51
|
Inflammation in myocardial infarction: roles of mesenchymal stem cells and their secretome. Cell Death Dis 2022; 8:452. [DOI: 10.1038/s41420-022-01235-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
AbstractInflammation plays crucial roles in the regulation of pathophysiological processes involved in injury, repair and remodeling of the infarcted heart; hence, it has become a promising target to improve the prognosis of myocardial infarction (MI). Mesenchymal stem cells (MSCs) serve as an effective and innovative treatment option for cardiac repair owing to their paracrine effects and immunomodulatory functions. In fact, transplanted MSCs have been shown to accumulate at injury sites of heart, exerting multiple effects including immunomodulation, regulating macrophages polarization, modulating the activation of T cells, NK cells and dendritic cells and alleviating pyroptosis of non-immune cells. Many studies also proved that preconditioning of MSCs can enhance their inflammation-regulatory effects. In this review, we provide an overview on the current understanding of the mechanisms on MSCs and their secretome regulating inflammation and immune cells after myocardial infarction and shed light on the applications of MSCs in the treatment of cardiac infarction.
Collapse
|
52
|
Van Avondt K, Strecker J, Tulotta C, Minnerup J, Schulz C, Soehnlein O. Neutrophils in aging and aging‐related pathologies. Immunol Rev 2022; 314:357-375. [PMID: 36315403 DOI: 10.1111/imr.13153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the past millennia, life expectancy has drastically increased. While a mere 25 years during Bronze and Iron ages, life expectancy in many European countries and in Japan is currently above 80 years. Such an increase in life expectancy is a result of improved diet, life style, and medical care. Yet, increased life span and aging also represent the most important non-modifiable risk factors for several pathologies including cardiovascular disease, neurodegenerative diseases, and cancer. In recent years, neutrophils have been implicated in all of these pathologies. Hence, this review provides an overview of how aging impacts neutrophil production and function and conversely how neutrophils drive aging-associated pathologies. Finally, we provide a perspective on how processes of neutrophil-driven pathologies in the context of aging can be targeted therapeutically.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
| | - Jan‐Kolja Strecker
- Department of Neurology with Institute of Translational Neurology University Hospital Münster Münster Germany
| | - Claudia Tulotta
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology University Hospital Münster Münster Germany
| | - Christian Schulz
- Department of Medicine I University Hospital, Ludwig Maximilian University Munich Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
- Department of Physiology and Pharmacology (FyFa) Karolinska Institute Stockholm Sweden
| |
Collapse
|
53
|
Cianci R, Franza L, Borriello R, Pagliari D, Gasbarrini A, Gambassi G. The Role of Gut Microbiota in Heart Failure: When Friends Become Enemies. Biomedicines 2022; 10:2712. [PMID: 36359233 PMCID: PMC9687270 DOI: 10.3390/biomedicines10112712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 10/29/2023] Open
Abstract
Heart failure is a complex health issue, with important consequences on the overall wellbeing of patients. It can occur both in acute and chronic forms and, in the latter, the immune system appears to play an important role in the pathogenesis of the disease. In particular, in the forms with preserved ejection fraction or with only mildly reduced ejection fraction, some specific associations with chronic inflammatory diseases have been observed. Another interesting aspect that is worth considering is the role of microbiota modulation, in this context: given the importance of microbiota in the modulation of immune responses, it is possible that changes in its composition may somewhat influence the progression and even the pathogenesis of heart failure. In this narrative review, we aim to examine the relationship between immunity and heart failure, with a special focus on the role of microbiota in this pathological condition.
Collapse
Affiliation(s)
- Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Laura Franza
- Emergency Medicine Unit, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Danilo Pagliari
- Medical Officer of the Carabinieri Corps, Health Service of the Carabinieri General Headquarters, 00197 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
54
|
Liu W, Cronin CG, Cao Z, Wang C, Ruan J, Pulikkot S, Hall A, Sun H, Groisman A, Chen Y, Vella AT, Hu L, Liang BT, Fan Z. Nexinhib20 Inhibits Neutrophil Adhesion and β 2 Integrin Activation by Antagonizing Rac-1-Guanosine 5'-Triphosphate Interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1574-1585. [PMID: 36165184 PMCID: PMC9529951 DOI: 10.4049/jimmunol.2101112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/03/2022] [Indexed: 11/07/2022]
Abstract
Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting β2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced β2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and β2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chunxia G Cronin
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT
| | - Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chengliang Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Jianbin Ruan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; and
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT;
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT;
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| |
Collapse
|
55
|
Meyer IS, Li X, Meyer C, Voloshanenko O, Pohl S, Boutros M, Katus HA, Frey N, Leuschner F. Blockade of Wnt Secretion Attenuates Myocardial Ischemia-Reperfusion Injury by Modulating the Inflammatory Response. Int J Mol Sci 2022; 23:ijms232012252. [PMID: 36293109 PMCID: PMC9602582 DOI: 10.3390/ijms232012252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Wnt (a portmanteau of Wingless and Int-1) signaling in the adult heart is largely quiescent. However, there is accumulating evidence that it gets reactivated during the healing process after myocardial infarction (MI). We here tested the therapeutic potential of the Wnt secretion inhibitor LGK-974 on MI healing. Ischemia/reperfusion (I/R) injury was induced in mice and Wnt signaling was inhibited by oral administration of the porcupine inhibitor LGK-974. The transcriptome was analyzed from infarcted tissue by using RNA sequencing analysis. The inflammatory response after I/R was evaluated by flow cytometry. Heart function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Transcriptome and gene set enrichment analysis revealed a modulation of the inflammatory response upon administration of the Wnt secretion inhibitor LGK-974 following I/R. In addition, LGK-974-treated animals showed an attenuated inflammatory response and improved heart function. In an in vitro model of hypoxic cardiomyocyte and monocyte/macrophage interaction, LGK974 inhibited the activation of Wnt signaling in monocytes/macrophages and reduced their pro-inflammatory phenotype. We here show that Wnt signaling affects inflammatory processes after MI. The Wnt secretion inhibitor LGK-974 appears to be a promising compound for future immunomodulatory approaches to improve cardiac remodeling after MI.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
| | - Xue Li
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
| | - Carina Meyer
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Susann Pohl
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hugo Albert Katus
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
| | - Norbert Frey
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
| | - Florian Leuschner
- Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
56
|
Kubota A, Frangogiannis NG. Macrophages in myocardial infarction. Am J Physiol Cell Physiol 2022; 323:C1304-C1324. [PMID: 36094436 PMCID: PMC9576166 DOI: 10.1152/ajpcell.00230.2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
The heart contains a population of resident macrophages that markedly expands following injury through recruitment of monocytes and through proliferation of macrophages. In myocardial infarction, macrophages have been implicated in both injurious and reparative responses. In coronary atherosclerotic lesions, macrophages have been implicated in disease progression and in the pathogenesis of plaque rupture. Following myocardial infarction, resident macrophages contribute to initiation and regulation of the inflammatory response. Phagocytosis and efferocytosis are major functions of macrophages during the inflammatory phase of infarct healing, and mediate phenotypic changes, leading to acquisition of an anti-inflammatory macrophage phenotype. Infarct macrophages respond to changes in the cytokine content and extracellular matrix composition of their environment and secrete fibrogenic and angiogenic mediators, playing a central role in repair of the infarcted heart. Macrophages may also play a role in scar maturation and may contribute to chronic adverse remodeling of noninfarcted segments. Single cell studies have revealed a remarkable heterogeneity of macrophage populations in infarcted hearts; however, the relations between transcriptomic profiles and functional properties remain poorly defined. This review manuscript discusses the fate, mechanisms of expansion and activation, and role of macrophages in the infarcted heart. Considering their critical role in injury, repair, and remodeling, macrophages are important, but challenging, targets for therapeutic interventions in myocardial infarction.
Collapse
Affiliation(s)
- Akihiko Kubota
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| |
Collapse
|
57
|
Hosseini A, Samadi M, Baeeri M, Rahimifard M, Haghi-Aminjan H. The neuroprotective effects of melatonin against diabetic neuropathy: A systematic review of non-clinical studies. Front Pharmacol 2022; 13:984499. [PMID: 36120309 PMCID: PMC9470957 DOI: 10.3389/fphar.2022.984499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Backgrounds: Diabetes can cause diabetic neuropathy (DN), a nerve injury. High blood sugar (glucose) levels can harm nerves all over your body. The nerves in your legs and feet are the most commonly affected by DN. The purpose of this study was to conduct a review of melatonin’s potential neuroprotective properties against DN. Method: A full systematic search was conducted in several electronic databases (Scopus, PubMed, and Web of Science) up to March 2022 under the PRISMA guidelines. Forty-seven studies were screened using predefined inclusion and exclusion criteria. Finally, the current systematic review included nine publications that met the inclusion criteria. Result: According to in vivo findings, melatonin treatment reduces DN via inhibition of oxidative stress and inflammatory pathways. However, compared to the diabetes groups alone, melatonin treatment exhibited an anti-oxidant trend. According to other research, DN also significantly produces biochemical alterations in neuron cells/tissues. Additionally, histological alterations in neuron tissue following DN were detected. Conclusion: Nonetheless, in the majority of cases, these diabetes-induced biochemical and histological alterations were reversed when melatonin was administered. It is worth noting that the administration of melatonin ameliorates the neuropathy caused by diabetes. Melatonin exerts these neuroprotective effects via various anti-oxidant, anti-inflammatory, and other mechanisms.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| |
Collapse
|
58
|
Feng W, Wang Z, Shi L. Effects of the Dectin-2/TNF- α Pathway on Ventricular Arrhythmia after Acute Myocardial Infarction in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2521816. [PMID: 35990845 PMCID: PMC9388250 DOI: 10.1155/2022/2521816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Background Inflammatory responses are involved in ischemic injuries and cardiac repair after acute myocardial infarction (AMI). Dectin-2 is a C-type lectin receptor that induces cytokine production and promotes local inflammatory responses. Methods Sixty C57BL/6 mice were randomly assigned to a sham-surgery group, AMI group, or AMI + etanercept group, with 20 mice in each group. Programmed electrical stimulation (PES) was used to anesthetized mice to induce ventricular tachycardia. Real-time polymerase chain reaction (PCR) and western blot analysis were adopted to determine the expression and distribution of dectin-2 in heart tissues. The tumor necrosis factor-α (TNF-α), interferon-gamma (IFN)-γ, interleukin (IL) 4, and IL-5 levels in the serum were determined using ELISAs. Results The expression of dectin-2 and TNF-α was increased in the myocardium in AMI, and the susceptibility to ventricular arrhythmia (VA) was increased. The induction rate of VA was significantly decreased by etanercept. Compared with those in the sham-surgery group, the AMI group showed significantly higher serum TNF-α and IFN-γ levels and lower IL-4 and IL-5levels. Conclusion Dectin-2 intensifies the activation of the TNF-α immune reaction through the Th1 differentiation, which may increase vulnerability to VA in AMI.
Collapse
Affiliation(s)
- Wei Feng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhaojun Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Leilei Shi
- Department of Cardiology, Langfang Fourth People's Hospital, Langfang, China
| |
Collapse
|
59
|
Targeting Doublecortin-Like Kinase 1 (DCLK1)-Regulated SARS-CoV-2 Pathogenesis in COVID-19. J Virol 2022; 96:e0096722. [PMID: 35943255 PMCID: PMC9472619 DOI: 10.1128/jvi.00967-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of β-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1β signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and β-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of β-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.
Collapse
|
60
|
Current knowledge of pyroptosis in heart diseases. J Mol Cell Cardiol 2022; 171:81-89. [PMID: 35868567 DOI: 10.1016/j.yjmcc.2022.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Pyroptosis is a form of pro-inflammatory, necrotic cell death mediated by proteins of the gasdermin family. Various heart diseases, including myocardial ischemia/reperfusion injury, myocardial infarction, and heart failure, involve cardiomyocyte and non-myocyte pyroptosis. Cardiomyocyte pyroptosis also causes the release of pro-inflammatory cytokines. Recent studies have confirmed that pyroptosis is predominantly triggered by both the canonical and non-canonical inflammasome pathways, which independently facilitate caspase-1 or caspase-11/4/5 activation and gasdermin D (GSDMD) cleavage. Cardiac fibroblast and myeloid cell pyroptosis also contributes to the pathogenesis and development of heart diseases. This review summarizes the recent studies on pyroptosis in heart diseases and discusses the associated therapeutic targets.
Collapse
|
61
|
Kaldirim M, Lang A, Pfeiler S, Fiegenbaum P, Kelm M, Bönner F, Gerdes N. Modulation of mTOR Signaling in Cardiovascular Disease to Target Acute and Chronic Inflammation. Front Cardiovasc Med 2022; 9:907348. [PMID: 35845058 PMCID: PMC9280721 DOI: 10.3389/fcvm.2022.907348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation is a key component in the pathogenesis of cardiovascular diseases causing a significant burden of morbidity and mortality worldwide. Recent research shows that mammalian target of rapamycin (mTOR) signaling plays an important role in the general and inflammation-driven mechanisms that underpin cardiovascular disease. mTOR kinase acts prominently in signaling pathways that govern essential cellular activities including growth, proliferation, motility, energy consumption, and survival. Since the development of drugs targeting mTOR, there is proven efficacy in terms of survival benefit in cancer and allograft rejection. This review presents current information and concepts of mTOR activity in myocardial infarction and atherosclerosis, two important instances of cardiovascular illness involving acute and chronic inflammation. In experimental models, inhibition of mTOR signaling reduces myocardial infarct size, enhances functional remodeling, and lowers the overall burden of atheroma. Aside from the well-known effects of mTOR inhibition, which are suppression of growth and general metabolic activity, mTOR also impacts on specific leukocyte subpopulations and inflammatory processes. Inflammatory cell abundance is decreased due to lower migratory capacity, decreased production of chemoattractants and cytokines, and attenuated proliferation. In contrast to the generally suppressed growth signals, anti-inflammatory cell types such as regulatory T cells and reparative macrophages are enriched and activated, promoting resolution of inflammation and tissue regeneration. Nonetheless, given its involvement in the control of major cellular pathways and the maintenance of a functional immune response, modification of this system necessitates a balanced and time-limited approach. Overall, this review will focus on the advancements, prospects, and limits of regulating mTOR signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Madlen Kaldirim
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Pia Fiegenbaum
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Florian Bönner
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
62
|
Aib1 deficiency exacerbates inflammatory responses in acute myocardial infarction mice. J Mol Med (Berl) 2022; 100:1181-1190. [PMID: 35840741 DOI: 10.1007/s00109-022-02231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Acute myocardial infarction (AMI) is one of the major causes of death throughout the world, while inflammation has been known as a major contributor to the pathophysiology of AMI. Inhibition of inflammation is shown to protect from AMI. Amplified in breast 1 (Aib1) is a transcriptional coactivator protein which can suppress inflammation. The anti-inflammatory activities of Aib1 imply its potential effects against AMI; however, to date the role of Aib1 in AMI has not been described yet. Here we explored the potential functions of Aib1 in AMI. We induced AMI in both wild-type (WT) and Aib1-/- mice. The expression levels of Aib1 and inflammatory cytokines in the AMI WT mice were measured by RT-PCR and Western blot. The heart infarction area and cardiac functions were compared between the AMI WT and Aib1-/- mice. The expression levels of inflammatory cytokines including IL-6, IL-1β, TNF-α, and MCP-1 in heart tissues were compared between the AMI WT and Aib1-/- mice by ELISA and RT-PCR. AMI induced the production of inflammatory cytokines whereas suppressed the expression of Aib1 in WT mice. AMI Aib1-/- mice displayed increased infarct area and aggravated heart dysfunction, as well as upregulated levels of Il-6, Il-1β, Tnf-α, and Mcp-1 in heart tissues. Aib1 deficiency exacerbates inflammation in AMI mice. KEY MESSAGES: AMI induced inflammation in the heart tissue of mice. Aib1 knockout exacerbated infarction in AMI mice. Aib1 knockout exacerbated cardiac dysfunction in AMI mice. Aib1 knockout exacerbated inflammation in AMI mice.
Collapse
|
63
|
Hu W, Yang C, Guo X, Wu Y, Loh XJ, Li Z, Wu YL, Wu C. Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels 2022; 8:423. [PMID: 35877508 PMCID: PMC9316750 DOI: 10.3390/gels8070423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI.
Collapse
Affiliation(s)
- Wei Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Cui Yang
- School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Yihong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE) Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| |
Collapse
|
64
|
Stojanovic D, Mitic V, Stojanovic M, Milenkovic J, Ignjatovic A, Milojkovic M. The Scientific Rationale for the Introduction of Renalase in the Concept of Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:845878. [PMID: 35711341 PMCID: PMC9193824 DOI: 10.3389/fcvm.2022.845878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis represents a redundant accumulation of extracellular matrix proteins, resulting from a cascade of pathophysiological events involved in an ineffective healing response, that eventually leads to heart failure. The pathophysiology of cardiac fibrosis involves various cellular effectors (neutrophils, macrophages, cardiomyocytes, fibroblasts), up-regulation of profibrotic mediators (cytokines, chemokines, and growth factors), and processes where epithelial and endothelial cells undergo mesenchymal transition. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. The most effective anti-fibrotic strategy will have to incorporate the specific targeting of the diverse cells, pathways, and their cross-talk in the pathogenesis of cardiac fibroproliferation. Additionally, renalase, a novel protein secreted by the kidneys, is identified. Evidence demonstrates its cytoprotective properties, establishing it as a survival element in various organ injuries (heart, kidney, liver, intestines), and as a significant anti-fibrotic factor, owing to its, in vitro and in vivo demonstrated pleiotropy to alleviate inflammation, oxidative stress, apoptosis, necrosis, and fibrotic responses. Effective anti-fibrotic therapy may seek to exploit renalase’s compound effects such as: lessening of the inflammatory cell infiltrate (neutrophils and macrophages), and macrophage polarization (M1 to M2), a decrease in the proinflammatory cytokines/chemokines/reactive species/growth factor release (TNF-α, IL-6, MCP-1, MIP-2, ROS, TGF-β1), an increase in anti-apoptotic factors (Bcl2), and prevention of caspase activation, inflammasome silencing, sirtuins (1 and 3) activation, and mitochondrial protection, suppression of epithelial to mesenchymal transition, a decrease in the pro-fibrotic markers expression (’α-SMA, collagen I, and III, TIMP-1, and fibronectin), and interference with MAPKs signaling network, most likely as a coordinator of pro-fibrotic signals. This review provides the scientific rationale for renalase’s scrutiny regarding cardiac fibrosis, and there is great anticipation that these newly identified pathways are set to progress one step further. Although substantial progress has been made, indicating renalase’s therapeutic promise, more profound experimental work is required to resolve the accurate underlying mechanisms of renalase, concerning cardiac fibrosis, before any potential translation to clinical investigation.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Valentina Mitic
- Department of Cardiovascular Rehabilitation, Institute for Treatment and Rehabilitation "Niska Banja", Niska Banja, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Jelena Milenkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Niš, Niš, Serbia.,Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, Niš, Serbia
| | - Maja Milojkovic
- Institute of Pathophysiology, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
65
|
A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nat Rev Cardiol 2022; 19:395-413. [PMID: 35523863 DOI: 10.1038/s41569-022-00701-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Cardioimmunology is a field that encompasses the immune cells and pathways that modulate cardiac function in homeostasis and regulate the temporal balance between tissue injury and repair in disease. Over the past two decades, genetic fate mapping and high-dimensional sequencing techniques have defined increasing functional heterogeneity of innate and adaptive immune cell populations in the heart and other organs, revealing a complexity not previously appreciated and challenging established frameworks for the immune system. Given these rapid advances, understanding how to use these tools has become crucial. However, cardiovascular biologists without immunological expertise might not be aware of the strengths and caveats of immune-related tools and how they can be applied to examine the pathogenesis of myocardial diseases. In this Review, we guide readers through case-based examples to demonstrate how tool selection can affect data quality and interpretation and we provide critical analysis of the experimental tools that are currently available, focusing on their use in models of ischaemic heart injury and heart failure. The goal is to increase the use of relevant immunological tools and strategies among cardiovascular researchers to improve the precision, translatability and consistency of future studies of immune cells in cardiac disease.
Collapse
|
66
|
Anzai A, Ko S, Fukuda K. Immune and Inflammatory Networks in Myocardial Infarction: Current Research and Its Potential Implications for the Clinic. Int J Mol Sci 2022; 23:5214. [PMID: 35563605 PMCID: PMC9102812 DOI: 10.3390/ijms23095214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/02/2023] Open
Abstract
Despite recent scientific and technological advances, myocardial infarction (MI) still represents a major global health problem, leading to high morbidity and mortality worldwide. During the post-MI wound healing process, dysregulated immune inflammatory pathways and failure to resolve inflammation are associated with maladaptive left ventricular remodeling, progressive heart failure, and eventually poor outcomes. Given the roles of immune cells in the host response against tissue injury, understanding the involved cellular subsets, sources, and functions is essential for discovering novel therapeutic strategies that preserve the protective immune system and promote optimal healing. This review discusses the cellular effectors and molecular signals across multi-organ systems, which regulate the inflammatory and reparative responses after MI. Additionally, we summarize the recent clinical and preclinical data that propel conceptual revolutions in cardiovascular immunotherapy.
Collapse
Affiliation(s)
- Atsushi Anzai
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | | | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
67
|
Zhang X, Liu W. Engineering Injectable Anti‐Inflammatory Hydrogels to Treat Acute Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoping Zhang
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials School of Material Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
68
|
Abstract
The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.
Collapse
Affiliation(s)
- Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford,Oxford, OxfordshireOX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
| | - Paul R. Riley
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OxfordshireOX1 3PT, UK
| |
Collapse
|
69
|
Chalise U, Daseke MJ, Kalusche WJ, Konfrst SR, Rodriguez-Paar JR, Flynn ER, Cook LM, Becirovic-Agic M, Lindsey ML. Macrophages secrete murinoglobulin-1 and galectin-3 to regulate neutrophil degranulation after myocardial infarction. Mol Omics 2022; 18:186-195. [PMID: 35230372 PMCID: PMC8963000 DOI: 10.1039/d1mo00519g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 02/03/2023]
Abstract
Inflammation presides early after myocardial infarction (MI) as a key event in cardiac wound healing. Ischemic cardiomyocytes secrete inflammatory cues to stimulate infiltration of leukocytes, predominantly macrophages and neutrophils. Infiltrating neutrophils degranulate to release a series of proteases including matrix metalloproteinase (MMP)-9 to break down extracellular matrix and remove necrotic myocytes to create space for the infarct scar to form. While neutrophil to macrophage communication has been explored, the reverse has been understudied. We used a proteomics approach to catalogue the macrophage secretome at MI day 1. Murinoglobulin-1 (MUG1) was the highest-ranked secreted protein (4.1-fold upregulated at MI day 1 vs. day 0 pre-MI cardiac macrophages, p = 0.004). By transcriptomics evaluation, galectin-3 (Lgals3) was 2.2-fold upregulated (p = 0.008) in MI day 1 macrophages. We explored the direct roles of MUG1 and Lgals3 on neutrophil degranulation. MUG1 blunted while Lgals3 amplified neutrophil degranulation in response to phorbol 12-myristate 13-acetate or interleukin-1β, as measured by MMP-9 secretion. Lgals3 itself also stimulated MMP-9 secretion. To determine if MUG1 regulated Lgals3, we co-stimulated neutrophils with MUG1 and Lgals3. MUG1 limited degranulation stimulated by Lgals3 by 64% (p < 0.001). In vivo, MUG1 was elevated in the infarct region at MI days 1 and 3, while Lgals3 increased at MI day 7. The ratio of MUG1 to Lgals3 positively correlated with infarct wall thickness, revealing that MUG1 attenuated infarct wall thinning. In conclusion, macrophages at MI day 1 secrete MUG1 to limit and Lgals3 to accentuate neutrophil degranulation to regulate infarct wall thinning.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - William J Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Jocelyn R Rodriguez-Paar
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| |
Collapse
|
70
|
Dahdah A, Johnson J, Gopalkrishna S, Jaggers RM, Webb D, Murphy AJ, Hanssen NMJ, Hanaoka BY, Nagareddy PR. Neutrophil Migratory Patterns: Implications for Cardiovascular Disease. Front Cell Dev Biol 2022; 10:795784. [PMID: 35309915 PMCID: PMC8924299 DOI: 10.3389/fcell.2022.795784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
The body's inflammatory response involves a series of processes that are necessary for the immune system to mitigate threats from invading pathogens. Leukocyte migration is a crucial process in both homeostatic and inflammatory states. The mechanisms involved in immune cell recruitment to the site of inflammation are numerous and require several cascades and cues of activation. Immune cells have multiple origins and can be recruited from primary and secondary lymphoid, as well as reservoir organs within the body to generate an immune response to certain stimuli. However, no matter the origin, an important aspect of any inflammatory response is the web of networks that facilitates immune cell trafficking. The vasculature is an important organ for this trafficking, especially during an inflammatory response, mainly because it allows cells to migrate towards the source of insult/injury and serves as a reservoir for leukocytes and granulocytes under steady state conditions. One of the most active and vital leukocytes in the immune system's arsenal are neutrophils. Neutrophils exist under two forms in the vasculature: a marginated pool that is attached to the vessel walls, and a demarginated pool that freely circulates within the blood stream. In this review, we seek to present the current consensus on the mechanisms involved in leukocyte margination and demargination, with a focus on the role of neutrophil migration patterns during physio-pathological conditions, in particular diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Albert Dahdah
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jillian Johnson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sreejit Gopalkrishna
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Robert M. Jaggers
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Darren Webb
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nordin M. J. Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Beatriz Y. Hanaoka
- Department of Internal Medicine, Division of Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Prabhakara R. Nagareddy
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
71
|
Association between Platelet to Neutrophil Ratio (PNR) and Clinical Outcomes in STEMI Patients after Successful pPCI: A Secondary Analysis Based on a Cohort Study. Cardiovasc Ther 2022; 2022:2022657. [PMID: 35284004 PMCID: PMC8894017 DOI: 10.1155/2022/2022657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose This study was aimed at investigating whether the platelet-to-neutrophil ratio (PNR) is independently related to the prognosis of patients with ST-elevation myocardial infarction (STEMI) after successful primary percutaneous coronary intervention (pPCI). Methods This was a secondary analysis of data retrieved from the DATADRYAD database, which was a prospective cohort study. A total of 464 STEMI patients who underwent successful pPCI were recruited between January 2010 and October 2014. The target-independent variable, PNR, was measured at the baseline. The dependent variable in the current study was the occurrence of major adverse cardiovascular events (MACEs) during the 30-month follow-up. Results Two patients were excluded from the final analysis because their platelet counts were unavailable. The average age of the 462 participants was 63 ± 11.92 years, and approximately 76.6% were male. After adjusting for age, sex, anterior wall myocardial infarction (MI), history of MI, apelin-12, apelin-12 change rate, left ventricular end-diastolic diameter, peak cardiac troponin I, pathological Q wave, Killip classification grade, fasting blood glucose, albumin, GENSINI score, and estimated glomerular filtration rate, a nonlinear relationship was found between the PNR and MACEs in the included cohort. The threshold value of the PNR for MACEs was 23.1. Over this cutoff value, the incidence rate of MACEs increased by 43% per 10-unit change in PNR (95% CI: 1.16–1.75, p = 0.0006). Conclusion There was a threshold relationship between PNR and MACEs in patients with STEMI who underwent successful pPCI. The incidence of MACEs was positively associated with the PNR when the PNR exceeded 23.1.
Collapse
|
72
|
Dölling M, Eckstein M, Singh J, Schauer C, Schoen J, Shan X, Bozec A, Knopf J, Schett G, Muñoz LE, Herrmann M. Hypoxia Promotes Neutrophil Survival After Acute Myocardial Infarction. Front Immunol 2022; 13:726153. [PMID: 35222361 PMCID: PMC8873092 DOI: 10.3389/fimmu.2022.726153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation build the armory of neutrophils for the first line of defense against invading pathogens. All these processes are modulated by the microenvironment including tonicity, pH and oxygen levels. Here we investigated the neutrophil infiltration in cardiac tissue autopsy samples of patients with acute myocardial infarction (AMI) and compared these with tissues from patients with sepsis, endocarditis, dermal inflammation, abscesses and diseases with prominent neutrophil infiltration. We observed many neutrophils infiltrating the heart muscle after myocardial infarction. Most of these had viable morphology and only few showed signs of nuclear de-condensation, a hallmark of early NET formation. The abundance of NETs was the lowest in acute myocardial infarction when compared to other examined diseases. Since cardiac oxygen supply is abruptly abrogated in acute myocardial infarction, we hypothesized that the resulting tissue hypoxia increased the longevity of the neutrophils. Indeed, the viable cells showed increased nuclear hypoxia inducible factor-1α (HIF-1α) content, and only neutrophils with low HIF-1α started the process of NET formation (chromatin de-condensation and nuclear swelling). Prolonged neutrophil survival, increased oxidative burst and reduced NETs formation were reproduced under low oxygen tensions and by HIF-1α stabilization in vitro. We conclude that nuclear HIF-1α is associated with prolonged neutrophil survival and enhanced oxidative stress in hypoxic areas of AMI.
Collapse
Affiliation(s)
- Maximilian Dölling
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Markus Eckstein
- Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeeshan Singh
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiaomei Shan
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- *Correspondence: Luis E. Muñoz,
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
73
|
Riascos-Bernal DF, Sibinga NE. Neutrophil extracellular traps in cardiac hypertrophy: a KLF2 perspective. J Clin Invest 2022; 132:e156453. [PMID: 35104806 PMCID: PMC8803320 DOI: 10.1172/jci156453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
About 6 million adults in the United States have heart failure, and the mortality five years after diagnosis remains high at approximately 50%. Incomplete understanding of disease pathogenesis limits therapeutics, especially in the case of heart failure with preserved ejection fraction, a condition commonly associated with cardiac hypertrophy. Neutrophils, the most abundant leukocyte in blood, have functions beyond antimicrobial activity and participate in both sterile inflammation and disease; however, their role in nonischemic cardiac hypertrophy and heart failure is underexplored. In this issue of the JCI, Tang et al. show that neutrophil extracellular trap (NET) formation contributes to cardiac hypertrophy and dysfunction in a mouse model of angiotensin II-induced cardiomyopathy, and that Krüppel-like factor 2 (KLF2) functions in neutrophils to oppose this process. Whether a neutrophil-centered strategy may benefit patients with cardiac hypertrophy and failure deserves further investigation.
Collapse
Affiliation(s)
- Dario F. Riascos-Bernal
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute and
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicholas E.S. Sibinga
- Department of Medicine (Cardiology) and Wilf Family Cardiovascular Research Institute and
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
74
|
Corker A, Neff LS, Broughton P, Bradshaw AD, DeLeon-Pennell KY. Organized Chaos: Deciphering Immune Cell Heterogeneity's Role in Inflammation in the Heart. Biomolecules 2021; 12:11. [PMID: 35053159 PMCID: PMC8773626 DOI: 10.3390/biom12010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
During homeostasis, immune cells perform daily housekeeping functions to maintain heart health by acting as sentinels for tissue damage and foreign particles. Resident immune cells compose 5% of the cellular population in healthy human ventricular tissue. In response to injury, there is an increase in inflammation within the heart due to the influx of immune cells. Some of the most common immune cells recruited to the heart are macrophages, dendritic cells, neutrophils, and T-cells. In this review, we will discuss what is known about cardiac immune cell heterogeneity during homeostasis, how these cell populations change in response to a pathology such as myocardial infarction or pressure overload, and what stimuli are regulating these processes. In addition, we will summarize technologies used to evaluate cell heterogeneity in models of cardiovascular disease.
Collapse
Affiliation(s)
- Alexa Corker
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Lily S. Neff
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Philip Broughton
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Amy D. Bradshaw
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Kristine Y. DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| |
Collapse
|
75
|
Steffens S, Nahrendorf M, Madonna R. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. Eur Heart J 2021; 43:1533-1541. [PMID: 34897403 DOI: 10.1093/eurheartj/ehab842] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing use of single-cell immune profiling and advanced microscopic imaging technologies has deepened our understanding of the cardiac immune system, confirming that the heart contains a broad repertoire of innate and adaptive immune cells. Leucocytes found in the healthy heart participate in essential functions to preserve cardiac homeostasis, not only by defending against pathogens but also by maintaining normal organ function. In pathophysiological conditions, cardiac inflammation is implicated in healing responses after ischaemic or non-ischaemic cardiac injury. The aim of this review is to provide a concise overview of novel methodological advancements to the non-expert readership and summarize novel findings on immune cell heterogeneity and functions in cardiac disease with a focus on myocardial infarction as a prototypic example. In addition, we will briefly discuss how biological sex modulate the cardiac immune response. Finally, we will highlight emerging concepts for novel therapeutic applications, such as targeting immunometabolism and nanomedicine.
Collapse
Affiliation(s)
- Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 9, Munich 80336, Germany.,Munich Heart Alliance, DZHK Partner Site, Munich, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, 8.228 Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rosalinda Madonna
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Pathology, Cardiology Division, University of Pisa, c/o Ospedale di Cisanello Via Paradisa, 2, 56124 Pisa, Italy
| |
Collapse
|
76
|
Almesned MA, Prins FM, Lipšic E, Connelly MA, Garcia E, Dullaart RPF, Groot HE, van der Harst P. Temporal Course of Plasma Trimethylamine N-Oxide (TMAO) Levels in ST-Elevation Myocardial Infarction. J Clin Med 2021; 10:jcm10235677. [PMID: 34884379 PMCID: PMC8658331 DOI: 10.3390/jcm10235677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The gut metabolite trimethylamine N-oxide (TMAO) at admission has a prognostic value in ST-elevation myocardial infarction (STEMI) patients. However, its sequential changes and relationship with long-term infarct-related outcomes after primary percutaneous coronary intervention (PCI) remain elusive. We delineated the temporal course of TMAO and its relationship with infarct size and left ventricular ejection fraction (LVEF) post-PCI, adjusting for the estimated glomerular filtration rate (eGFR). We measured TMAO levels at admission, 24 h and 4 months post-PCI in 379 STEMI patients. Infarct size and LVEF were determined by cardiac magnetic resonance 4 months after PCI. TMAO levels decreased from admission (4.13 ± 4.37 μM) to 24 h (3.41 ± 5.84 μM, p = 0.001) and increased from 24 h to 4 months (3.70 ± 3.86 μM, p = 0.026). Higher TMAO values at 24 h were correlated to smaller infarct sizes (rho = −0.16, p = 0.024). Larger declines between admission and 4 months suggestively correlated with smaller infarct size, and larger TMAO increases between 24 h and 4 months were associated with larger infarct size (rho = −0.19, p = 0.008 and rho = −0.18, p = 0.019, respectively). Upon eGFR stratification using 90 mL/min/1.73 m2 as a cut-off, significant associations between TMAO and infarct size were only noted in subjects with impaired renal function. In conclusion, TMAO levels in post-PCI STEMI patients are prone to fluctuations, and these fluctuations could be prognostic for infarct size, particularly in patients with impaired renal function.
Collapse
Affiliation(s)
- Mohammad A. Almesned
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.A.A.); (F.M.P.); (E.L.); (H.E.G.)
| | - Femke M. Prins
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.A.A.); (F.M.P.); (E.L.); (H.E.G.)
| | - Erik Lipšic
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.A.A.); (F.M.P.); (E.L.); (H.E.G.)
| | - Margery A. Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC 27560, USA; (M.A.C.); (E.G.)
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC 27560, USA; (M.A.C.); (E.G.)
| | - Robin P. F. Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Hilde E. Groot
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.A.A.); (F.M.P.); (E.L.); (H.E.G.)
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.A.A.); (F.M.P.); (E.L.); (H.E.G.)
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
77
|
Chalise U, Becirovic-Agic M, Lindsey ML. Neutrophil crosstalk during cardiac wound healing after myocardial infarction. CURRENT OPINION IN PHYSIOLOGY 2021; 24:100485. [PMID: 35664861 PMCID: PMC9159545 DOI: 10.1016/j.cophys.2022.100485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Myocardial infarction (MI) initiates an intense inflammatory response that induces neutrophil infiltration into the infarct region. Neutrophils commence the pro-inflammatory response that includes upregulation of cytokines and chemokines (e.g., interleukin-1 beta) and degranulation of pre-formed proteases (e.g., matrix metalloproteinases -8 and -9) that degrade existing extracellular matrix to clear necrotic tissue. An increase or complete depletion of neutrophils both paradoxically impair MI resolution, indicating a complex role of neutrophils in cardiac wound healing. Following pro-inflammation, the neutrophil shifts to a reparative phenotype that promotes inflammation resolution and aids in scar formation. Across the shifts in phenotype, the neutrophil communicates with other cells to coordinate repair and scar formation. This review summarizes our current understanding of neutrophil crosstalk with cardiomyocytes and macrophages during MI wound healing.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| |
Collapse
|
78
|
Peng H, Sun Z, Di B, Ding X, Chen H, Li H. Contemporary impact of circadian symptom-onset patterns of acute ST-Segment elevation myocardial infarction on long-term outcomes after primary percutaneous coronary intervention. Ann Med 2021; 53:247-256. [PMID: 33349057 PMCID: PMC7877989 DOI: 10.1080/07853890.2020.1863457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Daytime variation with regard to onset time of ST-elevation myocardial infarction (STEMI) symptoms has been observed. Nevertheless, with the advanced medical therapy, it is not uncertainty if a similar circadian pattern of STEMI symptom onset occurs, as well as its possible impact on clinical outcomes. Few long-term data are available. We assess the impact of circadian symptom-onset patterns of STEMI on major adverse cardiovascular events (MACE) in more contemporary patients treated with primary percutaneous coronary intervention (PPCI). METHODS AND RESULTS A total of 1099 consecutive STEMI patients undergoing PPCI ≤12h from symptom onset during 2013 to 2019 were classified into 4 groups by 6-h intervals according to time-of-day at symptom onset: night (0:00-5:59), morning (6:00-11:59), afternoon (12:00-17:59), and evening (18:00-23:59). Incidence of MACE including cardiovascular death and nonfatal MI during a median follow-up of 48 months was compared among the 4 groups. A morning peak of symptom onset of STEMI was detected during the period 06:00-11:59 (p < .001). Compared with other three 6-h intervals, the incidence of long-term MACE during night onset-time (18.8%, 10.1%, 10.7% and 12.4%, p = .020) was significant higher that was driven by more mortality (13.1%, 6.5%, 7.1%and 7.7%, p = .044). Night symptom-onset STEMI was independently associated with subsequent MACE (hazard ratio = 1.57, 95%CI: 1.09-2.27, p = .017) even after multivariable adjustment. CONCLUSIONS Circadian variation of STEMI symptom-onset with morning predominance still exists in contemporary practice. Night symptom-onset STEMI was independently associated with increased risk of MACE in Chinese patients treated with PPCI.
Collapse
Affiliation(s)
- Hui Peng
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Zhijun Sun
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Beibing Di
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xiaosong Ding
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Hui Chen
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China.,Department of Internal Medical, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, P. R. China
| |
Collapse
|
79
|
NETosis in ischemic/reperfusion injuries: An organ-based review. Life Sci 2021; 290:120158. [PMID: 34822798 DOI: 10.1016/j.lfs.2021.120158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Neutrophil extracellular trap (NETosis), the web-like structures induced by neutrophil death, is an important inflammatory mechanism of the immune system leading to reactive oxygen species production/coagulopathy, endothelial dysfunction, atherosclerosis, and ischemia. NETosis exerts its role through different mechanisms such as triggering Toll-like receptors, inflammatory cytokines, platelet aggregation, neutrophil activation/infiltration, and vascular impairment. NETosis plays a key role in the prognosis of coronary artery disease, ischemic injury of kidney, lung, gastrointestinal tract and skeletal muscles. In this review, we explored the molecular mechanisms involved in NETosis, and ischemic/reperfusion injuries in body organs.
Collapse
|
80
|
Mollenhauer M, Bokredenghel S, Geißen S, Klinke A, Morstadt T, Torun M, Strauch S, Schumacher W, Maass M, Konradi J, Peters VBM, Berghausen E, Vantler M, Rosenkranz S, Mehrkens D, Braumann S, Nettersheim F, Hof A, Simsekyilmaz S, Winkels H, Rudolph V, Baldus S, Adam M, Freyhaus HT. Stamp2 Protects From Maladaptive Structural Remodeling and Systolic Dysfunction in Post-Ischemic Hearts by Attenuating Neutrophil Activation. Front Immunol 2021; 12:701721. [PMID: 34691017 PMCID: PMC8527169 DOI: 10.3389/fimmu.2021.701721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The six-transmembrane protein of prostate 2 (Stamp2) acts as an anti-inflammatory protein in macrophages by protecting from overt inflammatory signaling and Stamp2 deficiency accelerates atherosclerosis in mice. Herein, we describe an unexpected role of Stamp2 in polymorphonuclear neutrophils (PMN) and characterize Stamp2’s protective effects in myocardial ischemic injury. In a murine model of ischemia and reperfusion (I/R), echocardiography and histological analyses revealed a pronounced impairment of cardiac function in hearts of Stamp2-deficient- (Stamp2-/-) mice as compared to wild-type (WT) animals. This difference was driven by aggravated cardiac fibrosis, as augmented fibroblast-to-myofibroblast transdifferentiation was observed which was mediated by activation of the redox-sensitive p38 mitogen-activated protein kinase (p38 MAPK). Furthermore, we observed increased production of reactive oxygen species (ROS) in Stamp2-/- hearts after I/R, which is the likely cause for p38 MAPK activation. Although myocardial macrophage numbers were not affected by Stamp2 deficiency after I/R, augmented myocardial infiltration by polymorphonuclear neutrophils (PMN) was observed, which coincided with enhanced myeloperoxidase (MPO) plasma levels. Primary PMN isolated from Stamp2-/- animals exhibited a proinflammatory phenotype characterized by enhanced nuclear factor (NF)-κB activity and MPO secretion. To prove the critical role of PMN for the observed phenotype after I/R, antibody-mediated PMN depletion was performed in Stamp2-/- mice which reduced deterioration of LV function and adverse structural remodeling to WT levels. These data indicate a novel role of Stamp2 as an anti-inflammatory regulator of PMN and fibroblast-to-myofibroblast transdifferentiation in myocardial I/R injury.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Senai Bokredenghel
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Anna Klinke
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.,Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, University Hospital Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Tobias Morstadt
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Merve Torun
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Sabrina Strauch
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Wibke Schumacher
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Martina Maass
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Jürgen Konradi
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Vera B M Peters
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Eva Berghausen
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Marius Vantler
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Stephan Rosenkranz
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Simon Braumann
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Felix Nettersheim
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Alexander Hof
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Sakine Simsekyilmaz
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.,Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, University Hospital Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Stephan Baldus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Matti Adam
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Henrik Ten Freyhaus
- Department for Experimental Cardiology, Faculty of Medicine, University of Cologne, and Clinic III for Internal Medicine, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| |
Collapse
|
81
|
Schumacher D, Liehn EA, Singh A, Curaj A, Wijnands E, Lira SA, Tacke F, Jankowski J, Biessen EA, van der Vorst EP. CCR6 Deficiency Increases Infarct Size after Murine Acute Myocardial Infarction. Biomedicines 2021; 9:1532. [PMID: 34829761 PMCID: PMC8614800 DOI: 10.3390/biomedicines9111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Ischemia-reperfusion injury after the reopening of an occluded coronary artery is a major cause of cardiac damage and inflammation after acute myocardial infarction. The chemokine axis CCL20-CCR6 is a key player in various inflammatory processes, including atherosclerosis; however, its role in ischemia-reperfusion injury has remained elusive. Therefore, to gain more insight into the role of the CCR6 in acute myocardial infarction, we have studied cardiac injury after transient ligation of the left anterior descending coronary artery followed by reperfusion in Ccr6-/- mice and their respective C57Bl/6 wild-type controls. Surprisingly, Ccr6-/- mice demonstrated significantly reduced cardiac function and increased infarct sizes after ischemia/reperfusion. This coincided with a significant increase in cardiac inflammation, characterized by an accumulation of neutrophils and inflammatory macrophage accumulation. Chimeras with a bone marrow deficiency of CCR6 mirrored this adverse Ccr6-/- phenotype, while cardiac injury was unchanged in chimeras with stromal CCR6 deficiency. This study demonstrates that CCR6-dependent (bone marrow) cells exert a protective role in myocardial infarction and subsequent ischemia-reperfusion injury, supporting the notion that augmenting CCR6-dependent immune mechanisms represents an interesting therapeutic target.
Collapse
Affiliation(s)
- David Schumacher
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (D.S.); (A.C.); (J.J.); (E.A.L.B.)
- Department of Anesthesiology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Elisa A. Liehn
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany;
- Department of Cardiology, Angiology and Intensive Medicine, University Hospital Aachen, 52074 Aachen, Germany
- National Institute for Pathology “Victor Babes”, 050096 Bucharest, Romania
- Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Anjana Singh
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands; (A.S.); (E.W.)
- Cognizant Technology Solutions, Phase II Hinjawadi, Pune 411 057, Maharashtra, India
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (D.S.); (A.C.); (J.J.); (E.A.L.B.)
| | - Erwin Wijnands
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands; (A.S.); (E.W.)
| | - Sergio A. Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Frank Tacke
- Department of Hepatology and Gastroenterolgy, Campus Virchow-Klinikum and Campus Charité Mitte, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (D.S.); (A.C.); (J.J.); (E.A.L.B.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands; (A.S.); (E.W.)
| | - Erik A.L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (D.S.); (A.C.); (J.J.); (E.A.L.B.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands; (A.S.); (E.W.)
| | - Emiel P.C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (D.S.); (A.C.); (J.J.); (E.A.L.B.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands; (A.S.); (E.W.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
82
|
Bai Z, Sun H, Li X, Wu J, Yuan H, Zhang G, Yang H, Shi H. Time-ordered dysregulated ceRNA networks reveal disease progression and diagnostic biomarkers in ischemic and dilated cardiomyopathy. Cell Death Discov 2021; 7:296. [PMID: 34657123 PMCID: PMC8520530 DOI: 10.1038/s41420-021-00687-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two main causes of heart failure (HF). Despite similar clinical characteristics and common “HF pathways”, ICM and DCM are expected to have different personalized treatment strategies. The underlying mechanisms of ICM and DCM have yet to be fully elucidated. The present study developed a novel computational method for identifying dysregulated long noncoding RNA (lncRNA)–microRNA (miRNA)–mRNA competing endogenous RNA (ceRNA) triplets. Time-ordered dysregulated ceRNA networks were subsequently constructed to reveal the possible disease progression of ICM and DCM based on the method. Biological functional analysis indicated that ICM and DCM had similar features during myocardial remodeling, whereas their characteristics differed during progression. Specifically, disturbance of myocardial energy metabolism may be the main characteristic during DCM progression, whereas early inflammation and response to oxygen are the characteristics that may be specific to ICM. In addition, several panels of diagnostic biomarkers for differentiating non-heart failure (NF) and ICM (NF-ICM), NF-DCM, and ICM-DCM were identified. Our study reveals biological differences during ICM and DCM progression and provides potential diagnostic biomarkers for ICM and DCM.
Collapse
Affiliation(s)
- Ziyi Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoran Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiuhong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Hao Yuan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guangde Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
83
|
Chong SY, Zharkova O, Yatim SMJ, Wang X, Lim XC, Huang C, Tan CY, Jiang J, Ye L, Tan MS, Angeli V, Versteeg HH, Dewerchin M, Carmeliet P, Lam CS, Chan MY, de Kleijn DP, Wang JW. Tissue factor cytoplasmic domain exacerbates post-infarct left ventricular remodeling via orchestrating cardiac inflammation and angiogenesis. Am J Cancer Res 2021; 11:9243-9261. [PMID: 34646369 PMCID: PMC8490508 DOI: 10.7150/thno.63354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 01/14/2023] Open
Abstract
The coagulation protein tissue factor (TF) regulates inflammation and angiogenesis via its cytoplasmic domain in infection, cancer and diabetes. While TF is highly abundant in the heart and is implicated in cardiac pathology, the contribution of its cytoplasmic domain to post-infarct myocardial injury and adverse left ventricular (LV) remodeling remains unknown. Methods: Myocardial infarction was induced in wild-type mice or mice lacking the TF cytoplasmic domain (TF∆CT) by occlusion of the left anterior descending coronary artery. Heart function was monitored with echocardiography. Heart tissue was collected at different time-points for histological, molecular and flow cytometry analysis. Results: Compared with wild-type mice, TF∆CT had a higher survival rate during a 28-day follow-up after myocardial infarction. Among surviving mice, TF∆CT mice had better cardiac function and less LV remodeling than wild-type mice. The overall improvement of post-infarct cardiac performance in TF∆CT mice, as revealed by speckle-tracking strain analysis, was attributed to reduced myocardial deformation in the peri-infarct region. Histological analysis demonstrated that TF∆CT hearts had in the infarct area greater proliferation of myofibroblasts and better scar formation. Compared with wild-type hearts, infarcted TF∆CT hearts showed less infiltration of proinflammatory cells with concomitant lower expression of protease-activated receptor-1 (PAR1) - Rac1 axis. In particular, infarcted TF∆CT hearts displayed markedly lower ratios of inflammatory M1 macrophages and reparative M2 macrophages (M1/M2). In vitro experiment with primary macrophages demonstrated that deletion of the TF cytoplasmic domain inhibited macrophage polarization toward the M1 phenotype. Furthermore, infarcted TF∆CT hearts presented markedly higher peri-infarct vessel density associated with enhanced endothelial cell proliferation and higher expression of PAR2 and PAR2-associated pro-angiogenic pathway factors. Finally, the overall cardioprotective effects observed in TF∆CT mice could be abolished by subcutaneously infusing a cocktail of PAR1-activating peptide and PAR2-inhibiting peptide via osmotic minipumps. Conclusions: Our findings demonstrate that the TF cytoplasmic domain exacerbates post-infarct cardiac injury and adverse LV remodeling via differential regulation of inflammation and angiogenesis. Targeted inhibition of the TF cytoplasmic domain-mediated intracellular signaling may ameliorate post-infarct LV remodeling without perturbing coagulation.
Collapse
|
84
|
Pluripotent stem cell-derived mesenchymal stromal cells improve cardiac function and vascularity after myocardial infarction. Cytotherapy 2021; 23:1074-1084. [PMID: 34588150 DOI: 10.1016/j.jcyt.2021.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have been shown to improve cardiac function after injury and are the subject of ongoing clinical trials. In this study, the authors tested the cardiac regenerative potential of an induced pluripotent stem cell-derived MSC (iPSC-MSC) population (Cymerus MSCs) in a rat model of myocardial ischemia-reperfusion (I/R). Furthermore, the authors compared this efficacy with bone marrow-derived MSCs (BM-MSCs), which are the predominant cell type in clinical trials. METHODS Four days after myocardial I/R injury, rats were randomly assigned to (i) a Cymerus MSC group (n = 15), (ii) a BM-MSC group (n = 15) or (iii) a vehicle control group (n = 14). For cell-treated animals, a total of 5 × 106 cells were injected at three sites within the infarcted left ventricular (LV) wall. RESULTS One month after cell transplantation, Cymerus MSCs improved LV function (assessed by echocardiography) compared with vehicle and BM-MSCs. Interestingly, Cymerus MSCs enhanced angiogenesis without sustained engraftment or significant impact on infarct scar size. Suggesting safety, Cymerus MSCs had no effect on inducible tachycardia or the ventricular scar heterogeneity that provides a substrate for cardiac re-entrant circuits. CONCLUSIONS The authors here demonstrate that intra-myocardial administration of iPSC-MSCs (Cymerus MSCs) provide better therapeutic effects compared with conventional BM-MSCs in a rodent model of myocardial I/R. Because of its manufacturing scalability, iPSC-MSC therapy offers an exciting opportunity for an "off-the-shelf" stem cell therapy for cardiac repair.
Collapse
|
85
|
Tanner MA, Maitz CA, Grisanti LA. Immune cell β 2-adrenergic receptors contribute to the development of heart failure. Am J Physiol Heart Circ Physiol 2021; 321:H633-H649. [PMID: 34415184 PMCID: PMC8816326 DOI: 10.1152/ajpheart.00243.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
β-Adrenergic receptors (βARs) regulate normal and pathophysiological heart function through their impact on contractility. βARs are also regulators of immune function where they play a unique role depending on the disease condition and immune cell type. Emerging evidence suggests an important role for the β2AR subtype in regulating remodeling in the pathological heart; however, the importance of these responses has never been examined. In heart failure, catecholamines are elevated, leading to chronic βAR activation and contributing to the detrimental effects in the heart. We hypothesized that immune cell β2AR plays a critical role in the development of heart failure in response to chronic catecholamine elevations through their regulation of immune cell infiltration. To test this, chimeric mice were generated by performing bone marrow transplant (BMT) experiments using wild-type (WT) or β2AR knockout (KO) donors. WT and β2ARKO BMT mice were chronically administered the βAR agonist isoproterenol. Immune cell recruitment to the heart was examined by histology and flow cytometry. Numerous changes in immune cell recruitment were observed with isoproterenol administration in WT BMT mice including proinflammatory myeloid populations and lymphocytes with macrophages made up the majority of immune cells in the heart and which were absent in β2ARKO BMT animal. β2ARKO BMT mice had decreased cardiomyocyte death, hypertrophy, and interstitial fibrosis following isoproterenol treatment, culminating in improved function. These findings demonstrate an important role for immune cell β2AR expression in the heart's response to chronically elevated catecholamines.NEW & NOTEWORTHY Immune cell β2-adrenergic receptors (β2ARs) are important for proinflammatory macrophage infiltration to the heart in a chronic isoproterenol administration model of heart failure. Mice lacking immune cell β2AR have decreased immune cell infiltration to their heart, primarily proinflammatory macrophage populations. This decrease culminated to decreased cardiac injury with lessened cardiomyocyte death, decreased interstitial fibrosis and hypertrophy, and improved function demonstrating that β2AR regulation of immune responses plays an important role in the heart's response to persistent βAR stimulation.
Collapse
Affiliation(s)
- Miles A Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri, College of Veterinary Medicine, Columbia, Missouri
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
86
|
Sasmita BR, Zhu Y, Gan H, Hu X, Xue Y, Xiang Z, Huang B, Luo S. Prognostic value of neutrophil-lymphocyte ratio in cardiogenic shock complicating acute myocardial infarction: A cohort study. Int J Clin Pract 2021; 75:e14655. [PMID: 34320267 DOI: 10.1111/ijcp.14655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUNDS Cardiogenic shock (CS) is the most severe complication after acute myocardial infarction (AMI) with mortality above 50%. Inflammatory response is involved in the pathology of CS and AMI. In this study, we aimed to evaluate the prognostic value of admission neutrophil-lymphocyte ratio (NLR) in patients with CS complicating AMI. METHODS Two hundred and seventeen consecutive patients with CS after AMI were divided into two groups according to the admission NLR cut-off value ≤7.3 and >7.3. The primary outcome was 30-day all-cause mortality and the secondary end-point was the composite events of major adverse cardiovascular events (MACE), including all-cause mortality, ventricular tachycardia/ventricular fibrillation, atrioventricular block, gastrointestinal haemorrhage and non-fatal stroke. Cox proportional hazard models were performed to analyse the association of NLR with the outcome. NLR cut-off value was determined by Youden index. RESULTS Patients with NLR > 7.3 were older and presented with lower lymphocyte count, higher admission heart rate, B-type natriuretic peptide, leucocyte, neutrophil and creatinine (all P < .05). During a period of 30-day follow-up after admission, mortality in patients with NLR > 7.3 was significantly higher than in patients with NLR ≤ 7.3 (73.7% vs. 26.3%, P < .001). The incidence of MACE was also remarkably higher in patients with NLR > 7.3 (87.9% vs. 53.4%, P < .001). After multivariable adjustment, NLR > 7.3 remained an independent predictor for higher risk of 30-day mortality (HR 2.806; 95%CI 1.784, 4.415, P < .001) and MACE (HR 2.545; 95%CI 1.791, 3.617, P < .001). CONCLUSIONS Admission NLR could be used as an important tool for short-term prognostic evaluation in patients with CS complicating AMI and higher NLR is an independent predictor for increased 30-day all-cause mortality and MACE.
Collapse
Affiliation(s)
- Bryan Richard Sasmita
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuansong Zhu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Gan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiankang Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Xue
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenxian Xiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
87
|
Cardiac Immunology: A New Era for Immune Cells in the Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 32910424 DOI: 10.1007/5584_2020_576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The immune system is essential for the development and homeostasis of the human body. Our current understanding of the immune system on disease pathogenesis has drastically expanded over the last decade with the definition of additional non-canonical roles in various tissues. Recently, tissue-resident immune cells have become an important research topic for understanding their roles in the prevention, pathogenesis, and recovery from the diseases. Heart resident immune cells, particularly macrophage subtypes, and their characteristic morphology, distribution in the cardiac tissue, and transcriptional profile have been recently reported in the experimental animal models, unrevealing novel and unexpected roles in electrophysiological regulation of the heart both at the steady-state and diseased state. Immunological processes have been widely studied in both sterile cardiac disorders, such as myocardial infarction, autoimmune cardiac diseases, or infectious cardiac diseases, such as myocarditis, endocarditis, and acute rheumatic carditis. Following cardiac injury, innate and adaptive immunity have critical roles in pro- and anti-inflammatory processes. Heart resident immune cells not only provide defense against infectious diseases but also contribute to the homeostasis. In recent years, physiological changes and pathological processes were demonstrated to alter the abundance, distribution, polarization, and diversity of immune cells in the heart. Accumulating evidence indicates that cardiac remodeling is controlled by the complex crosstalk between cardiomyocytes and cardiac immune cells through the gap junctions, providing the ion flow to achieve synchronization and modulation of contractility. This review article aims to review the well-documented roles of both resident and recruited immune cell in the heart, as well as their recently uncovered unconventional roles in both cardiac homeostasis and cardiovascular diseases. We have mostly focused on studies on animal models used in preclinical research, underlying the need for further investigations in humans or in vitro human models. It may be foreseen that the further comprehensive investigations of cardiac immunology might harbor new therapeutic options for cardiac disorders that have tremendous medical potential.
Collapse
|
88
|
Puhl SL, Hilby M, Kohlhaas M, Keidel LM, Jansen Y, Hristov M, Schindler J, Maack C, Steffens S. Haematopoietic and cardiac GPR55 synchronize post-myocardial infarction remodelling. Sci Rep 2021; 11:14385. [PMID: 34257332 PMCID: PMC8277802 DOI: 10.1038/s41598-021-93755-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
While classical cannabinoid receptors are known to crucially impact on myocardial infarction (MI) repair, a function of the cannabinoid-sensitive receptor GPR55 herein is poorly understood. We investigated the role of GPR55 in cardiac physiology and post-MI inflammation and remodelling. Global GPR55-/- and wildtype (WT) mice were basally characterized or assigned to 1, 3 or 28 days permanent MI and subsequently analysed via pro-inflammatory and pro-hypertrophic parameters. GPR55-/- deficiency was basally associated with bradycardia, increased diastolic LV volume and sarcomere length and a subtle inflammatory phenotype. While infarct size and myeloid cell infiltration were unaffected by GPR55 depletion, acute cardiac chemokine production was prolonged post-MI. Concurrently, GPR55-/- hearts exhibited a premature expansion of pro-reparative and phagocytic macrophages paralleled by early up-regulation of extracellular matrix (ECM) factors 3 days post-MI, which could be mimicked by sole haematopoietic GPR55 depletion. Moreover, global GPR55 deficiency mitigated MI-induced foetal gene re-programming and cardiomyocyte hypertrophy, culminating in aggravated LV dilatation and infarct expansion. GPR55 regulates cardiac homeostasis and ischaemia responses by maintaining adequate LV filling and modulating three crucial processes post-MI: wound healing kinetics, cardiomyocyte hypertrophy and maladaptive remodelling.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Michael Hilby
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Linus M Keidel
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Jakob Schindler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstr. 9, 80336, Munich, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- Medical Clinic I, University Clinic Würzburg, Würzburg, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
89
|
Role of Neutrophils in Cardiac Injury and Repair Following Myocardial Infarction. Cells 2021; 10:cells10071676. [PMID: 34359844 PMCID: PMC8305164 DOI: 10.3390/cells10071676] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are first-line responders of the innate immune system. Following myocardial infarction (MI), neutrophils are quickly recruited to the ischemic region, where they initiate the inflammatory response, aiming at cleaning up dead cell debris. However, excessive accumulation and/or delayed removal of neutrophils are deleterious. Neutrophils can promote myocardial injury by releasing reactive oxygen species, granular components, and pro-inflammatory mediators. More recent studies have revealed that neutrophils are able to form extracellular traps (NETs) and produce extracellular vesicles (EVs) to aggravate inflammation and cardiac injury. On the contrary, there is growing evidence showing that neutrophils also exert anti-inflammatory, pro-angiogenic, and pro-reparative effects, thus facilitating inflammation resolution and cardiac repair. In this review, we summarize the current knowledge on neutrophils’ detrimental roles, highlighting the role of recently recognized NETs and EVs, followed by a discussion of their beneficial effects and molecular mechanisms in post-MI cardiac remodeling. In addition, emerging concepts about neutrophil diversity and their modulation of adaptive immunity are discussed.
Collapse
|
90
|
The Intrapericardial Delivery of Extracellular Vesicles from Cardiosphere-Derived Cells Stimulates M2 Polarization during the Acute Phase of Porcine Myocardial Infarction. Stem Cell Rev Rep 2021; 16:612-625. [PMID: 31865532 PMCID: PMC7253530 DOI: 10.1007/s12015-019-09926-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute myocardial infarction triggers a strong inflammatory response in the affected cardiac tissue. New therapeutic tools based on stem cell therapy may modulate the unbalanced inflammation in the damaged cardiac tissue, contributing to the resolution of this pathological condition. The main goal of this study was to analyze the immunomodulatory effects of cardiosphere-derived cells (CDCs) and their extracellular vesicles (EV-CDCs), delivered by intrapericardial administration in a clinically relevant animal model, during the initial pro-inflammatory phase of an induced myocardial infarction. This effect was assessed in peripheral blood and pericardial fluid leukocytes from infarcted animals. Additionally, cardiac functional parameters, troponin I, hematological and biochemical components were also analyzed to characterize myocardial infarction-induced changes, as well as the safety aspects of these procedures. Our preclinical study demonstrated a successful myocardial infarction induction in all animals, without any reported adverse effect related to the intrapericardial administration of CDCs or EV-CDCs. Significant changes were observed in biochemical and immunological parameters after myocardial infarction. The analysis of peripheral blood leukocytes revealed an increase of M2 monocytes in the EV-CDCs group, while no differences were reported in other lymphocyte subsets. Moreover, arginase-1 (M2-differentiation marker) was significantly increased in pericardial fluids 24 h after EV-CDCs administration. In summary, we demonstrate that, in our experimental conditions, intrapericardially administered EV-CDCs have an immunomodulatory effect on monocyte polarization, showing a beneficial effect for counteracting an unbalanced inflammatory reaction in the acute phase of myocardial infarction. These M2 monocytes have been defined as “pro-regenerative cells” with a pro-angiogenic and anti-inflammatory activity.
Collapse
|
91
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
92
|
Hally KE, Parker OM, Brunton-O'Sullivan MM, Harding SA, Larsen PD. Linking Neutrophil Extracellular Traps and Platelet Activation: A Composite Biomarker Score for Predicting Outcomes after Acute Myocardial Infarction. Thromb Haemost 2021; 121:1637-1649. [PMID: 33984869 DOI: 10.1055/s-0041-1728763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Activation of both platelets and neutrophils can contribute to the risk of major adverse cardiovascular events (MACE) following acute myocardial infarction (AMI). Neutrophil extracellular traps (NETs) are an important product of the platelet-neutrophil axis and exaggerate vascular damage in cardiovascular disease. Additionally, activated platelets can drive NETosis and are directly linked to thromboembolic risk. Investigating the combined effect of biomarkers for NETosis and platelet activation represents a novel approach to risk prediction post-AMI. Here, we examined the utility of a composite biomarker score, inclusive of both pathways, for predicting MACE post-AMI. METHODS AND RESULTS In a case-control design, 100 case patients who experienced MACE within 1 year of index admission were matched in a 1:2 ratio with control patients. Serum levels of myeloperoxidase-DNA, neutrophil elastase-DNA, and citrullinated histone H3 were assayed by enzyme-linked immunosorbent assay (ELISA) as markers of NET burden. To measure platelet activation, soluble P-selectin was assayed by ELISA in parallel. Platelet and neutrophil counts were also recorded. Composite biomarker scores, inclusive of biomarkers for NETosis and platelet activation, were assessed using multivariate regression modeling. These composite biomarker scores were independent predictors of 1-year MACE. The strongest association with MACE was observed using a composite of platelet count, soluble P-selectin, and all NET markers (odds ratio: 1.94; 1.16-3.25). CONCLUSION Here, we demonstrate the importance of combining biomarkers of NETosis and platelet activation for risk prediction in patients with AMI. Combining biomarkers from closely linked, but distinct, biological pathways was more effective than utilizing either type of biomarker alone.
Collapse
Affiliation(s)
- Kathryn E Hally
- Department of Surgery and Anaesthesia, The University of Otago, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Olivia M Parker
- Department of Surgery and Anaesthesia, The University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Morgane M Brunton-O'Sullivan
- Department of Surgery and Anaesthesia, The University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand
| | - Scott A Harding
- Wellington Cardiovascular Research Group, Wellington, New Zealand.,Department of Cardiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Peter D Larsen
- Department of Surgery and Anaesthesia, The University of Otago, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Wellington Cardiovascular Research Group, Wellington, New Zealand
| |
Collapse
|
93
|
Elde S, Wang H, Woo YJ. Navigating the Crossroads of Cell Therapy and Natural Heart Regeneration. Front Cell Dev Biol 2021; 9:674180. [PMID: 34046410 PMCID: PMC8148343 DOI: 10.3389/fcell.2021.674180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite significant advances in our understanding of the disease and its treatment. Consequently, the therapeutic potential of cell therapy and induction of natural myocardial regeneration have stimulated a recent surge of research and clinical trials aimed at addressing this challenge. Recent developments in the field have shed new light on the intricate relationship between inflammation and natural regeneration, an intersection that warrants further investigation.
Collapse
Affiliation(s)
- Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
94
|
Ministrini S, Carbone F, Montecucco F. Updating concepts on atherosclerotic inflammation: From pathophysiology to treatment. Eur J Clin Invest 2021; 51:e13467. [PMID: 33259635 DOI: 10.1111/eci.13467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atherosclerosis is recognized as a systemic low-grade inflammatory disease. Furthermore, the dysregulation of the inflammatory response and its timely resolution is a pivotal process in determining the clinical manifestations of cardiac and cerebral acute ischaemia following atherothrombosis. METHODS This narrative review is based on the material searched on PubMed up to October 2020. The search terms we used were as follows: "atherosclerosis, inflammation, acute myocardial infarction and ischemic stroke" in combination with "biomarker, inflammatory cells and molecules, treatment." RESULTS The expected goal of addressing inflammation for the treatment of atherosclerosis and its acute ischaemic complications is reducing mortality and morbidity related to atherosclerotic cardiovascular disease, which are currently the first cause of death and disability worldwide. In this narrative review, we summarize the evidence about the main cellular and molecular mechanisms of inflammation in atherogenesis, atherothrombosis and acute ischaemic complications, with particular focus on the potential molecular targets for novel pharmacological treatments. CONCLUSION Although a large amount of evidence from animal models of atherothrombotic disease, and promising results of clinical trials, anti-inflammatory treatments against atherosclerosis are not yet recommended. A deepest understanding of pathophysiological mechanisms underlying the mechanisms driving resolution of the acute inflammation will probably allow to identify the optimal molecular target.
Collapse
Affiliation(s)
- Stefano Ministrini
- Department of Medicine, Internal Medicine, Università degli Studi di Perugia, Perugia, Italy.,Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
95
|
Li J, Conrad C, Mills TW, Berg NK, Kim B, Ruan W, Lee JW, Zhang X, Yuan X, Eltzschig HK. PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J Exp Med 2021; 218:212023. [PMID: 33891683 PMCID: PMC8077173 DOI: 10.1084/jem.20210008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Previous studies implicated the neuronal guidance molecule netrin-1 in attenuating myocardial ischemia-reperfusion injury. However, the tissue-specific sources and receptor signaling events remain elusive. Neutrophils are among the first cells responding to an ischemic insult and can be associated with tissue injury or rescue. We found netrin-1 levels were elevated in the blood of patients with myocardial infarction, as well as in mice exposed to myocardial ischemia-reperfusion. Selectively increased infarct sizes and troponin levels were found in Ntn1loxP/loxP Lyz2 Cre+ mice, but not in mice with conditional netrin-1 deletion in other tissue compartments. In vivo studies using neutrophil depletion identified neutrophils as the main source for elevated blood netrin-1 during myocardial injury. Finally, pharmacologic studies using treatment with recombinant netrin-1 revealed a functional role for purinergic signaling events through the myeloid adenosine A2b receptor in mediating netrin-1-elicited cardioprotection. These findings suggest an autocrine signaling loop with a functional role for neutrophil-derived netrin-1 in attenuating myocardial ischemia-reperfusion injury through myeloid adenosine A2b signaling.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Catharina Conrad
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Tingting W Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Nathaniel K Berg
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Boyun Kim
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Wei Ruan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX.,Department of Anesthesiology, Second Xiangya Hospital, Central South University, Hunan, China
| | - Jae W Lee
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT
| | - Xu Zhang
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX
| |
Collapse
|
96
|
Infarct in the Heart: What's MMP-9 Got to Do with It? Biomolecules 2021; 11:biom11040491. [PMID: 33805901 PMCID: PMC8064345 DOI: 10.3390/biom11040491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, numerous studies have shown a strong connection between matrix metalloproteinase 9 (MMP-9) levels and myocardial infarction (MI) mortality and left ventricle remodeling and dysfunction. Despite this fact, clinical trials using MMP-9 inhibitors have been disappointing. This review focuses on the roles of MMP-9 in MI wound healing. Infiltrating leukocytes, cardiomyocytes, fibroblasts, and endothelial cells secrete MMP-9 during all phases of cardiac repair. MMP-9 both exacerbates the inflammatory response and aids in inflammation resolution by stimulating the pro-inflammatory to reparative cell transition. In addition, MMP-9 has a dual effect on neovascularization and prevents an overly stiff scar. Here, we review the complex role of MMP-9 in cardiac wound healing, and highlight the importance of targeting MMP-9 only for its detrimental actions. Therefore, delineating signaling pathways downstream of MMP-9 is critical.
Collapse
|
97
|
James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22063005. [PMID: 33809429 PMCID: PMC8001925 DOI: 10.3390/ijms22063005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy 3065, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| |
Collapse
|
98
|
Farache Trajano L, Smart N. Immunomodulation for optimal cardiac regeneration: insights from comparative analyses. NPJ Regen Med 2021; 6:8. [PMID: 33589632 PMCID: PMC7884783 DOI: 10.1038/s41536-021-00118-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Despite decades of research, regeneration of the infarcted human heart remains an unmet ambition. A significant obstacle facing experimental regenerative therapies is the hostile immune response which arises following a myocardial infarction (MI). Upon cardiac damage, sterile inflammation commences via the release of pro-inflammatory meditators, leading to the migration of neutrophils, eosinophils and monocytes, as well as the activation of local vascular cells and fibroblasts. This response is amplified by components of the adaptive immune system. Moreover, the physical trauma of the infarction and immune-mediated tissue injury provides a supply of autoantigens, perpetuating a cycle of autoreactivity, which further contributes to adverse remodelling. A gradual shift towards an immune-resolving environment follows, culminating in the formation of a collagenous scar, which compromises cardiac function, ultimately driving the development of heart failure. Comparing the human heart with those of animal models that are capable of cardiac regeneration reveals key differences in the innate and adaptive immune responses to MI. By modulating key immune components to better resemble those of regenerative species, a cardiac environment may be established which would, either independently or via the synergistic application of emerging regenerative therapies, improve functional recovery post-MI.
Collapse
Affiliation(s)
- Luiza Farache Trajano
- British Heart Foundation Centre of Regenerative Medicine, Burdon Sanderson Cardiac Science centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nicola Smart
- British Heart Foundation Centre of Regenerative Medicine, Burdon Sanderson Cardiac Science centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
99
|
Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 2 (Literature review). КЛИНИЧЕСКАЯ ПРАКТИКА 2020. [DOI: 10.17816/clinpract48893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the second part of the review, we continue the discussion of biomarkers that have a diagnostic and prognostic significance in acute myocardial infarction (AMI). The study of the AMI pathophysiology through the experimental and clinical research contributes to the discovery of new regulatory molecules and pathogenetic mechanisms underlying AMI. At the same time, many molecules involved in the pathogenesis of AMI can be used as effective biomarkers for the diagnosis and prediction of AMI. This article discusses in detail the diagnostic and prognostic value of inflammatory biomarkers of AMI (C-reactive protein, interleukin-6, tumor necrosis factor-alpha, myeloperoxidase, matrix metalloproteinases, soluble form of CD40 ligand, procalcitonin, placental growth factor) and a number of recently discovered new biomarkers of AMI (microribonucleic acids, galectin-3, stimulating growth factor expressed by gene 2, growth differentiation factor 15, proprotein convertase of subtilisin-kexin type 9).
Collapse
|
100
|
Circadian influence on inflammatory response during cardiovascular disease. Curr Opin Pharmacol 2020; 57:60-70. [PMID: 33340915 DOI: 10.1016/j.coph.2020.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Circadian rhythms follow a 24 h day and night cycle, regulate vital physiological processes, and are especially relevant to cardiovascular growth, renewal, repair, and remodeling. A recent flurry of clinical and experimental studies reveals a profound circadian influence on immune responses in cardiovascular disease. The first section of this review summarizes the importance of circadian rhythms for cardiovascular health and disease. The second section introduces the circadian nature of inflammatory responses. The third section combines these to elucidate a new role for the circadian system, influencing inflammation in heart disease, especially myocardial infarction. Particular focus is on circadian regulation of the NACHT, LRR, and PYD domains-containing protein 3 inflammasome, neutrophils, monocytes/macrophages, and T cells involved in cardiac repair. A role for biological sex is noted. The final section explores circadian influences on inflammation in other major cardiovascular conditions. Circadian regulation of inflammation has profound implications for benefitting the diagnosis, treatment, and prognosis of patients with cardiovascular disease.
Collapse
|