None of the biofilm-associated genes were detected in 14 isolates (six S. aureus and eight CNS). An association was found between Staphylococcus species and resistance to some antibiotics and between antimicrobial resistance and animal species. Nine penicillin-susceptible isolates exhibited the blaZ gene, questioning the reliability of susceptibility testing. Most S. aureus isolates were susceptible to tetracycline, and no cefazolin or gentamycin resistance was detected. These should replace other currently used antimicrobials.
Collapse
|
66
|
Regecová I, Výrostková J, Zigo F, Gregová G, Kováčová M. Detection of Antimicrobial Resistance of Bacteria Staphylococcus chromogenes Isolated from Sheep's Milk and Cheese. Antibiotics (Basel) 2021; 10:antibiotics10050570. [PMID: 34066038 PMCID: PMC8150534 DOI: 10.3390/antibiotics10050570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial and multidrug resistance is detected in nonaureus staphylococci, including Staphylococcus chromogenes, which commonly causes intramammary infections. Recent clinical studies point to the presence of methicillin-resistant S. chromogenes. Therefore, this study aims to determine the prevalence of this species in samples of sheep‘s milk and cheeses made from them. Isolates were identified by polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF). A total of 208 staphylococcal isolates were identified. Of these, 18% were identified as S. chromogenes. The antimicrobial resistance of the identified isolates was determined using the agar dilution method against penicillin, ceftaroline, teicoplanin, gentamicin, erythromycin, tetracycline, and ofloxacin. The highest resistance was found to penicillin (95%), tetracycline (86%), and oxacillin (81%). The highest sensitivity was confirmed for gentamicin (55%). The study also confirmed the presence of methicillin resistant staphylococcal isolates (30%) based on the phenotypic manifestation of antimicrobial resistance and detection of the presence of the mecA gene. The study shows that the tested isolates (62%) were multidrug resistant. Resistance to two antibiotics was most often found (39%).
Collapse
Affiliation(s)
- Ivana Regecová
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (I.R.); (M.K.)
| | - Jana Výrostková
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (I.R.); (M.K.)
- Correspondence:
| | - František Zigo
- Department of Animal Nutrition and Husbandry, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Gabriela Gregová
- Department of Public Veterinary Medicine and Animal Welfare, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Mariana Kováčová
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (I.R.); (M.K.)
| |
Collapse
|
67
|
Fergestad ME, De Visscher A, L'Abee-Lund T, Tchamba CN, Mainil JG, Thiry D, De Vliegher S, Wasteson Y. Antimicrobial resistance and virulence characteristics in 3 collections of staphylococci from bovine milk samples. J Dairy Sci 2021; 104:10250-10267. [PMID: 33934873 DOI: 10.3168/jds.2020-19988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/27/2021] [Indexed: 11/19/2022]
Abstract
Mastitis is a prevalent disease in dairy cattle, and staphylococci are among the most common causative pathogens. Staphylococci can express resistance to a range of antimicrobials, of which methicillin resistance is of particular public health concern. Additionally, Staphylococcus aureus carries a variety of virulence factors, although less is understood about the virulence of non-aureus staphylococci (NAS). The aim of our study was to identify and characterize 3 collections of staphylococcal isolates from bovine milk samples regarding antimicrobial resistance, with emphasis on methicillin resistance, and their carriage of virulence genes typically displayed by Staph. aureus. A total of 272 staphylococcal isolates collected in Norway and Belgium in 2016 were included, distributed as follows: group 1, Norway, 100 isolates; group 2, Flanders, Belgium, 64 isolates; group 3, Wallonia, Belgium, 108 isolates. Species identification was performed by use of MALDI-TOF mass spectrometry. Phenotypic resistance was determined via disk diffusion, and PCR was used for detection of methicillin resistance genes, mecA and mecC, and virulence genes. Antimicrobial resistance was common in Staphylococcus epidermidis and Staphylococcus haemolyticus from all different groups, with resistance to trimethoprim-sulfonamide frequently occurring in Staph. epidermidis and Staph. haemolyticus as well as in Staph. aureus. Resistance to penicillin was most frequently observed in group 1. Ten Belgian isolates (1 from group 2, 9 from group 3) carried the methicillin resistance determinant mecA: 5 Staph. aureus from 2 different farms and 5 NAS from 3 different farms. Almost all Staph. aureus isolates were positive for at least 3 of the screened virulence genes, whereas, in total, only 8 NAS isolates harbored any of the same genes. Our study contributes to the continuous need for knowledge regarding staphylococci from food-producing animals as a basis for better understanding of occurrence of resistance and virulence traits in these bacteria.
Collapse
Affiliation(s)
- M E Fergestad
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - A De Visscher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University (UGent), 9820 Merelbeke, Belgium
| | - T L'Abee-Lund
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - C Ngassam Tchamba
- Bacteriology, Department of Infection Diseases, Faculty of Veterinary Medicine, Fundamental and Applied Research in Animal and Health (FARAH) Centre, University of Liège (ULiège), 4000 Liège, Belgium
| | - J G Mainil
- Bacteriology, Department of Infection Diseases, Faculty of Veterinary Medicine, Fundamental and Applied Research in Animal and Health (FARAH) Centre, University of Liège (ULiège), 4000 Liège, Belgium
| | - D Thiry
- Bacteriology, Department of Infection Diseases, Faculty of Veterinary Medicine, Fundamental and Applied Research in Animal and Health (FARAH) Centre, University of Liège (ULiège), 4000 Liège, Belgium
| | - S De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University (UGent), 9820 Merelbeke, Belgium
| | - Y Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
68
|
Silva V, Caniça M, Capelo JL, Igrejas G, Poeta P. Diversity and genetic lineages of environmental staphylococci: a surface water overview. FEMS Microbiol Ecol 2021; 96:5909032. [PMID: 32949464 DOI: 10.1093/femsec/fiaa191] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - José L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, 2825-466 Almada, Portugal
- Proteomass Scientific Society, 2825-466 Costa de Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), NOVA University of Lisbon, Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
69
|
Nataraj BH, Ramesh C, Mallappa RH. Characterization of Antibiotic Resistance and Virulence Traits Present in Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Curr Microbiol 2021; 78:2001-2014. [PMID: 33860841 DOI: 10.1007/s00284-021-02477-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious superbug which poses serious health threats to humanity. The severity of the infections depends on the prevalence of virulence factors and antibiotic resistance. In this study, attempts have been made to nominate the two most virulent and multidrug-resistant MRSA isolates demonstrating the preliminary features of intestinal adhesion for the futuristic applications of probiotics and postbiotics as antagonists to combat MRSA infections. In this context, six clinical isolates of MRSA were polyphasically characterized for their identity, multidrug resistance, and few selected virulence determinates such as hemolytic activity and production of coagulase, nuclease, and capsule. The gut colonizing ability of MRSA isolates was assessed by mucoadhesion, auto-aggregation, and cell surface hydrophobicity. An antibiogram of MRSA isolates suggested the resistance towards several antibiotics with multiple antibiotic resistance (MAR) index >0.5 (12/241, 12/206, and 5/255) as well as their genome portraying mecA mediated methicillin resistance. Besides exhibiting strong biofilm formation ability, all the isolates exhibited positive responses towards tested virulence assays coupled with their genome displaying Coa, NucA, and CapE genes. On the other hand, isolates exhibited different levels of auto-aggregation (37.90 ± 1.8 to 51.53 ± 3.1%) and mucin adhesion ability (68.93 ± 0.61% to 86.62 ± 1.96%) with a significant (P ≤ 0.05) variation in adhesion to different hydrocarbons. Finally, multivariate Principal Component Analysis and Hierarchical Cluster Analysis (HCA) heatmap using Euclidean distance measurement indicated MRSA 12/206 and 5/255 as most resistant and virulent isolates with the potential to adhere to the hydrophobic gut niche.
Collapse
Affiliation(s)
| | - Chette Ramesh
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
70
|
Al-Bakri AG, Bulatova NR, Younes NA, Othman G, Jaber D, Schleimer N, Kriegeskorte A, Becker K. Characterization of staphylococci sampled from diabetic foot ulcer of Jordanian patients. J Appl Microbiol 2021; 131:2552-2566. [PMID: 33813786 DOI: 10.1111/jam.15096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to isolate and characterize staphylococcal isolates from diabetic foot ulcers (DFU) in Jordanian patients. METHODS AND RESULTS Selected aerobic pathogens recovered from DFU specimens and patients' nares with a focus on staphylococci were investigated. Antimicrobial susceptibilities and the prevalence of methicillin-resistant staphylococci (MRS) were determined. SCCmec types and toxigenic characteristics were analysed and spa typing was performed for methicillin-resistant Staphylococcus aureus (MRSA) isolates. The relationship between toxigenic characteristics of MRSA and the Wagner ulcer grading system was statistically analysed. A total number of 87 DFU patients were recruited for the study. The DFU cultures were polymicrobial. Members of the genus Staphylococcus were the most common among DFU-associated isolates found in 48·3% (n = 42) of all patients enrolled. Coagulase-negative staphylococci (CoNS) comprised 63·3% of staphylococci isolated from DFUs predominated by Staphylococcus epidermidis in both DFU (7·6%) and nares (39·2%). Staphylococcus aureus was isolated from DFUs and nares in 14·2 and 9·8%, respectively, while 93 and 70% of these isolates were MRSA. Most of MRSA carried SCCmec type IV (76·2%) while SCCmec elements were non-typeable in most methicillin resistant coagulase negative staphylococci (MR-CoNS) (61·9%). The most frequent MRSA spa type was t386 (23·8%). Most MRSA and MR-CoNS exhibited resistance towards aminoglycosides, fluoroquinolones and macrolides and susceptibility towards vancomycin, mupirocin and linezolid. No association was found between the possession of pvl, tst, sea and hlg toxins and Wagner ulcer grading system (P value >0·05). CONCLUSIONS This analysis of Jordanian DFU culture demonstrated its polymicrobial nature with predominance of Staphylococcus sp. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first of its type to assess the microbiology of DFU among Jordanian patients. The results will help in the appropriate application of antimicrobial chemotherapy in the management of DFU.
Collapse
Affiliation(s)
- A G Al-Bakri
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - N R Bulatova
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - N A Younes
- General Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - G Othman
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - D Jaber
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - N Schleimer
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - A Kriegeskorte
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - K Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
71
|
Gómez P, Ruiz-Ripa L, Fernández-Fernández R, Gharsa H, Ben Slama K, Höfle U, Zarazaga M, Holmes MA, Torres C. Genomic Analysis of Staphylococcus aureus of the Lineage CC130, Including mecC-Carrying MRSA and MSSA Isolates Recovered of Animal, Human, and Environmental Origins. Front Microbiol 2021; 12:655994. [PMID: 33841383 PMCID: PMC8027229 DOI: 10.3389/fmicb.2021.655994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023] Open
Abstract
Most methicillin resistant Staphylococcus aureus (MRSA) isolates harboring mecC gene belong to clonal complex CC130. This lineage has traditionally been regarded as animal-associated as it lacks the human specific immune evasion cluster (IEC), and has been recovered from a broad range of animal hosts. Nevertheless, sporadic mecC-MRSA human infections have been reported, with evidence of zoonotic transmission in some cases. The objective of this study was to investigate the whole-genome sequences of 18 S. aureus CC130 isolates [13 methicillin-resistant (mecC-MRSA) and five methicillin-susceptible (MSSA)] from different sequences types, obtained from a variety of host species and origins (human, livestock, wild birds and mammals, and water), and from different geographic locations, in order to identify characteristic markers and genomic features. Antibiotic resistance genes found among MRSA-CC130 were those associated with the SSCmecXI element. Most MRSA-CC130 strains carried a similar virulence gene profile. Additionally, six MRSA-CC130 possessed scn-sak and one MSSA-ST130 had lukMF'. The MSSA-ST700 strains were most divergent in their resistance and virulence genes. The pan-genome analysis showed that 29 genes were present solely in MRSA-CC130 (associated with SCCmecXI) and 21 among MSSA-CC130 isolates (associated with phages). The SCCmecXI, PBP3, GdpP, and AcrB were identical at the amino acid level in all strains, but some differences were found in PBP1, PBP2, PBP4, and YjbH proteins. An examination of the host markers showed that the 3' region of the bacteriophage φ3 was nearly identical to the reference sequence. Truncated hlb gene was also found in scn-negative strains (two of them carrying sak-type gene). The dtlB gene of wild rabbit isolates included novel mutations. The vwbp gene was found in the three MSSA-ST700 strains from small ruminants and in one MSSA-ST130 from a red deer; these strains also carried a scn-type gene, different from the human and equine variants. Finally, a phylogenetic analysis showed that the three MSSA-ST700 strains and the two MSSA-ST130 strains cluster separately from the remaining MRSA-CC130 strains with the etD2 gene as marker for the main lineage. The presence of the human IEC cluster in some mecC-MRSA-CC130 strains suggests that these isolates may have had a human origin.
Collapse
Affiliation(s)
- Paula Gómez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Laura Ruiz-Ripa
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Ursula Höfle
- Health and Biotechnology SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| |
Collapse
|
72
|
Ngassam Tchamba C, Duprez JN, Lucas P, Blanchard Y, Boyen F, Haesebrouck F, Argudín MA, Mainil J, Thiry D. Comparison of the Staphylococcal Chromosome Cassette (SCC) mec in Methicillin-Resistant Staphylococcus aureus (MRSA) and Non- aureus Staphylococci (MRNAS) from Animals and Humans. Antibiotics (Basel) 2021; 10:antibiotics10030256. [PMID: 33806351 PMCID: PMC7998684 DOI: 10.3390/antibiotics10030256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 12/02/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and non-aureus staphylococci (MRNAS) cause different infections in animals, including mastitis, in livestock and humans. This study aimed to identify and compare the staphylococcal chromosome cassette mec (SCCmec) types of MRSA or MRNAS isolated from several animal species and humans in different countries. Of 1462 S. aureus and non-aureus staphylococci, 68 grew on Chrom MRSA ID® agar, were phenotypically resistant to cefoxitin and tested positive with the PCR for the mecA gene. These 60 MRSA and 8 MRNAS were isolated in Belgium mainly from cows (livestock-associated (LA) MRS) and humans (community-acquired (CA) MRS) and in Japan from dogs and cats. The SCCmec cassettes were identified by multiplex PCR in 52 MRSA and 7 MRNAS and by whole genome sequencing (WGS) in 8 additional MRSA. The SCCmec types IV and V were the most frequent in Belgian LA-MRS and CA-MRS, while the SCCmec type II was identified in four of the five Japanese MRSA. The remaining isolate was a bovine S. haemolyticus in which no SCCmec was identified. These results confirm the high prevalence of the SCCmec types IV and V in LA-MRS and CA-MRS in Belgium, emphasizing the possible public health hazard of the former, and the absence of SCCmec in some MRNAS.
Collapse
Affiliation(s)
- Cyrille Ngassam Tchamba
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, 4000 Liège, Belgium; (C.N.T.); (J.-N.D.); (D.T.)
| | - Jean-Noël Duprez
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, 4000 Liège, Belgium; (C.N.T.); (J.-N.D.); (D.T.)
| | - Pierrick Lucas
- Viral Genetics and Bio-Security Unit, ANSES, Ploufragan-Plouzané Laboratory, Rue des Fusillés, 22440 Ploufragan, France; (P.L.); (Y.B.)
| | - Yannick Blanchard
- Viral Genetics and Bio-Security Unit, ANSES, Ploufragan-Plouzané Laboratory, Rue des Fusillés, 22440 Ploufragan, France; (P.L.); (Y.B.)
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.B.); (F.H.)
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.B.); (F.H.)
| | - Maria A. Argudín
- Laboratory of Molecular Biology, Cliniques Universitaires Saint-Luc, Catholic University of Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium;
| | - Jacques Mainil
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, 4000 Liège, Belgium; (C.N.T.); (J.-N.D.); (D.T.)
- Correspondence:
| | - Damien Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège, Quartier Vallée 2, Avenue de Cureghem 6, 4000 Liège, Belgium; (C.N.T.); (J.-N.D.); (D.T.)
| |
Collapse
|
73
|
The Prevalence of Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus in Processed Food Samples in Riyadh, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus mainly Methicillin Resistant Staphylococcus aureus(MRSA) is a life-threatening infection that occurring in food and caused a public health concern. This study designed to examine the prevalence of S. aureus and MRSA in different types of processed food. Food samples were screened for the recovered strains of S. aureus and MRSA, and they were examined for antimicrobial susceptibility and by molecular characterization of mecA and staphylococcal cassette chromosome mec(SCCmec). Detection of virulence factors like Panton-Valentine Leukocidin (PVL), Staphylococcus aureus protein A(spa) and Staphylococcal enterotoxins(SEs) by PCR using specific primers. Among the 150 collected processed food samples, 62.7% were contaminated by S. aureus bacteria, 56.4% of which were proved as MRSA. 17% of MRSA isolates were positive for mecA genes with the SCCmec type IVb and V (11.1% each) as the solely existing types of SCCmec. None of the MRSA isolates carried mecC or mecB genes. Most of MRSA isolates were multidrug resistance and 33.3% of MRSA-mecA positive isolates also carried vancomycin resistance genes (i.e., vanB). In addition, spa gene was found among 7.5% of MRSA isolates; none of which were positive for PVL gene. Further, there were variant presence of SEs among MRSA isolates and the highest presence was from type SEH (49.1%). Generally, our results confirmed that processed foods in Saudi Arabia (Riyadh) are potential vehicles for multidrug resistant S. aureus and MRSA transmission; which are serious public health risks, and underlined the need for good hygiene practices.
Collapse
|
74
|
Chew KL, Lin RTP, Teo JWP. Absence of mecC methicillin-resistant Staphylococcus aureus in a tertiary hospital in Singapore. Pathology 2021; 53:808. [PMID: 33642097 DOI: 10.1016/j.pathol.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, Singapore.
| | - Raymond T P Lin
- Department of Laboratory Medicine, National University Hospital, Singapore; National Public Health Laboratory, National Centre for Infectious Diseases, Singapore
| | - Jeanette W P Teo
- Department of Laboratory Medicine, National University Hospital, Singapore
| |
Collapse
|
75
|
Ba X, Kalmar L, Hadjirin NF, Kerschner H, Apfalter P, Morgan FJ, Paterson GK, Girvan SL, Zhou R, Harrison EM, Holmes MA. Truncation of GdpP mediates β-lactam resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 2021; 74:1182-1191. [PMID: 30759229 DOI: 10.1093/jac/dkz013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES High-level β-lactam resistance in MRSA is mediated in the majority of strains by a mecA or mecC gene. In this study, we identified 10 mec gene-negative MRSA human isolates from Austria and 11 bovine isolates from the UK showing high levels of β-lactam resistance and sought to understand the molecular basis of the resistance observed. METHODS Different antimicrobial resistance testing methods (disc diffusion, Etest and VITEK® 2) were used to establish the β-lactam resistance profiles for the isolates and the isolates were further investigated by WGS. RESULTS A number of mutations (including novel ones) in PBPs, AcrB, YjbH and the pbp4 promoter were identified in the resistant isolates, but not in closely related susceptible isolates. Importantly, a truncation in the cyclic diadenosine monophosphate phosphodiesterase enzyme, GdpP, was identified in 7 of the 10 Austrian isolates and 10 of the 11 UK isolates. Complementation of four representative isolates with an intact copy of the gdpP gene restored susceptibility to penicillins and abolished the growth defects caused by the truncation. CONCLUSIONS This study reports naturally occurring inactivation of GdpP protein in Staphylococcus aureus of both human origin and animal origin, and demonstrates clinical relevance to a previously reported association between this truncation and increased β-lactam resistance and impaired bacterial growth in laboratory-generated mutants. It also highlights possible limitations of genomic determination of antibiotic susceptibility based on single gene presence or absence when choosing the appropriate antimicrobial treatment for patients.
Collapse
Affiliation(s)
- Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nazreen F Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Heidrun Kerschner
- National Reference Centre for Antibiotic Resistance and Nosocomial Infections, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Petra Apfalter
- National Reference Centre for Antibiotic Resistance and Nosocomial Infections, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Fiona J Morgan
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Gavin K Paterson
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Samantha L Girvan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology and International Research Centre for Animal Disease (Ministry of Science & Technology), College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ewan M Harrison
- Wellcome Sanger Institute, Hinxton, UK.,Department of Medicine, University of Cambridge, Cambridge, UK.,Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
76
|
Asante J, Hetsa BA, Amoako DG, Abia ALK, Bester LA, Essack SY. Multidrug-Resistant Coagulase-Negative Staphylococci Isolated from Bloodstream in the uMgungundlovu District of KwaZulu-Natal Province in South Africa: Emerging Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10020198. [PMID: 33670659 PMCID: PMC7922184 DOI: 10.3390/antibiotics10020198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023] Open
Abstract
Coagulase-negative staphylococci (CoNS) are increasingly associated with nosocomial infections, especially among the immunocompromised and those with invasive medical devices, posing a significant concern. We report on clinical multidrug-resistant CoNS from the uMgungundlovu District, KwaZulu-Natal Province, South Africa, as emerging pathogens. One hundred and thirty presumptive CoNS were obtained from blood cultures. Culture, biochemical tests, and the Staphaurex™ Latex Agglutination Test were used for the initial identification of CoNS isolates; confirmation and speciation were undertaken by the VITEK 2 system. Susceptibilities of isolates against a panel of 20 antibiotics were determined using the Kirby-Bauer disk diffusion method, and the multiple antibiotic resistance (MAR) indices of the isolates were determined. The polymerase chain reaction (PCR) was used to amplify the mecA gene to confirm methicillin resistance. Overall, 89/130 presumptive CoNS isolates were confirmed as CoNS by the VITEK 2 system. Of these, 68 (76.4%) isolates were putatively methicillin-resistant by the phenotypic cefoxitin screen test and 63 (92.6%) were mecA positive. Staphylococcus epidermidis (19.1%), S. hominis ssp. hominis (15.7%), and S. haemolyticus (16.9%) were the most common CoNS species. Isolates showed high percentage resistance against penicillin (100.0%), erythromycin (74.2%), and azithromycin (74.2%) while displaying high susceptibilities to linezolid (95.5%), gentamicin (95.5%), and tigecycline (94.4%). Multidrug resistance (MDR) was observed in 76.4% of isolates. MAR index calculation revealed 71.9% of isolates with MAR index >0.2 and 20.2% >0.5. Isolates with the highest MAR indices (0.7 and 0.8) were recovered from the neonatal intensive care unit. Fifty-one MDR antibiograms were observed. The high prevalence of methicillin resistance and multidrug resistance in several species of CoNS necessitates surveillance of this emerging pathogen, currently considered a contaminant of microbial cultures.
Collapse
Affiliation(s)
- Jonathan Asante
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.A.H.); (D.G.A.); (A.L.K.A.); (S.Y.E.)
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Correspondence:
| | - Bakoena A. Hetsa
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.A.H.); (D.G.A.); (A.L.K.A.); (S.Y.E.)
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.A.H.); (D.G.A.); (A.L.K.A.); (S.Y.E.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.A.H.); (D.G.A.); (A.L.K.A.); (S.Y.E.)
| | - Linda A. Bester
- Biomedical Research Unit, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.A.H.); (D.G.A.); (A.L.K.A.); (S.Y.E.)
| |
Collapse
|
77
|
Zoppi S, Dondo A, Di Blasio A, Vitale N, Carfora V, Goria M, Chiavacci L, Giorgi I, D'Errico V, Irico L, Franco A, Battisti A. Livestock-Associated Methicillin-Resistant Staphylococcus aureus and Related Risk Factors in Holdings of Veal Calves in Northwest Italy. Microb Drug Resist 2021; 27:1136-1143. [PMID: 33570474 DOI: 10.1089/mdr.2020.0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) have emerged worldwide as zoonotic pathogens. Data on LA-MRSA in veal calf production in Italy are lacking; the aim of this survey was to fill current knowledge gaps in its prevalence and characteristics. Between February 2012 and January 2013 nasal swabs were taken from 1650 three- to six-month-old veal calves on 55 farms in Piedmont (northwest Italy), including gathering-related epidemiological data. S. aureus were screened for methicillin resistance by phenotypic and molecular (mecA gene detection) methods. MRSA were further genotyped by multilocus sequence typing. About 30% of the herds tested positive for MRSA: three different clonal complexes (CC398, CC97, and CC1) and staphylococcal cassette chromosome mec types (IVa, IVb, and V) were detected. Multilevel logistic regression model indicated poor cleaning, importation from Austria, and animal age as risk factors and coagulase-negative staphylococci colonization as a predictive factor for the occurrence of MRSA. The detection of CCs circulating in pigs and dairy cattle in Italy underscores the ability of the LA-MRSA clones to spread among animal production systems. In addition to maintaining preventive control measures for human health, better cleaning procedures need to be implemented, especially after new calves have been introduced into the herd.
Collapse
Affiliation(s)
- Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Alessia Di Blasio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Nicoletta Vitale
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Virginia Carfora
- National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Centro di Referenza Nazionale per l'Antibioticoresistenza, Istituto Zooprofilattico Sperimentale di Lazio e Toscana "M. Aleandri," Rome, Italy
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Laura Chiavacci
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Ilaria Giorgi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Valeria D'Errico
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Lara Irico
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Alessia Franco
- National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Centro di Referenza Nazionale per l'Antibioticoresistenza, Istituto Zooprofilattico Sperimentale di Lazio e Toscana "M. Aleandri," Rome, Italy
| | - Antonio Battisti
- National Reference Laboratory for Antimicrobial Resistance, Department of General Diagnostics, Centro di Referenza Nazionale per l'Antibioticoresistenza, Istituto Zooprofilattico Sperimentale di Lazio e Toscana "M. Aleandri," Rome, Italy
| |
Collapse
|
78
|
da Silva Abreu AC, Matos LG, da Silva Cândido TJ, Barboza GR, de Souza VVMA, Munive Nuñez KV, Cirone Silva NC. Antimicrobial resistance of Staphylococcus spp. isolated from organic and conventional Minas Frescal cheese producers in São Paulo, Brazil. J Dairy Sci 2021; 104:4012-4022. [PMID: 33516545 DOI: 10.3168/jds.2020-19338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
The genus Staphylococcus is recognized worldwide as a cause of bacterial infections in humans and animals. Antibiotics used in dairy cattle combined with ineffective control can increase antimicrobial resistance. The objective of this study was to characterize 95 Staphylococcus strains isolated from organic and conventional Minas Frescal cheese production regarding antibiotic resistance (phenotype and genotype), presence of sanitizer-resistant genes and biofilm-formation genes, and SCCmec typing. Most strains (25.3%) showed higher resistance to penicillin, followed by oxacillin (21.1%) and clindamycin (11.6%). Among antibiotic resistance genes, the most prevalent were blaZ (25.3%), mecA (13.7%), lsaB (6.3%), msrA (4.2%), ant4 (3.2%), and tetM (2.1%); among sanitizer-resistance genes they were qacA/B (5.3%) and qacC (6.3%); and among biofilm, bap (4.2%), icaA (29.5%), icaD (41.1%). However, there was no statistically significant difference between organic and conventional dairy products, possibly due to the lack of synthetic antibiotic use on conventional farms during the sample collection period. Methicillin-resistant Staphylococcus aureus (MRSA) had their SCCmec identified as types I and IVc, and the methicillin-resistant coagulase-negative staphylococci had nontypeable SCCmec. These results suggest that there are antibiotic-resistant strains in both organic and conventional Minas Frescal cheese production in the state of São Paulo, Brazil. This supports the idea that improved quality control is needed from the milking stage up to the final product.
Collapse
Affiliation(s)
| | - Luiz Gustavo Matos
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Talita Junia da Silva Cândido
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Giovana Rueda Barboza
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | | | - Karen Vanessa Munive Nuñez
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, 13083-862, Brazil
| | | |
Collapse
|
79
|
Kalai S, Roychoudhury P, Dutta TK, Subudhi PK, Chakraborty S, Barman NN, Sen A. Multidrug resistant staphylococci isolated from pigs with exudative epidermitis in North eastern Region of India. Lett Appl Microbiol 2021; 72:535-541. [PMID: 33421175 DOI: 10.1111/lam.13448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Exudative epidermatitis or greasy pig disease (GPD) is a contagious disease of pig and endemic worldwide caused by toxigenic strains under genus Staphylococcus. The present study reported an outbreak of GPD in Champhai district of Mizoram adjoining to the southern border of Myanmar. A total of 60 samples were collected from 22 clinically affected animals and processed for isolation and identification of Staphylococcus spp. All the isolates were subjected to antimicrobial sensitivity assay, biofilm production assay and detection of virulence genes, biofilm genes and mec genes followed by cloning and sequencing for phylogenetic analysis. A total of 44 staphylococci belonged to four species (S. sciuri, S. aureus,S. lentus, and S. hyicus) were isolated. Majority of the isolates were multidrug resistant with maximum resistance against ampicillin, penicillin including vancomycin. None of the S. hyicus isolates was methicillin resistant (MRSH) but 66·67% isolates were MRSA. By PCR, mecA gene was detected in S. aureus (n = 2), S. sciuri (n = 4) and S. lentus (n = 3). Biofilm associated gene icaD was detected in S. aureus (n = 3), S. sciuri (n = 5), S. hyicus (n = 4) and S. lentus (n = 6). The exfoliative toxin genes (ehxB, shetA and tsst1) were detected in S. hyicus (n = 3) and S. aureus (n = 1) isolates. All the isolates were closely related with the isolates from pigs of China, Germany, Japan and USA. The pathogens might be transmitted through illegal migration of pigs from Myanmar to India.
Collapse
Affiliation(s)
- S Kalai
- Department of Veterinary Microbiology, CVSc&AH, Central Agricultural University, Aizawl, Mizoram, India
| | - P Roychoudhury
- Department of Veterinary Microbiology, CVSc&AH, Central Agricultural University, Aizawl, Mizoram, India
| | - T K Dutta
- Department of Veterinary Microbiology, CVSc&AH, Central Agricultural University, Aizawl, Mizoram, India
| | - P K Subudhi
- Department of Veterinary Microbiology, CVSc&AH, Central Agricultural University, Aizawl, Mizoram, India
| | - S Chakraborty
- Department of Veterinary Microbiology, CVSc&AH, Central Agricultural University, Aizawl, Mizoram, India
| | - N N Barman
- Department of Veterinary Microbiology, Assam Agricultural University, Guwahati, Assam, India
| | - A Sen
- Division of Animal Health, ICAR-RCNEH, Shillong, Meghalaya, India
| |
Collapse
|
80
|
Ahmed W, Neubauer H, Tomaso H, El Hofy FI, Monecke S, Abd El-Tawab AA, Hotzel H. Characterization of Enterococci- and ESBL-Producing Escherichia coli Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens 2021; 10:97. [PMID: 33494211 PMCID: PMC7909756 DOI: 10.3390/pathogens10020097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the prevalence and antimicrobial resistance of enterococci- and ESBL-producing E. coli isolated from milk of bovine mastitis cases in Egypt. Fifty milk samples of dairy animals were collected from localities in the Nile Delta region of Egypt. Isolates were identified using MALDI-TOF MS, and antibiotic susceptibility testing was performed by the broth microdilution method. PCR amplifications were carried out, targeting resistance-associated genes. Seventeen Enterococcus isolates and eight coliform isolates could be cultivated. Vancomycin resistance rate was high in Ent. faecalis. The VITEK 2 system confirmed all E. coli isolates as ESBL-producing. All Ent. faecalis isolates harbored erm(B), tetL and aac-aphD genes. The vanA gene was detected in Ent. faecalis isolate, vanB was found in other Enterococcus, while one isolate of E. casseliflavus exhibited the vanA gene. E. coli isolates exhibited high prevalence of erm(B) and tetL. E. coli isolates were analyzed by DNA microarray analysis. Four isolates were determined by O-serotyping as O8 (n = 1), O86 (n = 2) and O157 (n = 1). H-serotyping resulted in H11, H12, H21 (two isolates each) and one was of H16 type. Different virulence-associated genes were detected in E. coli isolates including lpfA, astA, celB, cmahemL, intI1 and intI2, and the iroN gene was identified by DNA microarray analysis.
Collapse
Affiliation(s)
- Wedad Ahmed
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (H.N.); (H.T.); (H.H.)
- Department of Microbiology, Faculty of Veterinary Medicine, Benha University, Moshtohor Toukh P.O. Box 13736, Benha 13511, Egypt; (F.I.E.H.); (A.A.A.E.-T.)
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (H.N.); (H.T.); (H.H.)
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (H.N.); (H.T.); (H.H.)
| | - Fatma Ibrahim El Hofy
- Department of Microbiology, Faculty of Veterinary Medicine, Benha University, Moshtohor Toukh P.O. Box 13736, Benha 13511, Egypt; (F.I.E.H.); (A.A.A.E.-T.)
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany;
- InfectoGnostics Research Campus Jena e. V., Philosophenweg 7, 07743 Jena, Germany
| | - Ashraf Awad Abd El-Tawab
- Department of Microbiology, Faculty of Veterinary Medicine, Benha University, Moshtohor Toukh P.O. Box 13736, Benha 13511, Egypt; (F.I.E.H.); (A.A.A.E.-T.)
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany; (H.N.); (H.T.); (H.H.)
| |
Collapse
|
81
|
Methicillin-Resistant Staphylococci and Macrococci at the Interface of Human and Animal Health. Toxins (Basel) 2021; 13:toxins13010061. [PMID: 33466773 PMCID: PMC7831011 DOI: 10.3390/toxins13010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The global impact of methicillin-resistant Staphylococcus aureus (MRSA) clonal lineages on human and animal health continues, even considering the decreasing MRSA rates in some parts of the world [...].
Collapse
|
82
|
Chai MH, Sukiman MZ, Liew YW, Shapawi MS, Roslan FS, Hashim SN, Mohamad NM, Ariffin SMZ, Ghazali MF. Detection, molecular characterization, and antibiogram of multi-drug resistant and methicillin-resistant Staphylococcus aureus (MRSA) isolated from pets and pet owners in Malaysia. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:277-287. [PMID: 35126535 PMCID: PMC8806171 DOI: 10.22099/ijvr.2021.39586.5752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND The emergence of multidrug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Staphylococcus aureus (MDRSA) in animals and humans with continuous contact are a great zoonotic concern. AIMS This cross-sectional study was performed to investigate the carriage rate, genotypic characteristics, and to determine the antibiogram of S. aureus isolated from pets and pet owners in Malaysia. METHODS Nasal and oral swab samples from 40 cats, 30 dogs, and 70 pet owners were collected through convenient sampling. Presumptive colonies on mannitol salt agar were subjected to biochemical identification. S. aureus and MRSA were confirmed by PCR detection of nuc and mecA genes, respectively. Molecular profiles for antimicrobial resistance and virulence genes in S. aureus were also determined. The antibiogram was carried out via Kirby-Bauer test using 18 antibiotics. RESULTS 17.5% of cats, 20% of dogs, and 27% of pet owners were S. aureus positive. MRSA was also detected in dogs, and pet owners. S. aureus isolates displayed high resistance against penicillin (72.7%), and amoxicillin/clavulanate (66.7%). 39.4% of S. aureus isolates showed multidrug-resistance traits, phenotypically. Molecular characterization of S. aureus revealed the presence of mecA, tetk, tetL, ermA, ermB, ermC, msrA, scn, chp, sak, sep, and sea genes. CONCLUSION This study showed the emergence of MRSA and MDRSA in pets and pet owners in Malaysia. The antibiogram findings showed resistance of S. aureus to multiple antibiotics. Furthermore, molecular analysis of immune evasion cluster (IEC) strongly suggests the spread of animal-adapted S. aureus lineages among pets and pet owners.
Collapse
Affiliation(s)
- M. H. Chai
- Ph.D. Student in Veterinary Public Health, School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia;
| | - M. Z. Sukiman
- Ph.D. Student in Veterinary Public Health, School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia;
| | - Y. W. Liew
- BSc Student in Animal Production and Health, School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia;
| | - M. S. Shapawi
- BSc Student in Animal Production and Health, School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia;
| | - F. S. Roslan
- BSc Student in Animal Production and Health, School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia;
| | - S. N. Hashim
- BSc Student in Animal Production and Health, School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia;
| | - N. M. Mohamad
- Centralised Laboratory Management Centre, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia;
| | - S. M. Z. Ariffin
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia;
| | - M. F. Ghazali
- School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia,Correspondence: M. F. Ghazali, School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia. E-mail:
| |
Collapse
|
83
|
Lee SI, Kim SD, Park JH, Yang SJ. Species Distribution, Antimicrobial Resistance, and Enterotoxigenicity of Non- aureus Staphylococci in Retail Chicken Meat. Antibiotics (Basel) 2020; 9:antibiotics9110809. [PMID: 33203011 PMCID: PMC7697432 DOI: 10.3390/antibiotics9110809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Non-aureus staphylococci (NAS), including coagulase-negative staphylococci, have emerged as important causes of opportunistic infections in humans and animals and a potential cause of staphylococcal food poisoning. In this study, we investigated (i) the staphylococcal species profiles of NAS in in retail chicken meat, (ii) the phenotypic and genotypic factors associated with antimicrobial resistance in the NAS isolates, and (iii) the prevalence of classical and newer staphylococcal enterotoxin (SE) genes. A total of 58 NAS of nine different species were isolated from retail raw chicken meat samples. The occurrence of multidrug resistance in the NAS, particularly S. agnetis and S. chromogenes, with high resistance rates against tetracycline or fluoroquinolones were confirmed. The tetracycline resistance was associated with the presence of tet(L) in S. chromogenes and S. hyicus or tet(K) in S. saprophyticus. The occurrence of fluoroquinolone resistance in S. agnetis and S. chromogenes was usually associated with mutations in the quinolone resistance determining regions (QRDR) of gyrA and parC. In addition, the frequent presence of SE genes, especially seh, sej, and sep, was detected in S. agnetis and S. chromogenes. Our findings suggest that NAS in raw chicken meat can have potential roles as reservoirs for antimicrobial resistance and enterotoxin genes.
Collapse
|
84
|
Ramos GLPA, Vigoder HC, Nascimento JS. Technological Applications of Macrococcus caseolyticus and its Impact on Food Safety. Curr Microbiol 2020; 78:11-16. [PMID: 33165661 DOI: 10.1007/s00284-020-02281-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Macrococcus spp. are Gram-positive cocci that belong to the Staphylococcaceae family; they are closely related to staphylococci, but, unlike staphylococci, they are not considered as human pathogens. Macrococcus spp. are recognized as relevant veterinary pathogens, and their presence has been reported in food products of animal origin. Macrococcus caseolyticus, the most studied species of the Macrococcus genus, is associated with the development of aroma and flavor in fermented foods and is, thus, used as starter cultures in fermentations. However, certain important issues regarding food safety must be taken into account when employing these microorganisms in fermentations. Recent studies have reported the presence of genes associated with resistance to methicillin and other antibiotics in M. caseolyticus. This can be harmful to human health as these genes can be transferred to other bacteria present in the food, mainly staphylococcal species. This work, therefore, aims to highlight the importance of a more critical view on the presence of macrococci in foods and the possible indirect risks to human health.
Collapse
Affiliation(s)
| | - H C Vigoder
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S Nascimento
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
85
|
Case Series of Staphylococcus aureus Bacteremia With Discordant Genotypic and Phenotypic Categorization of Methicillin Susceptibility. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2020. [DOI: 10.1097/ipc.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
86
|
Karki AB, Neyaz L, Fakhr MK. Comparative Genomics of Plasmid-Bearing Staphylococcus aureus Strains Isolated From Various Retail Meats. Front Microbiol 2020; 11:574923. [PMID: 33193185 PMCID: PMC7644949 DOI: 10.3389/fmicb.2020.574923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023] Open
Abstract
Food poisoning due to the consumption of Staphylococcus aureus contaminated food is a major health problem worldwide. In this study, we sequenced the genomes of ten plasmid-bearing S. aureus strains isolated from retail beef, chicken, turkey, and pork. The chromosomes of the strains varied in size from 2,654,842 to 2,807,514 bp, and a total of 25 plasmids were identified ranging from 1.4 to 118 kb. Comparative genomic analysis revealed similarities between strains isolated from the same retail meat source, indicating an origin-specific genomic composition. Genes known to modulate attachment, invasion, and toxin production were identified in the 10 genomes. Strains from retail chicken resembled human clinical isolates with respect to virulence factors and genomic islands, and retail turkey and pork isolates shared similarity with S. aureus from livestock. Most chromosomes contained antimicrobial resistance, heavy metal resistance, and stress response genes, and several plasmids contained genes involved in antimicrobial resistance and virulence. In conclusion, the genomes of S. aureus strains isolated from retail meats showed an origin-specific composition and contained virulence and antimicrobial resistance genes similar to those present in human clinical isolates.
Collapse
Affiliation(s)
| | | | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
87
|
Human mecC-Carrying MRSA: Clinical Implications and Risk Factors. Microorganisms 2020; 8:microorganisms8101615. [PMID: 33092294 PMCID: PMC7589452 DOI: 10.3390/microorganisms8101615] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
A new methicillin resistance gene, named mecC, was first described in 2011 in both humans and animals. Since then, this gene has been detected in different production and free-living animals and as an agent causing infections in some humans. The possible impact that these isolates can have in clinical settings remains unknown. The current available information about mecC-carrying methicillin resistant S. aureus (MRSA) isolates obtained from human samples was analyzed in order to establish its possible clinical implications as well as to determine the infection types associated with this resistance mechanism, the characteristics of these mecC-carrying isolates, their possible relation with animals and the presence of other risk factors. Until now, most human mecC-MRSA infections have been reported in Europe and mecC-MRSA isolates have been identified belonging to a small number of clonal complexes. Although the prevalence of mecC-MRSA human infections is very low and isolates usually contain few resistance (except for beta-lactams) and virulence genes, first isolates harboring important virulence genes or that are resistant to non-beta lactams have already been described. Moreover, severe and even fatal human infection cases have been detected. mecC-carrying MRSA should be taken into consideration in hospital, veterinary and food safety laboratories and in prevention strategies in order to avoid possible emerging health problems.
Collapse
|
88
|
Amin DHM, Guler E, Baddal B. Prevalence of Panton-Valentine leukocidin in methicillin-resistant Staphylococcus aureus clinical isolates at a university hospital in Northern Cyprus: a pilot study. BMC Res Notes 2020; 13:490. [PMID: 33081819 PMCID: PMC7576721 DOI: 10.1186/s13104-020-05339-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Panton-Valentine leukocidin (PVL)-positive methicillin-resistant Staphylococcus aureus (MRSA) is a healthcare problem worldwide. There are no reports on the virulence characteristics of MRSA in Northern Cyprus (NC). This study aimed to determine the presence of pvl among MRSA isolates from patients admitted to a university hospital in NC using molecular methods. Fifty S. aureus strains were included in this study. BD Phoenix automated identification system was used for bacterial identification and antibiotic susceptibility testing. Methicillin resistance was confirmed by disc diffusion assay. Presence of nuc and mecA genes was tested by multiplex PCR. Detection of pvl gene was performed by single-target PCR. Results Out of 50 S. aureus isolates identified as MRSA by BD Phoenix system, 3 were susceptible to cefoxitin with disc diffusion assay and were confirmed as methicillin-sensitive S. aureus (MSSA). All isolates (n = 50, 100%) tested positive for the presence nuc gene and 68% (n = 34/50) were mecA positive. pvl was detected in 27.7% (n = 13/47) of the MRSA isolates. Among PVL-positive MRSA isolates, 69.2% (9/13) were inpatients. PVL-MRSA was more common in isolates from deep tracheal aspirate (30.8%, 4/13) and abscess/wound (23.1%, 3/13). This represents the first study of PVL presence among MRSA in hospital setting in NC.
Collapse
Affiliation(s)
- Danyar Hameed M Amin
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus
| | - Emrah Guler
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus
| | - Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus. .,Microbial Pathogenesis Research Group, DESAM Institute, Near East University, 99138, Nicosia, Cyprus.
| |
Collapse
|
89
|
Methicillin-Resistant Macrococcus bohemicus Encoding a Divergent SCC mecB Element. Antibiotics (Basel) 2020; 9:antibiotics9090590. [PMID: 32927653 PMCID: PMC7560078 DOI: 10.3390/antibiotics9090590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022] Open
Abstract
A methicillin-resistant Macrococcus isolate from canine otitis, H889678/16/1, was whole-genome sequenced using HiSeq technology to identify the species, antimicrobial resistance determinates and their genomic context. H889678/16/1 belonged to the newly described species Macrococcus bohemicus. It encoded mecB within a novel SCCmec element most similar to that of Macrococcus canis KM45013T. This SCCmecH889678/16/1 element also encoded blaZm and fusC, but no other resistance determinates were found in the H889678/16/1 genome. The ccrA and ccrB recombinase genes within SCCmecH889678/16/1 were distinct from those previously described in staphylococci and macrococci and therefore designated here as ccrAm3 and ccrBm3. Our study represents, to the best of our knowledge, the first description of mecB being encoded by M. bohemicus and of methicillin resistance in this species. Furthermore, the SCCmec described here is highly dissimilar to other such elements and encodes novel ccr genes. Our report demonstrates a wider distribution of mecB among Macrococcus species and expands the genomic context in which mecB may be found. The potential for dissemination of mec genes from Macrococcus to related but more pathogenic Staphylococcus species highlights the need to understand the epidemiology of these genes in macrococci.
Collapse
|
90
|
Chanchaithong P, Perreten V, Schwendener S. Macrococcus canis contains recombinogenic methicillin resistance elements and the mecB plasmid found in Staphylococcus aureus. J Antimicrob Chemother 2020; 74:2531-2536. [PMID: 31243455 DOI: 10.1093/jac/dkz260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To analyse the genetic context of mecB in two Macrococcus canis strains from dogs, compare the mecB-containing elements with those found in other Macrococcus and Staphylococcus species, and identify possible mobilizable mecB subunits. METHODS Whole genomes of the M. canis strains Epi0076A and KM0218 were sequenced using next-generation sequencing technologies. Multiple PCRs and restriction analysis confirmed structures of mecB-containing elements, circularization and recombination of mecB subunits. RESULTS Both M. canis strains contained novel composite pseudo (Ψ) staphylococcal cassette chromosome mec (SCCmec) elements. Integration site sequences for SCC flanked and subdivided composite ΨSCCmecEpi0076A (69569 bp) into ΨSCC1Epi0076A-ΨSCCmecEpi0076A-ΨSCC2Epi0076A and composite ΨSCCmecKM0218 (24554 bp) into ΨSCCKM0218-ΨSCCmecKM0218. Putative γ-haemolysin genes (hlgB and hlgC) were found at the 3' end of both composite elements. ΨSCCmecKM0218 contained a complete mecB gene complex (mecIm-mecR1m-mecB-blaZm) downstream of a new IS21-family member (ISMaca1). ΨSCCmecEpi0076A carried a blaZm-deleted mecB gene complex similar to that reported in 'Macrococcus goetzii' CCM4927T. A second mecB gene was found on the 81325 bp MDR plasmid pKM0218 in KM0218. This plasmid contained a complete Tn6045-associated mecB gene complex distinct from that of ΨSCCmecKM0218. pKM0218 was almost identical to the mecB-containing plasmid recently reported in Staphylococcus aureus (overall 99.96% nucleotide identity). Mobilization of mecB within an unconventional circularizable structure was observed in Epi0076A as well as chromosomal plasmid insertion via recombination of mecB operons in KM0218. CONCLUSIONS Our findings provide evidence of both the continuing evolution of mecB-containing elements in macrococci and M. canis as a potential source of the mecB-containing plasmid found in staphylococci.
Collapse
Affiliation(s)
- Pattrarat Chanchaithong
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Diagnosis and Monitoring of Animal Pathogen Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sybille Schwendener
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
91
|
Speck S, Wenke C, Feßler AT, Kacza J, Geber F, Scholtzek AD, Hanke D, Eichhorn I, Schwarz S, Rosolowski M, Truyen U. Borderline resistance to oxacillin in Staphylococcus aureus after treatment with sub-lethal sodium hypochlorite concentrations. Heliyon 2020; 6:e04070. [PMID: 32613099 PMCID: PMC7317233 DOI: 10.1016/j.heliyon.2020.e04070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/21/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Surface disinfectants are regularly used in prophylactic and infection control measures. Concern has been raised whether residues of sub-inhibitory disinfectant concentrations may constitute a selective pressure and could contribute to the development of strains which are tolerant and/or resistant to biocides including antibiotics. The current study investigated whether Staphylococcus (S.) aureus ATCC® 29213™ and ATCC® 6538™ would change their growth characteristics and antimicrobial susceptibility profiles after prolonged treatment with sub-inhibitory concentrations of sodium hypochlorite (NaOCl). NaOCl is a fast-acting disinfectant with a broad-spectrum activity, inexpensive and widely used in healthcare and the food production industry. Minimum inhibitory concentration (MIC) for NaOCl was determined by broth macrodilution according to the guidelines for disinfectant efficacy testing provided by the German Veterinary Medical Society. Serial passages after 24 h and 72 h, respectively, in defined sub-inhibitory concentrations of NaOCl resulted in a number of phenotypic variants. Two of these variants, derived from S. aureus ATCC® 29213™, showed elevated MICs of oxacillin and were considered as in vitro-generated borderline oxacillin-resistant S. aureus (BORSA). Transmission electron microscopy revealed a significantly thickened cell wall in these isolates, a phenomenon that has also been described for Listeria monocytogenes after low-level exposure to NaOCl. Whole genome sequencing revealed an early stop codon in the gene coding for the GdpP protein and thereby abolishing the function of this gene. GdpP represents a phosphodiesterase that regulates gene expression, and loss of function of the GdpP protein has been described in association with borderline oxacillin resistance. Our findings suggest that a mutation in the GdpP protein gene and morphological changes of the cell wall were induced by repeated exposure to sub-lethal NaOCl concentrations, and most likely accounted for a BORSA phenotype in two variants derived from S. aureus ATCC® 29213™.
Collapse
Affiliation(s)
- Stephanie Speck
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
- Corresponding author.
| | - Cindy Wenke
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Johannes Kacza
- BioImaging Core Facility, VMF/SIKT, University of Leipzig, Leipzig, Germany
| | - Franziska Geber
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Anissa D. Scholtzek
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
92
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
93
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 1014] [Impact Index Per Article: 202.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
94
|
MacFadyen AC, Harrison EM, Drigo I, Parkhill J, Holmes MA, Paterson GK. A mecC allotype, mecC3, in the CoNS Staphylococcus caeli, encoded within a variant SCCmecC. J Antimicrob Chemother 2020; 74:547-552. [PMID: 30590583 DOI: 10.1093/jac/dky502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Methicillin resistance in staphylococci is conferred by an alternative PBP (PBP2a/2') with low affinity for most β-lactam antibiotics. PBP2a is encoded by mecA, which is carried on a mobile genetic element known as SCCmec. A variant of mecA, mecC, was described in 2011 and has been found in Staphylococcus aureus from humans and a wide range of animal species as well as a small number of other staphylococcal species from animals. OBJECTIVES We characterized a novel mecC allotype, mecC3, encoded by an environmental isolate of Staphylococcus caeli cultured from air sampling of a commercial rabbit holding. METHODS The S. caeli isolate 82BT was collected in Italy in 2013 and genome sequenced using MiSeq technology. This allowed the assembly and comparative genomic study of the novel SCCmec region encoding mecC3. RESULTS The study isolate encodes a novel mecA allotype, mecC3, with 92% nucleotide identity to mecC. mecC3 is encoded within a novel SCCmec element distinct from those previously associated with mecC, including a ccrAB pairing (ccrA5B3) not previously linked to mecC. CONCLUSIONS This is the first description of the novel mecC allotype mecC3, the first isolation of a mecC-positive Staphylococcus in Italy and the first report of mecC in S. caeli. Furthermore, the SCCmec element described here is highly dissimilar to the archetypal SCCmec XI encoding mecC in S. aureus and to elements encoding mecC in other staphylococci. Our report highlights the diversity of mecC allotypes and the diverse staphylococcal species, ecological settings and genomic context in which mecC may be found.
Collapse
Affiliation(s)
- A C MacFadyen
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - E M Harrison
- The Wellcome Trust Sanger Institute, Wellcome Trust, Genome Campus, Hinxton, UK
| | - I Drigo
- Istituto Zooprofilattico Sperimentale delle Venezie, via dell'Università 10, Legnaro, PD, Italy
| | - J Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust, Genome Campus, Hinxton, UK
| | - M A Holmes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - G K Paterson
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| |
Collapse
|
95
|
Chamon RC, Marques LM, Timenetsky J, da Costa Rachid CT, Ferreira RB, de Oliveira TL, Glatthardt T, de Oliveira Moreira L, dos Santos KR. Genome Sequence of a Highly Virulent pvl-positive Vancomycin intermediate- resistant Staphylococcus aureus Sequence Type 30. Curr Genomics 2020; 21:128-137. [PMID: 32655307 PMCID: PMC7324871 DOI: 10.2174/1389202921666200327105756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
Background:
Staphylococcus aureus isolates expressing the Panton-Valentine Leukocidin
(PVL) have been related to a wide range of diseases. Recently, pvl-positive community-associated
methicillin-resistant S. aureus belonging to USA1100 (ST30/CC30/SCCmec IV) lineage has emerged
in Brazilian hospitals.
Objective:
The aim of this work was to sequence the genome of a pvl-positive USA1100 Vancomycin-
Intermediate-Resistant S. aureus (VISA) isolate from Rio de Janeiro, Brazil.
Methods:
The 13420 genome was sequenced using the HiSeq 2500 platform. The draft genome, plasmids
annotation, and genome analysis were performed using RAST. Comparison of the relative pvl
gene expression of six S. aureus isolates was performed by qRT-PCR.
Results:
The isolate presented the ϕPVL phage codifying for the H2b PVL protein isoform, and another
prophage carrying a PVL variant named lukF and lukS-PV.2. The 13420 genome presented a
high number of virulence determinants, such as genes codifying for serine-protease proteins, enterotoxins
(egc), the immune evasion cluster (IEC), adhesion proteins, spermine/spermidine acetyltransferase
gene (blt), superantigen-like proteins, as well as the ica operon. Point mutations at vraS, tcaA,
and tcaB genes were detected. Moreover, the PVL mRNA relative expression of the 13420 isolate was
five times higher than mRNA PVL levels of the USA300/ST8 reference strain.
Conclusion:
We described for the first time the genome sequence of a VISA isolate harboring two
pvl-associated genes and other virulence factors that may improve the USA1100/ST30 lineage fitness
and impact its pathogenicity and spreading at Brazilian hospitals.
Collapse
Affiliation(s)
- Raiane C. Chamon
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas M. Marques
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Jorge Timenetsky
- Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caio T.C. da Costa Rachid
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana B.R. Ferreira
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamara L.R. de Oliveira
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Glatthardt
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilian de Oliveira Moreira
- Laboratorio de Bacteriologia e Imunologia Clinica, Departamento de Analises Clínicas e Toxicologicas, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kátia R.N. dos Santos
- Laboratorio de Infeccao Hospitalar, Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
96
|
Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens 2020; 9:pathogens9050381. [PMID: 32429272 PMCID: PMC7281669 DOI: 10.3390/pathogens9050381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to characterize staphylococci and streptococci in milk from Egyptian bovides. In total, 50 milk samples were collected from localities in the Nile Delta region of Egypt. Isolates were cultivated, identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and antibiotic susceptibility testing was performed by the broth microdilution method. PCR amplifications were carried out, targeting resistance-associated genes. Thirty-eight Staphylococcus isolates and six Streptococcus isolates could be cultivated. Staphylococcus aureus isolates revealed a high resistance rate to penicillin, ampicillin, clindamycin, and erythromycin. The mecA gene defining methicillin-resistant Staphylococcus aureus, erm(C) and aac-aphD genes was found in 87.5% of each. Coagulase-negative staphylococci showed a high prevalence of mecA, blaZ and tetK genes. Other resistance-associated genes were found. All Streptococcus dysgalactiae isolates carried blaZ, erm(A), erm(B), erm(C) and lnuA genes, while Streptococcus suis harbored erm(C), aphA-3, tetL and tetM genes, additionally. In Streptococcus gallolyticus, most of these genes were found. The Streptococcus agalactiae isolate harbored blaZ, erm(B), erm(C), lnuA, tetK, tetL and tetM genes. Streptococcus agalactiae isolate was analyzed by DNA microarray analysis. It was determined as sequence type 14, belonging to clonal complex 19 and represented capsule type VI. Pilus and cell wall protein genes, pavA, cadD and emrB/qacA genes were identified by microarray analysis.
Collapse
|
97
|
Mizusawa M, Carroll KC. Novel strategies for rapid identification and susceptibility testing of MRSA. Expert Rev Anti Infect Ther 2020; 18:759-778. [PMID: 32329637 DOI: 10.1080/14787210.2020.1760842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is associated with adverse clinical outcomes and increased morbidity, mortality, length of hospital stay, and health-care costs. Rapid diagnosis of MRSA infections has been associated with positive impact on clinical outcomes. AREAS COVERED We searched relevant papers in PubMed for the last 10 years. In major papers, we scanned the bibliographies to ensure that important articles were included. This review describes screening and diagnostic test methods for MRSA and their analytical performances with a focus on rapid molecular-based assays including those that are on the horizon. Future novel technologies will allow more rapid detection of phenotypic resistance. In the case of whole-genome sequencing, detection of mutations may predict resistance, transmission, and virulence. EXPERT OPINION Currently there are many diagnostic options for the detection of MRSA in surveillance and clinical samples. In general, these are highly accurate and have resulted in improvements in targeted management and reduction in hospital or intensive care unit length of stay for both MSSA and MRSA. Impact on mortality has been variable. Promising novel technologies will not only accurately identify pathogens and detect their resistance markers but will allow discovery of virulence determinants that might further affect patient management.
Collapse
Affiliation(s)
- Masako Mizusawa
- Section of Infectious Diseases, Department of Internal Medicine, University of Missouri , Kansas, MO, USA
| | - Karen C Carroll
- Department of Pathology, Division of Medical Microbiology, The Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
98
|
Vrancianu CO, Popa LI, Bleotu C, Chifiriuc MC. Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Front Microbiol 2020; 11:761. [PMID: 32435238 PMCID: PMC7219019 DOI: 10.3389/fmicb.2020.00761] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant global threat to both public health and the environment. The emergence and expansion of AMR is sustained by the enormous diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of horizontal gene transfer (HGT), including conjugation, transduction, and transformation, have facilitated the accumulation and dissemination of ARGs in Gram-negative and Gram-positive bacteria. This has resulted in the development of multidrug resistance in some bacteria. The most clinically significant ARGs are usually located on different mobile genetic elements (MGEs) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera). Resistance plasmids play a central role both in HGT and as support elements for other MGEs, in which ARGs are assembled by transposition and recombination mechanisms. Considering the crucial role of MGEs in the acquisition and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs. This review discusses current progress on the development of chemical and biological approaches for the elimination of ARG carriers.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Laura Ioana Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Coralia Bleotu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
99
|
The Novel Macrolide Resistance Genes mef(D), msr(F), and msr(H) Are Present on Resistance Islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus. Antimicrob Agents Chemother 2020; 64:AAC.00160-20. [PMID: 32122903 DOI: 10.1128/aac.00160-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
Chromosomal resistance islands containing the methicillin resistance gene mecD (McRI mecD ) have been reported in Macrococcus caseolyticus Here, we identified novel macrolide resistance genes in Macrococcus canis on similar elements, called McRI msr These elements were also integrated into the 3' end of the 30S ribosomal protein S9 gene (rpsI), delimited by characteristic attachment (att) sites, and carried a related site-specific integrase gene (int) at the 5' end. They carried novel macrolide resistance genes belonging to the msr family of ABC subfamily F (ABC-F)-type ribosomal protection protein [msr(F) and msr(H)] and the macrolide efflux mef family [mef(D)]. Highly related mef(D)-msr(F) fragments were found on diverse McRI msr elements in M. canis, M. caseolyticus, and Staphylococcus aureus Another McRI msr -like element identified in an M. canis strain lacked the classical att site at the 3' end and carried the msr(H) gene but no neighboring mef gene. The expression of the novel resistance genes in S. aureus resulted in a low-to-moderate increase in the MIC of erythromycin but not streptogramin B. In the mef(D)-msr(F) operon, the msr(F) gene was shown to be the crucial determinant for macrolide resistance. The detection of circular forms of McRI msr and the mef(D)-msr(F) fragment suggested mobility of both the island and the resistance gene subunit. The discovery of McRI msr in different Macrococcus species and S. aureus indicates that these islands have a potential for dissemination of antibiotic resistance within the Staphylococcaceae family.
Collapse
|
100
|
Abstract
The discovery, commercialization and administration of antibiotics revolutionized the world of medicine in the middle of the last century, generating a significant change in the therapeutic paradigm of the infectious diseases. Nevertheless, this great breakthrough was soon threatened due to the enormous adaptive ability that bacteria have, through which they are able to develop or acquire different mechanisms that allow them to survive the exposure to antibiotics. We are faced with a complex, multifactorial and inevitable but potentially manageable threat. To fight against it, a global and multidisciplinary approach is necessary, based on the support, guidance and training of the next generation of professionals. Nevertheless, the information published regarding the resistance mechanisms to antibiotics are abundant, varied and, unfortunately, not always well structured. The objective of this review is to structure the, in our opinion, most relevant and novel information regarding the mechanisms of resistance to antibiotics that has been published from January 2014 to September 2019, analysing their possible clinical and epidemiological impact.
Collapse
|