51
|
Han SG, Sillé FC, Mihalic JN, Rule AM. The relationship between the use of electronic nicotine delivery systems (ENDS) and effects on pulmonary immune responses-a literature review. ENVIRONMENTAL RESEARCH 2023; 221:115234. [PMID: 36634896 DOI: 10.1016/j.envres.2023.115234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION The use of electronic nicotine delivery systems (ENDS), or vaping, is a relatively recent phenomenon, and there are various gaps in our current knowledge regarding the specific effects of e-cigarettes, such as their immunological effects. The importance of this question became even more relevant in light of the COVID-19 pandemic. OBJECTIVE This literature review examines the relationship between the use of electronic nicotine delivery systems (ENDS) and immunological effects to examine available information and identify gaps in the current knowledge. Our search strategy included studies focusing on the effects of ENDS on the immune response during infectious respiratory diseases such as COVID-19 and pneumonia. METHODS Peer-reviewed studies presenting quantitative data published from 2007, the year that e-cigarettes were introduced to the US market until 2022 have been included. All studies were indexed in PubMed. We excluded papers on THC and EVALI (E-cigarette, or Vaping Product, Use Associated Lung Injury) as we wanted to focus on the effects of nicotine devices. RESULTS Among the 21 articles that assessed the relationship between ENDS and immunological health effects, we found eight studies based on cell models, two articles based on both cell and mouse models, five articles based on mouse models, and six studies of human populations. Most of the articles identified in our review demonstrated a potential association between vaping and adverse immunological health effects. DISCUSSION Overall, the evidence from the cell and animal studies indicates that there is a positive, statistically significant association between vaping and adverse immune response during infectious respiratory diseases. The evidence from human studies is not conclusive.
Collapse
Affiliation(s)
- Seok Gyu Han
- Johns Hopkins Bloomberg School of Public Health; 615 N. Wolfe St, Baltimore, MD, 21205, United States
| | - Fenna Cm Sillé
- Johns Hopkins Bloomberg School of Public Health; 615 N. Wolfe St, Baltimore, MD, 21205, United States
| | - Jana N Mihalic
- Johns Hopkins Bloomberg School of Public Health; 615 N. Wolfe St, Baltimore, MD, 21205, United States
| | - Ana M Rule
- Johns Hopkins Bloomberg School of Public Health; 615 N. Wolfe St, Baltimore, MD, 21205, United States.
| |
Collapse
|
52
|
Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res 2023; 72:1-13. [PMID: 36545873 PMCID: PMC10069808 DOI: 10.33549/physiolres.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Pyroptosis is a form of cell death associated with inflammation. In the maintenance of airway homeostasis, pyroptosis goes through activation and assembly of Inflammasome. The pyroptosis pathway is mediated by caspase which activates the pore-forming effect of substrate gasdermin family members. It eventually leads to lysis and release of the cell contents and then induces an inflammatory response. In this process, it participates in airway homeostasis regulation by affecting airway immunity, airway epithelial structure and airway microbiota. Therefore, we discussed the correlation between airway immunity, airway epithelial structure, airway microbiota and the mechanism of pyroptosis to describe the role of pyroptosis in airway homeostasis regulation which is of great significance for understanding the occurrence and treatment of airway inflammatory diseases.
Collapse
Affiliation(s)
- P Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. and
| | | | | |
Collapse
|
53
|
Zhai Y, Zheng P, Sun B, Li J, Wang B. Allergen-specific immunotherapy with Alutard SQ improves allergic inflammation in house-dust mites-induced allergic asthma rats through inactivation of the HMGB1/TLR4/NF-κB pathway. J Thorac Dis 2023; 15:77-89. [PMID: 36794148 PMCID: PMC9922602 DOI: 10.21037/jtd-22-715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
Background Allergen-specific immunotherapy (AIT) is the only available safe, effective, and long-term treatment for allergic airway diseases, including allergic asthma. However, the potential molecular mechanism of AIT in ameliorating airway inflammation remains unknown. Methods Rats were sensitized and challenged with house dust mite (HDM) and administered with Alutard SQ or/and high mobility group box 1 (HMGB1) inhibitor, ammonium glycyrrhizinate (AMGZ) or HMGB1 lentivirus. The total and differential cell counts in rat bronchoalveolar lavage fluid (BALF) were detected. Hematoxylin and eosin staining (H&E) was performed to examine the pathological lesions in lung tissues. Enzyme-linked immunosorbent assay (ELISA) was performed to assess the expression of inflammatory factors in lungs, BALF, and serum. Quantitative real-time PCR (qRT-PCR) was used to measure the levels of inflammatory factors in the lungs. Western blot assay was used to evaluate the expression of HMGB1, Τoll-like receptor 4 (TLR4), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the lungs. Results Consequently, AIT with Alutard SQ attenuated airway inflammation, the total and differential cells in BALF, and expression of Th (T helper)2 related cytokines and transforming growth factor beta 1 (TGF-β1). The regimen also upregulated Th-1-related cytokine expression by inhibiting the HMGB1/TLR4/NF-κB pathway in HDM-induced asthmatic rats. Furthermore, AMGZ, a HMGB1 antagonist, amplified the functions of AIT with Alutard SQ in the asthma rat model. Nevertheless, overexpression of HMGB1 reversed the functions of AIT with Alutard SQ in the asthma rat model. Conclusions In summary, this work demonstrates the role of AIT with Alutard SQ, which inhibits the HMGB1/TLR4/NF-κB signaling pathway in allergic asthma management.
Collapse
Affiliation(s)
- Yingying Zhai
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China;,Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyan Zheng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
54
|
Salama A, Elgohary R, Mowaad N, Sadek D, Abdelhamid W. Toxic effect of carpet dust on the biochemical indices and histological structure of the lung in rats: the potential role of cytochrome P450 2E1 and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways. Biomarkers 2023; 28:289-301. [PMID: 36588463 DOI: 10.1080/1354750x.2023.2164905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Carpet dust exposure in the carpet industry causes various respiratory hazards that lead to permanent loss of lung function. This study investigated the potentially toxic effects of knotted and tufted carpet dust on rat lungs and the possible involvement of cytochrome P450 2E1 (CYP2E1) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways in the induced toxicity, as well as histological changes in the lung induced by carpet dust.Methods: This study divided 48 adult rats into six groups: group I was the control group, group II (vehicle group) received phosphate buffer saline (50 µL/rat), groups III and IV received knotted dust (2.5 and 5 mg/kg, respectively), and groups V and VI received tufted dust (2.5 and 5 mg/kg, respectively). All treatments were intranasally administered once a day for 7 days.Results: Both dust types significantly decreased the lung content of GSH compared with the control. Significantly elevated malondialdehyde (MDA) and nitric oxide (NO) lung contents were observed with an increased CYP2E1, interleukin (IL)-6, nuclear factor kappa B (NF-κβ), and ERK/MAPK. The histological lung structure was moderately affected with a moderately increased number of CD68-positive macrophages in the lung parenchyma of knotted dust-exposed rats, whereas tufted dust exposure severely affected the lung tissue with significantly increased CD68-positive macrophages.Conclusions: Carpet dust exposure could induce oxidative stress and inflammatory response in the lung tissue via induction of CYP2E1 that stimulates ERK/MAPK signalling pathway proteins, resulting in elevated MDA, NO and IL-6 levels in the lung tissue with suppressed GSH content. Tufted dust could possess a more toxic response than knotted ones.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Noha Mowaad
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Doaa Sadek
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walaa Abdelhamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
55
|
Zhang AN, Li N, Chen ZC, Guo YL, Tian CJ, Cheng DJ, Tang XY, Zhang XY. Amygdalin alleviated TGF-β-induced epithelial-mesenchymal transition in bronchial epithelial cells. Chem Biol Interact 2023; 369:110235. [PMID: 36457260 DOI: 10.1016/j.cbi.2022.110235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Transforming growth factor-beta TGF-β-induced epithelial-mesenchymal transition (EMT) in bronchial epithelial cells contributes to airway wall remodeling in asthma. This study aims to explore the role of amygdalin, an active ingredient in bitter almonds, in TGF-β-induced EMT in bronchial epithelial cells and to elucidate the possible mechanisms underlying its biological effects. METHODS An asthmatic mouse model was established through ovalbumin induction. Primary mouse bronchial epithelial cells and a human bronchial epithelial cell line were incubated with transforming growth factor-beta (TGF-β) to induce EMT, whose phenotype of cells was evaluated by the expressions of EMT markers [alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin] and cell migration capacity. A co-immunoprecipitation assay was performed to assess the ubiquitination of heparanase (HPSE). RESULTS In asthmatic model mice, amygdalin treatment relieved airway wall remodeling and decreased expressions of EMT markers (α-SMA and vimentin). In TGF-β-treated bronchial epithelial cells, amygdalin treatment decreased the mRNA and protein levels of EMT markers (α-SMA, vimentin, and fibronectin) without impairing cell viability. Through the Swiss Target Prediction database, HPSE was screened as a candidate downstream target for amygdalin. HPSE overexpression further promoted TGF-β-induced EMT while the HPSE inhibitor suppressed TGF-β-induced EMT in bronchial epithelial cells. In addition, HPSE overexpression reversed the inhibitory effect of amygdalin on TGF-β-induced EMT in bronchial epithelial cells. The following mechanism exploration revealed that amygdalin downregulated HPSE expression by enhancing ubiquitination. CONCLUSION Our study showed that amygdalin inhibited TGF-β-induced EMT in bronchial epithelial cells and found that the anti-EMT activity of amygdalin might be related to its regulatory effect on HPSE expression.
Collapse
Affiliation(s)
- An-Nan Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Nan Li
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Zhuo-Chang Chen
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Ya-Li Guo
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Cui-Jie Tian
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Dong-Jun Cheng
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Xue-Yi Tang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China
| | - Xiao-Yu Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's, Hospital, PR China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, PR China.
| |
Collapse
|
56
|
Vitamin A-regulated ciliated cells promote airway epithelium repair in an asthma mouse model. Allergol Immunopathol (Madr) 2023; 51:116-125. [PMID: 36617830 DOI: 10.15586/aei.v51i1.700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory airway disease that causes damage to and exfoliation of the airway epithelium. The continuous damage to the airway epithelium in asthma cannot be repaired quickly and generates irreversible damage, repeated attacks, and aggravation. Vitamin A (VA) has multifarious biological functions that include maintaining membrane stability and integrity of the structure and function of epithelial cells. Our research explored the role of VA in repairing the airway epithelium and provided a novel treatment strategy for asthma. METHODS A mouse asthma model was established by house dust mite (HDM) and treated with VA by gavage. Human bronchial epithelial (16HBE) cells were treated with HDM and all-trans retinoic acid (ATRA) in vitro. We analyzed the mRNA and protein expression of characteristic markers, such as acetyl-α-tubulin (Ac-TUB) and FOXJ1 in ciliated cells and MUC5AC in secretory cells, mucus secretion, airway inflammation, the morphology of cilia, and the integrity of the airway epithelium. RESULTS Findings showed destruction of airway epithelial integrity, damaged cilia, high mucus secretion, increased MUC5AC expression, and decreased Ac-TUB and FOXJ1 expression in asthmatic mice. The VA intervention reversed the effect on Ac-TUB and FOXJ1 and promoted ciliated cells to repair the damage and maintain airway epithelial integrity. In 16HBE cells, we could confirm that ATRA promoted the expression of Ac-TUB and FOXJ1. CONCLUSION These results demonstrated that VA-regulated ciliated cells to repair the damaged airway epithelium caused by asthma and maintain airway epithelial integrity. VA intervention is a potential adjunct to conventional treatment for asthma.
Collapse
|
57
|
Makieieva NI, Andrushchenko VV, Malakhova VM, Tkachenko AS, Onishchenko AI, Polyakov VV, Vygivska LA. THE LEVEL OF REACTIVE OXYGEN SPECIES AS A MARKER OF ASTHMA SEVERITY IN CHILDREN. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:205-212. [PMID: 36883511 DOI: 10.36740/wlek202301128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The aim of the research was to assess the reactive oxygen species (ROS) levels in granulocytes of patients with asthma. PATIENTS AND METHODS Materials and methods: The study involved 35 children aged 5 to 17 years. 26 children with persistent asthma, partially controlled course in the period of exacerbation were divided into groups: 1 group - mild asthma (n = 12), group 2 - moderate asthma (n = 7) group 3 - severe asthma (n = 7) and control group included almost healthy children (n = 9). ROS levels in granulocytes were evaluated using BD FACSDiva™. The spirographic complex was used to assess the function of external respiration. RESULTS Results: The level of ROS in granulocytes of patients with severe asthma was significantly reduced compared with children in the control group and patients with mild and moderate asthma (p₁-₃ = 0.0003, p₂-₃ = 0.0017, p c-₃ = 0.0150). The concentration of ROS in granulocytes ≤ 285 a.u. was prognostically significant with high specificity and sensitivity with severe asthma. CONCLUSION Conclusions: The concentration of ROS levels in neutrophils in patients with severe asthma probably reflected the suppression of their products, which suggests the depletion of the reserve capacity of neutrophils. Decreased concentrations of reactive oxygen species in children with asthma can be considered as a possible marker of asthma severity.
Collapse
|
58
|
Seyedrezazadeh E, Ghoushouni S, Sharifi A, Zafari V, Zarredar H. Association of the Toll-like receptor 4 and NOX4 gene and protein levels in asthmatic patients with metabolic syndrome: A case–control study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2023; 28:11. [PMID: 36974113 PMCID: PMC10039097 DOI: 10.4103/jrms.jrms_860_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/17/2022] [Accepted: 04/02/2022] [Indexed: 02/23/2023]
Abstract
Background Understanding the contributing of influence inflammatory biomarkers in asthmatic patients with metabolic syndrome is more important. Whereby, the present study considering the important association of NADPH oxidase4 (NOX4) and Toll- like receptor4 (TLR4) in the respiratory inflammatory responses in asthmatic patients with metabolic syndrome (AS-MetS) and asthmatic (AS) patients. Materials and Methods In this case-control study, 30 AS and 34 AS-MetS patients were enrolled. The Peripheral blood mononuclear cells (PBMCs) mRNA and protein levels of TLR4 and NOX4 were measured by qRT-PCR and western blot, respectively. Then their correlation was evaluated. Results The significant down-regulation of mRNA and protein PBMCs expression levels of TLR4 were observed in the AS-MetS group in comparison to AS one (P=0.03), but the NOX4 expression was non-significant. Additionally, the significant correlation was exhibited between mRNA expression levels of NOX4 and TLR4 in both AS-MetS (r= 0.440, P=0.009) and AS groups (r=0.909, P=0.0001). The association between TLR4 mRNA level and triglyceride in AS-MetS group (r=0.454, P=0.008,) and also white blood cells (WBC) in AS group (r= -0.507, P=0.006,) were significant. Conclusion The metabolic syndrome can significantly influence the expressions of TLR4 in AS-MetS. This study indicated that TLR4 and NOX4 altogether may provide valuable molecular knowledge of their relation with metabolic syndrome criteria for finding major pathways in different phenotype of asthma.
Collapse
|
59
|
Meng Y, Lin S, Niu K, Ma Z, Lin H, Fan H. Vimentin affects inflammation and neutrophil recruitment in airway epithelium during Streptococcus suis serotype 2 infection. Vet Res 2023; 54:7. [PMID: 36717839 PMCID: PMC9885403 DOI: 10.1186/s13567-023-01135-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/19/2022] [Indexed: 01/31/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) frequently colonizes the swine upper respiratory tract and can cause Streptococcal disease in swine with clinical manifestations of pneumonia, meningitis, and septicemia. Previously, we have shown that vimentin, a kind of intermediate filament protein, is involved in the penetration of SS2 through the tracheal epithelial barrier. The initiation of invasive disease is closely related to SS2-induced excessive local inflammation; however, the role of vimentin in airway epithelial inflammation remains unclear. Here, we show that vimentin deficient mice exhibit attenuated lung injury, diminished production of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and the IL-8 homolog, keratinocyte-derived chemokine (KC), and substantially reduced neutrophils in the lungs following intranasal infection with SS2. We also found that swine tracheal epithelial cells (STEC) without vimentin show decreased transcription of IL-6, TNF-α, and IL-8. SS2 infection caused reassembly of vimentin in STEC, and pharmacological disruption of vimentin filaments prevented the transcription of those proinflammatory cytokines. Furthermore, deficiency of vimentin failed to increase the transcription of nucleotide oligomerization domain protein 2 (NOD2), which is known to interact with vimentin, and the phosphorylation of NF-κB protein p65. This study provides insights into how vimentin promotes excessive airway inflammation, thereby exacerbating airway injury and SS2-induced systemic infection.
Collapse
Affiliation(s)
- Yu Meng
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaojie Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
60
|
Mateus-Silva JR, Oliveira CR, Brandao-Rangel MAR, Silva-Reis A, Olimpio FRDS, Zamarioli LDS, Aimbire F, Vieira RP. A Nutritional Blend Suppresses the Inflammatory Response from Bronchial Epithelial Cells Induced by SARS-CoV-2. J Diet Suppl 2023; 20:156-170. [PMID: 35930300 DOI: 10.1080/19390211.2022.2103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Even after virus elimination, numerous sequelae of coronavirus disease 2019 (COVID-19) persist. Based on accumulating evidence, large amounts of proinflammatory cytokines are released to drive COVID-19 progression, severity, and mortality, and their levels remain elevated after the acute phase of COVID-19, playing a central role in the disease' sequelae. In this manner, bronchial epithelial cells are the first cells hyperactivated by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leading to massive cytokine release, triggering the hyperactivation of leukocytes and other cells, and mediating COVID-19 sequelae. Therefore, proinflammatory cytokine production is initiated by the host. This in vitro study tested the hypothesis that ImmuneRecov™, a nutritional blend, inhibits the SARS-CoV-2-induced hyperactivation of human bronchial epithelial cells (BEAS-2B). BEAS-2B (5x104/mL/well) cells were cocultivated with 1 ml of blood from a SARS-CoV-2-infected patient for 4 h, and the nutritional blend (1 µg/mL) was added in the first minute of coculture. After 4 h, the cells were recovered and used for analyses of cytotoxicity with the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay and the expression of the IL-1β, IL-6, and IL-10 mRNAs. The supernatant was collected to measure cytokine levels. SARS-CoV-2 incubation resulted in increased levels of IL-1β and IL-6 in BEAS-2B cells (p < 0.001). Treatment with the nutritional blend resulted in reduced levels of the proinflammatory cytokines IL-1β and IL-6 (p < 0.001) and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001). Additionally, the nutritional blend reduced the expression of the IL-1β and IL-6 mRNAs in SARS-CoV-2-stimulated cells and increased the expression of the IL-10 and IFN-γ mRNAs. In conclusion, the nutritional blend exerts important anti-inflammatory effects on cells in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- José Roberto Mateus-Silva
- GAP Biotech, São José dos Campos, SP, Brazil
- School of Medicine, Anhembi Morumbi University, São José dos Campos, SP, Brazil
- Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Post-graduate Program in Biomedical Engineering, Federal University of Sao Paulo, São José dos Campos, SP, Brazil
| | - Carlos Rocha Oliveira
- GAP Biotech, São José dos Campos, SP, Brazil
- School of Medicine, Anhembi Morumbi University, São José dos Campos, SP, Brazil
- Post-graduate Program in Biomedical Engineering, Federal University of Sao Paulo, São José dos Campos, SP, Brazil
| | | | - Anamei Silva-Reis
- Post-graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, Santos, SP, Brazil
| | | | | | - Flavio Aimbire
- Postgraduate Program in Translational Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Rodolfo P Vieira
- GAP Biotech, São José dos Campos, SP, Brazil
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
- Post-graduation Program in Human Movement and Rehabilitation, Evangelical University of Goiás (Unievangélica), Anápolis, GO, Brazil
- Post-graduation Program in Bioengineering, Universidade Brasil, São Paulo, SP, Brazil
| |
Collapse
|
61
|
Shouib R, Eitzen G. Cdc42 regulates cytokine expression and trafficking in bronchial epithelial cells. Front Immunol 2022; 13:1069499. [PMID: 36618374 PMCID: PMC9816864 DOI: 10.3389/fimmu.2022.1069499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
Airway epithelial cells can respond to incoming pathogens, allergens and stimulants through the secretion of cytokines and chemokines. These pro-inflammatory mediators activate inflammatory signaling cascades that allow a robust immune response to be mounted. However, uncontrolled production and release of cytokines and chemokines can result in chronic inflammation and appears to be an underlying mechanism for the pathogenesis of pulmonary disorders such as asthma and COPD. The Rho GTPase, Cdc42, is an important signaling molecule that we hypothesize can regulate cytokine production and release from epithelial cells. We treated BEAS-2B lung epithelial cells with a set of stimulants to activate inflammatory pathways and cytokine release. The production, trafficking and secretion of cytokines were assessed when Cdc42 was pharmacologically inhibited with ML141 drug or silenced with lentiviral-mediated shRNA knockdown. We found that Cdc42 inhibition with ML141 differentially affected gene expression of a subset of cytokines; transcription of IL-6 and IL-8 were increased while MCP-1 was decreased. However, Cdc42 inhibition or depletion disrupted IL-8 trafficking and reduced its secretion even though transcription was increased. Cytokines transiting through the Golgi were particularly affected by Cdc42 disruption. Our results define a role for Cdc42 in the regulation of cytokine production and release in airway epithelial cells. This underscores the role of Cdc42 in coupling receptor activation to downstream gene expression and also as a regulator of cytokine secretory pathways.
Collapse
|
62
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
63
|
Breidenbach JD, French BW, Gordon TT, Kleinhenz AL, Khalaf FK, Willey JC, Hammersley JR, Mark Wooten R, Crawford EL, Modyanov NN, Malhotra D, Teeguarden JG, Haller ST, Kennedy DJ. Microcystin-LR aerosol induces inflammatory responses in healthy human primary airway epithelium. ENVIRONMENT INTERNATIONAL 2022; 169:107531. [PMID: 36137425 DOI: 10.1016/j.envint.2022.107531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms plague bodies of freshwater globally. These blooms are often composed of outgrowths of cyanobacteria capable of producing the heptapeptide Microcystin-LR (MC-LR) which is a well-known hepatotoxin. Recently, MC-LR has been detected in aerosols generated from lake water. However, the risk for human health effects due to MC-LR inhalation exposure have not been extensively investigated. In this study, we exposed a fully differentiated 3D human airway epithelium derived from 14 healthy donors to MC-LR-containing aerosol once a day for 3 days. Concentrations of MC-LR ranged from 100 pM to 1 µM. Although there were little to no detrimental alterations in measures of the airway epithelial function (i.e. cell survival, tissue integrity, mucociliary clearance, or cilia beating frequency), a distinct shift in the transcriptional activity was found. Genes related to inflammation were found to be upregulated such as C-C motif chemokine 5 (CCL5; log2FC = 0.57, p = 0.03) and C-C chemokine receptor type 7 (CCR7; log2FC = 0.84, p = 0.03). Functionally, conditioned media from MC-LR exposed airway epithelium was also found to have significant chemo-attractive properties for primary human neutrophils. Additionally, increases were found in the concentration of secreted chemokine proteins in the conditioned media such as CCL1 (log2FC = 5.07, p = 0.0001) and CCL5 (log2FC = 1.02, p = 0.046). These results suggest that MC-LR exposure to the human airway epithelium is capable of inducing an inflammatory response that may potentiate acute or chronic disease.
Collapse
Affiliation(s)
| | - Benjamin W French
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Tamiya T Gordon
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Andrew L Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Fatimah K Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; College of Pharmacy, University of Alkafeel, Najaf, Iraq
| | - James C Willey
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | | | - R Mark Wooten
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Erin L Crawford
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Nikolai N Modyanov
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Justin G Teeguarden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Steven T Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - David J Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
64
|
Nie H, Liu H, Shi Y, Lai W, Liu X, Xi Z, Lin B. Effects of Different Concentrations of Oil Mist Particulate Matter on Pulmonary Fibrosis In Vivo and In Vitro. TOXICS 2022; 10:647. [PMID: 36355939 PMCID: PMC9695344 DOI: 10.3390/toxics10110647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Oil-mist particulate matter (OMPM) refers to oily particles with a small aerodynamic equivalent diameter in ambient air. Since the pathogenesis of pulmonary fibrosis (PF) has not been fully elucidated, this study aims to explore the potential molecular mechanisms of the adverse effects of exposure to OMPM at different concentrations in vivo and in vitro on PF. In this study, rats and cell lines were treated with different concentrations of OMPM in vivo and in vitro. Sirius Red staining analysis shows that OMPM exposure could cause pulmonary lesions and fibrosis symptoms. The expression of TGF-β1, α-SMA, and collagen I was increased in the lung tissue of rats. The activities of MMP2 and TIMP1 were unbalanced, and increased N-Cadherin and decreased E-Cadherin upon OMPM exposure in a dose-dependent manner. In addition, OMPM exposure could activate the TGF-β1/Smad3 and TGF-β1/MAPK p38 signaling pathways, and the differentiation of human lung fibroblast HFL-1 cells. Therefore, OMPM exposure could induce PF by targeting the lung epithelium and fibroblasts, and activating the TGF-β1/Smad3 and TGF-β1/MAPK p38 signaling pathways.
Collapse
|
65
|
Ortiz-Zapater E, Bagley DC, Hernandez VL, Roberts LB, Maguire TJA, Voss F, Mertins P, Kirchner M, Peset-Martin I, Woszczek G, Rosenblatt J, Gotthardt M, Santis G, Parsons M. Epithelial coxsackievirus adenovirus receptor promotes house dust mite-induced lung inflammation. Nat Commun 2022; 13:6407. [PMID: 36302767 PMCID: PMC9613683 DOI: 10.1038/s41467-022-33882-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Airway inflammation and remodelling are important pathophysiologic features in asthma and other respiratory conditions. An intact epithelial cell layer is crucial to maintain lung homoeostasis, and this depends on intercellular adhesion, whilst damaged respiratory epithelium is the primary instigator of airway inflammation. The Coxsackievirus Adenovirus Receptor (CAR) is highly expressed in the epithelium where it modulates cell-cell adhesion stability and facilitates immune cell transepithelial migration. However, the contribution of CAR to lung inflammation remains unclear. Here we investigate the mechanistic contribution of CAR in mediating responses to the common aeroallergen, House Dust Mite (HDM). We demonstrate that administration of HDM in mice lacking CAR in the respiratory epithelium leads to loss of peri-bronchial inflammatory cell infiltration, fewer goblet-cells and decreased pro-inflammatory cytokine release. In vitro analysis in human lung epithelial cells confirms that loss of CAR leads to reduced HDM-dependent inflammatory cytokine release and neutrophil migration. Epithelial CAR depletion also promoted smooth muscle cell proliferation mediated by GSK3β and TGF-β, basal matrix production and airway hyperresponsiveness. Our data demonstrate that CAR coordinates lung inflammation through a dual function in leucocyte recruitment and tissue remodelling and may represent an important target for future therapeutic development in inflammatory lung diseases.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science King's College London, London, UK
| | - Dustin C Bagley
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | | | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Felizia Voss
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Assoziation (MDC), Berlin, Germany
- DZHK Partner site Berlin, Berlin, Germany
| | - Philipp Mertins
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Marieluise Kirchner
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Grzegorz Woszczek
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Michael Gotthardt
- Max-Delbrück-Centrum für Molekulare Medizin in the Helmholtz Assoziation (MDC), Berlin, Germany
- Berlin Institute of Health at Charité, Universitaetsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - George Santis
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science King's College London, London, UK
- Department of Respiratory Medicine, Guy's & St Thomas NHS Trust, London, UK
| | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
66
|
Kim YJ, Cho MJ, Yu WD, Kim MJ, Kim SY, Lee JH. Links of Cytoskeletal Integrity with Disease and Aging. Cells 2022; 11:cells11182896. [PMID: 36139471 DOI: 10.3390/cells11182896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Min Jeong Cho
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Won Dong Yu
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| | - Myung Joo Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| |
Collapse
|
67
|
Jakwerth CA, Kitzberger H, Pogorelov D, Müller A, Blank S, Schmidt-Weber CB, Zissler UM. Role of microRNAs in type 2 diseases and allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:993937. [PMID: 36172292 PMCID: PMC9512106 DOI: 10.3389/falgy.2022.993937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs (miRs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases as well as their potential as biomarkers in allergen-specific treatment options. Their function as post-transcriptional regulators, controlling various cellular processes, is of high importance since any single miR can target multiple mRNAs, often within the same signalling pathway. MiRs can alter dysregulated expression of certain cellular responses and contribute to or cause, but in some cases prevent or repress, the development of various diseases. In this review article, we describe current research on the role of specific miRs in regulating immune responses in epithelial cells and specialized immune cells in response to various stimuli, in allergic diseases, and regulation in the therapeutic approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT has been used successfully as a causative treatment option since more than a century, very little is known about the mechanisms of regulation and its connections with microRNAs. In order to fill this gap, this review aims to provide an overview of the current knowledge.
Collapse
|
68
|
Barta I, Paska C, Antus B. Sputum Cytokine Profiling in COPD: Comparison Between Stable Disease and Exacerbation. Int J Chron Obstruct Pulmon Dis 2022; 17:1897-1908. [PMID: 36017119 PMCID: PMC9397440 DOI: 10.2147/copd.s364982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Cytokines are extracellular signaling proteins that have been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we investigated cytokine expression both at the mRNA and protein level in the sputum of healthy individuals, stable COPD patients, and those experiencing a severe acute exacerbation (AECOPD) requiring hospitalization. Patients and Methods Sputum was collected in 19 healthy controls, 25 clinically stable COPD patients, and 31 patients with AECOPD. In AECOPD patients sample collection was performed both at the time of hospital admission and at discharge following treatment. Sputum supernatant was analyzed by an antibody microarray detecting 120 cytokines simultaneously, while the mRNA expression of 14 selected cytokines in sputum cells was investigated by real-time PCR (qPCR). Results Proteomic analysis identified interleukin (IL)-6 and growth-regulated oncogene (GRO)α as the only sputum cytokines that were differentially expressed between stable COPD patients and healthy controls. At the onset of AECOPD, several cytokines exhibited altered sputum expression compared to stable COPD. Recovery from AECOPD induced significant changes in the sputum cytokine protein profile; however, the length of hospitalization was insufficient for most cytokines to return to stable levels. With regard to gene expression analysis by qPCR, we found that bone morphogenetic protein (BMP)-4 was up-regulated, while IL-1α, monokine-induced by interferon-γ (MIG), and BMP-6 were down-regulated at the mRNA level in patients with AECOPD compared to stable disease. Conclusion The sputum cytokine signature of AECOPD differs from that of stable COPD. Protein level changes are asynchronous with changes in gene expression at the mRNA level in AECOPD. The observation that the levels of most cytokines do not stabilize with acute treatment of AECOPD suggests a prolonged effect of exacerbation on the status of COPD patients.
Collapse
Affiliation(s)
- Imre Barta
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Csilla Paska
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Antus
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
69
|
Home Dust Mites Promote MUC5AC Hyper-Expression by Modulating the sNASP/TRAF6 Axis in the Airway Epithelium. Int J Mol Sci 2022; 23:ijms23169405. [PMID: 36012669 PMCID: PMC9408837 DOI: 10.3390/ijms23169405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
House dust mites (HDMs) are a common source of respiratory allergens responsible for allergic asthma and innate immune responses in human diseases. Since HDMs are critical factors in the triggering of allergen-induced airway mucosa from allergic asthma, we aimed to investigate the mechanisms of Toll-like receptors (TLR) in the signaling of the HDM extract that is involved in mucus hypersecretion and airway inflammation through the engagement of innate immunity. Previously, we reported that the somatic nuclear autoantigenic sperm protein (sNASP)/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis controls the initiation of TLRs to maintain the homeostasis of the innate immune response. The present study showed that the HDM extract stimulated the biogenesis of Mucin 5AC (MUC5AC) in bronchial epithelial cells via the TLR2/4 signaling pathway involving MyD88 and TRAF6. Specifically, sNASP binds to TRAF6 in unstimulated bronchial epithelial cells to prevent the activation of TRAF6-depenedent kinases. Upon on HDMs’ stimulation, sNASP is phosphorylated, leading to the activation of TRAF6 downstream of the p38 MAPK and NF-κB signaling pathways. Further, NASP-knockdown enhanced TRAF6 signaling and MUC5AC biogenesis. In the HDM-induced mouse asthma model, we found that the HDM extract promoted airway hyperresponsiveness (AHR), MUC5AC, and allergen-specific IgE production as well as IL-5 and IL-13 for recruiting inflammatory cells. Treatment with the PEP-NASP peptide, a selective TRAF6-blocking peptide, ameliorated HDM-induced asthma in mice. In conclusion, this study indicated that the sNASP/TRAF6 axis plays a regulatory role in asthma by modulating mucus overproduction, and the PEP-NASP peptide might be a potential target for asthma treatment.
Collapse
|
70
|
Stricker S, Hain T, Chao CM, Rudloff S. Respiratory and Intestinal Microbiota in Pediatric Lung Diseases-Current Evidence of the Gut-Lung Axis. Int J Mol Sci 2022; 23:ijms23126791. [PMID: 35743234 PMCID: PMC9224356 DOI: 10.3390/ijms23126791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota is known to influence local immune homeostasis in the gut and to shape the developing immune system towards elimination of pathogens and tolerance towards self-antigens. Even though the lung was considered sterile for a long time, recent evidence using next-generation sequencing techniques confirmed that the lower airways possess their own local microbiota. Since then, there has been growing evidence that the local respiratory and intestinal microbiota play a role in acute and chronic pediatric lung diseases. The concept of the so-called gut–lung axis describing the mutual influence of local microbiota on distal immune mechanisms was established. The mechanisms by which the intestinal microbiota modulates the systemic immune response include the production of short-chain fatty acids (SCFA) and signaling through pattern recognition receptors (PRR) and segmented filamentous bacteria. Those factors influence the secretion of pro- and anti-inflammatory cytokines by immune cells and further modulate differentiation and recruitment of T cells to the lung. This article does not only aim at reviewing recent mechanistic evidence from animal studies regarding the gut–lung axis, but also summarizes current knowledge from observational studies and human trials investigating the role of the respiratory and intestinal microbiota and their modulation by pre-, pro-, and synbiotics in pediatric lung diseases.
Collapse
Affiliation(s)
- Sebastian Stricker
- Department of Pediatrics, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Correspondence: ; Tel.: +49-641-985-56617
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Silvia Rudloff
- Department of Pediatrics, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Department of Nutritional Science, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
71
|
DJ-1 governs airway progenitor cell/eosinophil interactions to promote allergic inflammation. J Allergy Clin Immunol 2022; 150:1178-1193.e13. [PMID: 35724763 DOI: 10.1016/j.jaci.2022.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND DJ-1 is an antioxidant protein known to regulate mast cell mediated allergic response, but its role in airway eosinophilic interactions and allergic inflammation is not known. OBJECTIVE The aim of this study was to investigate the role of DJ-1 in airway eosinophilic inflammation in vitro and in vivo. METHODS Ovalbumin-induced airway allergic inflammation was established in mice. ELISA was adopted to analyze DJ-1 and cytokine levels in mouse bronchoalveolar lavage fluid. Transcriptional profiling of mouse lung tissues was conducted by single-cell RNA sequencing technology. The role of DJ-1 in the differentiation of airway progenitor cells into goblet cells was examined by organoid cultures, immunofluorescence staining, quantitative PCR, and cell transplantation in normal, DJ-1 knockout (KO), or conditional DJ-1 KO mice. RESULTS We observed that DJ-1 was increased in the lung tissues of ovalbumin-sensitized and challenged mice. DJ-1 KO mice exhibited reduced airway eosinophil infiltration and goblet cell differentiation. Mechanistically, we discovered that eosinophil-club cell interactions are reduced in the absence of DJ-1. Organoid cultures indicated that eosinophils impair the proliferative potential of club cells. Intratracheal transplantation of DJ-1-deficient eosinophils suppresses airway goblet cell differentiation. Loss of DJ-1 inhibits the metabolism of arachidonic acid into cysteinyl leukotrienes in eosinophils while these secreted metabolites promote airway goblet cell fate in organoid cultures and in vivo. CONCLUSION DJ-1-mediated interactions between airway epithelial progenitor cells and immune cells are essential in controlling airway goblet cell metaplasia and eosinophilia. Blockade of the DJ-1 pathway is protective against airway allergic inflammation.
Collapse
|
72
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
73
|
Kim YH, Kim T, Ji KY, Shin IS, Lee JY, Song KH, Kim BY. A time-dependently regulated gene network reveals that Aspergillus protease affects mitochondrial metabolism and airway epithelial cell barrier function via mitochondrial oxidants. Free Radic Biol Med 2022; 185:76-89. [PMID: 35489562 DOI: 10.1016/j.freeradbiomed.2022.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
The airway epithelium maintains tight barrier integrity to prevent penetration of pathogens; thus, impairment of the barrier function is an important and common histological feature in asthmatic patients. Proteolytic allergens from fungi, pollen, and house dust mites can disrupt epithelial barrier integrity, but the mechanism remains unclear. Aspergillus oryzae protease (AP)-induced mitochondrial reactive oxygen species (ROS) contribute to the epithelial inflammatory response. However, as mitochondrial ROS affect various cellular functions, such as metabolism, cell death, cell proliferation, and redox homeostasis through signal transduction, it is difficult to understand the detailed action mechanism of AP by measuring changes in a single gene or protein of a specific signaling pathway. Moreover, mitochondrial ROS can directly oxidize DNA to activate transcription, thereby affecting the expression of various genes at the transcriptional level. Therefore, we conducted whole-genome analysis and used a network-based approach to understand the effect of AP and AP-induced mitochondrial ROS in human primary airway epithelial cells and to evaluate the mechanistic basis for AP-mediated epithelial barrier dysfunction. Our results indicate that production of mitochondrial ROS following AP exposure induce mitochondrial dysfunction at an early stage. Over time, changes in genome expression were further expanded without remaining mitochondrial ROS. Specifically, genes involved in the apoptotic functions and intercellular junctions were affected, consequently impairing the cellular barrier integrity. This change was recovered by scavenging mitochondrial ROS at an early point after exposure to AP. In conclusion, our findings indicate that instantly increased mitochondrial ROS at the time of exposure to allergenic proteases consequently induces epithelial barrier dysfunction at a later time point, resulting in pathological changes. These data suggest that antioxidant therapy administered immediately after exposure to proteolytic antigens may be effective in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Kwang Hoon Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
74
|
Jakwerth CA, Ordovas-Montanes J, Blank S, Schmidt-Weber CB, Zissler UM. Role of Respiratory Epithelial Cells in Allergic Diseases. Cells 2022; 11:1387. [PMID: 35563693 PMCID: PMC9105716 DOI: 10.3390/cells11091387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The airway epithelium provides the first line of defense to the surrounding environment. However, dysfunctions of this physical barrier are frequently observed in allergic diseases, which are tightly connected with pro- or anti-inflammatory processes. When the epithelial cells are confronted with allergens or pathogens, specific response mechanisms are set in motion, which in homeostasis, lead to the elimination of the invaders and leave permanent traces on the respiratory epithelium. However, allergens can also cause damage in the sensitized organism, which can be ascribed to the excessive immune reactions. The tight interaction of epithelial cells of the upper and lower airways with local and systemic immune cells can leave an imprint that may mirror the pathophysiology. The interaction with effector T cells, along with the macrophages, play an important role in this response, as reflected in the gene expression profiles (transcriptomes) of the epithelial cells, as well as in the secretory pattern (secretomes). Further, the storage of information from past exposures as memories within discrete cell types may allow a tissue to inform and fundamentally alter its future responses. Recently, several lines of evidence have highlighted the contributions from myeloid cells, lymphoid cells, stromal cells, mast cells, and epithelial cells to the emerging concepts of inflammatory memory and trained immunity.
Collapse
Affiliation(s)
- Constanze A. Jakwerth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA;
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| |
Collapse
|
75
|
de Fays C, Carlier FM, Gohy S, Pilette C. Secretory Immunoglobulin A Immunity in Chronic Obstructive Respiratory Diseases. Cells 2022; 11:1324. [PMID: 35456002 PMCID: PMC9027823 DOI: 10.3390/cells11081324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis (CF) are distinct respiratory diseases that share features such as the obstruction of small airways and disease flare-ups that are called exacerbations and are often caused by infections. Along the airway epithelium, immunoglobulin (Ig) A contributes to first line mucosal protection against inhaled particles and pathogens. Dimeric IgA produced by mucosal plasma cells is transported towards the apical pole of airway epithelial cells by the polymeric Ig receptor (pIgR), where it is released as secretory IgA. Secretory IgA mediates immune exclusion and promotes the clearance of pathogens from the airway surface by inhibiting their adherence to the epithelium. In this review, we summarize the current knowledge regarding alterations of the IgA/pIgR system observed in those major obstructive airway diseases and discuss their implication for disease pathogenesis.
Collapse
Affiliation(s)
- Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
| | - François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, CHU UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium
- Lung Transplant Centre, CHU UCL Namur, Site Mont-Godinne, 5530 Yvoir, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (C.d.F.); (F.M.C.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
76
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
77
|
Lai CH, Chen YC, Lin KYA, Lin YX, Lee TH, Lin CH. Adverse pulmonary impacts of environmental concentrations of oil mist particulate matter in normal human bronchial epithelial cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151119. [PMID: 34757100 DOI: 10.1016/j.scitotenv.2021.151119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Airborne oil mist particulate matter (OMPM) is generated during industrial processes such as metalworking and may be associated with pulmonary dysfunction. In this study, we employed the normal human bronchial epithelial BEAS-2B cell line to elucidate the association between pulmonary toxicity and OMPM of 2.5-10 μm, 1.0-2.5 μm and <1.0 μm particle sizes (OMPM10-2.5, OMPM2.5-1.0 and OMPM1.0). We measured OMPM concentrations at a precision machinery factory to estimate lung deposition rates and select realistic environmental concentrations for testing. All OMPMs (1-50 μg/cm2) significantly decreased BEAS-2B cell viability (>38% of control), except for low-dose OMPM1.0 (1 μg/cm2). OMPM10-2.5 and OMPM2.5-1.0, but not OMPM1.0, induced oxidative stress (1.5-4-fold increase compared with the control) and increased the production of proinflammatory cytokines (1.5-3-fold). However, only OMPM1.0 induced pulmonary epithelial barrier dysfunction via depletion of zonula occludens (0.65-0.8-fold) and α1-antitrypsin proteins (0.65-0.8-fold). In conclusion, a higher risk of lung disease was associated with smaller particle size OMPM. Exposure to OMPM1.0 may be a potential risk factor for chronic obstructive pulmonary disease. The evidence also demonstrates that occupational exposure to OMPM may cause pulmonary disease at very low concentrations.
Collapse
Affiliation(s)
- Chia-Hsiang Lai
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Xian Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
78
|
Schmidt H, Gutjahr L, Sauter A, Zech F, Nchioua R, Stenger S, Frick M, Kirchhoff F, Dietl P, Wittekindt OH. Serially passaged, conditionally reprogrammed nasal epithelial cells as a model to study epithelial functions and SARS-CoV-2 infection. Am J Physiol Cell Physiol 2022; 322:C591-C604. [PMID: 35196166 PMCID: PMC8977148 DOI: 10.1152/ajpcell.00363.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary airway epithelial cells (pAECs) cultivated at air-liquid interface (ALI) conditions are widely used as surrogates for human in vivo epithelia. To extend the proliferative capacity and to enable serially passaging of pAECs, conditional reprogramming (cr) has been employed in recent years. However, ALI epithelia derived from cr cells often display functional changes with increasing passages. This highlights the need for thorough validation of the ALI cultures for the respective application. In our study, we evaluated the use of serially passaged cr nasal epithelial cells (crNECs) as a model to study SARS-CoV-2 infection and effects on ion and water transport. NECs were obtained from healthy individuals and cultivated as ALI epithelia derived from passages 1, 2, 3, and 5. We compared epithelial differentiation, ion and water transport, and infection with SARS-CoV-2 between passages. Our results show that epithelia maintained major differentiation characteristics and physiological ion and water transport properties through all passages. However, the frequency of ciliated cells, short circuit currents reflecting epithelial Na+ channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) activity and expression of aquaporin 3 and 5 decreased gradually over passages. crNECs also expressed SARS-CoV-2 receptors angiotensin converting enzyme 2 (ACE2) and transmembrane serin2 protease 2 (TMPRSS2) across all passages and allowed SARS-CoV-2 replication in all passages. In summary, we provide evidence that passaged crNECs provide an appropriate model to study SARS-CoV-2 infection and also epithelial transport function when considering some limitations that we defined herein.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, Ulm University Medical Cente, Ulm, Germany.,Institute of General Physiology, Ulm University, Ulm, Germany
| | - Lara Gutjahr
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | |
Collapse
|
79
|
Park N, Park SJ, Kim MH, Yang WM. Efficacy and mechanism of essential oil from Abies holophylla leaf on airway inflammation in asthma: Network pharmacology and in vivo study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153898. [PMID: 35026513 DOI: 10.1016/j.phymed.2021.153898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Asthma is one of the most common chronic inflammatory diseases of the airways. Essential oil from Abies holophylla leaf (EOA) has been reported to have anti-inflammatory property. This study aimed to predict the inhibitory effect of EOA against asthma by network analysis and to confirm the underlying mechanism of EOA on airway inflammation. PURPOSE AND STUDY DESIGN The effects and underlying mechanisms of EOA on asthma were investigated by in silico network pharmacology and an experimental in vivo study. METHODS To define the effectiveness of EOA on asthma, the network pharmacology was constructed using major components of EOA. EOA (0.0003 and, 0.03 v/v%) was aerosolized by nebulizer 3 times a week for 5 min for 7 weeks. After 3 weeks of treating the mice with EOA, asthma was induced by sensitizing them with ovalbumin (OVA) and PM10. The effects of EOA on the IL-17 related signaling pathway was confirmed using an asthmatic model. RESULTS The network analysis showed that EOA is highly associated with the IL-17-related signaling pathway. EOA inhibited respiratory epithelium hyperplasia, collagen deposition and goblet cell activation in the lung and trachea tissues. In addition, EOA reduced the number of eosinophils, lymphocytes and macrophages in BALF. Furthermore, in the asthmatic model of mice, we showed that EOA inhibited IL-17-related cytokines, increased Treg-related cytokines and decreased the TRAF6 and MAPK and, suppressed the nuclear transcriptional activities of NF-kB. CONCLUSIONS The network pharmacology and in vivo study indicated that EOA may have an inhibitory effect on airway inflammation in asthma exposure through the IL-17-related signaling pathway.
Collapse
Affiliation(s)
- Nayoung Park
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Jun Park
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
80
|
Zhu G, Cai H, Ye L, Mo Y, Zhu M, Zeng Y, Song X, Yang C, Gao X, Wang J, Jin M. Small Proline-Rich Protein 3 Regulates IL-33/ILC2 Axis to Promote Allergic Airway Inflammation. Front Immunol 2022; 12:758829. [PMID: 35126350 PMCID: PMC8810634 DOI: 10.3389/fimmu.2021.758829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Small proline-rich proteins (SPRRs), components of cornified cell envelope precursors, have recently been found to participate in airway diseases. However, their role in allergic airway inflammatory conditions remains unknown. Here, we explored the expression of SPRR3 in house dust mite (HDM)-sensitized/challenged mice and attempted to elucidate the regulatory role of SPRR3 in allergic airway inflammation. SPRR3 was identified via bioinformatics analysis of Gene Expression Omnibus (GEO) databases and further confirmed to be upregulated in the lungs of asthmatic mice. Knockdown of SPRR3 via the intratracheal route significantly inhibited eosinophils in bronchoalveolar lavage fluid (BALF) and suppressed the expressions of type 2 cytokines (IL-4, IL-5, and IL-13) in BALF and lung tissues. Further, SPRR3 knockdown reduced the expression of IL-33 and further attenuated the activation of the PI3K/AKT/NF-κB signaling pathway in the recruitment of group 2 innate lymphoid cells (ILC2s) to inhibit allergic airway inflammation. In vitro, SPRR3 siRNA could alleviate HDM-induced inflammatory responses in BEAS-2B cells. This study reveals the regulatory role of SPRR3 in allergic airway inflammation, identifying this protein as a potential novel therapeutic target for asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian Wang
- *Correspondence: Meiling Jin, ; Jian Wang,
| | | |
Collapse
|
81
|
Herrera-Luis E, Li A, Mak ACY, Perez-Garcia J, Elhawary JR, Oh SS, Hu D, Eng C, Keys KL, Huntsman S, Beckman KB, Borrell LN, Rodriguez-Santana J, Burchard EG, Pino-Yanes M. Epigenome-wide association study of lung function in Latino children and youth with asthma. Clin Epigenetics 2022; 14:9. [PMID: 35033200 PMCID: PMC8760660 DOI: 10.1186/s13148-022-01227-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
DNA methylation studies have associated methylation levels at different CpG sites or genomic regions with lung function. Moreover, genetic ancestry has been associated with lung function in Latinos. However, no epigenome-wide association study (EWAS) of lung function has been performed in this population. Here, we aimed to identify DNA methylation patterns associated with lung function in pediatric asthma among Latinos.
Results
We conducted an EWAS in whole blood from 250 Puerto Rican and 148 Mexican American children and young adults with asthma. A total of five CpGs exceeded the genome-wide significance threshold of p = 1.17 × 10−7 in the combined analyses from Puerto Ricans and Mexican Americans: cg06035600 (MAP3K6, p = 6.13 × 10−8) showed significant association with pre-bronchodilator Tiffeneau–Pinelli index, the probes cg00914963 (TBC1D16, p = 1.04 × 10−7), cg16405908 (MRGPRE, p = 2.05 × 10−8), and cg07428101 (MUC2, p = 5.02 × 10−9) were associated with post-bronchodilator forced vital capacity (FVC), and cg20515679 (KCNJ6) with post-bronchodilator Tiffeneau–Pinelli index (p = 1.13 × 10−8). However, these markers did not show significant associations in publicly available data from Europeans (p > 0.05). A methylation quantitative trait loci analysis revealed that methylation levels at these CpG sites were regulated by genetic variation in Latinos and the Biobank-based Integrative Omics Studies (BIOS) consortium. Additionally, two differentially methylated regions in REXOC and AURKC were associated with pre-bronchodilator Tiffeneau–Pinelli index (adjusted p < 0.05) in Puerto Ricans and Mexican Americans. Moreover, we replicated some of the previous differentially methylated signals associated with lung function in non-Latino populations.
Conclusions
We replicated previous associations of epigenetic markers with lung function in whole blood and identified novel population-specific associations shared among Latino subgroups.
Collapse
|
82
|
Wang X, Guan S, Sun L, Dai Z. The impact of benzo[a]pyrene on murine allergic airway inflammation via epigenetic remodeling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103782. [PMID: 34883242 DOI: 10.1016/j.etap.2021.103782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous exposure to both BaP and house dust mites (HDM) has been shown to exacerbate pulmonary inflammation and hyperresponsiveness in a murine asthma model. The mechanistic insight into epigenetic inheritance for this effect, however, remains to be clarified. As such, in this study, we explore the molecular basis for the enhancement of asthma. Female BAL/C mice were intranasally administered HDM (25 µg in 25 μL saline) and/or BaP (10 μg/kg) every other day for 9 weeks. RNA sequencing and DNA methylation assessment were used to explore the underlying mechanism. Following simultaneous exposure to HDM and BaP, mice exhibited pulmonary inflammation and the transcript level of IL4i1b, muc4 and IL22ra2 that were associated with altered DNA methylation, suggesting that there may be an epigenetic basis for BaP-induced asthma exacerbation. Our data suggest that DNA methylation is a major epigenetic modification that accompanies airway remodeling associated with changes in the allergic mice.
Collapse
Affiliation(s)
- Xihua Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuyuan Guan
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lingbin Sun
- The Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China; Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Zhongliang Dai
- The Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.
| |
Collapse
|
83
|
Watkinson RL, Looi K, Laing IA, Cianferoni A, Kicic A. Viral Induced Effects on a Vulnerable Epithelium; Lessons Learned From Paediatric Asthma and Eosinophilic Oesophagitis. Front Immunol 2021; 12:773600. [PMID: 34912343 PMCID: PMC8666438 DOI: 10.3389/fimmu.2021.773600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
The epithelium is integral to the protection of many different biological systems and for the maintenance of biochemical homeostasis. Emerging evidence suggests that particular children have epithelial vulnerabilities leading to dysregulated barrier function and integrity, that resultantly contributes to disease pathogenesis. These epithelial vulnerabilities likely develop in utero or in early life due to various genetic, epigenetic and environmental factors. Although various epithelia are uniquely structured with specific function, prevalent allergic-type epithelial diseases in children potentially have common or parallel disease processes. These include inflammation and immune response dysregulation stemming from atypical epithelial barrier function and integrity. Two diseases where aetiology and pathogenesis are potentially linked to epithelial vulnerabilities include Paediatric Asthma and Eosinophilic Oesophagitis (EoE). For example, rhinovirus C (RV-C) is a known risk factor for paediatric asthma development and is known to disrupt respiratory epithelial barrier function causing acute inflammation. In addition, EoE, a prevalent atopic condition of the oesophageal epithelium, is characterised by similar innate immune and epithelial responses to viral injury. This review examines the current literature and identifies the gaps in the field defining viral-induced effects on a vulnerable respiratory epithelium and resulting chronic inflammation, drawing from knowledge generated in acute wheezing illness, paediatric asthma and EoE. Besides highlighting the importance of epithelial structure and barrier function in allergic disease pathogenesis regardless of specific epithelial sub-types, this review focuses on the importance of examining other parallel allergic-type disease processes that may uncover commonalities driving disease pathogenesis. This in turn may be beneficial in the development of common therapeutics for current clinical management and disease prevention in the future.
Collapse
Affiliation(s)
- Rebecca L Watkinson
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Kevin Looi
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| | - Ingrid A Laing
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Antonella Cianferoni
- Pediatrics Department, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
84
|
Barrier Impairment and Type 2 Inflammation in Allergic Diseases: The Pediatric Perspective. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121165. [PMID: 34943362 PMCID: PMC8700706 DOI: 10.3390/children8121165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/02/2023]
Abstract
Allergic diseases represent a global burden. Although the patho-physiological mechanisms are still poorly understood, epithelial barrier dysfunction and Th2 inflammatory response play a pivotal role. Barrier dysfunction, characterized by a loss of differentiation, reduced junctional integrity, and altered innate defence, underpins the pathogenesis of allergic diseases. Epithelial barrier impairment may be a potential therapeutic target for new treatment strategies Up now, monoclonal antibodies and new molecules targeting specific pathways of the immune response have been developed, and others are under investigation, both for adult and paediatric populations, which are affected by atopic dermatitis (AD), asthma, allergic rhinitis (AR), chronic rhinosinusitis with nasal polyps (CRSwNP), or eosinophilic esophagitis (EoE). In children affected by severe asthma biologics targeting IgE, IL-5 and against IL-4 and IL-13 receptors are already available, and they have also been applied in CRSwNP. In severe AD Dupilumab, a biologic which inhibits both IL-4 and IL-13, the most important cytokines involved in inflammation response, has been approved for treatment of patients over 12 years. While a biological approach has already shown great efficacy on the treatment of severe atopic conditions, early intervention to restore epithelial barrier integrity, and function may prevent the inflammatory response and the development of the atopic march.
Collapse
|
85
|
Esquer C, Echeagaray O, Firouzi F, Savko C, Shain G, Bose P, Rieder A, Rokaw S, Witon-Paulo A, Gude N, Sussman MA. Fundamentals of vaping-associated pulmonary injury leading to severe respiratory distress. Life Sci Alliance 2021; 5:5/2/e202101246. [PMID: 34810278 PMCID: PMC8616545 DOI: 10.26508/lsa.202101246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Vaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults, there is little information on long-term consequences of vaping and potential health risks. This study demonstrates vaping-induced pulmonary injury using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 wk of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac systemic output is moderately but significantly impaired with pulmonary side ventricular chamber enlargement. This vaping-induced pulmonary injury model demonstrates mechanistic underpinnings of vaping-related pathologic injury.
Collapse
Affiliation(s)
- Carolina Esquer
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Oscar Echeagaray
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Fareheh Firouzi
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Clarissa Savko
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Grant Shain
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Pria Bose
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Abigail Rieder
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Sophie Rokaw
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Andrea Witon-Paulo
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Natalie Gude
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Mark A Sussman
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| |
Collapse
|
86
|
Ruysseveldt E, Martens K, Steelant B. Airway Basal Cells, Protectors of Epithelial Walls in Health and Respiratory Diseases. FRONTIERS IN ALLERGY 2021; 2:787128. [PMID: 35387001 PMCID: PMC8974818 DOI: 10.3389/falgy.2021.787128] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The airway epithelium provides a critical barrier to the outside environment. When its integrity is impaired, epithelial cells and residing immune cells collaborate to exclude pathogens and to heal tissue damage. Healing is achieved through tissue-specific stem cells: the airway basal cells. Positioned near the basal membrane, airway basal cells sense and respond to changes in tissue health by initiating a pro-inflammatory response and tissue repair via complex crosstalks with nearby fibroblasts and specialized immune cells. In addition, basal cells have the capacity to learn from previous encounters with the environment. Inflammation can indeed imprint a certain memory on basal cells by epigenetic changes so that sensitized tissues may respond differently to future assaults and the epithelium becomes better equipped to respond faster and more robustly to barrier defects. This memory can, however, be lost in diseased states. In this review, we discuss airway basal cells in respiratory diseases, the communication network between airway basal cells and tissue-resident and/or recruited immune cells, and how basal cell adaptation to environmental triggers occurs.
Collapse
Affiliation(s)
- Emma Ruysseveldt
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katleen Martens
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Head and Neck Surgery, Department of Otorhinolaryngology, University of Crete School of Medicine, Heraklion, Greece
| |
Collapse
|
87
|
Fang L, Roth M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J Pers Med 2021; 11:jpm11111229. [PMID: 34834581 PMCID: PMC8625708 DOI: 10.3390/jpm11111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American Thoracic Society released a research statement highlighting the gaps in knowledge and understanding of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling. The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus, the initiation event remains unknown. Recent studies have implied that the interaction between the epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet unknown epigenetic mechanism during early childhood.
Collapse
|
88
|
Rohhimi W, Tan JW, Liew KY, Jacquet A, Harith HH, Israf DA, Tham CL. Zerumbone attenuates house dust mite extract-induced epithelial barrier dysfunction in 16HBE14o- cells. Immunopharmacol Immunotoxicol 2021; 43:813-824. [PMID: 34694946 DOI: 10.1080/08923973.2021.1992633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT The airway epithelial barrier can be disrupted by house dust mite (HDM) allergens leading to allergic airway inflammation. Zerumbone, a natural monocyclic sesquiterpene, was previously found to possess anti-asthmatic effect by modulating Th1/Th2 cytokines. However, the protective role of zerumbone on epithelial barrier function remains to be fully explored. OBJECTIVE To investigate the effect of zerumbone on HDM extract-induced airway epithelial barrier dysfunction. MATERIALS AND METHODS Human bronchial epithelial cells 16HBE14o- were incubated with 100 μg/mL HDM extract and treated with non-cytotoxic concentrations of zerumbone (6.25 μM, 12.5 μM, and 25 μM) for 24 h. The epithelial junctional integrity and permeability were evaluated through transepithelial electrical resistance (TEER) and fluorescein isothiocynate (FITC)-Dextran permeability assays, respectively. The localization of junctional proteins, occludin and zona occludens (ZO)-1, was studied using immunofluorescence (IF) while the protein expression was measured by western blot. RESULTS Zerumbone inhibited changes in junctional integrity (6.25 μM, p ≤ .05; 12.5 μM, p ≤ .001; 25 μM, p ≤ .001) and permeability (6.25 μM, p ≤ .05; 12.5 μM, p ≤ .01; 25 μM, p ≤ .001) triggered by HDM extract in a concentration-dependent manner. This protective effect could be explained by the preservation of occludin (12.5 μM, p ≤ .01 and 25 μM, p ≤ .001) and ZO-1 (12.5 μM, p ≤ .05 and 25 μM, p ≤ .001) localization, rather than the prevention of their cleavage. DISCUSSION AND CONCLUSION Zerumbone attenuates HDM extract-induced epithelial barrier dysfunction which supports its potential application for the treatment of inflammation-driven airway diseases such as asthma.
Collapse
Affiliation(s)
- Wafda Rohhimi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ji Wei Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Kong Yen Liew
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
89
|
Zhang D, Qiao XR, Cui WJ, Zhang JT, Pan Y, Liu XF, Dong L. Syndecan-1 Amplifies Ovalbumin-Induced Airway Remodeling by Strengthening TGFβ1/Smad3 Action. Front Immunol 2021; 12:744477. [PMID: 34671356 PMCID: PMC8521046 DOI: 10.3389/fimmu.2021.744477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022] Open
Abstract
Syndecan-1 (SDC-1) is a transmembrane proteoglycan of heparin sulfate that can regulate various cell signal transduction pathways in the airway epithelial cells and fibroblasts. Airway epithelial cells and human bronchial fibroblasts are crucial in airway remodeling. However, the importance of SDC-1 in the remodeling of asthmatic airways has not been confirmed yet. The present study was the first to uncover SDC-1 overexpression in the airways of humans and mice with chronic asthma. This study also validated that an increase in SDC-1 expression was correlated with TGFβ1/Smad3-mediated airway remodeling in vivo and in vitro. A small interfering RNA targeting SDC-1 (SDC-1 siRNA) and homo-SDC-1 in pcDNA3.1 (pc-SDC-1) was designed to assess the effects of SDC-1 on TGFβ1/Smad3-mediated collagen I expression in Beas-2B (airway epithelial cells) and HLF-1 (fibroblasts) cells. Downregulation of the SDC-1 expression by SDC-1 siRNA remarkably attenuated TGFβ1-induced p-Smad3 levels and collagen I expression in Beas-2B and HLF-1 cells. In addition, SDC-1 overexpression with pc-SDC-1 enhanced TGFβ1-induced p-Smad3 level and collagen I expression in Beas-2B and HLF-1 cells. Furthermore, the levels of p-Smad3 and collagen I induced by TGFβ1 were slightly increased after the addition of the recombinant human SDC-1 protein to Beas-2B and HLF-1 cells. These findings in vitro were also confirmed in a mouse model. A short hairpin RNA targeting SDC-1 (SDC-1 shRNA) to interfere with SDC-1 expression considerably reduced the levels of p-Smad3 and remodeling protein (α-SMA, collagen I) in the airways induced by ovalbumin (OVA). Similarly, OVA-induced p-Smad3 and remodeling protein levels in airways increased after mice inhalation with the recombinant mouse SDC-1 protein. These results suggested that SDC-1 of airway epithelial cells and fibroblasts plays a key role in the development of airway remodeling in OVA-induced chronic asthma.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Rui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Jing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Tao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Fei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
90
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
91
|
Cis-acting lnc-Cxcl2 restrains neutrophil-mediated lung inflammation by inhibiting epithelial cell CXCL2 expression in virus infection. Proc Natl Acad Sci U S A 2021; 118:2108276118. [PMID: 34607953 DOI: 10.1073/pnas.2108276118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Chemokine production by epithelial cells is important for neutrophil recruitment during viral infection, the appropriate regulation of which is critical for restraining inflammation and attenuating subsequent tissue damage. Epithelial cell expression of long noncoding RNAs (lncRNAs), RNA-binding proteins, and their functional interactions during viral infection and inflammation remain to be fully understood. Here, we identified an inducible lncRNA in the Cxcl2 gene locus, lnc-Cxcl2, which could selectively inhibit Cxcl2 expression in mouse lung epithelial cells but not in macrophages. lnc-Cxcl2-deficient mice exhibited increased Cxcl2 expression, enhanced neutrophils recruitment, and more severe inflammation in the lung after influenza virus infection. Mechanistically, nucleus-localized lnc-Cxcl2 bound to Cxcl2 promoter, recruited a ribonucleoprotein La, which inhibited the chromatin accessibility of chemokine promoters, and consequently inhibited Cxcl2 transcription in cis However, unlike mouse lnc-Cxcl2, human lnc-CXCL2-4-1 inhibited multiple immune cytokine expressions including chemokines in human lung epithelial cells. Together, our results demonstrate a self-protecting mechanism within epithelial cells to restrain chemokine and neutrophil-mediated inflammation, providing clues for better understanding chemokine regulation and epithelial cell function in lung viral infection.
Collapse
|
92
|
Teijeiro A, Gómez RM. Wheezing-Related Relevant Factors and the Role of Viral Bronchiolitis. FRONTIERS IN ALLERGY 2021; 2:726972. [PMID: 35387057 PMCID: PMC8974738 DOI: 10.3389/falgy.2021.726972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Bronchiolitis is a virus-associated infection of the lower respiratory tract exhibiting signs and symptoms of airway obstruction. Respiratory Syncytial Virus (RSV) is responsible in most cases; however, different rhinoviruses have also been implicated. Specific viruses and time until the first infection, severity of the respiratory condition, and atopic status have a determinant role in the recurrence of wheezing and asthma development. Genetics, lung function, atopic condition, the role of microbiota and environment, pollution, and obesity are considered in the present review. Emergency room visits and hospitalizations because of severe wheezing and smoking during pregnancy among others were identified as risk factors for significant morbidity in our population. Approaching determinant conditions like genetics, allergy, antiviral immunity, and environmental exposures such as farm vs. urban and viral virulence provides an opportunity to minimize morbidity of viral illness and asthma in children.
Collapse
Affiliation(s)
- Alvaro Teijeiro
- Respiratory Department, Children's Hospital, Córdoba, Argentina
| | | |
Collapse
|
93
|
Yuksel H, Ocalan M, Yilmaz O. E-Cadherin: An Important Functional Molecule at Respiratory Barrier Between Defence and Dysfunction. Front Physiol 2021; 12:720227. [PMID: 34671272 PMCID: PMC8521047 DOI: 10.3389/fphys.2021.720227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
While breathing, many microorganisms, harmful environmental particles, allergens, and environmental pollutants enter the human airways. The human respiratory tract is lined with epithelial cells that act as a functional barrier to these harmful factors and provide homeostasis between external and internal environment. Intercellular epithelial junctional proteins play a role in the formation of the barrier. E-cadherin is a calcium-dependent adhesion molecule and one of the most important molecules involved in intercellular epithelial barier formation. E-cadherin is not only physical barrier element but also regulates cell proliferation, differentiation and the immune response to environmental noxious agents through various transcription factors. In this study, we aimed to review the role of E-cadherin in the formation of airway epithelial barier, its status as a result of exposure to various environmental triggers, and respiratory diseases associated with its dysfunction. Moreover, the situations in which its abnormal activation can be noxious would be discussed.
Collapse
Affiliation(s)
- Hasan Yuksel
- Department of Pediatric Allergy and Pulmonology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Merve Ocalan
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Ozge Yilmaz
- Department of Pediatric Allergy and Pulmonology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| |
Collapse
|
94
|
Camiolo MJ, Kale SL, Oriss TB, Gauthier M, Ray A. Immune responses and exacerbations in severe asthma. Curr Opin Immunol 2021; 72:34-42. [PMID: 33773471 PMCID: PMC8460694 DOI: 10.1016/j.coi.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Asthma as a clinical entity manifests with a broad spectrum of disease severity. Unlike milder asthma, severe disease is poorly controlled by inhaled corticosteroids, the current standard of care. Transcriptomic data, along with patient characteristics and response to biologics show that though Type 2 (T2) immune response remains an integral feature of asthma, additional molecular and immunologic factors may play important roles in pathogenesis. Mechanisms of T2 development, cellular sources of T2 cytokines and their relationship to additional immune pathways concurrently activated may distinguish several different subphenotypes, and perhaps endotypes of asthma, with differential response to non-specific and targeted anti-inflammatory therapies. Recent data have also associated non-T2 cytokines derived from T cells, particularly IFN-γ, and epithelial mediators with severe asthma. These topics and their relationships to acute asthma exacerbations are discussed in this review.
Collapse
Affiliation(s)
- Matthew J Camiolo
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sagar L Kale
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Gauthier
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
95
|
Lin CH, Lung SCC, Chen YC, Wang LC. Pulmonary toxicity of actual alveolar deposition concentrations of ultrafine particulate matters in human normal bronchial epithelial cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50179-50187. [PMID: 33954916 DOI: 10.1007/s11356-021-14265-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is a major worldwide concern, and exposure to particulate matter (PM) can increase the risks of pulmonary diseases. Normal human bronchial epithelial cells were applied to clarify the role of ultrafine PM (UFPM) in the pathogenesis of pulmonary toxic effects with realistic alveolar deposition doses. The UFPM used in this research originated from vehicular emissions and coal combustion. UFPM exposure of up to 72 h was found to induce significant time- and concentration-dependent decreases in cell viability. Exposure to UFPM increased reactive oxygen species (ROS) accumulation through heme oxygenase-1 (HO-1) inhibition and induced massive oxidative stress that increased the interleukin-8 (IL-8) expression. UFPM also reduced the pulmonary trans-epithelial electrical resistance through the depletion of zonula occludens (ZO) proteins. Finally, UFPM decreased the α1-antitrypsin (A1AT) expression, which implies high risk of chronic obstructive pulmonary disease (COPD). The evidence demonstrates that exposure to UFPM, even at very low concentrations, may affect the functions of the respiratory system.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan.
| | | | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Lung-Chun Wang
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| |
Collapse
|
96
|
Han F, Li S, Yang Y, Bai Z. Interleukin-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species-dependent lipid peroxidation and disrupting iron homeostasis. Bioengineered 2021; 12:5279-5288. [PMID: 34402724 PMCID: PMC8806540 DOI: 10.1080/21655979.2021.1964158] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Asthma occurs accompanied by the ferroptosis in bronchial epithelial cells, during which Interleukin-6 (IL-6) plays a key role. However, the associations between IL-6, ferroptosis and asthma have not been reported. Bronchial epithelial cells BEAS-2B cells were induced by different concentrations of IL-6 and cell viability was detected by MTT assay. The TBARS production rate was detected by corresponding kit. The expression of oxidative stress-related indexes was detected by ELISA. The Iron Assay Kits detected total iron levels and ferrous ion (Fe2+) levels. Labile iron pool assay was used to detect the cell unstable iron pool. The expression of ferroptosis-related proteins was detected by Western blot. To further examine the mechanism of action, ferroptosis inhibitor Ferrostatin 1 (Fer-1), antioxidant NAC, and the iron supplement Fe were added. We found that IL-6 decreased the activity, promoted lipid peroxidation, disrupted iron homeostasis of BEAS-2B cells, and induced iron death in bronchial epithelial BEAS-2B cells. However, pretreatment with Ferrostatin-1 (Fer-1) and antioxidant NAC partially reversed the effect of IL-6 on lipid peroxidation and ferroptosis in BEAS-2B cells, while Fe augmented the effect. Overall, IL-6 promotes ferroptosis in bronchial epithelial cells by inducing reactive oxygen species (ROS)-dependent lipid peroxidation and disrupting iron homeostasis.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory Of Industrial Biotechnology, Ministry Of Education, School Of Biotechnology, jiangnan university, Jiangsu, China.,National Engineering Laboratory For Cereal Fermentation Technology, Jiangnan University, Jiangsu, China.,Jiangsu Provincial Research Center For Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shijie Li
- The Key Laboratory Of Industrial Biotechnology, Ministry Of Education, School Of Biotechnology, jiangnan university, Jiangsu, China.,National Engineering Laboratory For Cereal Fermentation Technology, Jiangnan University, Jiangsu, China.,Jiangsu Provincial Research Center For Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yankun Yang
- The Key Laboratory Of Industrial Biotechnology, Ministry Of Education, School Of Biotechnology, jiangnan university, Jiangsu, China.,National Engineering Laboratory For Cereal Fermentation Technology, Jiangnan University, Jiangsu, China.,Jiangsu Provincial Research Center For Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhonghu Bai
- The Key Laboratory Of Industrial Biotechnology, Ministry Of Education, School Of Biotechnology, jiangnan university, Jiangsu, China.,National Engineering Laboratory For Cereal Fermentation Technology, Jiangnan University, Jiangsu, China.,Jiangsu Provincial Research Center For Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
97
|
Looi K, Larcombe AN, Perks KL, Berry LJ, Zosky GR, Rigby P, Knight DA, Kicic A, Stick SM. Previous Influenza Infection Exacerbates Allergen Specific Response and Impairs Airway Barrier Integrity in Pre-Sensitized Mice. Int J Mol Sci 2021; 22:ijms22168790. [PMID: 34445491 PMCID: PMC8395745 DOI: 10.3390/ijms22168790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/15/2023] Open
Abstract
In this study we assessed the effects of antigen exposure in mice pre-sensitized with allergen following viral infection on changes in lung function, cellular responses and tight junction expression. Female BALB/c mice were sensitized to ovalbumin and infected with influenza A before receiving a second ovalbumin sensitization and challenge with saline, ovalbumin (OVA) or house dust mite (HDM). Fifteen days post-infection, bronchoalveolar inflammation, serum antibodies, responsiveness to methacholine and barrier integrity were assessed. There was no effect of infection alone on bronchoalveolar lavage cellular inflammation 15 days post-infection; however, OVA or HDM challenge resulted in increased bronchoalveolar inflammation dominated by eosinophils/neutrophils or neutrophils, respectively. Previously infected mice had higher serum OVA-specific IgE compared with uninfected mice. Mice previously infected, sensitized and challenged with OVA were most responsive to methacholine with respect to airway resistance, while HDM challenge caused significant increases in both tissue damping and tissue elastance regardless of previous infection status. Previous influenza infection was associated with decreased claudin-1 expression in all groups and decreased occludin expression in OVA or HDM-challenged mice. This study demonstrates the importance of the respiratory epithelium in pre-sensitized individuals, where influenza-infection-induced barrier disruption resulted in increased systemic OVA sensitization and downstream effects on lung function.
Collapse
Affiliation(s)
- Kevin Looi
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia
| | - Alexander N. Larcombe
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia
- Correspondence:
| | - Kara L. Perks
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
| | - Luke J. Berry
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
| | - Graeme R. Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart 7001, Australia;
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart 7001, Australia
| | - Paul Rigby
- Centre for Microscopy, Characterisation and Analysis (CMCA), University of Western Australia, Nedlands 6009, Australia;
| | - Darryl A. Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle 2305, Australia
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Nedlands 6009, Australia; (K.L.); (K.L.P.); (L.J.B.); (A.K.); (S.M.S.)
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
| |
Collapse
|
98
|
Jakiela B, Rebane A, Soja J, Bazan-Socha S, Laanesoo A, Plutecka H, Surmiak M, Sanak M, Sladek K, Bochenek G. Remodeling of bronchial epithelium caused by asthmatic inflammation affects its response to rhinovirus infection. Sci Rep 2021; 11:12821. [PMID: 34140575 PMCID: PMC8211645 DOI: 10.1038/s41598-021-92252-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Human rhinoviruses (HRV) are frequent cause of asthma exacerbations, however the influence of airway inflammation on the severity of viral infection is poorly understood. Here, we investigated how cytokine-induced remodeling of airway epithelium modulates antiviral response. We analyzed gene expression response in in vitro differentiated bronchial epithelium exposed to cytokines and next infected with HRV16. IL-13-induced mucous cell metaplasia (MCM) was associated with impaired ciliogenesis and induction of antiviral genes, resulting in lower susceptibility to HRV. Epithelial-mesenchymal transition caused by TGF-β was associated with increased virus replication and boosted innate response. Moreover, HRV infection per se caused transient upregulation of MCM markers and growth factors, followed by low-level virus replication and shedding. Our data suggest that the outcome of HRV infection depends on the type of lower airway inflammation and the extent of epithelial damage. Type-2 inflammation (eosinophilic asthma) may induce antiviral state of epithelium and decrease virus sensitivity, while growth factor exposure during epithelial repair may facilitate virus replication and inflammatory response. Additionally, responses to HRV were similar in cells obtained from asthma patients and control subjects, which implicates that antiviral mechanisms are not intrinsically impaired in asthma, but may develop in the presence of uncontrolled airway inflammation.
Collapse
Affiliation(s)
- Bogdan Jakiela
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Ana Rebane
- grid.10939.320000 0001 0943 7661Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jerzy Soja
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Stanislawa Bazan-Socha
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Anet Laanesoo
- grid.10939.320000 0001 0943 7661Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanna Plutecka
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Marcin Surmiak
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Marek Sanak
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Krzysztof Sladek
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| | - Grazyna Bochenek
- grid.5522.00000 0001 2162 9631Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Skawinska 8, 31-066 Kraków, Poland
| |
Collapse
|
99
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
100
|
Guo S, Chen R, Zhang L, Wu M, Wei Y, Dai W, Jiang Y, Kong X. microRNA-22-3p plays a protective role in a murine asthma model through the inhibition of the NLRP3-caspase-1-IL-1β axis. Exp Physiol 2021; 106:1829-1838. [PMID: 33932961 DOI: 10.1113/ep089575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does miR-22-3p exert a protective role in asthma? What is the main finding and its importance? Upregulation of miR-22-3p hampered airway inflammation and release of inflammatory cytokines through blocking the activation of the NLRP3-caspase-1-IL-1β signalling pathway in asthma. ABSTRACT Asthma, a great public health burden, is triggered by inflammatory responses in the airways and these are not addressed appropriately by current therapies. This study aims to investigate the regulatory mechanism of microRNA-22-3p (miR-22-3p) on the proliferation of bronchial epithelial cells exposed to lipopolysaccharide (LPS) and expression of pro-inflammatory cytokines in a murine asthma model challenged by ovalbumin. We first confirmed the downregulation of miR-22-3p in the murine asthma model and bronchial epithelial cells. miR-22-3p remarkably reversed the decline in bronchial epithelial cell viability, enhancement in apoptosis rate and release of inflammatory factors induced by LPS. miR-22-3p targeted and conversely regulated NACHT, LRR and PYD domains-containing protein 3 (NLRP3). Overexpression of NLRP3 counteracted the inhibitory effect of miR-22-3p on inflammatory damage in bronchial epithelial cells through activation of caspase-1/interleukin (IL)-1β. In an in vivo model, overexpression of miR-22-3p significantly attenuated airway obstruction and tissue damage in mice. In summary, our study underscores that miR-22-3p serves both as a negative regulator of the NLRP3-caspase-1-IL-1β axis and as a protective factor against the inflammatory response, suggesting a future therapeutic role in asthma.
Collapse
Affiliation(s)
- Shufang Guo
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Ru Chen
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Lina Zhang
- Department of Intensive Care, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yangyang Wei
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| |
Collapse
|