51
|
Faruangsaeng T, Thaweesapphitak S, Khamwachirapitak C, Porntaveetus T, Shotelersuk V. Comparative transcriptome profiles of human dental pulp stem cells from maxillary and mandibular teeth. Sci Rep 2022; 12:8860. [PMID: 35614192 PMCID: PMC9133121 DOI: 10.1038/s41598-022-12867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
The molecular control of tooth development is different between the maxilla and mandible, contributing to different tooth shapes and locations; however, whether this difference occurs in human permanent teeth is unknown. The aim of this study was to investigate and compare the transcriptome profiles of permanent maxillary and mandibular posterior teeth. Ten participants who had a pair of opposing premolars or molars extracted were recruited. The RNA obtained from cultured dental pulp stem cells underwent RNA-sequencing and qRT-PCR. The transcriptome profiles of two opposing premolar pairs and two molar pairs demonstrated that the upper premolars, lower premolars, upper molars, and lower molars expressed the same top-ranked genes, comprising FN1, COL1A1, COL1A2, ACTB, and EEFIA1, which are involved in extracellular matrix organization, immune system, signal transduction, hemostasis, and vesicle-mediated transport. Comparative transcriptome analyses of each/combined tooth pairs demonstrated that PITX1 was the only gene with different expression levels between upper and lower posterior teeth. PITX1 exhibited a 64-fold and 116-fold higher expression level in lower teeth compared with their upper premolars and molars, respectively. These differences were confirmed by qRT-PCR. Taken together, this study, for the first time, reveals that PITX1 is expressed significantly higher in mandibular posterior teeth compared with maxillary posterior teeth. The difference is more evident in the molars compared with premolars and consistent with its expression pattern in mouse developing teeth. We demonstrate that differences in lower versus upper teeth gene expression during odontogenesis occur in permanent teeth and suggest that these differences should be considered in molecular studies of dental pulp stem cells. Our findings pave the way to develop a more precise treatment in regenerative dentistry such as gene-based therapies for dentin/pulp regeneration and regeneration of different tooth types.
Collapse
Affiliation(s)
- Thira Faruangsaeng
- International Graduate Program in Geriatric Dentistry and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sermporn Thaweesapphitak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompak Khamwachirapitak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- International Graduate Program in Geriatric Dentistry and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand. .,Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
52
|
Yang L, Ren Z, Yan S, Zhao L, Liu J, Zhao L, Li Z, Ye S, Liu A, Li X, Guo J, Zhao W, Kuang W, Liu H, Chen D. Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Commun Biol 2022; 5:495. [PMID: 35614315 PMCID: PMC9133052 DOI: 10.1038/s42003-022-03420-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
The chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) has been used in the treatment and repair of cartilage defects; however, the in-depth regulatory mechanisms by which RNA modifications are involved in this process are still poorly understood. Here, we found that Sox9, a critical transcription factor that mediates chondrogenic differentiation, exhibited enhanced translation by ribosome sequencing in chondrogenic pellets, which was accompanied by increased 5-methylcytosine (m5C) and N6-methyladenosine (m6A) levels. Nsun4-mediated m5C and Mettl3-mediated m6A modifications were required for Sox9-regulated chondrogenic differentiation. Interestingly, we showed that in the 3’UTR of Sox9 mRNA, Nsun4 catalyzed the m5C modification and Mettl3 catalyzed the m6A modification. Furthermore, we found that Nsun4 and Mettl3 co-regulated the translational reprogramming of Sox9 via the formation of a complex. Surface plasmon resonance (SPR) assays showed that this complex was assembled along with the recruitment of Ythdf2 and eEF1α-1. Moreover, BMSCs overexpressing Mettl3 and Nsun4 can promote the repair of cartilage defects in vivo. Taken together, our study demonstrates that m5C and m6A co-regulate the translation of Sox9 during the chondrogenic differentiation of BMSCs, which provides a therapeutic target for clinical implications. Nsun4-mediated m5C and Mettl3-mediated m6A are found to be required for Sox9-regulated chondrogenic differentiation, whereby Nsun4 and Mettl3 interact with each other and recruit Ythdf2 and eEF1a-1 to form a complex at the 3’UTR of Sox9.
Collapse
Affiliation(s)
- Lin Yang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China
| | - Zhenxing Ren
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shenyu Yan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, 61001-89999, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China
| | - Lijun Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China
| | - Zhen Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China
| | - Shanyu Ye
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Aijun Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xichan Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, 518101, Guangdong, China.
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
53
|
Ciereszko A, Dietrich MA, Słowińska M, Nynca J, Ciborowski M, Kaczmarek MM, Myszczyński K, Kiśluk J, Majewska A, Michalska-Falkowska A, Kodzik N, Reszeć J, Sierko E, Nikliński J. Application of two-dimensional difference gel electrophoresis to identify protein changes between center, margin, and adjacent non-tumor tissues obtained from non-small-cell lung cancer with adenocarcinoma or squamous cell carcinoma subtype. PLoS One 2022; 17:e0268073. [PMID: 35512017 PMCID: PMC9071164 DOI: 10.1371/journal.pone.0268073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is responsible for the most cancer-related mortality worldwide and the mechanism of its development is poorly understood. Proteomics has become a powerful tool offering vital knowledge related to cancer development. Using a two-dimensional difference gel electrophoresis (2D-DIGE) approach, we sought to compare tissue samples from non-small-cell lung cancer (NSCLC) patients taken from the tumor center and tumor margin. Two subtypes of NSCLC, adenocarcinoma (ADC) and squamous cell carcinoma (SCC) were compared. Data are available via ProteomeXchange with identifier PXD032736 and PXD032962 for ADC and SCC, respectively. For ADC proteins, 26 significant canonical pathways were identified, including Rho signaling pathways, a semaphorin neuronal repulsive signaling pathway, and epithelial adherens junction signaling. For SCC proteins, nine significant canonical pathways were identified, including hypoxia-inducible factor-1α signaling, thyroid hormone biosynthesis, and phagosome maturation. Proteins differentiating the tumor center and tumor margin were linked to cancer invasion and progression, including cell migration, adhesion and invasion, cytoskeletal structure, protein folding, anaerobic metabolism, tumor angiogenesis, EMC transition, epithelial adherens junctions, and inflammatory responses. In conclusion, we identified several proteins that are important for the better characterization of tumor development and molecular specificity of both lung cancer subtypes. We also identified proteins that may be important as biomarkers and/or targets for anticancer therapy.
Collapse
Affiliation(s)
- Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Mariola A. Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Michał Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Monika M. Kaczmarek
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Majewska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Natalia Kodzik
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
54
|
Hsu TK, Asmussen J, Koire A, Choi BK, Gadhikar MA, Huh E, Lin CH, Konecki DM, Kim YW, Pickering CR, Kimmel M, Donehower LA, Frederick MJ, Myers JN, Katsonis P, Lichtarge O. A general calculus of fitness landscapes finds genes under selection in cancers. Genome Res 2022; 32:916-929. [PMID: 35301263 PMCID: PMC9104707 DOI: 10.1101/gr.275811.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Genetic variants drive the evolution of traits and diseases. We previously modeled these variants as small displacements in fitness landscapes and estimated their functional impact by differentiating the evolutionary relationship between genotype and phenotype. Conversely, here we integrate these derivatives to identify genes steering specific traits. Over cancer cohorts, integration identified 460 likely tumor-driving genes. Many have literature and experimental support but had eluded prior genomic searches for positive selection in tumors. Beyond providing cancer insights, these results introduce a general calculus of evolution to quantify the genotype-phenotype relationship and discover genes associated with complex traits and diseases.
Collapse
Affiliation(s)
- Teng-Kuei Hsu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jennifer Asmussen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amanda Koire
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Byung-Kwon Choi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mayur A Gadhikar
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Eunna Huh
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chih-Hsu Lin
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Daniel M Konecki
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Young Won Kim
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marek Kimmel
- Departments of Statistics and Bioengineering, Rice University, Houston, Texas 77005, USA
- Department of Systems Engineering and Biology, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Lawrence A Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mitchell J Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Olivier Lichtarge
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
55
|
HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation. Oncogene 2022; 41:2505-2519. [PMID: 35318442 DOI: 10.1038/s41388-022-02271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/19/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Cancer stem cells play crucial roles in tumorigenesis and aggressiveness, while regulatory mechanisms in neuroblastoma (NB), a pediatric extracranial malignancy with highest incidence, are still unknown. Herein, a small 51-amino acid peptide (sPEP1) encoded by hepatocyte nuclear factor 4 alpha antisense RNA 1 (HNF4A-AS1) was identified in tumor tissues and cells, which facilitated self-renewal and aggressiveness of NB stem cells. MiRNA-409-5p interacted with HNF4A-AS1 to facilitate sPEP1 translation via recruiting eukaryotic translation initiation factor 3 subunit G, while sPEP1 repressed serum deprivation-induced senescence and promoted sphere formation, growth, or metastasis of NB stem cells. Mechanistically, sPEP1 directly interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to facilitate its binding to SMAD family member 4 (SMAD4), resulting in repression of SMAD4 transactivation and transcriptional upregulation of stem cell genes associated with tumor progression. Rescue experiments revealed that sPEP1 exerted oncogenic roles via facilitating physical interaction between eEF1A1 and SMAD4. Notably, knockdown of sPEP1 significantly repressed the self-renewal and metastasis of NB stem cells in vivo. High sPEP1 or eEF1A1 levels in clinical NB tissues were linked to poor patients' survival. These findings suggest that HNF4A-AS1-encoded sPEP1 promotes self-renewal and aggressive features of NB stem cells by eEF1A1-repressed SMAD4 transactivation.
Collapse
|
56
|
Belyi Y, Levanova N, Schroeder GN. Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion. Biomolecules 2022; 12:255. [PMID: 35204756 PMCID: PMC8961657 DOI: 10.3390/biom12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Work over the past two decades clearly defined a significant role of glycosyltransferase effectors in the infection strategy of the Gram-negative, respiratory pathogen Legionella pneumophila. Identification of the glucosyltransferase effectors Lgt1-3, specifically modifying elongation factor eEF1A, disclosed a novel mechanism of host protein synthesis manipulation by pathogens and illuminated its impact on the physiological state of the target cell, in particular cell cycle progression and immune and stress responses. Recent characterization of SetA as a general O-glucosyltransferase with a wide range of targets including the proteins Rab1 and Snx1, mediators of membrane transport processes, and the discovery of new types of glycosyltransferases such as LtpM and SidI indicate that the vast effector arsenal might still hold more so-far unrecognized family members with new catalytic features and substrates. In this article, we review our current knowledge regarding these fascinating biomolecules and discuss their role in introducing new or overriding endogenous post-translational regulatory mechanisms enabling the subversion of eukaryotic cells by L. pneumophila.
Collapse
Affiliation(s)
- Yury Belyi
- Laboratory of Molecular Pathogenesis, Gamaleya Research Centre, 123098 Moscow, Russia
| | | | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
57
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
58
|
Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022; 17:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The global COVID-19 pandemic has claimed the lives of millions and disrupted nearly every aspect of human society. Currently, vaccines remain the only widely available medical means to address the cause of the pandemic, the SARS-CoV-2 virus. Unfortunately, current scientific consensus deems the emergence of vaccine-resistant SARS-CoV-2 variants highly likely. In this context, the design and development of broad-spectrum, small-molecule based antiviral drugs has been described as a potentially effective, alternative medical strategy to address circulating and re-emerging CoVs. Small molecules are well-suited to target the least-rapidly evolving structures within CoVs such as highly conserved RNA replication enzymes, and this renders them less vulnerable to evolved drug resistance. Examination of the vast literature describing the inhibition of RNA viruses by Amaryllidaceae alkaloids suggests that future, broad-spectrum anti-CoV drugs may be derived from this family of natural products.
Collapse
Affiliation(s)
- Shen Tan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Martin G Banwell
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping Lan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Lorenzo V White
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
59
|
Integrated single-cell RNA sequencing analysis reveals distinct cellular and transcriptional modules associated with survival in lung cancer. Signal Transduct Target Ther 2022; 7:9. [PMID: 35027529 PMCID: PMC8758688 DOI: 10.1038/s41392-021-00824-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Lung adenocarcinoma (LUAD) and squamous carcinoma (LUSC) are two major subtypes of non-small cell lung cancer with distinct pathologic features and treatment paradigms. The heterogeneity can be attributed to genetic, transcriptional, and epigenetic parameters. Here, we established a multi-omics atlas, integrating 52 single-cell RNA sequencing and 2342 public bulk RNA sequencing. We investigated their differences in genetic amplification, cellular compositions, and expression modules. We revealed that LUAD and LUSC contained amplifications occurring selectively in subclusters of AT2 and basal cells, and had distinct cellular composition modules associated with poor survival of lung cancer. Malignant and stage-specific gene analyses further uncovered critical transcription factors and genes in tumor progression. Moreover, we identified subclusters with proliferating and differentiating properties in AT2 and basal cells. Overexpression assays of ten genes, including sub-cluster markers AQP5 and KPNA2, further indicated their functional roles, providing potential targets for early diagnosis and treatment in lung cancer.
Collapse
|
60
|
METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury. Cell Death Dis 2022; 8:15. [PMID: 35013140 PMCID: PMC8748977 DOI: 10.1038/s41420-021-00808-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
Spinal cord injury (SCI) is a devastating traumatic condition. METTL14-mediated m6A modification is associated with SCI. This study was intended to investigate the functional mechanism of RNA methyltransferase METTL14 in spinal cord neuron apoptosis during SCI. The SCI rat model was established, followed by evaluation of pathological conditions, apoptosis, and viability of spinal cord neurons. The neuronal function of primary cultured spinal motoneurons of rats was assessed after hypoxia/reoxygenation treatment. Expressions of EEF1A2, Akt/mTOR pathway-related proteins, inflammatory cytokines, and apoptosis-related proteins were detected. EEF1A2 was weakly expressed and Akt/mTOR pathway was inhibited in SCI rat models. Hypoxia/Reoxygenation decreased the viability of spinal cord neurons, promoted LDH release and neuronal apoptosis. EEF1A2 overexpression promoted the viability of spinal cord neurons, inhibited neuronal apoptosis, and decreased inflammatory cytokine levels. Silencing METTL14 inhibited m6A modification of EEF1A2 and increased EEF1A2 expression while METTL14 overexpression showed reverse results. EEF1A2 overexpression promoted viability and inhibited apoptosis of spinal cord neurons and inflammation by activating the Akt/mTOR pathway. In conclusion, silencing METTL14 repressed apoptosis of spinal cord neurons and attenuated SCI by inhibiting m6A modification of EEF1A2 and activating the Akt/mTOR pathway.
Collapse
|
61
|
Komatsu M, Mannen H, Taniguchi M, Oshima K. Expression and differential posttranscriptional regulation of the elongation factor 1 alpha 1 gene in endometrial caruncle and intercaruncle of Japanese Black cattle at early and mid-gestation stages. Anim Sci J 2022; 93:e13746. [PMID: 35791676 DOI: 10.1111/asj.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The elongation factor 1 alpha 1 (EEF1A1), an isoform of EEF1A, is one of the most abundant cytoplasmic proteins and an important component of the translational machinery. We investigated the relative expression, alternative polyadenylation (APA), and changes in poly(A) tail length of EEF1A1 mRNA in the endometrial caruncle (CAR) and intercaruncle (ICAR) at early and mid-gestation in Japanese Black cattle. The relative EEF1A1 mRNA expression levels in the CAR were the highest on Gestation day 20 and were significantly decreased at mid-gestation. The expression levels in the ICAR were significantly higher than those in the CAR, and the gestation stage had no significant impact. Four different EEF1A1 transcripts with distinct 3' untranslated regions (UTRs) (proximal and distal types) and poly(A) tails (medium and short types) of different lengths were identified. The EEF1A1 mRNAs with distal 3' UTR and medium-length poly(A) tails were specific from the CAR of uterus horn at early gestation. RNA-sequencing data analyses revealed that the HSF1, MZF1, E47, SRF, GATA2, GATA3, GATA6, HNF-3 beta (FOXA2), CPSF1, and Ataxin-2 genes might affect the EEF1A1 gene expression or poly(A) length.
Collapse
Affiliation(s)
- Masanori Komatsu
- Komatsu Laboratory of Computational Biology for Domestic Animals, Ryugasaki, Japan.,Division of Tear-Round Grazing Research, Western Region Agricultural Research Center, NARO, Oda, Japan
| | - Hideyuki Mannen
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Masaaki Taniguchi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture Food Research Organization (NARO), Tsukuba, Japan
| | - Kazunaga Oshima
- Division of Tear-Round Grazing Research, Western Region Agricultural Research Center, NARO, Oda, Japan
| |
Collapse
|
62
|
Gong T, Shuang Y. Expression and Clinical Value of Eukaryotic Translation Elongation Factor 1A1 (EEF1A1) in Diffuse Large B Cell Lymphoma. Int J Gen Med 2021; 14:7247-7258. [PMID: 34737619 PMCID: PMC8559353 DOI: 10.2147/ijgm.s324645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background The eukaryotic translation elongation factor 1A1 (EEF1A1) participates in protein translation and has been reported to be involved in tumor progression such as hepatocellular carcinoma. Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. In the present study, we aimed to detect the expression of EEF1A1 in DLBCL and to analyze its relationship with prognosis. Methods We reviewed medical records of DLBCL patients in our hospital and evaluated their expression level of EEF1A1 in tumor tissues using immunohistochemical (IHC) assay. The Chi-square method was used for correlation analysis. The Kaplan–Meier method with Log rank test was used for univariate analysis. Cox proportional hazards model was used for multivariate analysis. Cellular and mice models were introduced to validate its oncogenic role. Results EEF1A1 expression in tumor cells was higher in certain DLBCL cases. Patients with higher EEF1A1 expression were more likely to have advanced tumor stage and poorer 5-year overall survival (OS) rates. EEF1A1 expression in tumor cells was an independent risk predictor for OS (P < 0.05). Cellular assays demonstrated that EEF1A1-shRNA significantly inhibited lymphoma cell proliferation. The study of xenografts further verified the effect of EEF1A1-shRNA on suppressing tumor growth in vivo. Conclusion EEF1A1 positivity predicts short survival in DLBCL patients. For patients with higher EEF1A1 expression, more strategy such as anti-EEF1A1 antibody treatment should be developed.
Collapse
Affiliation(s)
- Tiejun Gong
- Institute of Hematology and Oncology, Harbin the First Hospital, Harbin, 150010, People's Republic of China
| | - Yuerong Shuang
- Department of Lymphatic Hematology and Oncology, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| |
Collapse
|
63
|
Watanabe A, Mizoguchi I, Hasegawa H, Katahira Y, Inoue S, Sakamoto E, Furusaka Y, Sekine A, Miyakawa S, Murakami F, Xu M, Yoneto T, Yoshimoto T. A Chaperone-Like Role for EBI3 in Collaboration With Calnexin Under Inflammatory Conditions. Front Immunol 2021; 12:757669. [PMID: 34603342 PMCID: PMC8484754 DOI: 10.3389/fimmu.2021.757669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023] Open
Abstract
The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and β-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another β-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.
Collapse
Affiliation(s)
- Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
64
|
Liu Y, Deng S, Song Z, Zhang Q, Guo Y, Yu Y, Wang Y, Li T, Megahed FAK, Addissouky TA, Mao J, Zhang Y. MLIF Modulates Microglia Polarization in Ischemic Stroke by Targeting eEF1A1. Front Pharmacol 2021; 12:725268. [PMID: 34557098 PMCID: PMC8452963 DOI: 10.3389/fphar.2021.725268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/13/2021] [Indexed: 01/19/2023] Open
Abstract
Monocyte locomotion inhibitory factor (MLIF) is a heat-stable pentapeptide from Entamoeba histolytica. Our previous study found that MLIF protects against ischemic stroke in rats and mice and exerts a neuroprotection effect in human neuroblastoma SH-SY5Y cells. Microglia/macrophage polarization has been proven to be vital in the pathology of ischemic stroke. Nevertheless, whether MLIF is able to modulate microglia/macrophage polarization remains unclear. We performed middle cerebral artery occlusion (MCAO) on C57BL/6J male mice and induced cultured BV2 microglia by oxygen-glucose deprivation (OGD), respectively. Immunfluorescence was utilized to detect the M1/2 markers, such as CD206 and CD16/32. qPCR and ELISA were used to detect the signature gene change of M1/2. The MAPK and NF-κB pathway associated proteins were measured by Western blot. To identify the protein target of MLIF, a pull-down assay was performed. We found that MLIF promoted microglia transferring from a “sick” M1 phenotype to a “healthy” M2 phenotype in vivo or in vitro. Furthermore, we proved that eukaryotic elongation factor 1A1 (eEF1A1) was involved in the modulation of microglia/macrophage polarization. Knocking down eEF1A1 by siRNA exhibited the M1 promotion effect and M2 inhibition effect. Taken together, our results demonstrated MLIF modulated microglia/macrophage polarization by targeting eEF1A1 in ischemic stroke.
Collapse
Affiliation(s)
- Yulan Liu
- School of Medicine, Shanghai University, Shanghai, China.,Department of Pharmacy, The Air Force Hospital From Eastern Theater of PLA, Nanjing, China
| | - Shanshan Deng
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhibing Song
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Qian Zhang
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Yuchen Guo
- College of Pharmacology, Anhui University of Chinese Medicine, Hefei, China
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China
| | - Yuliang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiejun Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Fayed A K Megahed
- Nucliec Acid Research Departement, Genetic Engineering and Biotechnological Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | | | - Junqin Mao
- Department of Clinical Pharmacy, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
65
|
Farmani AR, Mahdavinezhad F, Scagnolari C, Kouhestani M, Mohammadi S, Ai J, Shoormeij MH, Rezaei N. An overview on tumor treating fields (TTFields) technology as a new potential subsidiary biophysical treatment for COVID-19. Drug Deliv Transl Res 2021; 12:1605-1615. [PMID: 34542840 PMCID: PMC8451390 DOI: 10.1007/s13346-021-01067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/25/2022]
Abstract
COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial. The potential new, non-invasive, FDA-approved biophysical technology that could be considered in this regard is tumor treating fields (TTFields) based on an alternating electric field has great biological effects. TTFields have significant effects in improving the functionality of dendritic cell, and cytotoxic T-cells, and these cells have a major role in defense against viral infection. Hence, applying TTFields could help COVID-19 patients against infection. Additionally, TTFields can reduce viral genomic replication, by reducing the expressions of some of the vital members of DNA replication complex genes from the minichromosome maintenance family (MCMs). These genes not only are involved in DNA replication but it has also been proven that they have a crucial role in viral replication. Also, TTFields suppress the formation of the network of tunneling nanotubes (TNTs) which is knows as filamentous (F)-actin-rich tubular structures. TNTs have a critical role in promoting the spread of viruses through improving viral entry and acting as a protective agent for viral components from immune cells and even pharmaceuticals. Moreover, TTFields enhance autophagy which leads to apoptosis of virally infected cells. Thus, it can be speculated that using TTFields may prove to be a promising approach as a subsidiary treatment of COVID-19.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tissue Engineering Department-School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Anatomy Department-School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Affiliated to Istituto Pasteur Italia, Viale Di Porta Tiburtina, 28, 00185 Rome, Italy
| | - Mahsa Kouhestani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Mohammadi
- Department of Plastic Engineering, Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
66
|
Gupta SK, Ponte-Sucre A, Bencurova E, Dandekar T. An Ebola, Neisseria and Trypanosoma human protein interaction census reveals a conserved human protein cluster targeted by various human pathogens. Comput Struct Biotechnol J 2021; 19:5292-5308. [PMID: 34745452 PMCID: PMC8531761 DOI: 10.1016/j.csbj.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Filovirus ebolavirus (ZE; Zaire ebolavirus, Bundibugyo ebolavirus), Neisseria meningitidis (NM), and Trypanosoma brucei (Tb) are serious infectious pathogens, spanning viruses, bacteria and protists and all may target the blood and central nervous system during their life cycle. NM and Tb are extracellular pathogens while ZE is obligatory intracellular, targetting immune privileged sites. By using interactomics and comparative evolutionary analysis we studied whether conserved human proteins are targeted by these pathogens. We examined 2797 unique pathogen-targeted human proteins. The information derived from orthology searches of experimentally validated protein-protein interactions (PPIs) resulted both in unique and shared PPIs for each pathogen. Comparing and analyzing conserved and pathogen-specific infection pathways for NM, TB and ZE, we identified human proteins predicted to be targeted in at least two of the compared host-pathogen networks. However, four proteins were common to all three host-pathogen interactomes: the elongation factor 1-alpha 1 (EEF1A1), the SWI/SNF complex subunit SMARCC2 (matrix-associated actin-dependent regulator of chromatin subfamily C), the dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (RPN1), and the tubulin beta-5 chain (TUBB). These four human proteins all are also involved in cytoskeleton and its regulation and are often addressed by various human pathogens. Specifically, we found (i) 56 human pathogenic bacteria and viruses that target these four proteins, (ii) the well researched new pandemic pathogen SARS-CoV-2 targets two of these four human proteins and (iii) nine human pathogenic fungi (yet another evolutionary distant organism group) target three of the conserved proteins by 130 high confidence interactions.
Collapse
Affiliation(s)
- Shishir K Gupta
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, 97078 Würzburg, Germany
| | - Alicia Ponte-Sucre
- Laboratorio de Fisiología Molecular, Instituto de Medicina Experimental, Escuela Luis Razetti, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Hermann-Schell-Str. 7, 97074 Würzburg, Germany
| | - Elena Bencurova
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
- EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
67
|
Shu X, Li X, Xiang X, Wang Q, Wu Q. METTL21B is a prognostic biomarker and potential therapeutic target in low-grade gliomas. Aging (Albany NY) 2021; 13:20661-20683. [PMID: 34446611 PMCID: PMC8436898 DOI: 10.18632/aging.203454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022]
Abstract
A considerable amount of literature has demonstrated that eukaryotic translation elongation factor 1A (eEF1A) is closely related to tumors. As a newly identified lysine specific methyltransferase targeting eEF1A at Lys-165, too little attention has been paid to the function of METTL21B. To determine the potential significance and prognostic value of METTL21B in low grade glioma (LGG), we analyzed the expression, methylation level and copy number variations (CNV) of METTL21B and its effect on prognosis in patients with LGG by 4 public databases in conjunction with experimental examination of LGG patient samples. As a result, we found that high expression, hypomethylation and gain/amplification of CNV of METTL21B were associated with poor prognosis in LGG. The potential functions of METTL21B in LGG may be involved in cell adhesion, angiogenesis and cell proliferation of tumor by enrichment analysis. In addition, METTL21B may facilitate immune evasion of tumor and affect prognosis by mediating macrophage polarization from M1 to M2 and regulating expression of immune checkpoints. Nevertheless, patients with high METTL21B level are likely to have better response to immune checkpoints blockage therapy. Because of its substrate specificity, METTL21B is expected to be a promising target for the treatment of glioma.
Collapse
Affiliation(s)
- Xin Shu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
68
|
Schlegel M, Sharma M, Brown EJ, Newman AAC, Cyr Y, Afonso MS, Corr EM, Koelwyn GJ, van Solingen C, Guzman J, Farhat R, Nikain CA, Shanley LC, Peled D, Schmidt AM, Fisher EA, Moore KJ. Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression. Circ Res 2021; 129:530-546. [PMID: 34289717 PMCID: PMC8529357 DOI: 10.1161/circresaha.121.319313] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rationale: Therapeutic efforts to decrease atherosclerotic cardiovascular disease risk have focused largely on reducing atherogenic lipoproteins, yet lipid-lowering therapies alone are insufficient to fully regress plaque burden. We postulate that arterial repair requires resolution of a maladaptive immune response and that targeting factors that hinder inflammation resolution will facilitate plaque regression. Objective: The guidance molecule Ntn1 (netrin-1) is secreted by macrophages in atherosclerotic plaques, where it sustains inflammation by enhancing macrophage survival and blocking macrophage emigration. We tested whether silencing Ntn1 in advanced atherosclerosis could resolve arterial inflammation and regress plaques. Methods and Results: To temporally silence Ntn1 in myeloid cells, we generated genetically modified mice in which Ntn1 could be selectively deleted in monocytes and macrophages using a tamoxifen-induced CX3CR1-driven cre recombinase (Ntn1fl/flCx3cr1creERT2+) and littermate control mice (Ntn1fl/flCx3cr1WT). Mice were fed Western diet in the setting of hepatic PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression to render them atherosclerotic and then treated with tamoxifen to initiate deletion of myeloid Ntn1 (MøΔNtn1) or not in controls (MøWT). Morphometric analyses performed 4 weeks later showed that myeloid Ntn1 silencing reduced plaque burden in the aorta (−50%) and plaque complexity in the aortic root. Monocyte-macrophage tracing experiments revealed lower monocyte recruitment, macrophage retention, and proliferation in MøΔNtn1 compared with MøWT plaques, indicating a restructuring of monocyte-macrophage dynamics in the artery wall upon Ntn1 silencing. Single-cell RNA sequencing of aortic immune cells before and after Ntn1 silencing revealed upregulation of gene pathways involved in macrophage phagocytosis and migration, including the Ccr7 chemokine receptor signaling pathway required for macrophage emigration from plaques and atherosclerosis regression. Additionally, plaques from MøΔNtn1 mice showed hallmarks of inflammation resolution, including higher levels of proresolving macrophages, IL (interleukin)-10, and efferocytosis, as compared to plaques from MøWT mice. Conclusion: Our data show that targeting Ntn1 in advanced atherosclerosis ameliorates atherosclerotic inflammation and promotes plaque regression.
Collapse
Affiliation(s)
- Martin Schlegel
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
- Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Germany (M. Schlegel)
| | - Monika Sharma
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Emily J Brown
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Alexandra A C Newman
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Yannick Cyr
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Milessa Silva Afonso
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Emma M Corr
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Graeme J Koelwyn
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Coen van Solingen
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Jonathan Guzman
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Rubab Farhat
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Cyrus A Nikain
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Lianne C Shanley
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Daniel Peled
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Ann Marie Schmidt
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University (A.M.S.). K.J. Moore, M. Schlegel, M. Sharma, A.M. Schmidt, and E.A. Fisher designed the study and performed data analysis and interpretation. M. Schlegel, M. Sharma, M.S. Afonso, E.J. Brown, E.M. Corr, C. van Solingen, G.J. Koelwyn, A.A.C. Newman, Y. Cyr, R. Farhat, J. Guzman, L.C. Shanley, and D. Peled conducted experiments, acquired data, and performed analyses. E.J. Brown analyzed the RNA-sequencing data. K.J. Moore and M. Schlegel wrote the article with input from all authors
| | - Edward A Fisher
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.)
| |
Collapse
|
69
|
Waddington JC, Meng X, Illing PT, Tailor A, Adair K, Whitaker P, Hamlett J, Jenkins RE, Farrell J, Berry N, Purcell AW, Naisbitt DJ, Park BK. Identification of Flucloxacillin-Haptenated HLA-B*57:01 Ligands: Evidence of Antigen Processing and Presentation. Toxicol Sci 2021; 177:454-465. [PMID: 32726429 DOI: 10.1093/toxsci/kfaa124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Flucloxacillin is a β-lactam antibiotic associated with a high incidence of drug-induced liver reactions. Although expression of human leukocyte antigen (HLA)-B*57:01 increases susceptibility, little is known of the pathological mechanisms involved in the induction of the clinical phenotype. Irreversible protein modification is suspected to drive the reaction through the modification of peptides that are presented by the risk allele. In this study, the binding of flucloxacillin to immune cells was characterized and the nature of the peptides presented by HLA-B*57:01 was analyzed using mass spectrometric-based immunopeptidomics methods. Flucloxacillin modification of multiple proteins was observed, providing a potential source of neoantigens for HLA presentation. Of the peptides eluted from flucloxacillin-treated C1R-B*57:01 cells, 6 putative peptides were annotated as flucloxacillin-modified HLA-B*57:01 peptide ligands (data are available via ProteomeXchange with identifier PXD020137). To conclude, we have characterized naturally processed drug-haptenated HLA ligands presented on the surface of antigen presenting cells that may drive drug-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- James C Waddington
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Patricia T Illing
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Arun Tailor
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Kareena Adair
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Paul Whitaker
- Regional Adult Cystic Fibrosis Unit, St James's Hospital, Leeds LS9 7TF, United Kingdom
| | - Jane Hamlett
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Rosalind E Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - John Farrell
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Neil Berry
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Brian Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| |
Collapse
|
70
|
Li Y, Wu H, Wang Q, Xu S. ZNF217: the cerberus who fails to guard the gateway to lethal malignancy. Am J Cancer Res 2021; 11:3378-3405. [PMID: 34354851 PMCID: PMC8332857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
The aberrant expression of the zinc finger protein 217 (ZNF217) promotes multiple malignant phenotypes, such as replicative immortality, maintenance of proliferation, malignant heterogeneity, metastasis, and cell death resistance, via diverse mechanisms, including transcriptional activation, mRNA N6-methyladenosine (m6A) regulation, and protein interactions. The induction of these cellular processes by ZNF217 leads to therapeutic resistance and patients' poor outcomes. However, few ZNF217 related clinical applications or trials, have been reported. Moreover, looming observations about ZNF217 roles in m6A regulation and cancer immune response triggered significant attention while lacking critical evidence. Thus, in this review, we revisit the literature about ZNF217 and emphasize its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
| | - Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| |
Collapse
|
71
|
Mendoza MB, Gutierrez S, Ortiz R, Moreno DF, Dermit M, Dodel M, Rebollo E, Bosch M, Mardakheh FK, Gallego C. The elongation factor eEF1A2 controls translation and actin dynamics in dendritic spines. Sci Signal 2021; 14:14/691/eabf5594. [PMID: 34257105 DOI: 10.1126/scisignal.abf5594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synaptic plasticity involves structural modifications in dendritic spines that are modulated by local protein synthesis and actin remodeling. Here, we investigated the molecular mechanisms that connect synaptic stimulation to these processes. We found that the phosphorylation of isoform-specific sites in eEF1A2-an essential translation elongation factor in neurons-is a key modulator of structural plasticity in dendritic spines. Expression of a nonphosphorylatable eEF1A2 mutant stimulated mRNA translation but reduced actin dynamics and spine density. By contrast, a phosphomimetic eEF1A2 mutant exhibited decreased association with F-actin and was inactive as a translation elongation factor. Activation of metabotropic glutamate receptor signaling triggered transient dissociation of eEF1A2 from its regulatory guanine exchange factor (GEF) protein in dendritic spines in a phosphorylation-dependent manner. We propose that eEF1A2 establishes a cross-talk mechanism that coordinates translation and actin dynamics during spine remodeling.
Collapse
Affiliation(s)
- Mònica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Sara Gutierrez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Miquel Bosch
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Sant Cugat del Vallès 08195, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain.
| |
Collapse
|
72
|
Zhu L, Gao T, Fu Y, Han X, Yue J, Liu Y, Liu H, Dong Q, Yang W, Hu Y, Jin Y, Li P, Liu X, Cao C. The MERS-CoV N Protein Regulates Host Cytokinesis and Protein Translation via Interaction With EF1A. Front Microbiol 2021; 12:551602. [PMID: 34248858 PMCID: PMC8261062 DOI: 10.3389/fmicb.2021.551602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), a pathogen causing severe respiratory disease in humans that emerged in June 2012, is a novel beta coronavirus similar to severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, immunoprecipitation and proximity ligation assays revealed that the nucleocapsid (N) protein of MERS-CoV interacted with human translation elongation factor 1A (EF1A), an essential component of the translation system with important roles in protein translation, cytokinesis, and filamentous actin (F-actin) bundling. The C-terminal motif (residues 359–363) of the N protein was the crucial domain involved in this interaction. The interaction between the MERS-CoV N protein and EF1A resulted in cytokinesis inhibition due to the formation of inactive F-actin bundles, as observed in an in vitro actin polymerization assay and in MERS-CoV-infected cells. Furthermore, the translation of a CoV-like reporter mRNA carrying the MERS-CoV 5′UTR was significantly potentiated by the N protein, indicating that a similar process may contribute to EF1A-associated viral protein translation. This study highlights the crucial role of EF1A in MERS-CoV infection and provides new insights into the pathogenesis of coronavirus infections.
Collapse
Affiliation(s)
- Lin Zhu
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yangbo Fu
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xiujing Han
- Department of Clinical Laboratory, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junjie Yue
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yaoning Liu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Qincai Dong
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Weihong Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yanwen Jin
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ping Li
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xuan Liu
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Army Institute of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| |
Collapse
|
73
|
Sopko B, Tejral G, Bitti G, Abate M, Medvedikova M, Hajduch M, Chloupek J, Fajmonova J, Skoric M, Amler E, Erban T. Glyphosate Interaction with eEF1α1 Indicates Altered Protein Synthesis: Evidence for Reduced Spermatogenesis and Cytostatic Effect. ACS OMEGA 2021; 6:14848-14857. [PMID: 34151066 PMCID: PMC8209799 DOI: 10.1021/acsomega.1c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
The broad-spectrum herbicide, glyphosate, is considered safe for animals because it selectively affects the shikimate pathway that is specific to plants and microorganisms. We sought a previously unknown mechanism to explain the concerns that glyphosate exposure can negatively affect animals, including humans. Computer modeling showed a probable interaction between glyphosate and eukaryotic translation elongation factor 1 subunit alpha 1 (eEF1α1), which was confirmed by microcalorimetry. Only restricted, nondisrupted spermatogenesis in rats was observed after chronic glyphosate treatments (0.7 and 7 mg/L). Cytostatic and antiproliferative effects of glyphosate in GC-1 and SUP-B15 cells were indicated. Meta-analysis of public health data suggested a possible effect of glyphosate use on sperm count. The in silico, in vitro, and in vivo experimental results as well as the metastatistics indicate side effects of chronic glyphosate exposure. Together, these findings indicate that glyphosate delays protein synthesis through an interaction with eEF1α1, thereby suppressing spermatogenesis and cell growth.
Collapse
Affiliation(s)
- Bruno Sopko
- Crop
Research Institute, Prague 161 06, Czechia
- Department
of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 150 06, Czechia
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Gracian Tejral
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Guissepe Bitti
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Marianna Abate
- Department
of Precision Medicine, University of Campania
“Luigi Vanvitelli”, Naples 80131, Italy
| | - Martina Medvedikova
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Marian Hajduch
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Jan Chloupek
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Jolana Fajmonova
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Misa Skoric
- Department
of Pathological Morphology and Parasitology, Faculty of Veterinary
Medicine, University of Veterinary and Pharmaceutical
Sciences Brno, Brno 612 42, Czechia
| | - Evzen Amler
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Tomas Erban
- Crop
Research Institute, Prague 161 06, Czechia
| |
Collapse
|
74
|
Liu R, Tearle R, Low WY, Chen T, Thomsen D, Smith TPL, Hiendleder S, Williams JL. Distinctive gene expression patterns and imprinting signatures revealed in reciprocal crosses between cattle sub-species. BMC Genomics 2021; 22:410. [PMID: 34082698 PMCID: PMC8176687 DOI: 10.1186/s12864-021-07667-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Background There are two genetically distinct subspecies of cattle, Bos taurus taurus and Bos taurus indicus, which arose from independent domestication events. The two types of cattle show substantial phenotypic differences, some of which emerge during fetal development and are reflected in birth outcomes, including birth weight. We explored gene expression profiles in the placenta and four fetal tissues at mid-gestation from one taurine (Bos taurus taurus; Angus) and one indicine (Bos taurus indicus; Brahman) breed and their reciprocal crosses. Results In total 120 samples were analysed from a pure taurine breed, an indicine breed and their reciprocal cross fetuses, which identified 6456 differentially expressed genes (DEGs) between the two pure breeds in at least one fetal tissue of which 110 genes were differentially expressed in all five tissues examined. DEGs shared across tissues were enriched for pathways related to immune and stress response functions. Only the liver had a substantial number of DEGs when reciprocal crossed were compared among which 310 DEGs were found to be in common with DEGs identified between purebred livers; these DEGs were significantly enriched for metabolic process GO terms. Analysis of DEGs across purebred and crossbred tissues suggested an additive expression pattern for most genes, where both paternal and maternal alleles contributed to variation in gene expression levels. However, expression of 5% of DEGs in each tissue was consistent with parent of origin effects, with both paternal and maternal dominance effects identified. Conclusions These data identify candidate genes potentially driving the tissue-specific differences between these taurine and indicine breeds and provide a biological insight into parental genome effects underlying phenotypic differences in bovine fetal development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07667-2.
Collapse
Affiliation(s)
- Ruijie Liu
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Rick Tearle
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Wai Yee Low
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Tong Chen
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
| | - Dana Thomsen
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Timothy P L Smith
- USMARC, USDA-ARS-US Meat Animal Research Center, Clay Center, NE, USA
| | - Stefan Hiendleder
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia. .,Present address: Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
75
|
Mazaré N, Oudart M, Moulard J, Cheung G, Tortuyaux R, Mailly P, Mazaud D, Bemelmans AP, Boulay AC, Blugeon C, Jourdren L, Le Crom S, Rouach N, Cohen-Salmon M. Local Translation in Perisynaptic Astrocytic Processes Is Specific and Changes after Fear Conditioning. Cell Rep 2021; 32:108076. [PMID: 32846133 PMCID: PMC7450274 DOI: 10.1016/j.celrep.2020.108076] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Local translation is a conserved mechanism conferring cells the ability to quickly respond to local stimuli. In the brain, it has been recently reported in astrocytes, whose fine processes contact blood vessels and synapses. Yet the specificity and regulation of astrocyte local translation remain unknown. We study hippocampal perisynaptic astrocytic processes (PAPs) and show that they contain the machinery for translation. Using a refined immunoprecipitation technique, we characterize the entire pool of ribosome-bound mRNAs in PAPs and compare it with the one expressed in the whole astrocyte. We find that a specific pool of mRNAs is highly polarized at the synaptic interface. These transcripts encode an unexpected molecular repertoire, composed of proteins involved in iron homeostasis, translation, cell cycle, and cytoskeleton. Remarkably, we observe alterations in global RNA distribution and ribosome-bound status of some PAP-enriched transcripts after fear conditioning, indicating the role of astrocytic local translation in memory and learning. Local translation occurs in perisynaptic astrocytic processes (PAPs) The repertoire of ribosome-bound mRNAs enriched in hippocampal PAPs is specific RNA distribution and local translation change in PAPs after fear conditioning
Collapse
Affiliation(s)
- Noémie Mazaré
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France; Doctoral School No. 158, Pierre and Marie Curie University, 75005 Paris, France
| | - Marc Oudart
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France; Doctoral School No. 158, Pierre and Marie Curie University, 75005 Paris, France
| | - Julien Moulard
- Doctoral School No. 158, Pierre and Marie Curie University, 75005 Paris, France; Neuroglial Interactions in Cerebral Physiopathology Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Giselle Cheung
- Neuroglial Interactions in Cerebral Physiopathology Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Romain Tortuyaux
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Philippe Mailly
- Orion Imaging Facility, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - David Mazaud
- Neuroglial Interactions in Cerebral Physiopathology Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Alexis-Pierre Bemelmans
- CEA, DRF, Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France; CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Laurent Jourdren
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Stéphane Le Crom
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratory of Computational and Quantitative Biology (LCQB), 75005 Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS Unité Mixte de Recherche 724, INSERM Unité 1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
76
|
Lai HL, Fan XX, Li RZ, Wang YW, Zhang J, Liu L, Neher E, Yao XJ, Leung ELH. Roles of Ion Fluxes, Metabolism, and Redox Balance in Cancer Therapy. Antioxid Redox Signal 2021; 34:1108-1127. [PMID: 33115253 DOI: 10.1089/ars.2020.8125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent Advances: The 2019 Nobel Prize awarded to the mechanisms for oxygen sensing and adaptation according to oxygen availability, highlighting the fundamental importance of gaseous molecules. Gaseous molecules, including reactive oxygen species (ROS), can interact with different cations generated during metabolic and redox dysregulation in cancer cells. Cross talk between calcium signaling and metabolic/redox pathways leads to network-based dyregulation in cancer. Significance: Recent discovery on using small molecules targeting the ion channels, redox signaling, and protein modification on metabolic enzymes can effectively inhibit cancer growth. Several FDA-approved drugs and clinical trials are ongoing to target the calcium channels, such as TRPV6 and TRPM8. Multiple small molecules from natural products target metablic and redox enzymes to exert an anticancer effect. Critical Issues: Small molecules targeting key ion channels, metabolic enzymes that control key aspects of metabolism, and redox proteins are promising, but their action mechanisms of the target are needed to be elucidated with advanced-omic technologies, which can give network-based and highly dimensioal data. In addition, small molecules that can directly modify the protein residues have emerged as a novel anticancer strategy. Future Directions: Advanced technology accelerates the detection of ions and metabolic and redox changes in clinical samples for diagnosis and informs the decision of cancer treatment. The improvement of ROS detection, ROS target identification, and computational-aid drug discovery also improves clincal outcome.Overall, network-based or holistic regulations of cancer via ion therapy and metabolic and redox intervention are promising as new anticancer strategies. Antioxid. Redox Signal. 34, 1108-1127.
Collapse
Affiliation(s)
- Huan-Ling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.,School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Erwin Neher
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.,Membrane Biophysics Emeritus Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
77
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
78
|
Wu A, Tang J, Guo Z, Dai Y, Nie J, Hu W, Liu N, Ye C, Li S, Pei H, Zhou G. Long Non-Coding RNA CRYBG3 Promotes Lung Cancer Metastasis via Activating the eEF1A1/MDM2/MTBP Axis. Int J Mol Sci 2021; 22:3211. [PMID: 33809929 PMCID: PMC8048704 DOI: 10.3390/ijms22063211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of distant tumor metastases is a major barrier in non-small cell lung cancer (NSCLC) therapy, and seriously affects clinical treatment and patient prognosis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be crucial regulators of metastasis in lung cancer. The aim of this study was to reveal the underlying mechanisms of a novel lncRNA LNC CRYBG3 in regulating NSCLC metastasis. Experimental results showed that LNC CRYBG3 was upregulated in NSCLC cells compared with normal tissue cells, and its level was involved in these cells' metastatic ability. Exogenously overexpressed LNC CRYBG3 increased the metastatic ability and the protein expression level of the metastasis-associated proteins Snail and Vimentin in low metastatic lung cancer HCC827 cell line. In addition, LNC CRYBG3 contributed to HCC827 cell metastasis in vivo. Mechanistically, LNC CRYBG3 could directly combine with eEF1A1 and promote it to move into the nucleus to enhance the transcription of MDM2. Overexpressed MDM2 combined with MDM2 binding protein (MTBP) to reduce the binding of MTBP with ACTN4 and consequently increased cell migration mediated by ACTN4. In conclusion, the LNC CRYBG3/eEF1A1/MDM2/MTBP axis is a novel signaling pathway regulating tumor metastasis and may be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jiaxin Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ningang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Shihong Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; (A.W.); (J.T.); (Z.G.); (Y.D.); (J.N.); (W.H.); (N.L.); (C.Y.); (S.L.)
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
79
|
Jiao L, Dai T, Jin M, Sun P, Zhou Q. Transcriptome Analysis of the Hepatopancreas in the Litopenaeus vannamei Responding to the Lead Stress. Biol Trace Elem Res 2021; 199:1100-1109. [PMID: 32562240 DOI: 10.1007/s12011-020-02235-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Lead (Pb) is one of the most hazardous pollutants and toxic heavy metal in marine environment. The molecular mechanisms of Pb toxicity in aquatic organism are not well understood. In this study, hepatopancreas transcriptome of Litopenaeus vannamei (L. vannamei) was characterized by a comparison between control and Pb exposure samples using RNA-Seq approach. Hepatopancreas morphology of L. vannamei was also assessed. The result reveals that compared with the control group, an increase in the number of B cells was observed following Pb exposure in L. vannamei. Transcriptome data showed that a total of 1593 genes were recognized to be differentially expressed including 1278 up-regulated and 315 down-regulated genes. These genes were mainly associated with energy metabolism, cell apoptosis, exogenous microbial infection, cell junction, and cell adhesion. Fifteen ribosomal protein genes (RPS3, RPS13, RPSA, RPL11, RPS2, RPL8, RPS23, RPL3, RPL5, RPS6, RPS4X, RPS18, RPL19, RPL9, RPL6) were identified as the common hubs of protein-protein interaction (PPI) networks, as well as part of modules of the PPI network. Besides ribosomal protein, we identified differential expression genes (DEGs) including GAPDH, EEF1A1, HSPA8, UBC, and EEF1G as the common hubs of PPI networks. These findings may have important implications for understanding the adverse biological effects of Pb and its toxic mechanisms, as yet not clearly defined, and provide potential biomarkers of Pb exposure in hepatopancreas of L. vannamei, which might be useful for monitoring aquatic environments and assessing the health of the marine ecosystem.
Collapse
Affiliation(s)
- Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianmeng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
80
|
White KM, Rosales R, Yildiz S, Kehrer T, Miorin L, Moreno E, Jangra S, Uccellini MB, Rathnasinghe R, Coughlan L, Martinez-Romero C, Batra J, Rojc A, Bouhaddou M, Fabius JM, Obernier K, Dejosez M, Guillén MJ, Losada A, Avilés P, Schotsaert M, Zwaka T, Vignuzzi M, Shokat KM, Krogan NJ, García-Sastre A. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science 2021; 371:926-931. [PMID: 33495306 PMCID: PMC7963220 DOI: 10.1126/science.abf4058] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins interact with the eukaryotic translation machinery, and inhibitors of translation have potent antiviral effects. We found that the drug plitidepsin (aplidin), which has limited clinical approval, possesses antiviral activity (90% inhibitory concentration = 0.88 nM) that is more potent than remdesivir against SARS-CoV-2 in vitro by a factor of 27.5, with limited toxicity in cell culture. Through the use of a drug-resistant mutant, we show that the antiviral activity of plitidepsin against SARS-CoV-2 is mediated through inhibition of the known target eEF1A (eukaryotic translation elongation factor 1A). We demonstrate the in vivo efficacy of plitidepsin treatment in two mouse models of SARS-CoV-2 infection with a reduction of viral replication in the lungs by two orders of magnitude using prophylactic treatment. Our results indicate that plitidepsin is a promising therapeutic candidate for COVID-19.
Collapse
Affiliation(s)
- Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology and Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carles Martinez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jyoti Batra
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Ajda Rojc
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Marion Dejosez
- Huffington Foundation Center for Cell-Based Research in Parkinson's Disease, Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - María José Guillén
- Research and Development Department, PharmaMar, 28770 Colmenar Viejo, Madrid, Spain
| | - Alejandro Losada
- Research and Development Department, PharmaMar, 28770 Colmenar Viejo, Madrid, Spain
| | - Pablo Avilés
- Research and Development Department, PharmaMar, 28770 Colmenar Viejo, Madrid, Spain
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Zwaka
- Huffington Foundation Center for Cell-Based Research in Parkinson's Disease, Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Kevan M Shokat
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
81
|
Abstract
Inhibiting eukaryotic protein translation with small molecules is emerging as a powerful therapeutic strategy. The advantage of targeting cellular translational machinery is that it is required for the highly proliferative state of many neoplastic cells, replication of certain viruses, and ultimately the expression of a wide variety of protein targets. Although, this approach has been exploited to develop clinical agents, such as homoharringtonine (HHT, 1), used to treat chronic myeloid leukemia (CML), inhibiting components of the translational machinery is often associated with cytotoxic phenotypes. However, recent studies have demonstrated that certain small molecules can inhibit the translation of specific subsets of proteins, leading to lower cytotoxicity, and opening-up therapeutic opportunities for translation inhibitors to be deployed in indications beyond oncology and infectious disease. This review summarizes efforts to develop inhibitors of the eukaryotic translational machinery as therapeutic agents and highlights emerging opportunities for translation inhibitors in the future.
Collapse
Affiliation(s)
- Angela Fan
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Phillip P Sharp
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
82
|
King M, Carson J, Stewart MT, Gobert GN. Revisiting the Schistosoma japonicum life cycle transcriptome for new insights into lung schistosomula development. Exp Parasitol 2021; 223:108080. [PMID: 33548219 DOI: 10.1016/j.exppara.2021.108080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022]
Abstract
Schistosome parasites are complex trematode blood flukes responsible for the disease schistosomiasis; a global health concern prevalent in many tropical and sub-tropical countries. While established transcriptomic databases are accessed ad hoc to facilitate studies characterising specific genes or gene families, a more comprehensive systematic updating of gene annotation and survey of the literature to aid in annotation and context is rarely addressed. We have reanalysed an online transcriptomic dataset originally published in 2009, where seven life cycle stages of Schistosoma japonicum were examined. Using the online pathway analysis tool Reactome, we have revisited key data from the original study. A key focus of this study was to improve the interpretation of the gene expression profile of the developmental lung-stage schistosomula, since it is one of the principle targets for worm elimination. Highly enriched transcripts, associated with lung schistosomula, were related to a number of important biological pathways including host immune evasion, energy metabolism and parasitic development. Revisiting large transcriptomic databases should be considered in the context of substantial new literature. This approach could aid in the improved understanding of the molecular basis of parasite biology. This may lead to the identification of new targets for diagnosis and therapies for schistosomes, and other helminths.
Collapse
Affiliation(s)
- Meághan King
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Jack Carson
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Michael T Stewart
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
83
|
Abstract
Senescence is a state of long-term cell cycle arrest that arises in cells that have incurred sublethal damage. While senescent cells no longer replicate, they remain metabolically active and further develop unique and stable phenotypes that are not present in proliferating cells. On one hand, senescent cells increase in size, maintain an active mTORC1 complex, and produce and secrete a substantial amount of inflammatory proteins as part of the senescence-associated secretory phenotype (SASP). On the other hand, these progrowth phenotypes contrast with the p53-mediated growth arrest typical of senescent cells that is associated with nucleolar stress and an inhibition of rRNA processing and ribosome biogenesis. In sum, translation in senescent cells paradoxically comprises both a global repression of translation triggered by DNA damage and a select increase in the translation of specific proteins, including SASP factors.
Collapse
|
84
|
EEF1A2 interacts with HSP90AB1 to promote lung adenocarcinoma metastasis via enhancing TGF-β/SMAD signalling. Br J Cancer 2021; 124:1301-1311. [PMID: 33473168 PMCID: PMC8007567 DOI: 10.1038/s41416-020-01250-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 12/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Eukaryotic protein translation elongation factor 1α2 (EEF1A2) is an oncogene that promotes the progression of breast and pancreatic cancer. In this study, we aimed to elucidate the oncogenic function of EEF1A2 in the metastasis of lung adenocarcinoma (LUAD). METHODS Immunohistochemistry and western blot were used to study EEF1A2 expression levels in LUAD tissues and cells, respectively. The role of EEF1A2 in LUAD progression were investigated in vitro and in vivo. We identified potential EEF1A2-binding proteins by liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. Protein-protein interactions were determined by immunofluorescence and co-immunoprecipitation (Co-IP). RESULTS In this study, we report that EEF1A2 mediates the epithelial-mesenchymal transformation (EMT), to promote the metastasis of LUAD cells in vitro and in vivo. Moreover, EEF1A2 interacts with HSP90AB1 to increase TGFβ Receptor (TβR)-I, and TβRII expression, followed by enhanced SMAD3 and pSMAD3 expression and nuclear localisation, which promotes the EMT of LUAD cells. Overexpression of EEF1A2 in cancer tissues is associated with poor prognosis and short survival of patients with LUAD. CONCLUSIONS These findings underscore the molecular functions of EEF1A2 in LUAD metastasis and indicate that EEF1A2 represents a promising target in the treatment of aggressive LUAD.
Collapse
|
85
|
Identification of loci associated with susceptibility to bovine paratuberculosis and with the dysregulation of the MECOM, eEF1A2, and U1 spliceosomal RNA expression. Sci Rep 2021; 11:313. [PMID: 33432064 PMCID: PMC7801378 DOI: 10.1038/s41598-020-79619-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Although genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with the susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection, only a few functional mutations for bovine paratuberculosis (PTB) have been characterized. Expression quantitative trait loci (eQTLs) are genetic variants typically located in gene regulatory regions that alter gene expression in an allele-specific manner. eQTLs can be considered as functional links between genomic variants, gene expression, and ultimately phenotype. In the current study, peripheral blood (PB) and ileocecal valve (ICV) gene expression was quantified by RNA-Seq from fourteen Holstein cattle with no lesions and with PTB-associated histopathological lesions in gut tissues. Genotypes were generated from the Illumina LD EuroG10K BeadChip. The associations between gene expression levels (normalized read counts) and genetic variants were analyzed by a linear regression analysis using R Matrix eQTL 2.2. This approach allowed the identification of 192 and 48 cis-eQTLs associated with the expression of 145 and 43 genes in the PB and ICV samples, respectively. To investigate potential relationships between these cis-eQTLs and MAP infection, a case–control study was performed using the genotypes for all the identified cis-eQTLs and phenotypical data (histopathology, ELISA for MAP-antibodies detection, tissue PCR, and bacteriological culture) of 986 culled cows. Our results suggested that the heterozygous genotype in the cis-eQTL-rs43744169 (T/C) was associated with the up-regulation of the MDS1 and EVI1 complex (MECOM) expression, with positive ELISA, PCR, and bacteriological culture results, and with increased risk of progression to clinical PTB. As supporting evidence, the presence of the minor allele was associated with higher MECOM levels in plasma samples from infected cows and with increased MAP survival in an ex-vivo macrophage killing assay. Moreover, the presence of the two minor alleles in the cis-eQTL-rs110345285 (C/C) was associated with the dysregulation of the eukaryotic elongation factor 1-α2 (eEF1A2) expression and with increased ELISA (OD) values. Finally, the presence of the minor allele in the cis-eQTL rs109859270 (C/T) was associated with the up-regulation of the U1 spliceosomal RNA expression and with an increased risk of progression to clinical PTB. The introduction of these novel functional variants into marker-assisted breeding programs is expected to have a relevant effect on PTB control.
Collapse
|
86
|
Xiao S, Wang Y, Ma Y, Liu J, Tang C, Deng A, Fang C. Dimethylation of eEF1A at Lysine 55 Plays a Key Role in the Regulation of eEF1A2 on Malignant Cell Functions of Acute Myeloid Leukemia. Technol Cancer Res Treat 2020; 19:1533033820914295. [PMID: 32347192 PMCID: PMC7225831 DOI: 10.1177/1533033820914295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This study aimed to explore whether eukaryotic translation elongation factor 1 alpha 2 affected cell proliferation, migration, and apoptosis via regulating the dimethylation of eukaryotic translation elongation factor 1 alpha at lysine 55 in acute myeloid leukemia. METHODS The expressions of eukaryotic translation elongation factor 1 alpha 2 and dimethylation of eukaryotic translation elongation factor 1 alpha at lysine 55 in acute myeloid leukemia cell lines and human normal bone marrow mononuclear cells (as control) were assessed. Control CRISPR-Cas9 lentivirus, eukaryotic translation elongation factor 1 alpha 2 knockout CRISPR-Cas9 lentivirus, vector plasmid, eukaryotic translation elongation factor 1 alpha 2 wild type overexpression plasmid, and eukaryotic translation elongation factor 1 alpha 2 with a K55R substitution overexpression plasmid were transfected into AML-193 and Kasumi-1 cells combined or alone, and were accordingly divided into 4 groups (Sgcontrol + vector group, SgeEF1A2 + vector group, SgeEF1A2 + eEF1A2WT group, and SgeEFIA2 + eEF1A2K55R group). RESULTS Eukaryotic translation elongation factor 1 alpha 2 and dimethylation of eukaryotic translation elongation factor 1 alpha at lysine 55 expressions were higher in AML-193, Kasumi-1, and KG-1 cell lines compared to the control. In AML-193 and Kasumi-1 cells, the knockout and compensated experiments revealed that eukaryotic translation elongation factor 1 alpha 2 promoted cell proliferation and migration but repressed apoptosis. Additionally, the knockout of eukaryotic translation elongation factor 1 alpha 2 decreased dimethylation of eukaryotic translation elongation factor 1 alpha at lysine 55 expression, meanwhile, eukaryotic translation elongation factor 1 alpha 2 wild type overexpression enhanced while eukaryotic translation elongation factor 1 alpha 2 with a K55R substitution overexpression did not influence the dimethylation of eukaryotic translation elongation factor 1 alpha at lysine 55 expression. Furthermore, eukaryotic translation elongation factor 1 alpha 2 wild type overexpression promoted cell proliferation, enhanced migration, and decreased apoptosis, but eukaryotic translation elongation factor 1 alpha 2 with a K55R substitution overexpression did not influence these cellular functions in AML-193 and Kasumi-1 cells, suggesting the implication of dimethylation of eukaryotic translation elongation factor 1 alpha at lysine 55 in eukaryotic translation elongation factor 1 alpha 2 mediated oncogenesis of acute myeloid leukemia. CONCLUSION Eukaryotic translation elongation factor 1 alpha 2 and its dimethylated product may serve as therapeutic targets, and these findings may provide support for exploring novel strategies in acute myeloid leukemia treatment.
Collapse
Affiliation(s)
- Shan Xiao
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yanping Wang
- Department of Pediatrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuwen Ma
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Can'e Tang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chunxiang Fang
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
87
|
Xia L, Wang H, Xiao H, Lan B, Liu J, Yang Z. EEF1A2 and ERN2 could potentially discriminate metastatic status of mediastinal lymph node in lung adenocarcinomas harboring EGFR 19Del/L858R mutations. Thorac Cancer 2020; 11:2755-2766. [PMID: 32881299 PMCID: PMC7529558 DOI: 10.1111/1759-7714.13554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Background Early data has indicated that EGFR 19Del mutation and EGFR L585R mutation are two different types of non‐small cell lung cancer (NSCLC). However, how the different molecular mechanisms participate in the process of mediastinal lymph node metastasis (MLNM) in lung adenocarcinoma (LA) harboring EGFR 19Del and EGFR L858R mutation remains unknown. We thus explored the genes responsible for MLNM in LA with EGFR 19Del or L858R mutation. Methods We performed transcriptome sequencing and bioinformatics analysis from 10 patients with LA resection specimens of primary tumors. Quantitative reverse transcription‐polymerase chain reaction was used to validate gene expressions. Results There were 69 mRNAs upregulated and 100 mRNAs downregulated in five samples with MLNM compared with samples without MLN metastasis. EEF1A2 and ERN2 were observed exhibiting different expression patterns in EGFR 19Del and EGFR L858R samples with MLNM. In samples harboring EGFR 19Del mutation, the expression of EEF1A2 gene in samples with MLNM was significantly lower compared with samples without MLN metastasis, and in samples with EGFR L858R, it was significantly higher in samples with MLNM. The expression pattern of ERN2 was opposite to EEF1A2. In addition, several other genes including SLC6A11, IGHV3‐48, IGHV3‐43, DUSP9, and HOXA9 were also shown to be associated with invasion and metastasis and exhibited an expression pattern similar to EEF1A2 and ERN2 in EGRF 19Del and L858R mutation tumors. Conclusions EEF1A2 and ERN2 were for the first time observed exhibiting distinct expression patterns in MLNM in lung adenocarcinomas harboring EGFR 19Del and EGFR L858R mutation by interindividual DEGs analysis. Key points Significant findings of the study In our study, we focused on the mechanisms of metastasis and invasion that different EGFR mutations conferred and identified two critical genes separately involved in this process in EGFR 19Del and L858R mutation tumors. What this study adds Our findings not only reinforced theoretical foundations that the EGFR 19Del and L858R mutation tumors should be considered as two kinds of diseases, but also laid the fundamentals for precise determination of the mediastinal lymph node radiation field and improvement of clinical outcome.
Collapse
Affiliation(s)
- Lei Xia
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Hui Wang
- Cancer Center, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - He Xiao
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Baohua Lan
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Jie Liu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Zhenzhou Yang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| |
Collapse
|
88
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
89
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
90
|
Ramesh R, Sattlegger E. Domain II of the translation elongation factor eEF1A is required for Gcn2 kinase inhibition. FEBS Lett 2020; 594:2266-2281. [PMID: 32359173 DOI: 10.1002/1873-3468.13803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
The signalling pathway governing general control nonderepressible (Gcn)2 kinase allows cells to cope with amino acid shortage. Under starvation, Gcn2 phosphorylates the translation initiation factor eukaryotic translation initiation factor (eIF)2α, triggering downstream events that ultimately allow cells to cope with starvation. Under nutrient-replete conditions, the translation elongation factor eEF1A binds Gcn2 to contribute to keeping Gcn2 inactive. Here, we aimed to map the regions in eEF1A involved in binding and/or regulating Gcn2. We find that eEF1A amino acids 1-221 and 222-315, containing most of domains I and II, respectively, bind Gcn2 in vitro. Overexpression of eEF1A lacking or containing domain III impairs eIF2α phosphorylation. While the latter reduces growth under starvation similarly to eEF1A lacking domain I, the former enhances growth in a Gcn2-dependent manner. Our studies suggest that domain II is required for Gcn2 inhibition and that eEF1A lacking domain III mainly affects the Gcn2 response pathway downstream of Gcn2.
Collapse
Affiliation(s)
- Rashmi Ramesh
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Evelyn Sattlegger
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
91
|
Prommahom A, Dharmasaroja P. Effects of eEF1A2 knockdown on autophagy in an MPP +-induced cellular model of Parkinson's disease. Neurosci Res 2020; 164:55-69. [PMID: 32275913 DOI: 10.1016/j.neures.2020.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022]
Abstract
1-Methyl-4-phenylpyridinium ion (MPP+) is widely used to induce a cellular model of Parkinson's disease (PD) in dopaminergic cell lines. Downregulation of the protein translation elongation factor 1 alpha (eEF1A) has been reported in the brain tissue of PD patients. eEF1A2, an isoform of eEF1A, is associated with lysosome biogenesis that involves the autophagy process. However, the role of eEF1A2 on autophagic activity in PD has not been elucidated. In this work, we investigated the role of eEF1A2 on autophagy using eEF1A2 siRNA knockdown in differentiated SH-SY5Y neuronal cells treated with MPP+. We found that eEF1A2 was upregulated in differentiated cells, which could be silenced by eEF1A2 siRNA. Significantly, cells treated with MPP+ after eEF1A2 knockdown showed a decreased number of LC3 puncta, decreased LC3-II/LC3-I ratio, and decreased phospho-Beclin-1, compared to the MPP+ alone group. These cells showed extensive areas of mitochondria damage, with a reduction of mitochondrial membrane potential, but reduced mitophagy as indicated by the reduced colocalization of LC3 puncta with damaged mitochondria. Cells with eEF1A2 siRNA plus MPP+ treatment aggravated α-synuclein accumulation but reduced colocalization with LC3. As a result, eEF1A2 knockdown decreased viability, increased apoptotic nuclei, increased caspase-3/7 activation and increased cleaved caspase-3 when cells were treated with MPP+. These results suggest that eEF1A2 is essential for dopaminergic neuron survival against MPP+, in part through autophagy regulation.
Collapse
Affiliation(s)
- Athinan Prommahom
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Permphan Dharmasaroja
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
92
|
Brant EJ, Rietman EA, Klement GL, Cavaglia M, Tuszynski JA. Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks. PLoS One 2020; 15:e0226883. [PMID: 32191711 PMCID: PMC7081981 DOI: 10.1371/journal.pone.0226883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
We analyzed protein expression data for Lupus patients, which have been obtained from publicly available databases. A combination of systems biology and statistical thermodynamics approaches was used to extract topological properties of the associated protein-protein interaction networks for each of the 291 patients whose samples were used to provide the molecular data. We have concluded that among the many proteins that appear to play critical roles in this pathology, most of them are either ribosomal proteins, ubiquitination pathway proteins or heat shock proteins. We propose some of the proteins identified in this study to be considered for drug targeting.
Collapse
Affiliation(s)
- Elizabeth J. Brant
- Nephrology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Edward A. Rietman
- BINDS lab, College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Mechanical and Industrial Engineering, University of Mass, Amherst, Massachusetts, United States of America
| | | | | | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Torino, Italy
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
93
|
Zeng C, Sang Y, Wang FY, Zhuang SM. Opposing roles of C/EBPα and eEF1A1 in Sp1-regulated miR-122 transcription. RNA Biol 2020; 17:202-210. [PMID: 31561740 PMCID: PMC6973339 DOI: 10.1080/15476286.2019.1673656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
We previously showed that miR-122 was frequently downregulated in hepatocellular carcinoma (HCC) and C/EBPα transactivated miR-122 expression. In this study, we found that Sp1 bound to the miR-122 promoter at two different sites. Interestingly, either inhibition or overexpression of Sp1 could decrease the miR-122 promoter activity and the cellular miR-122 level in hepatoma cells. Further investigations disclosed that Sp1 cooperated with C/EBPα to induce miR-122 transcription by binding to the positive regulatory site D in the miR-122 promoter, whereas eEF1A1 interacted with Sp1 to bind to the negative regulatory site E and inhibit miR-122 transcription. Significantly, both Sp1 and eEF1A1 levels were enhanced, but C/EBPα and miR-122 expression were reduced in HCC tissues. Knockdown of eEF1A1 enhanced miR-122 level and inhibited cell growth, and these effects were abrogated when Sp1 was silenced. Consistently, the promoter activity enhanced by site E deletion was attenuated by silencing Sp1. Moreover, reduction of miR-122 resulted from Sp1 overexpression was rescued by coexpressing C/EBPα. These data suggest that C/EBPα and eEF1A1 may play opposing roles in Sp1-regulating miR-122 transcription, and the eEF1A1 upregulation accompanied by C/EBPα downregulation in HCC may switch the regulatory functions of Sp1 and led to reduced miR-122 transcription. These findings highlight the complex regulatory network of miR-122 expression and its significance in hepatocarcinogenesis.Abbreviations: MiRNA: microRNA; HCC, hepatocellular carcinoma; eEF1A1: eukaryote translation elongation factor 1A1; siRNA: small interfering RNA; qPCR: real-time quantitative RT-PCR; EMSA: electrophoretic mobility shift assay; ChIP: chromatin immunoprecipitation; TSS: transcription start site.
Collapse
Affiliation(s)
- Chunxian Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ye Sang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Feng-Yi Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, P. R. China
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
94
|
Fenn K, Wong CT, Darbari VC. Mycobacterium tuberculosis Uses Mce Proteins to Interfere With Host Cell Signaling. Front Mol Biosci 2020; 6:149. [PMID: 31998747 PMCID: PMC6961568 DOI: 10.3389/fmolb.2019.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis continues to be the main cause for mortality by an infectious agent, making Mycobacterium tuberculosis one of the most successful pathogens to survive for long durations within human cells. In order to survive against host defenses, M. tuberculosis modulates host cell signaling. It employs many proteins to achieve this and the Mce proteins are emerging as one group that play a role in host cell signaling in addition to their primary role as lipid/sterol transporters. Mce proteins belong to the conserved Mce/MlaD superfamily ubiquitous in diderm bacteria and chloroplasts. In mycobacteria, mce operons, encode for six different Mce proteins that assemble with inner membrane permeases into complexes that span across the mycobacterial cell wall. Their involvement in signaling modulation is varied and they have been shown to bind ERK1/2 to alter host cytokine expression; eEF1A1 to promote host cell proliferation and integrins for host cell adherence and entry. Recently, structures of prokaryotic Mce/MlaD proteins have been determined, giving an insight into the conserved domain. In this mini-review, we discuss current evidence for the role of mycobacterial Mce proteins in host cell signaling and structural characteristics of the protein-protein interactions coordinated by the human proteins to modulate the host signaling.
Collapse
Affiliation(s)
- Katherine Fenn
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chi Tung Wong
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Vidya Chandran Darbari
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
95
|
Early defects in translation elongation factor 1α levels at excitatory synapses in α-synucleinopathy. Acta Neuropathol 2019; 138:971-986. [PMID: 31451907 DOI: 10.1007/s00401-019-02063-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
Cognitive decline and dementia in neurodegenerative diseases are associated with synapse dysfunction and loss, which may precede neuron loss by several years. While misfolded and aggregated α-synuclein is recognized in the disease progression of synucleinopathies, the nature of glutamatergic synapse dysfunction and loss remains incompletely understood. Using fluorescence-activated synaptosome sorting (FASS), we enriched excitatory glutamatergic synaptosomes from mice overexpressing human alpha-synuclein (h-αS) and wild-type littermates to unprecedented purity. Subsequent label-free proteomic quantification revealed a set of proteins differentially expressed upon human alpha-synuclein overexpression. These include overrepresented proteins involved in the synaptic vesicle cycle, ER-Golgi trafficking, metabolism and cytoskeleton. Unexpectedly, we found and validated a steep reduction of eukaryotic translation elongation factor 1 alpha (eEF1A1) levels in excitatory synapses at early stages of h-αS mouse model pathology. While eEF1A1 reduction correlated with the loss of postsynapses, its immunoreactivity was found on both sides of excitatory synapses. Moreover, we observed a reduction in eEF1A1 immunoreactivity in the cingulate gyrus neuropil of patients with Lewy body disease along with a reduction in PSD95 levels. Altogether, our results suggest a link between structural impairments underlying cognitive decline in neurodegenerative disorders and local synaptic defects. eEF1A1 may therefore represent a limiting factor to synapse maintenance.
Collapse
|
96
|
Joung EK, Kim J, Yoon N, Maeng LS, Kim JH, Park S, Kang K, Kim JS, Ahn YH, Ko YH, Byun JH, Hong JH. Expression of EEF1A1 Is Associated with Prognosis of Patients with Colon Adenocarcinoma. J Clin Med 2019; 8:jcm8111903. [PMID: 31703307 PMCID: PMC6912729 DOI: 10.3390/jcm8111903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
Background: The prognostic role of the translational factor, elongation factor-1 alpha 1 (EEF1A1), in colon cancer is unclear. Objectives: The present study aimed to investigate the expression of EEF1A in tissues obtained from patients with stage II and III colon cancer and analyze its association with patient prognosis. Methods: A total of 281 patients with colon cancer who underwent curative resection were analyzed according to EEF1A1 expression. Results: The five-year overall survival in the high-EEF1A1 group was 87.7%, whereas it was 65.6% in the low-EEF1A1 expression group (hazard ratio (HR) 2.47, 95% confidence interval (CI) 1.38–4.44, p = 0.002). The five-year disease-free survival of patients with high EEF1A1 expression was 82.5%, which was longer than the rate of 55.4% observed for patients with low EEF1A1 expression (HR 2.94, 95% CI 1.72–5.04, p < 0.001). Univariate Cox regression analysis indicated that age, preoperative carcinoembryonic antigen level, adjuvant treatment, total number of metastatic lymph nodes, and EEF1A1 expression level were significant prognostic factors for death. In multivariate analysis, expression of EEF1A1 was an independent prognostic factor associated with death (HR 3.01, 95% CI 1.636–5.543, p < 0.001). EEF1A1 expression was also an independent prognostic factor for disease-free survival in multivariate analysis (HR 2.54, 95% CI 1.459–4.434, p < 0.001). Conclusions: Our study demonstrated that high expression of EEF1A1 has a favorable prognostic effect on patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Eun kyo Joung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jiyoung Kim
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.K.); (N.Y.); (L.-s.M.)
| | - Nara Yoon
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.K.); (N.Y.); (L.-s.M.)
| | - Lee-so Maeng
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.K.); (N.Y.); (L.-s.M.)
| | - Ji Hoon Kim
- Department of General Surgery, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | | | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Korea;
| | - Jeong Seon Kim
- Department of Molecular Medicine and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 03760, Korea; (J.S.K.); (Y.-H.A.)
| | - Young-Ho Ahn
- Department of Molecular Medicine and Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 03760, Korea; (J.S.K.); (Y.-H.A.)
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jae Ho Byun
- Division of Oncology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (J.H.B.); (J.H.H.)
| | - Ji Hyung Hong
- Division of Oncology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Correspondence: (J.H.B.); (J.H.H.)
| |
Collapse
|
97
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
98
|
Grund A, Szaroszyk M, Korf-Klingebiel M, Malek Mohammadi M, Trogisch FA, Schrameck U, Gigina A, Tiedje C, Gaestel M, Kraft T, Hegermann J, Batkai S, Thum T, Perrot A, Remedios CD, Riechert E, Völkers M, Doroudgar S, Jungmann A, Bauer R, Yin X, Mayr M, Wollert KC, Pich A, Xiao H, Katus HA, Bauersachs J, Müller OJ, Heineke J. TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Mol Med 2019; 11:e10018. [PMID: 31468715 PMCID: PMC6783653 DOI: 10.15252/emmm.201810018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end‐stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti‐hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co‐factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrea Grund
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Mona Malek Mohammadi
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrike Schrameck
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anna Gigina
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cellphysiology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Perrot
- Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eva Riechert
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bauer
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Kai C Wollert
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johann Bauersachs
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Oliver J Müller
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
99
|
Giudici F, Petracci E, Nanni O, Bottin C, Pinamonti M, Zanconati F, Scaggiante B. Elevated levels of eEF1A2 protein expression in triple negative breast cancer relate with poor prognosis. PLoS One 2019; 14:e0218030. [PMID: 31220107 PMCID: PMC6586289 DOI: 10.1371/journal.pone.0218030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a translation factor selectively expressed by heart, skeletal muscle, nervous system and some specialized cells. Its ectopic expression relates with tumorigenesis in several types of human cancer. No data are available about the role of eEF1A2 in Triple Negative Breast Cancers (TNBC). This study investigated the relation between eEF1A2 protein levels and the prognosis of TNBC. A total of 84 TNBC diagnosed in the period 2002-2011 were included in the study. eEF1A2 protein level was measured in formalin-fixed paraffin-embedded tissues by immunohistochemistry in a semi-quantitative manner (sum of the percentage of positive cells x staining intensity) on a scale from 0 to 300. Cox regression assessed the association between eEF1A2 levels and disease-free survival (DFS) and breast cancer-specific survival (BCSS). Elevated values of eEF1A2 were associated with older age at diagnosis (p = 0.003), and androgen receptors positivity (p = 0.002). At univariate Cox analysis, eEF1A2 levels were not significantly associated with DFS and BCSS (p = 0.11 and p = 0.08, respectively) whereas adjusting for stage of disease, elevated levels of eEF1A2 protein resulted associated with poor prognosis (HR = 1.05, 95% CI: 1.01-1.11, p = 0.04 and HR = 1.07, 95% CI: 1.01-1.14, p = 0.03 for DFS and BCSS, respectively). This trend was confirmed analyzing negative versus positive samples by using categorized scores. Our data showed a negative prognostic role of eEF1A2 protein in TNBC, sustaining further investigations to confirm this result by wider and independent cohorts of patients.
Collapse
Affiliation(s)
- Fabiola Giudici
- Biostatistics Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Oriana Nanni
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
100
|
Deng JH, Chen HY, Huang C, Yan JM, Yin Z, Zhang XL, Pan Q. Accumulation of EBI3 induced by virulent Mycobacterium tuberculosis inhibits apoptosis in murine macrophages. Pathog Dis 2019; 77:5315753. [PMID: 30753412 PMCID: PMC6414311 DOI: 10.1093/femspd/ftz007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
Macrophages are the primary host target cells of Mycobacterium tuberculosis (M. tb). As a subunit of immunoregulatory cytokines IL-27 and IL-35, Epstein–Barr virus-induced gene 3 (EBI3) has typically been explored as the secreted form and assessed in terms of its effects triggered by extracellular EBI3. However, little is known about intracellular EBI3 function. In the current study, we report that EBI3 production by macrophages is elevated in TB patients. We further demonstrate that increased EBI3 accumulates in virulent M. tb-treated murine macrophages. Eukaryotic translation elongation factor 1-alpha 1 (eEF1A1) binds to intracellular EBI3 to reduce Lys48 (K48)-linked ubiquitination of EBI3, leading to EBI3 accumulation. Moreover, the intracellular EBI3 inhibits caspase-3-mediated apoptosis in M. tb-treated macrophages. Herein, we propose a novel mechanism for accumulating intracellular EBI3 and its regulation of macrophage apoptosis in response to virulent M. tb.
Collapse
Affiliation(s)
- Jia-Hui Deng
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Han-Yu Chen
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Chun Huang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Jia-Min Yan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, 601 Huangpu Rd, Guangzhou 510632, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| |
Collapse
|