51
|
Beesigamukama D, Subramanian S, Tanga CM. Nutrient quality and maturity status of frass fertilizer from nine edible insects. Sci Rep 2022; 12:7182. [PMID: 35505193 PMCID: PMC9064968 DOI: 10.1038/s41598-022-11336-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Globally, there is growing interest to recycle organic waste using insect larvae into high-quality frass fertilizer through circular economy approach. This paper presents the first comparative report on the nutrient concentrations, fertilizing indices, nutrient supply potentials and compost maturity of nine edible insect frass fertilizers. Our results revealed that frass fertilizers from all the insect species had adequate concentrations and contents of macronutrients [nitrogen (N), phosphorus (P), potassium (K)], secondary nutrients (calcium, magnesium, and sulphur) and micro-nutrients (manganese, copper, iron, zinc, boron, and sodium). The fertilizing indices of the frass fertilizers were above 3. However, black soldier fly (BSF) frass fertilizer had significantly higher N (20-130%) and K (17-193%) concentrations compared to others. The P concentration of Gryllus bimaculatus frass fertilizer was 3-800% higher compared to those of frass fertilizers from other insect species. The potential N and K supply capacities of BSF frass fertilizer was 19-78% and 16-190% higher, respectively. The P supply capacity of cricket frass fertilizer was 17-802% higher compared to others. The highest seed gemination rate (> 90%) and germination index (267%) were observed in seeds treated with BSF frass fertilizer. Frass fertilizer obtained from the other eight insect species showed medium to high phytotoxicity. These findings demonstrate that insect frass fertilizers are promising alternatives to existing commercial fertilizers (i.e., mineral, and organic) for improved soil health and crop yield.
Collapse
Affiliation(s)
- Dennis Beesigamukama
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Crop Production and Management, Busitema University, P.O. Box 236, Tororo, Uganda.
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
52
|
Zhe M, Zhang L, Liu F, Huang Y, Fan W, Yang J, Zhu A. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes. PLANT DIVERSITY 2022; 44:316-321. [PMID: 35769591 PMCID: PMC9209865 DOI: 10.1016/j.pld.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/15/2023]
Abstract
Recent sequencing efforts have broadly uncovered the evolutionary trajectory of plastid genomes (plastomes) of flowering plants in diverse habitats, yet our knowledge of the evolution of plastid posttranscriptional modifications is limited. In this study, we generated 11 complete plastomes and performed ultra-deep transcriptome sequencing to investigate the co-evolution of plastid RNA editing and genetic variation in Cymbidium, a genus with diverse trophic lifestyles. Genome size and gene content is reduced in terrestrial and green mycoheterotrophic orchids relative to their epiphytic relatives. This could be partly due to extensive losses and pseudogenization of ndh genes for the plastid NADH dehydrogenase-like complex, but independent pseudogenization of ndh genes has also occurred in the epiphyte C. mannii, which was reported to use strong crassulacean acid metabolism photosynthesis. RNA editing sites are abundant but variable in number among Cymbidium plastomes. The nearly twofold variation in editing abundance is mainly due to extensive reduction of ancestral editing sites in ndh transcripts of terrestrial, mycoheterotrophic, and C. mannii plastomes. The co-occurrence of editing reduction and pseudogenization in ndh genes suggests functional constraints on editing machinery may be relaxed, leading to nonrandom loss of ancestral edited sites via reduced editing efficiency. This study represents the first systematic examination of RNA editing evolution linked to plastid genome variation in a single genus. We also propose an explanation for how genomic and posttranscriptional variations might be affected by lifestyle-associated ecological adaptation strategies in Cymbidium.
Collapse
Affiliation(s)
- Mengqing Zhe
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
53
|
Niwa K, Tran DV, Nishikawa K. Differentiated historical demography and ecological niche forming present distribution and genetic structure in coexisting two salamanders (Amphibia, Urodela, Hynobiidae) in a small island, Japan. PeerJ 2022; 10:e13202. [PMID: 35505683 PMCID: PMC9057287 DOI: 10.7717/peerj.13202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/09/2022] [Indexed: 01/12/2023] Open
Abstract
Background The climatic oscillations in the Quaternary period considerably shaped the distribution and population genetic structure of organisms. Studies on the historical dynamics of distribution and demography not only reflect the current geographic distribution but also allow us to understand the adaption and genetic differentiation of species. However, the process and factors affecting the present distribution and genetic structure of many taxa are still poorly understood, especially for endemic organisms to small islands. Methods Here, we integrated population genetic and ecological niche modelling approaches to investigate the historical distribution and demographic dynamics of two co-existing salamanders on Tsushima Island, Japan: the true H. tsuensis (Group A), and Hynobius sp. (Group B). We also examined the hypothesis on the equivalency and similarity of niches of these groups by identity and background tests for ecological niche space. Results Our result showed that Group A is considered to have undergone a recent population expansion after the Last Glacial Maximum while it is unlikely to have occurred in Group B. The highest suitability was predicted for Group A in southern Tsushima Island, whereas the northern part of Tsushima Island was the potential distribution of Group B. The results also suggested a restricted range of both salamanders during the Last Interglacial and Last Glacial Maximum, and recent expansion in Mid-Holocene. The genetic landscape-shape interpolation analysis and historical suitable area of ecological niche modelling were consistent, and suggested refugia used during glacial ages in southern part for Group A, and in northern part of Tsushima Island for Group B. Additionally, we found evidence of nonequivalence for the ecological niche of the two groups of the salamanders, although our test could not show either niche divergence or conservatism based on the background tests. The environmental predictors affecting the potential distribution of each group also showed distinctiveness, leading to differences in selecting suitable areas. Finally, the combination of population genetics and ecological modeling has revealed the differential demographic/historical response between coexisting two salamanders on a small island.
Collapse
Affiliation(s)
- Keita Niwa
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan,Akita Prefectural Office, Akita, Japan
| | - Dung Van Tran
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan,Wildlife Department, Faculty of Forest Resources and Environmental Management, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Kanto Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan,Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
54
|
Zhao W, Meng X, Xu J, Liu Z, Hu Y, Li B, Chen J, Cao B. Integrated mRNA and Small RNA Sequencing Reveals microRNAs Associated With Xylem Development in Dalbergia odorifera. Front Genet 2022; 13:883422. [PMID: 35547261 PMCID: PMC9081728 DOI: 10.3389/fgene.2022.883422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dalbergia odorifera is a rare and precious rosewood specie, whose wood is a very high-quality material for valuable furniture and carving crafts. However, limited information is available about the process of wood formation in D. odorifera. To determine genes that might be closely associated with the xylem differentiation process, we analyzed the differentially expressed genes (DEGs) and microRNAs (miRNAs) from specific xylem tissues of D. odorifera by RNA sequencing (RNA-seq) and small RNA sequencing (small RNA-seq). In total, we obtained 134,221,955 clean reads from RNA-seq and 90,940,761 clean reads from small RNA-seq. By comparing the transition zone (Dotz) and sapwood (Dosw) samples, a total of 395 DEGs were identified. Further analysis revealed that DEGs encoded for WRKY transcription factors (eight genes), lignin synthesis (PER47, COMT, CCR2), cell wall composition (UXS2), gibberellin synthesis (KAO2, GA20OX1), jasmonic acid synthesis (OPR2, CYP74A), and synthesis of flavonoids (PAL2) and terpenoids (CYP71A1). Subsequently, a preliminary analysis by small RNA-seq showed that the expressions of 14 miRNAs (such as miR168a-5p, miR167f-5p, miR167h-5p, miR167e, miR390a, miR156g, novel_52, and novel_9) were significantly different between Dotz and Dosw. Further analysis revealed that the target genes of these differentially expressed miRNAs were enriched in the GO terms "amino acid binding," "cellulase activity," and "DNA beta-glucosyltransferase activity". Further, KEGG pathway annotation showed significant enrichment in "fatty acid elongation" and "biosynthesis of unsaturated fatty acids". These processes might be participating in the xylem differentiation of D. odorifera. Next, expression correlation analysis showed that nine differentially expressed miRNAs were significantly negatively associated with 21 target genes, which encoded for proteins such as pyrH, SPL6, SPL12, GCS1, and ARF8. Overall, this is the first study on miRNAs and their potential functions in the xylem development of D. odorifera, which provides a stepping stone for a detailed functional investigation of D. odorifera miRNAs.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiangxu Meng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiahong Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Zijia Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yangyang Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Bingyu Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Bing Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
55
|
Alam MZ, Ramachandran T, Antony A, Hamed F, Ayyash M, Kamal-Eldin A. Melanin is a plenteous bioactive phenolic compound in date fruits (Phoenix dactylifera L.). Sci Rep 2022; 12:6614. [PMID: 35459886 PMCID: PMC9033825 DOI: 10.1038/s41598-022-10546-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Date palm fruits (Phoenix dactylifera L.) were found to contain high levels of allomelanin (1.2-5.1%). The melanin is localized in the tanniferous cells between the inner and outer mesocarp tissues of the fruit. The melanin, extracted with 2 M sodium hydroxide, consisted of amorphous graphene-like granular structures of irregular shape and variable size. The date fruit melanin mainly comprises carbon (64.6%) and oxygen (30.6) but no nitrogen, and was thermally stable. It has radical scavenging (63.6-75.1 IC50, µg/mL), antimicrobial (250-1000 µg/mL), hypoglycemic (51.8-58.2%), and angiotensin-converting-enzyme inhibitory (65.8%) effects. The high level of melanin in date fruits highlights the importance of investigating its dietary intake and its impact on nutrition. This study also suggests that date fruit melanin can be a functional ingredient in foods, food packages, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Muneeba Zubair Alam
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Tholkappiyan Ramachandran
- Department of Physics, College of Science and National Water and Energy Center United Arab, Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Asha Antony
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Fathalla Hamed
- Department of Physics, College of Science and National Water and Energy Center United Arab, Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
56
|
Chen H, Su H, Zhang S, Jing T, Liu Z, Yang Y. Transcriptomic and Metabolomic Responses in Cotton Plant to Apolygus lucorum Infestation. INSECTS 2022; 13:391. [PMID: 35447833 PMCID: PMC9025427 DOI: 10.3390/insects13040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023]
Abstract
With the wide-scale adoption of transgenic Bacillus thuringiensis (Bt) cotton, Apolygus lucorum (Meyer-Dür) has become the most serious pest and has caused extensive yield loss in cotton production. However, little is known about the defense responses of cotton at the seedling stage to A. lucorum feeding. In this study, to elucidate the cotton defense mechanism, cotton leaves were damaged by A. lucorum for 0, 4, 12 and 24 h. The transcriptomic results showed that A. lucorum feeding elicits a rapid and strong defense response in gene expression during the whole infestation process in cotton plants. Further analysis revealed that at each assessment time, more differentially expressed genes were up-regulated than down-regulated. The integrated analysis of transcriptomic and metabolic data showed that most of the genes involved in jasmonic acid (JA) biosynthesis were initially up-regulated, and this trend continued during an infestation. Meanwhile, the content levels of JA and its intermediate products were also significantly increased throughout the whole infestation process. The similar trend was displayed in condensed tannins biosynthesis. This research proved that, after plants are damaged by A. lucorum, the JA pathway mediates the defense mechanisms in cotton plants by promoting the accumulation of condensed tannins as a defense mechanism against A. lucorum. These results will help us to discover unknown defensive genes and improve the integrated pest management of A. lucorum.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhong Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225007, China; (H.C.); (H.S.); (S.Z.); (T.J.); (Z.L.)
| |
Collapse
|
57
|
Shahi D, Guo J, Pradhan S, Khan J, Avci M, Khan N, McBreen J, Bai G, Reynolds M, Foulkes J, Babar MA. Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat. BMC Genomics 2022; 23:298. [PMID: 35413795 PMCID: PMC9004054 DOI: 10.1186/s12864-022-08487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently genomic selection (GS) has emerged as an important tool for plant breeders to select superior genotypes. Multi-trait (MT) prediction model provides an opportunity to improve the predictive ability of expensive and labor-intensive traits. In this study, we assessed the potential use of a MT genomic prediction model by incorporating two physiological traits (canopy temperature, CT and normalized difference vegetation index, NDVI) to predict 5 complex primary traits (harvest index, HI; grain yield, GY; grain number, GN; spike partitioning index, SPI; fruiting efiiciency, FE) using two cross-validation schemes CV1 and CV2. RESULTS In this study, we evaluated 236 wheat genotypes in two locations in 2 years. The wheat genotypes were genotyped with genotyping by sequencing approach which generated 27,466 SNPs. MT-CV2 (multi-trait cross validation 2) model improved predictive ability by 4.8 to 138.5% compared to ST-CV1(single-trait cross validation 1). However, the predictive ability of MT-CV1 was not significantly different compared to the ST-CV1 model. CONCLUSIONS The study showed that the genomic prediction of complex traits such as HI, GN, and GY can be improved when correlated secondary traits (cheaper and easier phenotyping) are used. MT genomic selection could accelerate breeding cycles and improve genetic gain for complex traits in wheat and other crops.
Collapse
Affiliation(s)
- Dipendra Shahi
- Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | - Jia Guo
- Department of Forest Ecosystem and Society, Oregon State University, 3180 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Sumit Pradhan
- Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | - Jahangir Khan
- Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | - Muhsin Avci
- Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | - Naeem Khan
- Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | - Jordan McBreen
- Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL, 32611, USA
| | | | - Matthew Reynolds
- CIMMYT International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico
| | - John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Md Ali Babar
- Department of Agronomy, 3105 McCarty Hall B, Gainesville, FL, 32611, USA.
| |
Collapse
|
58
|
Hamdani A, Hssaini L, Bouda S, Adiba A, Razouk R. Japanese plums behavior under water stress: impact on yield and biochemical traits. Heliyon 2022; 8:e09278. [PMID: 35497034 PMCID: PMC9038554 DOI: 10.1016/j.heliyon.2022.e09278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
This work investigates response to drought of nine local cultivars alongside two exotic varieties of Japanese plum (Prunus salicina L.) through their yield and fruit quality components. It was carried out at Sais plain, northern Morocco, over two consecutive years (2019–2020). Water stress was imposed by a deficit irrigation (DI) treatment of 50% ETc during the whole fruit growth period, compared to full irrigation of 100% ETc (CI). At their full ripening stage, the cultivars were assessed for their yield, fruit weight and fruit quality attributes, namely total soluble solids (TSS), pH, titratable acidity (TA), maturity index (MI), soluble sugars content (SSC), amino acids content (AAC), total phenolic compounds (TPC) and total antioxidant capacity (TAC). Results displayed significant decrease in yield and fruit weight since the first year of DI application. Owing to calculated stability indexes of the aforementioned traits along with water use efficiency, the local cultivar ‘Fortu-43’ was the most insensitive to drought, whereas ‘Timhdit’ and ‘Black-D35’ showed the lowest drought tolerability. The effects of water stress on fruit chemical and biochemical traits varied significantly among cultivars, exhibiting an overall significant improvement in fruit quality. Two-dimensional clustered heatmap analysis subdivided the cultivars into two distinct clusters, mainly discriminated based on stability indexes of SSC, MI, TPC and TAC. Among the latter, SSC stability index was probably the most significant drought tolerance marker for Japanese plum.
Collapse
Affiliation(s)
- Anas Hamdani
- National Institute of Agricultural Research (INRA), Regional Center of Meknes, PO 578, Morocco.,Laboratory of Biotechnology and Valorization of Plant Genetic Resources, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, PO 523, Beni Mellal, Morocco
| | - Lahcen Hssaini
- National Institute of Agricultural Research (INRA), Regional Center of Meknes, PO 578, Morocco
| | - Said Bouda
- Laboratory of Biotechnology and Valorization of Plant Genetic Resources, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, PO 523, Beni Mellal, Morocco
| | - Atman Adiba
- National Institute of Agricultural Research (INRA), Regional Center of Meknes, PO 578, Morocco.,Laboratory of Biotechnology and Valorization of Plant Genetic Resources, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, PO 523, Beni Mellal, Morocco
| | - Rachid Razouk
- National Institute of Agricultural Research (INRA), Regional Center of Meknes, PO 578, Morocco
| |
Collapse
|
59
|
Mozhgan Farzami Sepehr, Akram Moradli. The Study of Chromium and Zinc Contaminated Soil Influence on Iron Content and Protein Profile of Ornamental Cabbage Plant. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Liu J, Lindstrom AJ, Gong X. Towards the plastome evolution and phylogeny of Cycas L. (Cycadaceae): molecular-morphology discordance and gene tree space analysis. BMC PLANT BIOLOGY 2022; 22:116. [PMID: 35291941 PMCID: PMC8922756 DOI: 10.1186/s12870-022-03491-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plastid genomes (plastomes) present great potential in resolving multiscale phylogenetic relationship but few studies have focused on the influence of genetic characteristics of plastid genes, such as genetic variation and phylogenetic discordance, in resolving the phylogeny within a lineage. Here we examine plastome characteristics of Cycas L., the most diverse genus among extant cycads, and investigate the deep phylogenetic relationships within Cycas by sampling 47 plastomes representing all major clades from six sections. RESULTS All Cycas plastomes shared consistent gene content and structure with only one gene loss detected in Philippine species C. wadei. Three novel plastome regions (psbA-matK, trnN-ndhF, chlL-trnN) were identified as containing the highest nucleotide variability. Molecular evolutionary analysis showed most of the plastid protein-coding genes have been under purifying selection except ndhB. Phylogenomic analyses that alternatively included concatenated and coalescent methods, both identified four clades but with conflicting topologies at shallow nodes. Specifically, we found three species-rich Cycas sections, namely Stangerioides, Indosinenses and Cycas, were not or only weakly supported as monophyly based on plastomic phylogeny. Tree space analyses based on different tree-inference methods both revealed three gene clusters, of which the cluster with moderate genetic properties showed the best congruence with the favored phylogeny. CONCLUSIONS Our exploration in plastomic data for Cycas supports the idea that plastid protein-coding genes may exhibit discordance in phylogenetic signals. The incongruence between molecular phylogeny and morphological classification reported here may largely be attributed to the uniparental attribute of plastid, which cannot offer sufficient information to resolve the phylogeny. Contrasting to a previous consensus that genes with longer sequences and a higher proportion of variances are superior for phylogeny reconstruction, our result implies that the most effective phylogenetic signals could come from loci that own moderate variation, GC content, sequence length, and underwent modest selection.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, 20250, Bangsalae, Sattahip, Chonburi, Thailand.
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
61
|
Lopez-Guerrero MG, Wang P, Phares F, Schachtman DP, Alvarez S, van Dijk K. A glass bead semi-hydroponic system for intact maize root exudate analysis and phenotyping. PLANT METHODS 2022; 18:25. [PMID: 35246193 PMCID: PMC8897885 DOI: 10.1186/s13007-022-00856-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although there have been numerous studies describing plant growth systems for root exudate collection, a common limitation is that these systems require disruption of the plant root system to facilitate exudate collection. Here, we present a newly designed semi-hydroponic system that uses glass beads as solid support to simulate soil impedance, which combined with drip irrigation, facilitates growth of healthy maize plants, collection and analysis of root exudates, and phenotyping of the roots with minimal growth disturbance or root damage. RESULTS This system was used to collect root exudates from seven maize genotypes using water or 1 mM CaCl2, and to measure root phenotype data using standard methods and the Digital imaging of root traits (DIRT) software. LC-MS/MS (Liquid Chromatography-Tandem Mass Spectrometry) and GC-MS (Gas Chromatography-Mass Spectrometry) targeted metabolomics platforms were used to detect and quantify metabolites in the root exudates. Phytohormones, some of which are reported in maize root exudates for the first time, the benzoxazinoid DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one), amino acids, and sugars were detected and quantified. After validating the methodology using known concentrations of standards for the targeted compounds, we found that the choice of the exudate collection solution affected the exudation and analysis of a subset of analyzed metabolites. No differences between collection in water or CaCl2 were found for phytohormones and sugars. In contrast, the amino acids were more concentrated when water was used as the exudate collection solution. The collection in CaCl2 required a clean-up step before MS analysis which was found to interfere with the detection of a subset of the amino acids. Finally, using the phenotypic measurements and the metabolite data, significant differences between genotypes were found and correlations between metabolites and phenotypic traits were identified. CONCLUSIONS A new plant growth system combining glass beads supported hydroponics with semi-automated drip irrigation of sterile solutions was implemented to grow maize plants and collect root exudates without disturbing or damaging the roots. The validated targeted exudate metabolomics platform combined with root phenotyping provides a powerful tool to link plant root and exudate phenotypes to genotype and study the natural variation of plant populations.
Collapse
Affiliation(s)
| | - Peng Wang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Felicia Phares
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sophie Alvarez
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Karin van Dijk
- Biochemistry Department, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
62
|
Lung SC, Lai SH, Wang H, Zhang X, Liu A, Guo ZH, Lam HM, Chye ML. Oxylipin signaling in salt-stressed soybean is modulated by ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase. THE PLANT CELL 2022; 34:1117-1143. [PMID: 34919703 PMCID: PMC8894927 DOI: 10.1093/plcell/koab306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/11/2021] [Indexed: 05/24/2023]
Abstract
Plant lipoxygenases (LOXs) oxygenate linoleic and linolenic acids, creating hydroperoxy derivatives, and from these, jasmonates and other oxylipins are derived. Despite the importance of oxylipin signaling, its activation mechanism remains largely unknown. Here, we show that soybean ACYL-COA-BINDING PROTEIN3 (ACBP3) and ACBP4, two Class II acyl-CoA-binding proteins, suppressed activity of the vegetative LOX homolog VLXB by sequestering it at the endoplasmic reticulum. The ACBP4-VLXB interaction was facilitated by linoleoyl-CoA and linolenoyl-CoA, which competed with phosphatidic acid (PA) for ACBP4 binding. In salt-stressed roots, alternative splicing produced ACBP variants incapable of VLXB interaction. Overexpression of the variants enhanced LOX activity and salt tolerance in Arabidopsis and soybean hairy roots, whereas overexpressors of the native forms exhibited reciprocal phenotypes. Consistently, the differential alternative splicing pattern in two soybean genotypes coincided with their difference in salt-induced lipid peroxidation. Salt-treated soybean roots were enriched in C32:0-PA species that showed high affinity to Class II ACBPs. We conclude that PA signaling and alternative splicing suppress ligand-dependent interaction of Class II ACBPs with VLXB, thereby triggering lipid peroxidation during salt stress. Hence, our findings unveil a dual mechanism that initiates the onset of oxylipin signaling in the salinity response.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sze Han Lai
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haiyang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xiuying Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ailin Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
63
|
Comparative population genomics in Tabebuia alliance shows evidence of adaptation in Neotropical tree species. Heredity (Edinb) 2022; 128:141-153. [PMID: 35132209 PMCID: PMC8897506 DOI: 10.1038/s41437-021-00491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022] Open
Abstract
The role of natural selection in shaping spatial patterns of genetic diversity in the Neotropics is still poorly understood. Here, we perform a genome scan with 24,751 probes targeting 11,026 loci in two Neotropical Bignoniaceae tree species: Handroanthus serratifolius from the seasonally dry tropical forest (SDTF) and Tabebuia aurea from savannas, and compared with the population genomics of H. impetiginosus from SDTF. OutFLANK detected 29 loci in 20 genes with selection signal in H. serratifolius and no loci in T. aurea. Using BayPass, we found evidence of selection in 335 loci in 312 genes in H. serratifolius, 101 loci in 92 genes in T. aurea, and 448 loci in 416 genes in H. impetiginosus. All approaches evidenced several genes affecting plant response to environmental stress and primary metabolic processes. The three species shared no SNPs with selection signal, but we found SNPs affecting the same gene in pair of species. Handroanthus serratifolius showed differences in allele frequencies at SNPs with selection signal among ecosystems, mainly between Caatinga/Cerrado and Atlantic Forest, while H. impetiginosus had one allele fixed across all populations, and T. aurea had similar allele frequency distribution among ecosystems and polymorphism across populations. Taken together, our results indicate that natural selection related to environmental stress shaped the spatial pattern of genetic diversity in the three species. However, the three species have different geographical distribution and niches, which may affect tolerances and adaption, and natural selection may lead to different signatures due to the differences in adaptive landscapes in different niches.
Collapse
|
64
|
Righetti L, Gottwald S, Tortorella S, Spengler B, Bhandari DR. Mass Spectrometry Imaging Disclosed Spatial Distribution of Defense-Related Metabolites in Triticum spp. Metabolites 2022; 12:48. [PMID: 35050170 PMCID: PMC8780301 DOI: 10.3390/metabo12010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Fusarium Head Blight is the most common fungal disease that strongly affects Triticum spp., reducing crop yield and leading to the accumulation of toxic metabolites. Several studies have investigated the plant metabolic response to counteract mycotoxins accumulation. However, information on the precise location where the defense mechanism is taking place is scarce. Therefore, this study aimed to investigate the specific tissue distribution of defense metabolites in two Triticum species and use this information to postulate on the metabolites' functional role, unlocking the "location-to-function" paradigm. To address this challenge, transversal cross-sections were obtained from the middle of the grains. They were analyzed using an atmospheric-pressure (AP) SMALDI MSI source (AP-SMALDI5 AF, TransMIT GmbH, Giessen, Germany) coupled to a Q Exactive HF (Thermo Fisher Scientific GmbH, Bremen, Germany) orbital trapping mass spectrometer. Our result revealed the capability of (AP)-SMALDI MSI instrumentation to finely investigate the spatial distribution of wheat defense metabolites, such as hydroxycinnamic acid amides, oxylipins, linoleic and α-linoleic acids, galactolipids, and glycerolipids.
Collapse
Affiliation(s)
- Laura Righetti
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (S.G.); (B.S.)
- Food and Drug Department, University of Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| | - Sven Gottwald
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (S.G.); (B.S.)
| | - Sara Tortorella
- Molecular Horizon srl, Via Montelino 30, Bettona, 06084 Perugia, Italy;
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (S.G.); (B.S.)
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; (S.G.); (B.S.)
- Gandaki Prvince Academy of Science and Technology, Pokhara 33700, Nepal
| |
Collapse
|
65
|
Zhao Y, Zhang F, Mickan B, Wang D, Wang W. Physiological, proteomic, and metabolomic analysis provide insights into Bacillus sp.-mediated salt tolerance in wheat. PLANT CELL REPORTS 2022; 41:95-118. [PMID: 34546426 DOI: 10.1007/s00299-021-02788-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 05/15/2023]
Abstract
Herein, the inoculation with strain wp-6 promoted the growth of wheat seedlings by improving the energy production and conversion of wheat seedlings and alleviating salt stress. Soil salinization decreases crop productivity due to high toxicity of sodium ions to plants. Plant growth-promoting rhizobacteria (PGPR) have been demonstrated to alleviate salinity stress. However, the mechanism of PGPR in improving plant salt tolerance remains unclear. In this study, physiological analysis, proteomics, and metabolomics were applied to investigate the changes in wheat seedlings under salt stress (150 mM NaCl), both with and without plant root inoculation with wp-6 (Bacillus sp.). Under salt stress, root inoculation with strain wp-6 increased plant biomass (57%) and root length (25%). The Na+ content was reduced, while the K+ content and K+/Na+ ratio were increased. The content of malondialdehyde was decreased by 31.94% after inoculation of wp-6 under salt stress, while the content of proline, soluble sugar, and soluble protein were increased by 7.48%, 12.34%, and 4.12%, respectively. The peroxidase, catalase, and superoxide dismutase activities were increased after inoculation of wp-6 under salt stress. Galactose metabolism, phenylalanine metabolism, caffeine metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and glutathione metabolism might play an important role in promoting the growth of salt-stressed wheat seedlings after the inoculation with wp-6. Interaction analysis of differentially expressed proteins and metabolites found that energy production and transformation-related proteins and six metabolites (D-arginine, palmitoleic acid, chlorophyllide b, rutin, pheophorbide a, and vanillylamine) were mainly involved in the growth of wheat seedlings after the inoculation with wp-6 under salt stress. Furthermore, correlation analysis found that inoculation with wp-6 promotes the growth of salt-stressed wheat seedlings mainly through regulating amino acid metabolism and porphyrin and chlorophyll metabolism. This study provides an eco-friendly method to increase agricultural productivity and paves a way to sustainable agriculture.
Collapse
Affiliation(s)
- Yaguang Zhao
- Key Laboratory of Oasis Ecology Agriculture of Xinjiang Bingtuan, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China
| | - Fenghua Zhang
- Key Laboratory of Oasis Ecology Agriculture of Xinjiang Bingtuan, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China.
| | - Bede Mickan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6001, Australia
| | - Dan Wang
- Key Laboratory of Oasis Ecology Agriculture of Xinjiang Bingtuan, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China
| | - Weichao Wang
- Key Laboratory of Oasis Ecology Agriculture of Xinjiang Bingtuan, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China
| |
Collapse
|
66
|
Fal S, Aasfar A, Rabie R, Smouni A, Arroussi HEL. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon 2022; 8:e08811. [PMID: 35118209 PMCID: PMC8792077 DOI: 10.1016/j.heliyon.2022.e08811] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/05/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Salinity is one of the most significant environmental factors limiting microalgal biomass productivity. In the present study, the model microalga Chlamydomonas reinhardtii (C. reinhardtii) was exposed to 200 mM NaCl for eight days to explore the physiological, biochemical and metabolomic changes. C. reinhradtii exhibited a significant decrease in growth rate, and Chl a and Chl b levels. 200 mM NaCl induced ROS generation in C. reinhardtii with increase in H2O2 content. This caused lipid peroxidation with increase in MDA levels. C. reinhardtii also exhibited an increase in carbohydrate and lipid accumulation under 200 mM NaCl conditions as storage molecules in cells to maintain microalgal survival. In addition, NaCl stress increased the content of carotenoids, polyphenols and osmoprotectant molecules such as proline. SOD and APX activities decreased, while ROS-scavenger enzymes (POD and CAT) decreased. Metabolomic response showed an accumulation of the major molecules implicated in membrane remodelling and stress resistance such oleic acid (40.29%), linolenic acid (19.29%), alkanes, alkenes and phytosterols. The present study indicates the physiological, biochemical and metabolomic responses of C. reinhardtii to salt stress.
Collapse
Affiliation(s)
- Soufiane Fal
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat, Morocco
- Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Abderahim Aasfar
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat, Morocco
| | - Reda Rabie
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat, Morocco
- University Sidi Mohamed Ben Abdellah, Faculty of Sciences and Techniques of Fez, Laboratory of Applied Organic Chemistry, Fez, Morocco
| | - Abelaziz Smouni
- Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Hicham EL. Arroussi
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli – Madinat Al Irfane, Rabat, Morocco
- Agrobiosciences Program, University Mohamed 6 Polytechnic (UM6P), Ben-Guerir, Morocco
| |
Collapse
|
67
|
Vignesh P, Mahadevaiah C, Parimalan R, Valarmathi R, Dharshini S, Nisha S, Suresha GS, Swathi S, Mahadeva Swamy HK, Sreenivasa V, Mohanraj K, Hemaprabha G, Bakshi R, Appunu C. Comparative de novo transcriptome analysis identifies salinity stress responsive genes and metabolic pathways in sugarcane and its wild relative Erianthus arundinaceus [Retzius] Jeswiet. Sci Rep 2021; 11:24514. [PMID: 34972826 PMCID: PMC8720094 DOI: 10.1038/s41598-021-03735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
Erianthus arundinaceus [Retzius] Jeswiet, a wild relative of sugarcane has a high biomass production potential and a reservoir of many genes for superior agronomic traits and tolerance to biotic and abiotic stresses. A comparative physiological, anatomical and root transcriptome analysis were carried out to identify the salt-responsive genes and metabolic pathways associated with salt-tolerant E. arundinaceus genotype IND99-907 and salinity-sensitive sugarcane genotype Co 97010. IND99-907 recorded growth of young leaves, higher proline content, higher relative water content, intact root anatomical structures and lower Na+/K+, Ca2+/K+ and Mg2+/K+ ratio as compared to the sugarcane genotype Co 97010. We have generated four de novo transcriptome assemblies between stressed and control root samples of IND99-907 and Co 97010. A total of 649 and 501 differentially expressed genes (FDR<0.01) were identified from the stressed and control libraries of IND99-907 and Co 97010 respectively. Genes and pathways related to early stress-responsive signal transduction, hormone signalling, cytoskeleton organization, cellular membrane stabilization, plasma membrane-bound calcium and proton transport, sodium extrusion, secondary metabolite biosynthesis, cellular transporters related to plasma membrane-bound trafficking, nucleobase transporter, clathrin-mediated endocytosis were highly enriched in IND99-907. Whereas in Co 97010, genes related to late stress-responsive signal transduction, electron transport system, senescence, protein degradation and programmed cell death, transport-related genes associated with cellular respiration and mitochondrial respiratory chain, vesicular trafficking, nitrate transporter and fewer secondary metabolite biosynthetic genes were highly enriched. A total of 27 pathways, 24 biological processes, three molecular functions and one cellular component were significantly enriched (FDR≤ 0.05) in IND99-907 as compared to 20 pathways, two biological processes without any significant molecular function and cellular components in Co 97010, indicates the unique and distinct expression pattern of genes and metabolic pathways in both genotypes. The genomic resources developed from this study is useful for sugarcane crop improvement through development of genic SSR markers and genetic engineering approaches.
Collapse
Affiliation(s)
- P Vignesh
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - C Mahadevaiah
- ICAR-Sugarcane Breeding Institute, Coimbatore, India.
| | - R Parimalan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - R Valarmathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - S Dharshini
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Singh Nisha
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - G S Suresha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - S Swathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | - V Sreenivasa
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - K Mohanraj
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - G Hemaprabha
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Ram Bakshi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - C Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India.
| |
Collapse
|
68
|
Exploring the legacy of Central European historical winter wheat landraces. Sci Rep 2021; 11:23915. [PMID: 34903761 PMCID: PMC8668957 DOI: 10.1038/s41598-021-03261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
Historical wheat landraces are rich sources of genetic diversity offering untapped reservoirs for broadening the genetic base of modern varieties. Using a 20K SNP array, we investigated the accessible genetic diversity in a Central European bread wheat landrace collection with great drought, heat stress tolerance and higher tillering capacity. We discovered distinct differences in the number of average polymorphisms between landraces and modern wheat cultivars, and identified a set of novel rare alleles present at low frequencies in the landrace collection. The detected polymorphisms were unevenly distributed along the wheat genome, and polymorphic markers co-localized with genes of great agronomic importance. The geographical distribution of the inferred Bayesian clustering revealed six genetically homogenous ancestral groups among the collection, where the Central European core bared an admixed background originating from four ancestral groups. We evaluated the effective population sizes (Ne) of the Central European collection and assessed changes in diversity over time, which revealed a dramatic ~ 97% genetic erosion between 1955 and 2015.
Collapse
|
69
|
Kehelpannala C, Rupasinghe T, Hennessy T, Bradley D, Ebert B, Roessner U. The state of the art in plant lipidomics. Mol Omics 2021; 17:894-910. [PMID: 34699583 DOI: 10.1039/d1mo00196e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are a group of compounds with diverse structures that perform several important functions in plants. To unravel and better understand their in vivo functions, plant biologists have been using various lipidomic technologies including liquid-chromatography (LC)-mass spectrometry (MS). However, there are still significant challenges in LC-MS based plant lipidomics, which need to be addressed. In this review, we provide an overview of the key developments in LC-MS based lipidomic approaches to detect and identify plant lipids with emphasis on areas that can be further improved. Given that the cellular lipidome is estimated to contain hundreds of thousands of lipids,1,2 many of the lipid structures remain to be discovered. Furthermore, the plant lipidome is considered to be significantly more complex compared to that of mammals. Recent technical developments in mass spectrometry have made the detection of novel lipids possible; hence, approaches that can be used for plant lipid discovery are also discussed.
Collapse
Affiliation(s)
- Cheka Kehelpannala
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | | | - Thomas Hennessy
- Agilent Technologies Australia Pty Ltd, 679 Springvale Road, Mulgrave, VIC 3170, Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd, 679 Springvale Road, Mulgrave, VIC 3170, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
70
|
Pretorius CJ, Zeiss DR, Dubery IA. The presence of oxygenated lipids in plant defense in response to biotic stress: a metabolomics appraisal. PLANT SIGNALING & BEHAVIOR 2021; 16:1989215. [PMID: 34968410 PMCID: PMC9208797 DOI: 10.1080/15592324.2021.1989215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 05/31/2023]
Abstract
Recent lipid-based findings suggest more direct roles for fatty acids and their degradation products in inducing/modulating various aspects of plant defense, e.g. as signaling molecules following stress responses that may regulate plant innate immunity. The synthesis of oxylipins is a highly dynamic process and occurs in both a developmentally regulated mode and in response to abiotic and biotic stresses. This mini-review summarizes the occurrence of free - and oxygenated fatty acid derivatives in plants as part of an orchestrated metabolic defense against pathogen attack. Oxygenated C18 derived polyunsaturated fatty acids were identified by untargeted metabolomics studies of a number of different plant-microbe pathosystems and may serve as potential biomarkers of oxidative stress. Untargeted metabolomics in combination with targeted lipidomics, can uncover previously unrecognized aspects of lipid mobilization during plant defense.
Collapse
Affiliation(s)
- Chanel J. Pretorius
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Dylan R. Zeiss
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
71
|
Zhao X, Fu X, Yin C, Lu F. Wheat speciation and adaptation: perspectives from reticulate evolution. ABIOTECH 2021; 2:386-402. [PMID: 36311810 PMCID: PMC9590565 DOI: 10.1007/s42994-021-00047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Reticulate evolution through the interchanging of genetic components across organisms can impact significantly on the fitness and adaptation of species. Bread wheat (Triticum aestivum subsp. aestivum) is one of the most important crops in the world. Allopolyploid speciation, frequent hybridization, extensive introgression, and occasional horizontal gene transfer (HGT) have been shaping a typical paradigm of reticulate evolution in bread wheat and its wild relatives, which is likely to have a substantial influence on phenotypic traits and environmental adaptability of bread wheat. In this review, we outlined the evolutionary history of bread wheat and its wild relatives with a highlight on the interspecific hybridization events, demonstrating the reticulate relationship between species/subspecies in the genera Triticum and Aegilops. Furthermore, we discussed the genetic mechanisms and evolutionary significance underlying the introgression of bread wheat and its wild relatives. An in-depth understanding of the evolutionary process of Triticum species should be beneficial to future genetic study and breeding of bread wheat.
Collapse
Affiliation(s)
- Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
72
|
Jin J, Zhao M, Gao T, Jing T, Zhang N, Wang J, Zhang X, Huang J, Schwab W, Song C. Amplification of early drought responses caused by volatile cues emitted from neighboring plants. HORTICULTURE RESEARCH 2021; 8:243. [PMID: 34782598 PMCID: PMC8593122 DOI: 10.1038/s41438-021-00704-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 05/02/2023]
Abstract
Plants have developed sophisticated mechanisms to survive in dynamic environments. Plants can communicate via volatile organic compounds (VOCs) to warn neighboring plants of threats. In most cases, VOCs act as positive regulators of plant defense. However, the communication and role of volatiles in response to drought stress are poorly understood. Here, we showed that tea plants release numerous VOCs. Among them, methyl salicylate (MeSA), benzyl alcohol, and phenethyl alcohol markedly increased under drought stress. Interestingly, further experiments revealed that drought-induced MeSA lowered the abscisic acid (ABA) content in neighboring plants by reducing 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, resulting in inhibition of stomatal closure and ultimately decreasing early drought tolerance in neighboring plants. Exogenous application of ABA reduced the wilting of tea plants caused by MeSA exposure. Exposure of Nicotiana benthamiana to MeSA also led to severe wilting, indicating that the ability of drought-induced MeSA to reduce early drought tolerance in neighboring plants may be conserved in other plant species. Taken together, these results provide evidence that drought-induced volatiles can reduce early drought tolerance in neighboring plants and lay a novel theoretical foundation for optimizing plant density and spacing.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Na Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
| | - Jin Huang
- Biotechnology Institute, Chengdu Newsun Crop Science Co., Ltd, 610212, Chengdu, P. R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, P. R. China.
| |
Collapse
|
73
|
Eng WH, Ho WS, Ling KH. In vitro induction and identification of polyploid Neolamarckia cadamba plants by colchicine treatment. PeerJ 2021; 9:e12399. [PMID: 34760387 PMCID: PMC8556713 DOI: 10.7717/peerj.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Polyploidization has played a crucial role in plant breeding and crop improvement. However, studies on the polyploidization of tropical tree species are still very scarce in this region. This paper described the in vitro induction and identification of polyploid plants of Neolamarckia cadamba by colchicine treatment. N. cadamba belongs to the Rubiaceae family is a natural tetraploid plant with 44 chromosomes (2n = 4x = 44). Nodal segments were treated with colchicine (0.1%, 0.3% and 0.5%) for 24 h and 48 h before transferring to shoot regeneration medium. Flow cytometry (FCM) and chromosome count were employed to determine the ploidy level and chromosome number of the regenerants, respectively. Of 180 colchicine-treated nodal segments, 39, 14 and 22 were tetraploids, mixoploids and octoploids, respectively. The highest percentage of polyploidization (20% octoploids; 6.7% mixoploids) was observed after treated with 0.3% colchicine for 48 h. The DNA content of tetraploid (4C) and octoploid (8C) was 2.59 ± 0.09 pg and 5.35 ± 0.24 pg, respectively. Mixoploid plants are made up of mixed tetraploid and octoploid cells. Chromosome count confirmed that tetraploid cell has 44 chromosomes and colchicine-induced octoploid cell has 88 chromosomes. Both octoploids and mixoploids grew slower than tetraploids under in vitro conditions. Morphological characterizations showed that mixoploid and octoploid leaves had thicker leaf blades, thicker midrib, bigger stomata size, lower stomata density, higher SPAD value and smaller pith layer than tetraploids. This indicates that polyploidization has changed and resulted in traits that are predicted to increase photosynthetic capacity of N. cadamba. These novel polyploid plants could be valuable resources for advanced N. cadamba breeding programs to produce improved clones for planted forest development.
Collapse
Affiliation(s)
- Wee Hiang Eng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Wei Seng Ho
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | | |
Collapse
|
74
|
Sabadin F, Carvalho HF, Galli G, Fritsche-Neto R. Population-tailored mock genome enables genomic studies in species without a reference genome. Mol Genet Genomics 2021; 297:33-46. [PMID: 34755217 DOI: 10.1007/s00438-021-01831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022]
Abstract
Based on molecular markers, genomic prediction enables us to speed up breeding schemes and increase the response to selection. There are several high-throughput genotyping platforms able to deliver thousands of molecular markers for genomic study purposes. However, even though its widely applied in plant breeding, species without a reference genome cannot fully benefit from genomic tools and modern breeding schemes. We used a method to assemble a population-tailored mock genome to call single-nucleotide polymorphism (SNP) markers without an available reference genome, and for the first time, we compared the results with standard genotyping platforms (array and genotyping-by-sequencing (GBS) using a reference genome) for performance in genomic prediction models. Our results indicate that using a population-tailored mock genome to call SNP delivers reliable estimates for the genomic relationship between genotypes. Furthermore, genomic prediction estimates were comparable to standard approaches, especially when considering only additive effects. However, mock genomes were slightly worse than arrays at predicting traits influenced by dominance effects, but still performed as well as standard GBS methods that use a reference genome. Nevertheless, the array-based SNP markers methods achieved the best predictive ability and reliability to estimate variance components. Overall, the mock genomes can be a worthy alternative for genomic selection studies, especially for those species where the reference genome is not available.
Collapse
Affiliation(s)
- Felipe Sabadin
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Humberto Fanelli Carvalho
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Giovanni Galli
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Roberto Fritsche-Neto
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
75
|
Patel MK, Pandey S, Kumar M, Haque MI, Pal S, Yadav NS. Plants Metabolome Study: Emerging Tools and Techniques. PLANTS (BASEL, SWITZERLAND) 2021; 10:2409. [PMID: 34834772 PMCID: PMC8621461 DOI: 10.3390/plants10112409] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Metabolomics is now considered a wide-ranging, sensitive and practical approach to acquire useful information on the composition of a metabolite pool present in any organism, including plants. Investigating metabolomic regulation in plants is essential to understand their adaptation, acclimation and defense responses to environmental stresses through the production of numerous metabolites. Moreover, metabolomics can be easily applied for the phenotyping of plants; and thus, it has great potential to be used in genome editing programs to develop superior next-generation crops. This review describes the recent analytical tools and techniques available to study plants metabolome, along with their significance of sample preparation using targeted and non-targeted methods. Advanced analytical tools, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectroscopy (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) matrix-assisted laser desorption/ionization (MALDI), ion mobility spectrometry (IMS) and nuclear magnetic resonance (NMR) have speed up precise metabolic profiling in plants. Further, we provide a complete overview of bioinformatics tools and plant metabolome database that can be utilized to advance our knowledge to plant biology.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Sonika Pandey
- Independent Researcher, Civil Line, Fathepur 212601, India;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Md Intesaful Haque
- Fruit Tree Science Department, Newe Ya’ar Research Center, Agriculture Research Organization, Volcani Center, Ramat Yishay 3009500, Israel;
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
76
|
Gupta S, Smith PMC, Boughton BA, Rupasinghe TWT, Natera SHA, Roessner U. Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7229-7246. [PMID: 34279634 DOI: 10.1093/jxb/erab335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/17/2021] [Indexed: 05/23/2023]
Abstract
Soil salinity has a serious impact on plant growth and agricultural yield. Inoculation of crop plants with fungal endophytes is a cost-effective way to improve salt tolerance. We used metabolomics to study how Trichoderma harzianum T-22 alleviates NaCl-induced stress in two barley (Hordeum vulgare L.) cultivars, Gairdner and Vlamingh, with contrasting salinity tolerance. GC-MS was used to analyse polar metabolites and LC-MS to analyse lipids in roots during the early stages of interaction with Trichoderma. Inoculation reversed the severe effects of salt on root length in sensitive cv. Gairdner and, to a lesser extent, improved root growth in more tolerance cv. Vlamingh. Biochemical changes showed a similar pattern in inoculated roots after salt treatment. Sugars increased in both cultivars, with ribulose, ribose, and rhamnose specifically increased by inoculation. Salt stress caused large changes in lipids in roots but inoculation with fungus greatly reduced the extent of these changes. Many of the metabolic changes in inoculated cv. Gairdner after salt treatment mirror the response of uninoculated cv. Vlamingh, but there are some metabolites that changed in both cultivars only after fungal inoculation. Further study is required to determine how these metabolic changes are induced by fungal inoculation.
Collapse
Affiliation(s)
- Sneha Gupta
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Penelope M C Smith
- School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Berin A Boughton
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia, Australia
| | - Thusitha W T Rupasinghe
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
- SCIEX, Mulgrave, Victoria, Australia
| | - Siria H A Natera
- Metabolomics Australia, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
77
|
Vilchez AC, Peppino Margutti M, Reyna M, Wilke N, Villasuso AL. Recovery from chilling modulates the acyl-editing of phosphatidic acid molecular species in barley roots (Hordeum vulgare L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:862-873. [PMID: 34536899 DOI: 10.1016/j.plaphy.2021.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
In plants, lipid metabolism and remodelling are key mechanisms for survival under temperature stress. The present study attempted to compare the lipid profile in barley roots both under chilling stress treatment and in the subsequent recovery to stress. Lipids were obtained through a single-extraction method with a polar solvent mixture, followed by mass spectrometry analysis. The results indicate that lipid metabolism was significantly affected by chilling. Most of the glycerolipids analysed returned to control values during short- and long-term recovery, whereas several representative phosphatidic acid (PA) molecular species were edited during long-term recovery. Most of the PA molecular species that increased in the long-term had the same acyl chains as the phosphatidylcholine (PC) species that decreased. C34:2 and C36:4 underwent the most remarkable changes. Given that the mechanisms underlying the acyl-editing of PC in barley roots remain elusive, we also evaluated the contribution of lysophosphatidylcholine acyltransferases (HvLPCAT) and phospholipase A (HvPLA). In line with the aforementioned results, the expression of the HvLPCAT and HvPLA genes was up-regulated during recovery from chilling. The differential acyl-editing of PA during recovery, which involves the remodelling of PC, might therefore be a regulatory mechanism of cold tolerance in barley.
Collapse
Affiliation(s)
- Ana Carolina Vilchez
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Micaela Peppino Margutti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mercedes Reyna
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Ana Laura Villasuso
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnología Ambiental y Salud, (INBIAS), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
78
|
Li H, Lin WF, Shen ZJ, Peng H, Zhou JJ, Zhu XY. Physiological and Proteomic Analyses of Different Ecotypes of Reed ( Phragmites communis) in Adaption to Natural Drought and Salinity. FRONTIERS IN PLANT SCIENCE 2021; 12:720593. [PMID: 34589100 PMCID: PMC8473735 DOI: 10.3389/fpls.2021.720593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 05/20/2023]
Abstract
Drought and salinity are the two major abiotic stresses constraining the crop yield worldwide. Both of them trigger cellular dehydration and cause osmotic stress which leads to cytosolic and vacuolar volume reduction. However, whether plants share a similar tolerance mechanism in response to these two stresses under natural conditions has seldom been comparatively reported. There are three different ecotypes of reed within a 5 km2 region in the Badanjilin desert of Northwest China. Taking the typical swamp reed (SR) as a control, we performed a comparative study on the adaption mechanisms of the two terrestrial ecotypes: dune reed (DR) and heavy salt meadow reed (HSMR) by physiological and proteomic approaches coupled with bioinformatic analysis. The results showed that HSMR and DR have evolved C4-like photosynthetic and anatomical characteristics, such as the increased bundle sheath cells (BSCs) and chloroplasts in BSCs, higher density of veins, and lower density and aperture of stomata. In addition, the thylakoid membrane fluidity also plays an important role in their higher drought and salinity tolerance capability. The proteomic results further demonstrated that HSMR and DR facilitated the regulation of proteins associated with photosynthesis and energy metabolism, lipid metabolism, transcription and translation, and stress responses to well-adapt to the drought and salinity conditions. Overall, our results demonstrated that HSMR and DR shaped a similar adaption strategy from the structural and physiological levels to the molecular scale to ensure functionality in a harsh environment.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- College of Food and Bio-Engineering, Bengbu University, Bengbu, China
| | - Wen-Fang Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Jun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hao Peng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Department of Life Science and Engineering, Jining University, Jining, China
| | - Jia-Jie Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
79
|
Yang Z, Tian J, Feng K, Gong X, Liu J. Application of a hyperspectral imaging system to quantify leaf-scale chlorophyll, nitrogen and chlorophyll fluorescence parameters in grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:723-737. [PMID: 34214782 DOI: 10.1016/j.plaphy.2021.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/11/2021] [Indexed: 05/26/2023]
Abstract
Rapidly and accurately monitoring the physiological and biochemical parameters of grape leaves is the key to controlling the quality of wine grapes. In this study, a Pika L hyperspectral imaging system (400-1000 nm) was used to acquire hyperspectral image information from grape leaves. New vegetation indices were developed on the basis of the screened sensitive wavebands to quantitatively predict changes in these parameters (the leaf chlorophyll level (SPAD), leaf nitrogen content (LNC) and chlorophyll fluorescence parameters (ChlF parameters)). The results showed that SPAD reached its maximum at the grape turning stage and declined thereafter. The vegetation index (D735-D573)/(D735+D573) was able to predict SPAD fairly well (validation dataset R2 = 0.50). LNC reached its maximum at the grape maturity stage. D682/R525 was highly correlated with LNC. Except for NPQ, all ChlF parameters showed a decreasing trend from the fruiting to harvesting stages. Among the dark-adapted ChlF parameters, FV/Fm had the strongest correlation to the new vegetation index (D735-D544)/(D735+D544) (modelling dataset R2 = 0.68), and Fo had the weakest correlation. Among the light-adapted ChlF parameters, Y(II) had the strongest correlation to the new vegetation index D676/R571 (validation dataset R2 = 0.63); this index also had good predictive power for Fm' (validation dataset R2 = 0.52) but low predictive power for Fo'. All the calculated vegetation indices had weak relationships with NPQ. In addition, this study also verified the predictive abilities of vegetation indices developed in previous studies. This study can provide a technical basis for the nondestructive monitoring of the physiological and biochemical parameters of grape leaves with hyperspectral imaging systems.
Collapse
Affiliation(s)
- Zhenfeng Yang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Juncang Tian
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China; Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan, Ningxia, 750021, China; Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions, Ministry of Education, Yinchuan, Ningxia, 750021, China.
| | - Kepeng Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China; Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan, Ningxia, 750021, China; Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions, Ministry of Education, Yinchuan, Ningxia, 750021, China.
| | - Xue Gong
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Jiabin Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
80
|
Kehelpannala C, Rupasinghe T, Pasha A, Esteban E, Hennessy T, Bradley D, Ebert B, Provart NJ, Roessner U. An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:287-302. [PMID: 33866624 PMCID: PMC8361726 DOI: 10.1111/tpj.15278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 05/24/2023]
Abstract
Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.
Collapse
Affiliation(s)
- Cheka Kehelpannala
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| | | | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Thomas Hennessy
- Agilent Technologies Australia Pty Ltd679 Springvale RoadMulgraveVIC3170Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd679 Springvale RoadMulgraveVIC3170Australia
| | - Berit Ebert
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| | - Nicholas J. Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Ute Roessner
- School of BioSciencesThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
81
|
Naim-Feil E, Pembleton LW, Spooner LE, Malthouse AL, Miner A, Quinn M, Polotnianka RM, Baillie RC, Spangenberg GC, Cogan NOI. The characterization of key physiological traits of medicinal cannabis (Cannabis sativa L.) as a tool for precision breeding. BMC PLANT BIOLOGY 2021; 21:294. [PMID: 34174826 PMCID: PMC8235858 DOI: 10.1186/s12870-021-03079-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND For millennia, drug-type cannabis strains were extensively used for various medicinal, ritual, and inebriant applications. However, cannabis prohibition during the last century led to cultivation and breeding activities being conducted under clandestine conditions, while scientific development of the crop ceased. Recently, the potential of medicinal cannabis has been reacknowledged and the now expanding industry requires optimal and scientifically characterized varieties. However, scientific knowledge that can propel this advancement is sorely lacking. To address this issue, the current study aims to provide a better understanding of key physiological and phenological traits that can facilitate the breeding of advanced cultivars. RESULTS A diverse population of 121 genotypes of high-THC or balanced THC-CBD ratio was cultivated under a controlled environment facility and 13 plant parameters were measured. No physiological association across genotypes attributed to the same vernacular classification was observed. Floral bud dry weight was found to be positively associated with plant height and stem diameter but not with days to maturation. Furthermore, the heritability of both plant height and days to maturation was relatively high, but for plant height it decreased during the vegetative growth phase. To advance breeding efficacy, a prediction equation for forecasting floral bud dry weight was generated, driven by parameters that can be detected during the vegetative growth phase solely. CONCLUSIONS Our findings suggest that selection for taller and fast-growing genotypes is likely to lead to an increase in floral bud productivity. It was also found that the final plant height and stem diameter are determined by 5 independent factors that can be used to maximize productivity through cultivation adjustments. The proposed prediction equation can facilitate the selection of prolific genotypes without the completion of a full cultivation cycle. Future studies that will associate genome-wide variation with plants morphological traits and cannabinoid profile will enable precise and accelerated breeding through genomic selection approaches.
Collapse
Affiliation(s)
- Erez Naim-Feil
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Luke W Pembleton
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Laura E Spooner
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Alix L Malthouse
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amy Miner
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Melinda Quinn
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Renata M Polotnianka
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Rebecca C Baillie
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - German C Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
82
|
Singh M, Tiwari N. Microbial amelioration of salinity stress in HD 2967 wheat cultivar by up-regulating antioxidant defense. Commun Integr Biol 2021; 14:136-150. [PMID: 34239684 PMCID: PMC8237971 DOI: 10.1080/19420889.2021.1937839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/05/2022] Open
Abstract
An experiment was conducted to investigate the potential of Piriformospora indica and plant growth-promoting bacteria (PGPB) to ameliorate salinity stress in HD 2967 wheat cultivar. Plants were treated with four different levels of salinity viz. 0, 50, 100 and 200 mM NaCl (electrical conductivity value 0.01, 5.84, 11.50 and 21.4 mS cm-1, respectively) under greenhouse conditions, using a completely randomized design experiment. Plants inoculated with PGPB and P. indica showed decrease in lipid peroxidation, relative membrane permeability and lipoxygenase enzyme (LOX) activity as compared to uninoculated plants. The result of this study showed that PGPB and P. indica inoculated HD 2967 wheat plants accumulated higher content of proline, α-tocopherol and carotenoid as compared to uninoculated plants. The HD 2967 wheat plants either inoculated with PGPB or P. indica showed significantly higher activities of antioxidant enzymes viz. superoxide dismutase, catalase and ascorbate peroxidase than that of the uninoculated plants. Moreover, PGPB inoculated plants showed greater activity of antioxidant enzymes than the plants inoculated with P. indica. Salinity stress tolerance was more pronounced in the PGPB inoculated than P. indica inoculated plants. This study revealed the potentiality of PGPB and P. indica as bio-ameliorator under salinity stress, and suggests that this plant microbial association could be a promising biotechnological tool to combat the deleterious effects of salinity stress.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Botany, SSN College, University of Delhi, Delhi, India
| | - Neha Tiwari
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
83
|
Canton M, Forestan C, Bonghi C, Varotto S. Meta-analysis of RNA-Seq studies reveals genes with dominant functions during flower bud endo- to eco-dormancy transition in Prunus species. Sci Rep 2021; 11:13173. [PMID: 34162991 PMCID: PMC8222350 DOI: 10.1038/s41598-021-92600-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
In deciduous fruit trees, entrance into dormancy occurs in later summer/fall, concomitantly with the shortening of day length and decrease in temperature. Dormancy can be divided into endodormancy, ecodormancy and paradormancy. In Prunus species flower buds, entrance into the dormant stage occurs when the apical meristem is partially differentiated; during dormancy, flower verticils continue their growth and differentiation. Each species and/or cultivar requires exposure to low winter temperature followed by warm temperatures, quantified as chilling and heat requirements, to remove the physiological blocks that inhibit budburst. A comprehensive meta-analysis of transcriptomic studies on flower buds of sweet cherry, apricot and peach was conducted, by investigating the gene expression profiles during bud endo- to ecodormancy transition in genotypes differing in chilling requirements. Conserved and distinctive expression patterns were observed, allowing the identification of gene specifically associated with endodormancy or ecodormancy. In addition to the MADS-box transcription factor family, hormone-related genes, chromatin modifiers, macro- and micro-gametogenesis related genes and environmental integrators, were identified as novel biomarker candidates for flower bud development during winter in stone fruits. In parallel, flower bud differentiation processes were associated to dormancy progression and termination and to environmental factors triggering dormancy phase-specific gene expression.
Collapse
Affiliation(s)
- Monica Canton
- Department of Agriculture, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Cristian Forestan
- Department of Agriculture, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Claudio Bonghi
- Department of Agriculture, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell'Università, 16, 35020, Legnaro, PD, Italy.
| | - Serena Varotto
- Department of Agriculture, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Agripolis, Viale dell'Università, 16, 35020, Legnaro, PD, Italy.
| |
Collapse
|
84
|
Dorrity MW, Alexandre CM, Hamm MO, Vigil AL, Fields S, Queitsch C, Cuperus JT. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat Commun 2021; 12:3334. [PMID: 34099698 DOI: 10.1101/2020.07.17.204792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/10/2021] [Indexed: 05/21/2023] Open
Abstract
The scarcity of accessible sites that are dynamic or cell type-specific in plants may be due in part to tissue heterogeneity in bulk studies. To assess the effects of tissue heterogeneity, we apply single-cell ATAC-seq to Arabidopsis thaliana roots and identify thousands of differentially accessible sites, sufficient to resolve all major cell types of the root. We find that the entirety of a cell's regulatory landscape and its transcriptome independently capture cell type identity. We leverage this shared information on cell identity to integrate accessibility and transcriptome data to characterize developmental progression, endoreduplication and cell division. We further use the combined data to characterize cell type-specific motif enrichments of transcription factor families and link the expression of family members to changing accessibility at specific loci, resolving direct and indirect effects that shape expression. Our approach provides an analytical framework to infer the gene regulatory networks that execute plant development.
Collapse
Affiliation(s)
- Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Morgan O Hamm
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anna-Lena Vigil
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
85
|
Dorrity MW, Alexandre CM, Hamm MO, Vigil AL, Fields S, Queitsch C, Cuperus JT. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat Commun 2021; 12:3334. [PMID: 34099698 PMCID: PMC8184767 DOI: 10.1038/s41467-021-23675-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The scarcity of accessible sites that are dynamic or cell type-specific in plants may be due in part to tissue heterogeneity in bulk studies. To assess the effects of tissue heterogeneity, we apply single-cell ATAC-seq to Arabidopsis thaliana roots and identify thousands of differentially accessible sites, sufficient to resolve all major cell types of the root. We find that the entirety of a cell's regulatory landscape and its transcriptome independently capture cell type identity. We leverage this shared information on cell identity to integrate accessibility and transcriptome data to characterize developmental progression, endoreduplication and cell division. We further use the combined data to characterize cell type-specific motif enrichments of transcription factor families and link the expression of family members to changing accessibility at specific loci, resolving direct and indirect effects that shape expression. Our approach provides an analytical framework to infer the gene regulatory networks that execute plant development.
Collapse
Affiliation(s)
- Michael W. Dorrity
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Cristina M. Alexandre
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Morgan O. Hamm
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Anna-Lena Vigil
- grid.272362.00000 0001 0806 6926School of Life Sciences, University of Nevada, Las Vegas, NV USA
| | - Stanley Fields
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, WA USA
| | - Christine Queitsch
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA USA
| | - Josh T. Cuperus
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA USA
| |
Collapse
|
86
|
Investigation of genetic markers for intramuscular fat in the hybrid Wagyu cattle with bulked segregant analysis. Sci Rep 2021; 11:11530. [PMID: 34075159 PMCID: PMC8169923 DOI: 10.1038/s41598-021-91101-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/20/2021] [Indexed: 11/08/2022] Open
Abstract
ulked Segregant Analysis (BSA) is a rapid strategy for identifying genetic markers in specific regions of the phenotypical population and it has been widely used for QTLs mapping in smaller mixed F2 and F3 populations. We applied a modified BSA method to assessed genome-wide homozygous and heterozygous linkage patterns in the Chinese Wagyu Beef Cattle F2/F3 mixed population. Two overlapped regions from F2 and F3 populations on autosomes were found with high-density heterozygote alleles between high and low intramuscular fat groups. Regions from 24.8 M ~ 29.6 M of chromosome 23 were identified as most significantly correlated to the intramuscular fat in our samples. We also identified other 4 potential loci on chromosomes 5, 9, 15, and 21 correlated with Intramuscular fat. This study provided a novel low-cost method for QTLs mapping and identify molecular markers of phenotypical changes in a small mixed population.
Collapse
|
87
|
Zingaretti LM, Monfort A, Pérez-Enciso M. Automatic Fruit Morphology Phenome and Genetic Analysis: An Application in the Octoploid Strawberry. PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:9812910. [PMID: 34056620 PMCID: PMC8139333 DOI: 10.34133/2021/9812910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/20/2021] [Indexed: 06/01/2023]
Abstract
Automatizing phenotype measurement will decisively contribute to increase plant breeding efficiency. Among phenotypes, morphological traits are relevant in many fruit breeding programs, as appearance influences consumer preference. Often, these traits are manually or semiautomatically obtained. Yet, fruit morphology evaluation can be enhanced using fully automatized procedures and digital images provide a cost-effective opportunity for this purpose. Here, we present an automatized pipeline for comprehensive phenomic and genetic analysis of morphology traits extracted from internal and external strawberry (Fragaria x ananassa) images. The pipeline segments, classifies, and labels the images and extracts conformation features, including linear (area, perimeter, height, width, circularity, shape descriptor, ratio between height and width) and multivariate (Fourier elliptical components and Generalized Procrustes) statistics. Internal color patterns are obtained using an autoencoder to smooth out the image. In addition, we develop a variational autoencoder to automatically detect the most likely number of underlying shapes. Bayesian modeling is employed to estimate both additive and dominance effects for all traits. As expected, conformational traits are clearly heritable. Interestingly, dominance variance is higher than the additive component for most of the traits. Overall, we show that fruit shape and color can be quickly and automatically evaluated and are moderately heritable. Although we study strawberry images, the algorithm can be applied to other fruits, as shown in the GitHub repository.
Collapse
Affiliation(s)
- Laura M. Zingaretti
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Barcelona, Spain
| | - Amparo Monfort
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08193 Barcelona, Spain
| | - Miguel Pérez-Enciso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Barcelona, Spain
- ICREA, Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
88
|
Zhu R, Wang H, Shen H, Deng X, Chen J. The dynamics and release characteristics of microcystins in the plateau Lake Erhai, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23473-23481. [PMID: 33452641 DOI: 10.1007/s11356-020-12312-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) have seriously polluted drinking water supplies and have caused great harm to aquatic organisms and humans. Understanding the dynamics of MC concentrations and its influencing factors is necessary for drinking water safety. Many previous studies on MC pollution focused on intracellular MCs rather than on extracellular MCs, which are more difficult to remove by water treatment. So far, the release characteristics of MCs and the relationships between intracellular and extracellular MCs are still unclear. To explore these questions, a survey was conducted at 18 sites across Lake Erhai from May 2014 to April 2015 as in Lake Erhai the frequency and coverage area of cyanobacterial blooms have been increasing. Variation of extracellular MCs lagged behind that of intracellular MCs. The highest value of intracellular MCs was 1.07 μg L-1 in October 2014 and the highest extracellular MC concentration was 0.035 μg L-1 in November 2014. Intracellular MCs were positively influenced by MC-producing cyanobacterial biomass, water temperature (WT), pH, and conductivity (Cond). The extracellular MCs showed little correlation with cyanobacterial abundances and intracellular MC concentrations, but showed significant negative correlations with WT, pH, and Cond. These results indicated that high biomass and high intracellular MC concentrations did not quickly lead to large releases of MCs, and that when cyanobacterial cells died and blooms disappeared, MCs were intensively released into the water, posing the greatest threat to drinking water supply.
Collapse
Affiliation(s)
- Rong Zhu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- Marine Fisheries Research Institute of Zhejiang, Zhoushan, 316021, People's Republic of China
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Hong Shen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
89
|
Vimont N, Schwarzenberg A, Domijan M, Donkpegan ASL, Beauvieux R, le Dantec L, Arkoun M, Jamois F, Yvin JC, Wigge PA, Dirlewanger E, Cortijo S, Wenden B. Fine tuning of hormonal signaling is linked to dormancy status in sweet cherry flower buds. TREE PHYSIOLOGY 2021; 41:544-561. [PMID: 32975290 DOI: 10.1093/treephys/tpaa122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/10/2019] [Accepted: 09/13/2020] [Indexed: 05/21/2023]
Abstract
In temperate trees, optimal timing and quality of flowering directly depend on adequate winter dormancy progression, regulated by a combination of chilling and warm temperatures. Physiological, genetic and functional genomic studies have shown that hormones play a key role in bud dormancy establishment, maintenance and release. We combined physiological and transcriptional analyses, quantification of abscisic acid (ABA) and gibberellins (GAs), and modeling to further investigate how these signaling pathways are associated with dormancy progression in the flower buds of two sweet cherry cultivars. Our results demonstrated that GA-associated pathways have distinct functions and may be differentially related with dormancy. In addition, ABA levels rise at the onset of dormancy, associated with enhanced expression of ABA biosynthesis PavNCED genes, and decreased prior to dormancy release. Following the observations that ABA levels are correlated with dormancy depth, we identified PavUG71B6, a sweet cherry UDP-GLYCOSYLTRANSFERASE gene that up-regulates active catabolism of ABA to ABA glucosyl ester (ABA-GE) and may be associated with low ABA content in the early cultivar. Subsequently, we modeled ABA content and dormancy behavior in three cultivars based on the expression of a small set of genes regulating ABA levels. These results strongly suggest the central role of ABA pathway in the control of dormancy progression and open up new perspectives for the development of molecular-based phenological modeling.
Collapse
Affiliation(s)
- Noémie Vimont
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
- The Sainsbury Laboratory, University of Cambridge, Bateman St., Cambridge CB2 1LR, United Kingdom
| | - Adrian Schwarzenberg
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Mirela Domijan
- Dept. of Mathematical Sciences, University of Liverpool, Peach St., Liverpool L69 7ZL, United Kingdom
| | - Armel S L Donkpegan
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Rémi Beauvieux
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Loïck le Dantec
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Mustapha Arkoun
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Frank Jamois
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Jean-Claude Yvin
- Agro Innovation International - Centre Mondial d'Innovation - Groupe Roullier, 35400 St Malo, France
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau (IGZ), Department for Plant Adaptation, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Elisabeth Dirlewanger
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, Bateman St., Cambridge CB2 1LR, United Kingdom
| | - Bénédicte Wenden
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, av. Edouard Bourlaux, 33140 Villenave d'Ornon, France
| |
Collapse
|
90
|
Yamane H, Singh AK, Cooke JEK. Plant dormancy research: from environmental control to molecular regulatory networks. TREE PHYSIOLOGY 2021; 41:523-528. [PMID: 33834235 DOI: 10.1093/treephys/tpab035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 05/26/2023]
Affiliation(s)
- Hisayo Yamane
- Graduate school of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi 834 003 India
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Alberta, Canada
| |
Collapse
|
91
|
Rawat N, Singla-Pareek SL, Pareek A. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. PHYSIOLOGIA PLANTARUM 2021; 171:653-676. [PMID: 32949408 DOI: 10.1111/ppl.13217] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/13/2020] [Indexed: 05/15/2023]
Abstract
The plasma membrane (PM) is possibly the most diverse biological membrane of plant cells; it separates and guards the cell against its external environment. It has an extremely complex structure comprising a mosaic of lipids and proteins. The PM lipids are responsible for maintaining fluidity, permeability and integrity of the membrane and also influence the functioning of membrane proteins. However, the PM is the primary target of environmental stress, which affects its composition, conformation and properties, thereby disturbing the cellular homeostasis. Maintenance of integrity and fluidity of the PM is a prerequisite for ensuring the survival of plants during adverse environmental conditions. The ability of plants to remodel membrane lipid and protein composition plays a crucial role in adaptation towards varying abiotic environmental cues, including high or low temperature, drought, salinity and heavy metals stress. The dynamic changes in lipid composition affect the functioning of membrane transporters and ultimately regulate the physical properties of the membrane. Plant membrane-transport systems play a significant role in stress adaptation by cooperating with the membrane lipidome to maintain the membrane integrity under stressful conditions. The present review provides a holistic view of stress responses and adaptations in plants, especially the changes in the lipidome and proteome of PM under individual or combined abiotic stresses, which cause alterations in the activity of membrane transporters and modifies the fluidity of the PM. The tools to study the varying lipidome and proteome of the PM are also discussed.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
92
|
Rodas-Junco BA, Racagni-Di-Palma GE, Canul-Chan M, Usorach J, Hernández-Sotomayor SMT. Link between Lipid Second Messengers and Osmotic Stress in Plants. Int J Mol Sci 2021; 22:2658. [PMID: 33800808 PMCID: PMC7961891 DOI: 10.3390/ijms22052658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants are subject to different types of stress, which consequently affect their growth and development. They have developed mechanisms for recognizing and processing an extracellular signal. Second messengers are transient molecules that modulate the physiological responses in plant cells under stress conditions. In this sense, it has been shown in various plant models that membrane lipids are substrates for the generation of second lipid messengers such as phosphoinositide, phosphatidic acid, sphingolipids, and lysophospholipids. In recent years, research on lipid second messengers has been moving toward using genetic and molecular approaches to reveal the molecular setting in which these molecules act in response to osmotic stress. In this sense, these studies have established that second messengers can transiently recruit target proteins to the membrane and, therefore, affect protein conformation, activity, and gene expression. This review summarizes recent advances in responses related to the link between lipid second messengers and osmotic stress in plant cells.
Collapse
Affiliation(s)
- Beatriz A. Rodas-Junco
- CONACYT—Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, C.P. 97203 Mérida, Mexico
| | | | - Michel Canul-Chan
- Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación de Avenida Oriente 6 Num. 1009, Rafael Alvarado, C.P. 94340 Orizaba, Mexico;
| | - Javier Usorach
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Mexico;
| | - S. M. Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97205 Mérida, Mexico;
| |
Collapse
|
93
|
Namgung J, Do HDK, Kim C, Choi HJ, Kim JH. Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae). Sci Rep 2021; 11:3262. [PMID: 33547390 PMCID: PMC7865063 DOI: 10.1038/s41598-021-82692-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, five of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein-coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA, psbA upstream, rpl32-trnL-UAG, ycf1, rpl22, matK, and ndhF, were identified in the studied Allium species. Additionally, we present the first phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, five species of Amaryllidoideae, one species of Agapanthoideae, and five species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae-Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae- Gilliesieae-Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by differentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya. Biogeographic reconstruction suggests an African origin for Allioideae and subsequent spread to Eurasia during the middle Eocene. Cool and arid conditions during the late Eocene led to isolation between African and Eurasian species. African Allioideae may have diverged to South American taxa in the late Oligocene. Rather than vicariance, long-distance dispersal is the most likely explanation for intercontinental distribution of African and South American Allioideae species.
Collapse
Affiliation(s)
- Ju Namgung
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hoang Dang Khoa Do
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Changkyun Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyeok Jae Choi
- Department of Biology and Chemistry, Changwon National University, Gyeongsangnamdo, 51140, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
94
|
Carbon Assimilation, Isotope Discrimination, Proline and Lipid Peroxidation Contribution to Barley ( Hordeum vulgare) Salinity Tolerance. PLANTS 2021; 10:plants10020299. [PMID: 33557417 PMCID: PMC7915033 DOI: 10.3390/plants10020299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
Barley (Hordeum vulgare L.) exhibits great adaptability to salt tolerance in marginal environments because of its great genetic diversity. Differences in main biochemical, physiological, and molecular processes, which could explain the different tolerance to soil salinity of 16 barley varieties, were examined during a two-year field experiment. The study was conducted in a saline soil with an electrical conductivity ranging from 7.3 to 11.5 dS/m. During the experiment, a number of different physiological and biochemical characteristics were evaluated when barley was at the two- to three-nodes growing stage (BBCH code 32–33). The results indicated that there were significant (p < 0.001) effects due to varieties for tolerance to salinity. Carbon isotopes discrimination was higher by 11.8% to 16.0% in salt tolerant varieties than that in the sensitive ones. Additionally, in the tolerant varieties, assimilation rates of CO2 and proline concentration were 200% and up to 67% higher than the sensitive varieties, respectively. However, in sensitive varieties, hydrogen peroxide and lipid peroxidation were enhanced, indicating an increased lipid peroxidation. The expression of the genes Hsdr4, HvA1, and HvTX1 did not differ among barley varieties tested. This study suggests that the increased carbon isotopes discrimination, increased proline concentration (play an osmolyte source role), and decreased lipid peroxidation are traits that are associated with barley tolerance to soil salinity. Moreover, our findings that proline improves salt tolerance by up-regulating stress-protective enzymes and reducing oxidation of lipid membranes will encourage our hypothesis that there are specific mechanisms that can be co-related with the salt sensitivity or the tolerance of barley. Therefore, further research is needed to ensure the tolerance mechanisms that exclude NaCl in salt tolerant barley varieties and diminish accumulation of lipid peroxides through adaptive plant responses.
Collapse
|
95
|
Di Guardo M, Farneti B, Khomenko I, Modica G, Mosca A, Distefano G, Bianco L, Troggio M, Sottile F, La Malfa S, Biasioli F, Gentile A. Genetic characterization of an almond germplasm collection and volatilome profiling of raw and roasted kernels. HORTICULTURE RESEARCH 2021; 8:27. [PMID: 33518710 PMCID: PMC7848010 DOI: 10.1038/s41438-021-00465-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 05/16/2023]
Abstract
Almond is appreciated for its nutraceutical value and for the aromatic profile of the kernels. In this work, an almond collection composed of 96 Sicilian accessions complemented with 10 widely cultivated cultivars was phenotyped for the production of volatile organic compounds using a proton-transfer time-of-flight mass spectrometer and genotyped using the Illumina Infinium®18 K Peach SNP array. The profiling of the aroma was carried out on fresh and roasted kernels enabling the detection of 150 mass peaks. Sixty eight, for the most related with sulfur compounds, furan containing compounds, and aldehydes formed by Strecker degradation, significantly increased during roasting, while the concentration of fifty-four mass peaks, for the most belonging to alcohols and terpenes, significantly decreased. Four hundred and seventy-one robust SNPs were selected and employed for population genetic studies. Structure analysis detected three subpopulations with the Sicilian accessions characterized by a different genetic stratification compared to those collected in Apulia (South Italy) and the International cultivars. The linkage-disequilibrium (LD) decay across the genome was equal to r2 = 0.083. Furthermore, a high level of collinearity (r2 = 0.96) between almond and peach was registered confirming the high synteny between the two genomes. A preliminary application of a genome-wide association analysis allowed the detection of significant marker-trait associations for 31 fresh and 33 roasted almond mass peaks respectively. An accurate genetic and phenotypic characterization of novel germplasm can represent a valuable tool for the set-up of marker-assisted selection of novel cultivars with an enhanced aromatic profile.
Collapse
Affiliation(s)
- M Di Guardo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - B Farneti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - I Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - G Modica
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - A Mosca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - G Distefano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy.
| | - L Bianco
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - M Troggio
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - F Sottile
- Dipartimento di Architettura, University of Palermo, Viale delle Scienze, Ed. 14 90128, Palermo, Italy
| | - S La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
| | - F Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Trento, Italy
| | - A Gentile
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123, Catania, Italy
- National Center for Citrus Improvement, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, China
| |
Collapse
|
96
|
Goeckeritz C, Hollender CA. There is more to flowering than those DAM genes: the biology behind bloom in rosaceous fruit trees. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101995. [PMID: 33444911 DOI: 10.1016/j.pbi.2020.101995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
The regulation of bloom time in deciduous fruit trees is an area of increasing interest due to the negative impact of climate change on fruit production. Although flower development has been well-studied in model species, there are many knowledge gaps about this process in perennial fruit trees, whose floral development spans the four seasons and includes many temperature-driven transitions. To develop solutions for minimizing crop loss, a comprehensive research strategy is needed to understand flower development and bloom time in deciduous fruit trees. This approach must incorporate genetic, physiological, and phenological strategies which include morphological and molecular analyses. Here, we describe key floral development events for rosaceae family fruit trees, highlight recent molecular and genetic discoveries, and discuss future directions for this field.
Collapse
Affiliation(s)
- Charity Goeckeritz
- Michigan State University Department of Horticulture, East Lansing, MI 48824, United States
| | - Courtney A Hollender
- Michigan State University Department of Horticulture, East Lansing, MI 48824, United States.
| |
Collapse
|
97
|
Yang S, Zhang Z, Chen W, Li X, Zhou S, Liang C, Li X, Yang B, Zou X, Liu F, Ou L, Ma Y. Integration of mRNA and miRNA profiling reveals the heterosis of three hybrid combinations of Capsicum annuum varieties. GM CROPS & FOOD 2021; 12:224-241. [PMID: 33410724 PMCID: PMC7808418 DOI: 10.1080/21645698.2020.1852064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Capsicum annuum is also known as chili which is one of the most important vegetable crops grown in the world. Breeding new varieties with heterosis could improve the quality of pepper, increase yield, growth potential, disease resistance, adaptability, and seed viability. To investigate the heterosis among three cross combinations of different parents, the mRNA-miRNA integrated analysis was performed. A total number of 22,659,009 to 36,423,818 clean data were generated from mRNA-seq with 81 libraries, and the unique mapped reads were from 35,495,567 (86.81%) to 46,466,622 (88.95%). The plant-hormone signal transduction pathway (40 genes) was detected with a higher DEG number. The SAUR32L, GID1, PYR1, EIN2. ERF1, PR1, JAR1-like, IAA from this pathway play a key role in plant development. From the miRNA-seq, the number of clean reads was ranging from 12,132,221 to 25,632,680. A total of 220 miRNAs were predicted in this study, and all of them were identified as novel miRNA. The top three candidate KEGG pathways of miRNA were ribosome signaling pathway (13 miRNAs), spliceosome pathway (13 miRNAs), and plant hormone signal transduction pathways (10 miRNAs). With the mRNA and miRNA integrated analysis, we found some key genes were regulated by some miRNAs. Among them, the scarecrow-like 6 protein can be up or down regulated by mir8, mir120, mir184, mir_214, mir125, and mir130. The function of Della protein was regulated by mir24, mir74, mir94, mir139, and mir190. This study contributes to understanding how heterosis regulates the traits, such as crop production, fruit weight, and fruit length.
Collapse
Affiliation(s)
- Sha Yang
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China.,College of Horticulture, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University , Changsha, Hunan, China
| | - Zhuqing Zhang
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Wenchao Chen
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Xuefeng Li
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Shudong Zhou
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Chengliang Liang
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Xin Li
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Bozhi Yang
- College of Horticulture, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University , Changsha, Hunan, China
| | - Xuexiao Zou
- College of Horticulture, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University , Changsha, Hunan, China
| | - Feng Liu
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Lijun Ou
- College of Horticulture, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University , Changsha, Hunan, China
| | - Yanqing Ma
- Department of Agriculture and Rural Affairs of Hunan Province, Changsha Hunan, China
| |
Collapse
|
98
|
Sze C, Wang B, Xu J, Rivas-Davila J, Cappelli MA. Plasma-fixated nitrogen as fertilizer for turf grass. RSC Adv 2021; 11:37886-37895. [PMID: 35498073 PMCID: PMC9043919 DOI: 10.1039/d1ra07074f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the use of plasma-fixated nitrogen, which produces nitrates (NO3−) in water, as a possible nitrogen fertilizer for recreational turf such as rye grass and bent grass. Experiments were carried out to study the effects of nitrate concentration on growth, the further effects of adding phosphorous (P) and potassium (K) to the plasma nitrated solution to make an N–P–K complete fertilizer, and to compare the efficacy of plasma-fixated nitrogen to sodium nitrate (NaNO3) and potassium nitrate (KNO3). The results indicate that the growth and biomass of the plants were strongly dependent on the concentration of the plasma-fixated nitrogen. Adding P–K to the plasma-fixated nitrogen improved grass growth. Grass that was supplied plasma-fixated nitrogen had improved growth compared to those supplied with equal amounts of NaNO3 and KNO3. This work highlights the potential use of plasma-fixated nitrogen as a fertilizer source for commonly used turf grass. Plasma-fixated nitrogen is a sustainably produced nitrogen fertilizer with applications in recreational turf grass such as rye grass and bent grass.![]()
Collapse
Affiliation(s)
- Christina Sze
- Stanford University, Department of Mechanical Engineering, Stanford, USA
| | - Benjamin Wang
- Stanford University, Department of Mechanical Engineering, Stanford, USA
| | - Jiale Xu
- Stanford University, Department of Electrical Engineering, Stanford, USA
| | - Juan Rivas-Davila
- Stanford University, Department of Electrical Engineering, Stanford, USA
| | - Mark A. Cappelli
- Stanford University, Department of Mechanical Engineering, Stanford, USA
| |
Collapse
|
99
|
Kehelpannala C, Rupasinghe TWT, Hennessy T, Bradley D, Ebert B, Roessner U. A comprehensive comparison of four methods for extracting lipids from Arabidopsis tissues. PLANT METHODS 2020; 16:155. [PMID: 33292337 PMCID: PMC7713330 DOI: 10.1186/s13007-020-00697-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND The plant lipidome is highly complex, and the composition of lipids in different tissues as well as their specific functions in plant development, growth and stress responses have yet to be fully elucidated. To do this, efficient lipid extraction protocols which deliver target compounds in solution at concentrations adequate for subsequent detection, quantitation and analysis through spectroscopic methods are required. To date, numerous methods are used to extract lipids from plant tissues. However, a comprehensive analysis of the efficiency and reproducibility of these methods to extract multiple lipid classes from diverse tissues of a plant has not been undertaken. RESULTS In this study, we report the comparison of four different lipid extraction procedures in order to determine the most effective lipid extraction protocol to extract lipids from different tissues of the model plant Arabidopsis thaliana. CONCLUSION While particular methods were best suited to extract different lipid classes from diverse Arabidopsis tissues, overall a single-step extraction method with a 24 h extraction period, which uses a mixture of chloroform, isopropanol, methanol and water, was the most efficient, reproducible and the least labor-intensive to extract a broad range of lipids for untargeted lipidomic analysis of Arabidopsis tissues. This method extracted a broad range of lipids from leaves, stems, siliques, roots, seeds, seedlings and flowers of Arabidopsis. In addition, appropriate methods for targeted lipid analysis of specific lipids from particular Arabidopsis tissues were also identified.
Collapse
Affiliation(s)
- Cheka Kehelpannala
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Thusitha W T Rupasinghe
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Sciex, 2 Gilda Ct, Mulgrave, VIC, 3170, Australia
| | - Thomas Hennessy
- Agilent Technologies Australia Pty Ltd, 679 Springvale Road, Mulgrave, VIC, 3170, Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd, 679 Springvale Road, Mulgrave, VIC, 3170, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
100
|
Scott MF, Ladejobi O, Amer S, Bentley AR, Biernaskie J, Boden SA, Clark M, Dell'Acqua M, Dixon LE, Filippi CV, Fradgley N, Gardner KA, Mackay IJ, O'Sullivan D, Percival-Alwyn L, Roorkiwal M, Singh RK, Thudi M, Varshney RK, Venturini L, Whan A, Cockram J, Mott R. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity (Edinb) 2020; 125:396-416. [PMID: 32616877 PMCID: PMC7784848 DOI: 10.1038/s41437-020-0336-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/21/2022] Open
Abstract
Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm 'package' that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.
Collapse
Affiliation(s)
| | | | - Samer Amer
- University of Reading, Reading, RG6 6AH, UK
- Faculty of Agriculture, Alexandria University, Alexandria, 23714, Egypt
| | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Jay Biernaskie
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Scott A Boden
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | | | | | - Laura E Dixon
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Carla V Filippi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Nicolas Repetto y Los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Nick Fradgley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Keith A Gardner
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Ian J Mackay
- SRUC, West Mains Road, Kings Buildings, Edinburgh, EH9 3JG, UK
| | | | | | - Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rakesh Kumar Singh
- International Center for Biosaline Agriculture, Academic City, Dubai, United Arab Emirates
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajeev Kumar Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Alex Whan
- CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - James Cockram
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Richard Mott
- UCL Genetics Institute, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|