51
|
Häusler S, Robertson NJ, Golhen K, van den Anker J, Tucker K, Felder TK. Melatonin as a Therapy for Preterm Brain Injury: What Is the Evidence? Antioxidants (Basel) 2023; 12:1630. [PMID: 37627625 PMCID: PMC10451719 DOI: 10.3390/antiox12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Despite significant improvements in survival following preterm birth in recent years, the neurodevelopmental burden of prematurity, with its long-term cognitive and behavioral consequences, remains a significant challenge in neonatology. Neuroprotective treatment options to improve neurodevelopmental outcomes in preterm infants are therefore urgently needed. Alleviating inflammatory and oxidative stress (OS), melatonin might modify important triggers of preterm brain injury, a complex combination of destructive and developmental abnormalities termed encephalopathy of prematurity (EoP). Preliminary data also suggests that melatonin has a direct neurotrophic impact, emphasizing its therapeutic potential with a favorable safety profile in the preterm setting. The current review outlines the most important pathomechanisms underlying preterm brain injury and correlates them with melatonin's neuroprotective potential, while underlining significant pharmacokinetic/pharmacodynamic uncertainties that need to be addressed in future studies.
Collapse
Affiliation(s)
- Silke Häusler
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Nicola J. Robertson
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (N.J.R.); (K.T.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Klervi Golhen
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland; (K.G.); (J.v.d.A.)
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland; (K.G.); (J.v.d.A.)
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC 20001, USA
| | - Katie Tucker
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (N.J.R.); (K.T.)
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| |
Collapse
|
52
|
Bouroutzika E, Ciliberti MG, Caroprese M, Kantzoura V, Theodosiadou EK, Batikas G, Michailidis ML, Stampinas EG, Mimikou Z, Pantsios G, Saratsis A, Valasi I. Melatonin Administration to Pregnant Ewes for Coccidiosis Control in Their Offspring. Animals (Basel) 2023; 13:2381. [PMID: 37508158 PMCID: PMC10376582 DOI: 10.3390/ani13142381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
In livestock research, there has been a growing interest in the impact of melatonin on both health and disease conditions. The hypothesis of the present study was that melatonin treatment prenatally could support the immune competence and growth of experimentally infected lambs. This is the first study that aimed to investigate the impact of melatonin administration throughout pregnancy on immunity and oocyst excretion of pre-partum ewes and their offspring after experimental infection with Eimeria species. Thirty pregnant ewes were allocated into five equal groups, ΚΜ, ΚC, CM, CC, and NC, and gave birth to 47 lambs. Ewes of the KM and KC groups were orally challenged with a cocktail of Eimeria-sporulated oocysts (mainly consisting of Eimeria ovinoidalis), on day 120 of pregnancy, as well as all the lambs at the age of 5-9 days apart from those born from the NC group (environmental control). Fecal samples were collected from all ewes before infection and at parturition and from all lambs 14 times (S0-S13), before infection and during the following 8 weeks, for counting oocysts per gram of feces (OPG). Immunoglobulin (IgG) and cytokine (IL-1β, IL-6, IL-10, IFN-γ) levels were determined in ewes' plasma collected before infection and at parturition, in lambs' plasma at 24 and 72 h after their birth, and in colostrum samples at parturition and 72 h later. Body weight of lambs was recorded five times from birth until the age of 60 days. Accordingly, the leucogram was evaluated in blood samples collected six times within the same period. On average, IgG concentration was higher (p < 0.05) in the blood of KM-ewes compared to KC and CC groups and in colostrum of KM-ewes compared to other groups (p < 0.001). KM-lambs had greater IgG titer and IFN-γ level than the other groups (p < 0.05). The IL-10/ IFN-γ ratio in KM-ewes was lower than the CC group (p = 0.06). Overall, the growth rate of lambs did not differ among groups (p > 0.05). Total oocysts' excretion in KM- and CM-lambs was reduced by 94.9% (p = 0.05) and 92.6% (p = 0.025), respectively, compared to KC-lambs, following the 3-week period after challenge, when E. ovinoidalis predominated in all groups. The dominant type of leucocytes was monocytes in all experimentally infected lambs, but not in NC-lambs, while overall lymphocytes were lower in KC-lambs than in NC-lambs (p < 0.05). Considering that almost all young indoor-reared lambs are exposed to coccidia species during their early life, melatonin treatment prenatally could suggest an alternative management tool in alleviating infection pressure.
Collapse
Affiliation(s)
- Efterpi Bouroutzika
- Faculty of Veterinary Science, University of Thessaly, 43131 Karditsa, Greece
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Mariangela Caroprese
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Vaia Kantzoura
- Veterinary Research Institute, Hellenic Agricultural Organisation Demeter, 57001 Thermi, Greece
| | | | - Georgios Batikas
- Faculty of Veterinary Science, University of Thessaly, 43131 Karditsa, Greece
| | | | | | - Zafeiro Mimikou
- Veterinary Research Institute, Hellenic Agricultural Organisation Demeter, 57001 Thermi, Greece
| | - Georgios Pantsios
- Veterinary Research Institute, Hellenic Agricultural Organisation Demeter, 57001 Thermi, Greece
| | - Anastasios Saratsis
- Veterinary Research Institute, Hellenic Agricultural Organisation Demeter, 57001 Thermi, Greece
| | - Irene Valasi
- Faculty of Veterinary Science, University of Thessaly, 43131 Karditsa, Greece
| |
Collapse
|
53
|
Wu L, Xu Y, Sun W, Sun J, Chen Y, Liu L. Melatonin plays a synergistic rather than a major role during osteogenic differentiation via MT2 in mouse mesenchymal stem cell line C3H10T1/2. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1506-1510. [PMID: 37403455 PMCID: PMC10520480 DOI: 10.3724/abbs.2023095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 07/06/2023] Open
Affiliation(s)
- Le Wu
- Department of Trauma OrthopaedicsShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Ying Xu
- State Key Laboratory of Molecular BiologyNational Center for Protein Science ShanghaiShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Wenqi Sun
- State Key Laboratory of Molecular BiologyNational Center for Protein Science ShanghaiShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Jun Sun
- Department of Trauma OrthopaedicsShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yong Chen
- State Key Laboratory of Molecular BiologyNational Center for Protein Science ShanghaiShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Lifeng Liu
- Department of Trauma OrthopaedicsShanghai East HospitalTongji University School of MedicineShanghai200120China
| |
Collapse
|
54
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
55
|
Horodincu L, Solcan C. Influence of Different Light Spectra on Melatonin Synthesis by the Pineal Gland and Influence on the Immune System in Chickens. Animals (Basel) 2023; 13:2095. [PMID: 37443893 DOI: 10.3390/ani13132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
It is well known that the pineal gland in birds influences behavioural and physiological functions, including those of the immune system. The purpose of this research is to examine the endocrine-immune correlations between melatonin and immune system activity. Through a description of the immune-pineal axis, we formulated the objective to determine and describe: the development of the pineal gland; how light influences secretory activity; and how melatonin influences the activity of primary and secondary lymphoid organs. The pineal gland has the ability to turn light information into an endocrine signal suitable for the immune system via the membrane receptors Mel1a, Mel1b, and Mel1c, as well as the nuclear receptors RORα, RORβ, and RORγ. We can state the following findings: green monochromatic light (560 nm) increased serum melatonin levels and promoted a stronger humoral and cellular immune response by proliferating B and T lymphocytes; the combination of green and blue monochromatic light (560-480 nm) ameliorated the inflammatory response and protected lymphoid organs from oxidative stress; and red monochromatic light (660 nm) maintained the inflammatory response and promoted the growth of pathogenic bacteria. Melatonin can be considered a potent antioxidant and immunomodulator and is a critical element in the coordination between external light stimulation and the body's internal response.
Collapse
Affiliation(s)
- Loredana Horodincu
- Preclinics Department, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Carmen Solcan
- Preclinics Department, Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Sciences, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| |
Collapse
|
56
|
Hsu LW, Chien YW. Effects of Melatonin Supplementation on Lipid Metabolism and Body Fat Accumulation in Ovariectomized Rats. Nutrients 2023; 15:2800. [PMID: 37375706 DOI: 10.3390/nu15122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Postmenopausal obesity is a rising problem. Melatonin (Mel) is a hormone secreted by the pineal gland that regulates the circadian rhythms and improves obesity. In this experiment, ovariectomized (OVX) rats were used as a menopause model to explore the effects of Mel supplementation on lipid metabolism, body fat accumulation, and obesity. Nine-week-old female rats underwent an OVX surgery and were assigned to the following groups: control group (C), low-dose group (L, 10 mg/kg body weight (BW) Mel), medium-dose group (M, 20 mg/kg BW Mel), and high-dose group (H, 50 mg/kg BW Mel), administered by gavage for 8 weeks. The results showed that the OVX rats supplemented with low, medium, and high doses of Mel for 8 weeks exhibited reduced BW gain, perirenal fat mass, and gonads fat mass, and an increased serum irisin level. Low and high doses of Mel induced brite/beige adipocytes in the white adipose tissues. In addition, the messenger RNA levels of the fatty acid synthesis enzymes were significantly reduced after the high-dose Mel supplementation. Thus, Mel can reduce the hepatic fatty acid synthesis and promote the browning of white adipose tissues through irisin; thereby, improving obesity and body fat accumulation in OVX rats.
Collapse
Affiliation(s)
- Ling-Wen Hsu
- Department of Nutrition and Health Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Chien
- Department of Nutrition and Health Science, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
57
|
Li F, Lai J, Ma F, Cai Y, Li S, Feng Z, Lu Z, Liu X, Ke Q, Hao H, Xiao X. Maternal melatonin supplementation shapes gut microbiota and protects against inflammation in early life. Int Immunopharmacol 2023; 120:110359. [PMID: 37257272 DOI: 10.1016/j.intimp.2023.110359] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Gut microbiota colonization is critical for immune education and nutrient metabolism. Research shows that melatonin has beneficial effects as a therapy for many diseases via modulating gut dysbiosis. However, it is unclear whether melatonin alters gut microbiota colonization in early life. METHODS In the experimental group (Mel), mice were intraperitoneally injected with melatonin at 10 mg/kg body weight for embryonic days 14-16 and received drinking water containing 0.4 mg/mL melatonin until 28 days postpartum. In the control group (Ctrl), mice were injected with the same volume of 2.5% ethanol in saline and provided with standard water. Two more groups were created by treating neonatal mice with 20 mg/kg lipopolysaccharide (LPS) to induce inflammation, resulting in the groups Ctrl + LPS and Mel + LPS, respectively. We examined the gut microbiota of the neonatal mice in the Ctrl and Mel group on Days 7, 14, 21, and 28 post-birth. On Day 14, melatonin and short-chain fatty acids (SCFAs) concentrations were measured in the Ctrl and Mel group and the mice were treated with LPS to be evaluated for intestinal injury and inflammatory response 15 h post treatment. According to the result of the SCFAs concentrations, some neonatal mice were intraperitoneally injected with 500 mg/kg sodium butyrate (SB) from Days 11-13, intraperitoneally injected with 20 mg/kg LPS on Day 14, and then euthanized by carbon dioxide inhalation the next morning. Intestinal injury and inflammatory responses were evaluated in the Ctrl + LPS and SB + LPS groups, respectively. RESULTS By Day 14, it was evident that maternal melatonin supplementation significantly increased the relative abundance of Firmicutes in the ileal [61.03 (35.35 - 76.18) % vs. 98.02 (86.61 - 99.01) %, P = 0.003] and colonic [73.88 (69.77 - 85.99) % vs. 96.16 (94.57 - 96.34) %, P = 0.04] microbiota, the concentration of melatonin (0.79 ± 0.49 ng/ml vs. 6.11 ± 3.48 ng/ml, P = 0.008) in the gut lumen, and the fecal butyric acid (12.91 ± 5.74 μg/g vs. 23.58 ± 10.71 μg/g, P = 0.026) concentration of neonatal mice. Melatonin supplementation, and sodium butyrate treatment markedly alleviated intestinal injury and decreased inflammatory factors in neonatal mice. CONCLUSION This study suggests that maternal melatonin supplementation can shape the gut microbiota and metabolism of offspring under normal physiological conditions and protect them against LPS-induced inflammation in early life.
Collapse
Affiliation(s)
- Fei Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Jiahao Lai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Fei Ma
- Department of Pediatrics, Zhuhai Maternity and Child Health Hospital, Zhuhai, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Zhoushan Feng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhendong Lu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Xiao Liu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| |
Collapse
|
58
|
Cardinali DP, Garay A. Melatonin as a Chronobiotic/Cytoprotective Agent in REM Sleep Behavior Disorder. Brain Sci 2023; 13:brainsci13050797. [PMID: 37239269 DOI: 10.3390/brainsci13050797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dream-enactment behavior that emerges during episodes of rapid eye movement (REM) sleep without muscle atonia is a parasomnia known as REM sleep behavior disorder (RBD). RBD constitutes a prodromal marker of α-synucleinopathies and serves as one of the best biomarkers available to predict diseases such as Parkinson disease, multiple system atrophy and dementia with Lewy bodies. Most patients showing RBD will convert to an α-synucleinopathy about 10 years after diagnosis. The diagnostic advantage of RBD relies on the prolonged prodromal time, its predictive power and the absence of disease-related treatments that could act as confounders. Therefore, patients with RBD are candidates for neuroprotection trials that delay or prevent conversion to a pathology with abnormal α-synuclein metabolism. The administration of melatonin in doses exhibiting a chronobiotic/hypnotic effect (less than 10 mg daily) is commonly used as a first line treatment (together with clonazepam) of RBD. At a higher dose, melatonin may also be an effective cytoprotector to halt α-synucleinopathy progression. However, allometric conversion doses derived from animal studies (in the 100 mg/day range) are rarely employed clinically regardless of the demonstrated absence of toxicity of melatonin in phase 1 pharmacological studies with doses up to 100 mg in normal volunteers. This review discusses the application of melatonin in RBD: (a) as a symptomatic treatment in RBD; (b) as a possible disease-modifying treatment in α-synucleinopathies. To what degree melatonin has therapeutic efficacy in the prevention of α-synucleinopathies awaits further investigation, in particular multicenter double-blind trials.
Collapse
Affiliation(s)
- Daniel P Cardinali
- CENECON, Faculty of Medical Sciences, University of Buenos Aires, Buenos Aires C1431FWO, Argentina
| | - Arturo Garay
- Unidad de Medicina del Sueño-Sección Neurología, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires C1431FWO, Argentina
| |
Collapse
|
59
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
60
|
Liao H, Li H, Dong J, Song J, Chen H, Si H, Wang J, Bai X. Melatonin blunts the tumor-promoting effect of cancer-associated fibroblasts by reducing IL-8 expression and reversing epithelial-mesenchymal transition. Int Immunopharmacol 2023; 119:110194. [PMID: 37080066 DOI: 10.1016/j.intimp.2023.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Most studies on melatonin have focused on tumor cells but have ignored the tumor microenvironment (TME), especially one of its important components, the cancer-associated fibroblasts (CAFs). Therefore, we attempted to explore the role of melatonin in TME. METHODS We investigated the regulatory role of melatonin in the tumor-promoting effect of CAFs and its underlying mechanism by using cell and animal models. RESULTS CAFs promoted tumor progression, but melatonin weakened the tumor-promoting effect of CAFs. Compared with tumor cells, IL-8 was mainly expressed in CAFs. CAFs-overexpressing IL-8 induced the epithelial-mesenchymal transition (EMT) of tumor cells, and a positive crosstalk was observed between CAFs and tumor cells undergoing EMT, thereby further promoting the IL-8 expression. Melatonin suppressed this crosstalk by inhibiting the NF-κB pathway, thereby impeding the IL-8 expression from CAFs. Importantly, melatonin reversed CAFs-derived IL-8-mediated EMT by inhibiting the AKT pathway. Melatonin was found to directly and indirectly inhibit tumor progression. CONCLUSION Our research reveals the potential action mechanism of melatonin in regulating the CAF-tumor cell interaction and suggests the potential of melatonin as an adjuvant of tumor therapy.
Collapse
Affiliation(s)
- Huifeng Liao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huayan Li
- Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junhua Dong
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Jin Song
- Department of General Surgery, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Hongye Chen
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Huiyan Si
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiandong Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Xue Bai
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
61
|
Kitidee K, Samutpong A, Pakpian N, Wisitponchai T, Govitrapong P, Reiter RJ, Wongchitrat P. Antiviral effect of melatonin on Japanese encephalitis virus infection involves inhibition of neuronal apoptosis and neuroinflammation in SH-SY5Y cells. Sci Rep 2023; 13:6063. [PMID: 37055489 PMCID: PMC10099015 DOI: 10.1038/s41598-023-33254-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes high mortality rates in humans and it is the most clinically important and common cause of viral encephalitis in Asia. To date, there is no specific treatment for JEV infection. Melatonin, a neurotropic hormone, is reported to be effective in combating various bacterial and viral infections. However, the effects of melatonin on JEV infection have not yet been studied. The investigation tested the antiviral effects of melatonin against JEV infection and elucidated the possible molecular mechanisms of inhibition. Melatonin inhibited the viral production in JEV-infected SH-SY5Y cells in a time- and dose-dependent manner. Time-of-addition assays demonstrated a potent inhibitory effect of melatonin at the post-entry stage of viral replication. Molecular docking analysis revealed that melatonin negatively affected viral replication by interfering with physiological function and/or enzymatic activity of both JEV nonstructural 3 (NS3) and NS5 protein, suggesting a possible underlying mechanism of JEV replication inhibition. Moreover, treatment with melatonin reduced neuronal apoptosis and inhibited neuroinflammation induced by JEV infection. The present findings reveal a new property of melatonin as a potential molecule for the further development of anti-JEV agents and treatment of JEV infection.
Collapse
Affiliation(s)
- Kuntida Kitidee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Arisara Samutpong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nattaporn Pakpian
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Tanchanok Wisitponchai
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
62
|
Abstract
The recently uncovered key role of the peripheral and central nervous systems in controlling tumorigenesis and metastasis has opened a new area of research to identify innovative approaches against cancer. Although the 'neural addiction' of cancer is only partially understood, in this Perspective we discuss the current knowledge and perspectives on peripheral and central nerve circuitries and brain areas that can support tumorigenesis and metastasis and the possible reciprocal influence that the brain and peripheral tumours exert on one another. Tumours can build up local autonomic and sensory nerve networks and are able to develop a long-distance relationship with the brain through circulating adipokines, inflammatory cytokines, neurotrophic factors or afferent nerve inputs, to promote cancer initiation, growth and dissemination. In turn, the central nervous system can affect tumour development and metastasis through the activation or dysregulation of specific central neural areas or circuits, as well as neuroendocrine, neuroimmune or neurovascular systems. Studying neural circuitries in the brain and tumours, as well as understanding how the brain communicates with the tumour or how intratumour nerves interplay with the tumour microenvironment, can reveal unrecognized mechanisms that promote cancer development and progression and open up opportunities for the development of novel therapeutic strategies. Targeting the dysregulated peripheral and central nervous systems might represent a novel strategy for next-generation cancer treatment that could, in part, be achieved through the repurposing of neuropsychiatric drugs in oncology.
Collapse
Affiliation(s)
- Claire Magnon
- Laboratory of Cancer and Microenvironment-National Institute of Health and Medical Research (INSERM), Institute of Biology François Jacob-Atomic Energy Commission (CEA), University of Paris Cité, University of Paris-Saclay, Paris, France.
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
63
|
Barnes J, Sewart E, Armstrong RA, Pufulete M, Hinchliffe R, Gibbison B, Mouton R. Does melatonin administration reduce the incidence of postoperative delirium in adults? Systematic review and meta-analysis. BMJ Open 2023; 13:e069950. [PMID: 36990485 PMCID: PMC10069576 DOI: 10.1136/bmjopen-2022-069950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 03/31/2023] Open
Abstract
Postoperative delirium (POD) is common. It is associated with increased morbidity and mortality. Many cases may be preventable and melatonin offers promise as a preventative agent. OBJECTIVE This systematic review provides an up-to-date synthesis of the evidence on the effect of melatonin in preventing POD. DESIGN A systematic search of randomised controlled trials of melatonin in POD was run across multiple databases (EMBASE, MEDLINE, CINAHL, PsycINFO) and a clinical trials registry (ClinicalTrials.org) (1 January 1990 to 5 April 2022). Studies examining the effects of melatonin on POD incidence in adults are included. Risk of bias was assessed using the Cochrane risk of bias 2 tool. OUTCOME MEASURES The primary outcome is POD incidence. Secondary outcomes are POD duration and length of hospital stay. Data synthesis was undertaken using a random-effects meta-analysis and presented using forest plots. A summary of methodology and outcome measures in included studies is also presented. RESULTS Eleven studies, with 1244 patients from a range of surgical specialties were included. Seven studies used melatonin, in variable doses, and four used ramelteon. Eight different diagnostic tools were used to diagnose POD. Time points for assessment also varied. Six studies were assessed as low risk of bias and five as some concern. The combined OR of developing POD in the melatonin groups versus control was 0.41 (95% CI 0.21 to 0.80, p=0.01). CONCLUSION This review found that melatonin may reduce the incidence of POD in adults undergoing surgery. However, included studies displayed inconsistency in their methodology and outcome reporting. Further work to determine the optimum regime for melatonin administration, along with consensus of how best to evaluate results, would be beneficial. PROSPERO REGISTRATION NUMBER CRD42021285019.
Collapse
Affiliation(s)
- Jonathan Barnes
- Department of Anaesthesia, Bristol Royal Infirmary, Bristol, UK
| | - Emma Sewart
- Department of Anaesthesia, North Bristol NHS Trust, Bristol, UK
| | | | | | - Robert Hinchliffe
- Department of Surgery, North Bristol NHS Trust, Bristol, UK
- Department of Population Health Sciences, Bristol Centre for Surgical Research, Bristol, UK
| | - Ben Gibbison
- Department of Anaesthesia, Bristol Royal Infirmary, Bristol, UK
- University of Bristol, Bristol, UK
| | - Ronelle Mouton
- Department of Anaesthesia, North Bristol NHS Trust, Bristol, UK
- Department of Population Health Sciences, Bristol Centre for Surgical Research, Bristol, UK
| |
Collapse
|
64
|
Chronic Administration of Melatonin: Physiological and Clinical Considerations. Neurol Int 2023; 15:518-533. [PMID: 36976674 PMCID: PMC10053496 DOI: 10.3390/neurolint15010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Exogenous melatonin is commonly used to treat insomnia, other sleep problems, and numerous medical illnesses, including Alzheimer’s disease, autism spectrum disorder, and mild cognitive impairment in adults and children. There is evolving information regarding issues with the use of chronic melatonin. Methods: The present investigation was a narrative review. Results: Melatonin usage has risen dramatically in recent years. Many countries only allow melatonin prescriptions. In the United States (U.S.), it is classified as a dietary supplement accessible over the counter and can be derived from animals, microorganisms, or, most commonly, made synthetically. No regulatory agency oversees its manufacturing or sale in the U.S. melatonin concentration of marketed preparations varies widely between product labels and manufacturers. Melatonin’s ability to induce sleep is detectable. However, it is modest for most people. Sleep length appears to be less important in sustained-release preparations. The optimal dosage is unknown, and routinely used amounts vary substantially. Melatonin’s short-term negative effects are minimal, resolve at medicine cessation, and do not usually prevent usage overall. Much research on long-term melatonin administration has found no difference between exogenous melatonin and placebo in terms of long-term negative effects. Conclusion: Melatonin at low to moderate dosages (approximately 5–6 mg daily or less) appears safe. Long-term usage appears to benefit certain patient populations, such as those with autism spectrum disorder. Studies investigating potential benefits in reducing cognitive decline and increased longevity are ongoing. However, it is widely agreed that the long-term effects of taking exogenous melatonin have been insufficiently studied and warrant additional investigation.
Collapse
|
65
|
Markowska M, Niemczyk S, Romejko K. Melatonin Treatment in Kidney Diseases. Cells 2023; 12:cells12060838. [PMID: 36980179 PMCID: PMC10047594 DOI: 10.3390/cells12060838] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Melatonin is a neurohormone that is mainly secreted by the pineal gland. It coordinates the work of the superior biological clock and consequently affects many processes in the human body. Disorders of the waking and sleeping period result in nervous system imbalance and generate metabolic and endocrine derangements. The purpose of this review is to provide information regarding the potential benefits of melatonin use, particularly in kidney diseases. The impact on the cardiovascular system, diabetes, and homeostasis causes melatonin to be indirectly connected to kidney function and quality of life in people with chronic kidney disease. Moreover, there are numerous reports showing that melatonin plays a role as an antioxidant, free radical scavenger, and cytoprotective agent. This means that the supplementation of melatonin can be helpful in almost every type of kidney injury because inflammation, apoptosis, and oxidative stress occur, regardless of the mechanism. The administration of melatonin has a renoprotective effect and inhibits the progression of complications connected to renal failure. It is very important that exogenous melatonin supplementation is well tolerated and that the number of side effects caused by this type of treatment is low.
Collapse
|
66
|
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, Caballero B. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054803. [PMID: 36902233 PMCID: PMC10002978 DOI: 10.3390/ijms24054803] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| | - Cristina Cachán-Vega
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Jose Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| |
Collapse
|
67
|
Wang Z, Li L, Khan D, Chen Y, Pu X, Wang X, Guan M, Rengel Z, Chen Q. Nitric oxide acts downstream of reactive oxygen species in phytomelatonin receptor 1 (PMTR1)-mediated stomatal closure in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153917. [PMID: 36706575 DOI: 10.1016/j.jplph.2023.153917] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are important signaling molecules regulating stomatal movements in plants. Melatonin (N-acetyl-5-methoxytryptamine) was found to induce stomatal closure via phytomelatonin receptor 1 (PMTR1)-mediated activation of ROS production. Here, we evaluated the interaction between ROS and NO in the melatonin-induced stomatal closure in Arabidopsis. The results showed that the exogenous melatonin-induced stomatal closure and NO production were abolished by carboxy-PTIO (cPTIO, a NO scavenger). Additionally, the mutant lines nitrate reductase 1 and 2 (nia1nia2) and NO-associated 1 (noa1) did not show melatonin-induced stomatal closure, indicating that the melatonin-mediated stomatal closure is dependent on NO. The application of H2O2 induced the NO production and stomatal closure in the presence or absence of melatonin. However, the melatonin-induced NO production was impaired in the rhohC and rbohD/F (NADPH oxidase respiratory burst oxidase homologs) mutant plants. Furthermore, the ROS levels in nia1nia2 and noa1 did not differ significantly from the wild type plants, indicating that NO is a downstream component in the melatonin-induced ROS production. Exogenous melatonin did not induce NO and ROS production in the guard cells of pmtr1 mutant lines, suggesting NO occurs downstream of ROS in the PMTR1-mediated stomatal closure in Arabidopsis. Taken together, the results presented here suggest that melatonin-induced stomatal closure via PMTR1-mediated signaling in the regulation of ROS and NO production in Arabidopsis.
Collapse
Affiliation(s)
- Zirui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Leilin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Dawood Khan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yanli Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
68
|
Ahmad F, Sachdeva P, Sarkar J, Izhaar R. Circadian dysfunction and Alzheimer's disease - An updated review. Aging Med (Milton) 2023; 6:71-81. [PMID: 36911088 PMCID: PMC10000289 DOI: 10.1002/agm2.12221] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is considered to be the most typical form of dementia that provokes irreversible cognitive impairment. Along with cognitive impairment, circadian rhythm dysfunction is a fundamental factor in aggravating AD. A link among circadian rhythms, sleep, and AD has been well-documented. The etiopathogenesis of circadian system disruptions and AD serves some general characteristics that also open up the possibility of viewing them as a mutually reliant path. In this review, we have focused on different factors that are related to circadian rhythm dysfunction. The various pathogenic factors, such as amyloid-beta, neurofibrillary tangles, oxidative stress, neuroinflammation, and circadian rhythm dysfunction may all contribute to AD. In this review, we also tried to focus on melatonin which is produced from the pineal gland and can be used to treat circadian dysfunction in AD. Aside from amyloid beta, tau pathology may have a notable influence on sleep. Conclusively, the center of this review is primarily based on the principal mechanistic complexities associated with circadian rhythm disruption, sleep deprivation, and AD, and it also emphasizes the potential therapeutic strategies to treat and prevent the progression of AD.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Jasmine Sarkar
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | | |
Collapse
|
69
|
Mansilla-Roselló A, Hernández-Magdalena J, Domínguez-Bastante M, Olmedo-Martín C, Comino-Pardo A, Escames G, Acuña-Castroviejo D. A phase II, single-center, double-blind, randomized placebo-controlled trial to explore the efficacy and safety of intravenous melatonin in surgical patients with severe sepsis admitted to the intensive care unit. J Pineal Res 2023; 74:e12845. [PMID: 36428216 PMCID: PMC10078138 DOI: 10.1111/jpi.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
To determine whether IV melatonin therapy improves redox status and inflammatory responses in surgical patients with severe sepsis, a unicenter, phase II double-blind, randomized, placebo-controlled trial was carried out. The study included patients with severe sepsis marked by infectious systemic inflammatory response syndrome (SIRS), associated with organ dysfunction, hypoperfusion or hypotension requiring surgical intervention. IV melatonin at a daily dose of 60 mg, which was dissolved in 500 ml of 5% dextrose serum, was continuously administered to the patients for over 30 min starting on the day of the diagnoses during a 5-day period. A total of 14 patients received a placebo treatment and 15 melatonin doses. Redox status decreased in melatonin-treated patients during the 5 days of treatment as compared to the placebo-treated patients. Procalcitonin performed better in the melatonin group, whose neutrophil to lymphocyte ratio was also significantly reduced, resulting in an improved evolution of the disease. Moreover, hospital stays decreased by 19.60% from 26.64 days for the placebo group to 21.42 days for the melatonin group. The placebo group recorded five mortalities, as compared to three for the melatonin group. IV melatonin administration improved the course of the disease in surgical patients with severe sepsis, with no side effects. Additional studies with higher doses of melatonin and a long duration of therapy need to be carried out to assess its clinical use.
Collapse
Affiliation(s)
- Alfonso Mansilla-Roselló
- General and Digestive Surgery Department, Virgen de las Nieves University Hospital, Granada, Spain
| | | | | | - Carmen Olmedo-Martín
- Experimental Surgery Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Ana Comino-Pardo
- Experimental Surgery Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Centro de Investigación Biomédica, Instituto de Biotecnología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes, ISCIII), Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (Ibs.Granada), Hospital Universitario San Cecilio, Granada, Spain
| | - Darío Acuña-Castroviejo
- Departamento de Fisiología, Centro de Investigación Biomédica, Instituto de Biotecnología, Facultad de Medicina, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes, ISCIII), Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (Ibs.Granada), Hospital Universitario San Cecilio, Granada, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
70
|
Meléndez-Fernández OH, Liu JA, Nelson RJ. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int J Mol Sci 2023; 24:3392. [PMID: 36834801 PMCID: PMC9963929 DOI: 10.3390/ijms24043392] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Availability of artificial light and light-emitting devices have altered human temporal life, allowing 24-hour healthcare, commerce and production, and expanding social life around the clock. However, physiology and behavior that evolved in the context of 24 h solar days are frequently perturbed by exposure to artificial light at night. This is particularly salient in the context of circadian rhythms, the result of endogenous biological clocks with a rhythm of ~24 h. Circadian rhythms govern the temporal features of physiology and behavior, and are set to precisely 24 h primarily by exposure to light during the solar day, though other factors, such as the timing of meals, can also affect circadian rhythms. Circadian rhythms are significantly affected by night shift work because of exposure to nocturnal light, electronic devices, and shifts in the timing of meals. Night shift workers are at increased risk for metabolic disorder, as well as several types of cancer. Others who are exposed to artificial light at night or late mealtimes also show disrupted circadian rhythms and increased metabolic and cardiac disorders. It is imperative to understand how disrupted circadian rhythms alter metabolic function to develop strategies to mitigate their negative effects. In this review, we provide an introduction to circadian rhythms, physiological regulation of homeostasis by the suprachiasmatic nucleus (SCN), and SCN-mediated hormones that display circadian rhythms, including melatonin and glucocorticoids. Next, we discuss circadian-gated physiological processes including sleep and food intake, followed by types of disrupted circadian rhythms and how modern lighting disrupts molecular clock rhythms. Lastly, we identify how disruptions to hormones and metabolism can increase susceptibility to metabolic syndrome and risk for cardiovascular diseases, and discuss various strategies to mitigate the harmful consequences associated with disrupted circadian rhythms on human health.
Collapse
|
71
|
Nano-Encapsulated Antioxidant: Retinoic Acid as a Natural Mucosal Adjuvant for Intranasal Immunization against Chronic Experimental Toxoplasmosis. Trop Med Infect Dis 2023; 8:tropicalmed8020106. [PMID: 36828522 PMCID: PMC9962073 DOI: 10.3390/tropicalmed8020106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The tight relationship between immunity and retinoid levels provides evidence on the critical role of retinoic acid (RA) in regulating immune activity, especially the mucosal one. Mucosal immune response is the key for determination of the outcome of infection, particularly against intracellular mucosal pathogens such as Toxoplasma gondii, where it plays a crucial role as a sentinel against parasite invasion. Herein, the immunomodulatory adjuvant role of RA was evaluated for prophylactic vaccination against chronic Toxoplasma infection. A quantity of 15 µg of RA pre-encapsulated with lipid-based nanoparticles (SLNs) was intranasally used in three doses, two weeks apart, as an adjuvant to the Toxoplasma lysate antigen (TLA). Afterward, mice were infected with 20 cysts of T. gondii (ME49 strain) and were sacrificed at the 4th week post-infection. Parasitological, immunological, biochemical, and histopathological studies were applied as vaccine efficacy measures. The protective role of the tested vaccine was noted using the statistically marked reduction in brain cyst count, accompanied by remarkable levels of protective IFN-γ and antibodies, with amelioration of infection-induced oxidative stress and brain pathology. Ultimately, this experiment outlined the prospective role of a novel, natural, nano-encapsulated and mucosal vaccine adjuvant RA-SLNs as a propitious candidate against chronic toxoplasmosis.
Collapse
|
72
|
Artifical light at night triggers slight transcriptomic effects on melatonin signaling but not synthesis in tadpoles of two anuran species. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111386. [PMID: 36740169 DOI: 10.1016/j.cbpa.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The worldwide expansion of artificial light at night (ALAN) is acknowledged as a threat to biodiversity through alterations of the natural photoperiod triggering the disruption of physiological functions. In vertebrates, melatonin production during the dark phase can be decreased or suppressed by nocturnal light as shown in many taxa. But the effect of ALAN at low intensity mimicking light pollution in peri-urban area has never been investigated in amphibians. We filled this gap by studying the impact of low ALAN levels on the expression of genes related to melatonin synthesis and signaling in two anurans (agile frog, Rana dalmatina, and common toad, Bufo bufo). Circadian expression of genes encoding enzymes catalyzing melatonin synthesis (aralkylamine N-acetyltransferase, AANAT and acetylserotonin O-methyltransferase, ASMT) or melatonin receptors (Mel1a, Mel1b and Mel1c) was investigated using RT-qPCR after 23 days of nocturnal exposure to control (< 0.01 lx) or low ALAN (3 lx). We showed that the relative abundance of most transcripts was low in late afternoon and early evening (06 pm and 08 pm) and increased throughout the night in R. dalmatina. However, a clear and ample nocturnal pattern of target gene expression was not detected in control tadpoles of both species. Surprisingly, a low ALAN level had little influence on the relative expression of most melatonin-related genes. Only Mel1c expression in R. dalmatina and Mel1b expression in B. bufo were affected by ALAN. This target gene approach provides experimental evidence that melatonin signaling pathway was slightly affected by low ALAN level in anuran tadpoles.
Collapse
|
73
|
Cui W, Dong J, Wang S, Vogel H, Zou R, Yuan S. Molecular basis of ligand selectivity for melatonin receptors. RSC Adv 2023; 13:4422-4430. [PMID: 36760312 PMCID: PMC9891099 DOI: 10.1039/d2ra06693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Sleep disorders in adults are related to adverse health effects such as reduced quality of life and increased mortality. About 30-40% of adults are suffering from different sleep disorders. The human melatonin receptors (MT1 and MT2) are family A G protein-coupled receptors that respond to the neurohormone melatonin MEL which regulates circadian rhythm and sleep. Many efforts have been made to develop drugs targeting melatonin receptors to treat insomnia, circadian rhythm disorders, and even cancer. However, designing subtype-selective melatonergic drugs remains challenging due to their high similarities in both sequences and structures. MEL (a function-selective compound with a bulky β-naphthyl group) behaves as an MT2-selective antagonist, whereas it is an agonist of MT1. Here, molecular dynamics simulations were used to investigate the ligand selectivity of MT receptors at the atomic level. We found that the binding conformation of MEL differs in different melatonin receptors. In MT1, the naphthalene ring of MEL forms a structure perpendicular to the membrane surface. In contrast, there is a 130° angle between the naphthalene ring of MEL and the membrane surface in MT2. Because of this conformational difference, the MEL leads to a constant water channel in MT1 which activates the receptor. However, MEL hinders the formation of continuous water channels, resulting in an inactive state of MT2. Furthermore, we found that A1173.29 in MT2 is a crucial amino acid capable of hindering the conformational flip of the MEL molecule. These results, coupled with previous functional data, reveal that although MT1 and MT2 share highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be used to design selective compounds. Our findings provide new insights into functionally selective melatonergic drug development for sleep disorders.
Collapse
Affiliation(s)
- Wenqiang Cui
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Junlin Dong
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Shiyu Wang
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Horst Vogel
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Rongfeng Zou
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Shuguang Yuan
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
74
|
Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MDC, Montserrat-de la Paz S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants (Basel) 2023; 12:264. [PMID: 36829823 PMCID: PMC9951922 DOI: 10.3390/antiox12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The Mediterranean diet (MD) has beneficial effects on human health, which is evidenced by the observation of lower incidence rates of chronic diseases in Mediterranean countries. The MD dietary pattern is rich in antioxidants, such as melatonin, which is a hormone produced mainly by the pineal gland and controls several circadian rhythms. Additionally, melatonin is found in foods, such as fruit and vegetables. The purpose of this systematic review was to assess the melatonin content in Mediterranean foods and to evaluate the influence of the MD on melatonin levels in both humans and model organisms. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane Library and Web of Science) and data were extracted. A total of 31 records were chosen. MD-related foods, such as tomatoes, olive oil, red wine, beer, nuts, and vegetables, showed high melatonin contents. The consumption of specific MD foods increases melatonin levels and improves the antioxidant status in plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenida Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
75
|
Kwon EH, Adhikari A, Imran M, Lee DS, Lee CY, Kang SM, Lee IJ. Exogenous SA Applications Alleviate Salinity Stress via Physiological and Biochemical changes in St John's Wort Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:310. [PMID: 36679023 PMCID: PMC9861905 DOI: 10.3390/plants12020310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The plant St. John's wort contains high levels of melatonin, an important biochemical that has both beneficial and adverse effects on stress. Therefore, a method for increasing melatonin levels in plants without adversely affecting their growth is economically important. In this study, we investigated the regulation of melatonin levels in St. John's wort by exposing samples to salinity stress (150 mM) and salicylic acid (0.25 mM) to augment stress tolerance. The results indicated that salinity stress significantly reduced the plant chlorophyll content and damaged the photosystem, plant growth and development. Additionally, these were reconfirmed with biochemical indicators; the levels of abscisic acid (ABA) and proline were increased and the activities of antioxidants were reduced. However, a significant increase was found in melatonin content under salinity stress through upregulation in the relative expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT). The salicylic acid (SA) treatment considerably improved their photosynthetic activity, the maximum photochemical quantum yield (133%), the potential activity of PSⅡ (294%), and the performance index of electron flux to the final PS I electron acceptors (2.4%). On the other hand, SA application reduced ABA levels (32%); enhanced the activity of antioxidant enzymes, such as superoxide dismutase (SOD) (15.4%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (120%); and increased polyphenol (6.4%) and flavonoid (75.4%) levels in salinity-stressed St. John's wort plants. Similarly, SA application under NaCl stress significantly modulated the melatonin content in terms of ion balance; the level of melatonin was reduced after SA application on salt-treated seedlings but noticeably higher than on only SA-treated and non-treated seedlings. Moreover, the proline content was reduced considerably and growth parameters, such as plant biomass, shoot length, and chlorophyll content, were enhanced following treatment of salinity-stressed St. John's wort plants with salicylic acid. These findings demonstrate the beneficial impact of salt stress in terms of a cost-effective approach to extract melatonin in larger quantities from St. John's wort. They also suggest the efficiency of salicylic acid in alleviating stress tolerance and promoting growth of St. John's wort plants.
Collapse
Affiliation(s)
- Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chung-Yeol Lee
- Department of Statictics Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
76
|
Yang S, Zeng H, Jiang L, Fu C, Gao L, Zhang L, Zhang Y, Zhang X, Zhu L, Zhang F, Chen J, Huang J, Zeng Q. Melatonin reduces melanogenesis by inhibiting the paracrine effects of keratinocytes. Exp Dermatol 2023; 32:511-520. [PMID: 36620869 DOI: 10.1111/exd.14743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Keratinocytes regulate melanogenesis in a paracrine manner. Previous studies have shown that melatonin can directly inhibit melanin production in the melanocytes. However, it is unclear whether melatonin can also indirectly regulate melanogenesis through the keratinocytes. In this study, we explored the role of melatonin in regulating keratinocyte-mediated melanogenesis using reconstructed human epidermis (RHE). Melatonin showed an inhibitory effect on melanin synthesis in this model. Furthermore, the conditioned media from melatonin-treated HaCaT cells downregulated melanogenesis-related genes, including MITF, TYR, TYRP1, DCT and RAB27A in the pigment MNT1 cells, and decreased levels of phosphorylated ERK, JNK and p38. RNA sequencing further showed that mitochondrial functions and oxidative stress pathway in the MNT1 cells were inhibited by the conditioned medium from melatonin-treated HaCaT cells. Furthermore, melatonin reduced the secretion of ET-1 and PTGS2 from HaCaT cells by inhibiting the JAK2/STAT3 signalling pathway. In conclusion, melatonin downregulates the paracrine factors ET-1 and PTGS2 in the keratinocytes by inhibiting the JAK2/STAT3 pathway, which reduces melanin production in pigment cells. Thus, melatonin has a potential therapeutic effect on skin pigmentation disorders.
Collapse
Affiliation(s)
- Siyu Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yushan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
77
|
Bilgin M, Keskin A, Aci R, Baklacioglu HS, Arslanbek Erdem M. Darkness hormone or daylight hormone in women with systemic lupus erythematosus? Clin Rheumatol 2023; 42:93-99. [PMID: 36125575 DOI: 10.1007/s10067-022-06379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION In this study, it was aimed to compare the effects of both melatonin and 25-hydroxyvitamin D3, defined as an immune modulator, on laboratory diagnostic criteria parameters and disease activity in patients with systemic lupus erythematosus (SLE). METHODS The study included 56 women with SLE and 40 healthy women (control group). Melatonin and 25-hydroxyvitamin D3 levels of patients and healthy individuals included in the study were examined. In addition, leukocytes, lymphocytes, platelets, C3, C4, anti-double-stranded DNA (Anti-dsDNA), antinuclear antibody, and SLE disease activity index (SLEDAI) were analyzed in women with SLE. Patients were divided into four subgroups according to SLEDAI. RESULTS Melatonin and 25-hydroxyvitamin D3 levels of women with SLE were lower than healthy women (p < 0.001). Both melatonin and 25-hydroxyvitamin D3 levels were not correlated with laboratory diagnostic criteria parameters. Only 25-hydroxyvitamin D3 levels were correlated with leukocyte levels (p < 0.01). There was no significant difference between the melatonin levels of the subgroups. The 25-hydroxyvitamin D3 levels of the subgroup without disease activity were higher than levels of the subgroups with disease activity (p < 0.05). There was a negative correlation between SLEDAI score and 25-hydroxyvitamin D3 levels (p < 0.05). CONCLUSION Women with SLE had lower melatonin and 25-hydroxyvitamin D3 levels than healthy women. On the other hand, parameters of laboratory diagnostic criteria of SLE disease were not related. Only 25-hydroxyvitamin D3 levels were inversely related leukocyte levels. SLE disease activity was not correlated with melatonin levels but negatively correlated with 25-hydroxyvitamin D3 levels. Key Points • Women with SLE have low levels of melatonin and 25-hydroxyvitamin D3. • Melatonin and 25-hydroxyvitamin D3 levels are not related to the laboratory diagnostic criteria parameters for SLE disease. • Low levels of melatonin and 25-hydroxyvitamin D3 may be a factor in the unbalanced immune system of SLE. • Supplementation of melatonin and 25-hydroxyvitamin D3 may be recommended for women patients with SLE.
Collapse
Affiliation(s)
- Melek Bilgin
- Department of Microbiology, Samsun Training and Research Hospital, 199 Barıs Boulevard, Kadıkoy Neighborhood, Ilkadım, Samsun, 55090, Turkey.
| | - Adem Keskin
- Department of Medicine Biochemistry, Institute of Health Sciences, Aydin Adnan Menderes University, Aydın, Turkey
| | - Recai Aci
- Department of Biochemistry, Samsun Training and Research Hospital, Samsun, Turkey
| | | | | |
Collapse
|
78
|
Yuksel TN, Yayla M, Kose D, Halici Z, Bozkurt E, Toktay T. Protective effects of melatonin receptor agonists on endotoxin-induced uveitis in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:540-548. [PMID: 37051104 PMCID: PMC10083838 DOI: 10.22038/ijbms.2023.67297.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/05/2023] [Indexed: 04/14/2023]
Abstract
Objectives Melatonin has an important role in regulating a variety of physiological functions of the body. We investigated the protective effects of Agomelatine (AGO) and Ramelteon (RAME) on Endotoxin-Induced Uveitis (EIU) in rats. Materials and Methods 70 rats were randomly divided into fourteen groups. Healthy group normal saline, (IP), Uveitis group (200 μg/kg lipopolysaccharide (LPS), SC), DEX group (200 μg/kg LPS plus 1 mg/kg dexamethasone, IP), AGO20 group received 200 μg/kg LPS plus 20 mg/kg AGO, AGO40 group received 200 μg/kg LPS plus 40 mg/kg AGO, RAME2 group received 200 μg/kg LPS plus 2 mg/kg RAME, and group RAME4 received 200 μg/kg LPS plus 4 mg/kg RAME. Each group had two subgroups: the 3rd and 24th hr. The eye tissues were collected and investigated biomicroscopically (clinical manifestations and scoring, molecularly(qRT-PCR analyses of tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), and caspase 3 and caspase 9 mRNA expression), biochemically (Superoxide dismutase activity (SOD), Glutathione (GSH), and malondialdehyde levels (MDA)) and histopathologically (staining with Harris Hematoxylin and Eosin Y). Results Melatonin receptor agonist treatment reduced the clinical score count of ocular inflammation in the uveitic rats. TNF-α, VEGF, caspase 9, and caspase 3 levels markedly decreased in the uveitic rats. Melatonin receptor agonists significantly ameliorated fixed changes in GSH, SOD, and MDA levels. Melatonin receptor agonists also ameliorated histopathological injury in eye tissues associated with uveitis. Conclusion Melatonin receptor agonists ameliorated the inflammatory response in EIU. These findings suggest that melatonin receptor agonists may represent a potential novel therapeutic drug for uveitis treatment.
Collapse
Affiliation(s)
- Tugba Nurcan Yuksel
- Department of Pharmacology, Faculty of Medicine, Tekirdag Namık Kemal University, Tekirdag, Turkey
- Corresponding author: Tugba Nurcan Yuksel. Department of Pharmacology, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey. Tel: +90 546 573 8141; +90 282 250 5742;
| | - Muhammed Yayla
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Duygu Kose
- Department of Pharmacology, Faculty of Medicine, Sutcu Imam University, Kahramanmaraş, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Erdinc Bozkurt
- Department of Ophthalmology, University of Health Science, Ümraniye Education and Research Hospital, Department of Ophthalmology, Istanbul, Turkey
| | - Toktay Toktay
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
79
|
Repova K, Baka T, Krajcirovicova K, Stanko P, Aziriova S, Reiter RJ, Simko F. Melatonin as a Potential Approach to Anxiety Treatment. Int J Mol Sci 2022; 23:ijms232416187. [PMID: 36555831 PMCID: PMC9788115 DOI: 10.3390/ijms232416187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Anxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production. The various manifestations of anxiety, its complex pathophysiological background and the side effects of available treatments underlie the quest for constantly seeking therapies for these conditions. Melatonin, an indolamine produced in the pineal gland and released into the blood on a nightly basis, has been demonstrated to exert anxiolytic action in animal experiments and different clinical conditions. This hormone influences a number of physiological actions either via specific melatonin receptors or by receptor-independent pleiotropic effects. The underlying pathomechanism of melatonin's benefit in anxiety may reside in its sympatholytic action, interaction with the renin-angiotensin and glucocorticoid systems, modulation of interneuronal signaling and its extraordinary antioxidant and radical scavenging nature. Of importance, the concentration of this indolamine is significantly higher in cerebrospinal fluid than in the blood. Thus, ensuring sufficient melatonin production by reducing light pollution, which suppresses melatonin levels, may represent an endogenous neuroprotective and anxiolytic treatment. Since melatonin is freely available, economically undemanding and has limited side effects, it may be considered an additional or alternative treatment for various conditions associated with anxiety.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Peter Stanko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX 78229, USA
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovakia
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-(0)2-59357276
| |
Collapse
|
80
|
Cruz-Chamorro I, Santos-Sánchez G, Álvarez-Sánchez N, Martín-Prada L, Cerrillo I, Ortega MÁ, Escudero-López B, Martín F, Isabel Álvarez-Ríos A, Carrillo-Vico A, Fernández-Pachón MS. Alcoholic fermentation with Pichia kluyveri could improve the melatonin bioavailability of orange juice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
81
|
Ngai ZN, Chok KC, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of lung cancer. Horm Mol Biol Clin Investig 2022; 43:485-503. [PMID: 35728260 DOI: 10.1515/hmbci-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the most lethal cancer worldwide. Melatonin, an indoleamine produced in the pineal gland, shows anticancer effects on a variety of cancers, especially lung cancer. Herein, we clarify the pathophysiology of lung cancer, the association of circadian rhythm with lung, and the relationship between shift work and the incidence of lung cancer. Special focus is placed on the role of melatonin receptors in lung cancer, the relationship between inflammation and lung cancer, control of cell proliferation, apoptosis, autophagy, and immunomodulation in lung cancer by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as a comprehensive reference for the various mechanisms of action of melatonin against lung cancer, as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Zi Ni Ngai
- School of Health Science, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Kian Chung Chok
- School of Health Science, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
82
|
Said DE, Amer EI, Sheta E, Makled S, Diab HE, Arafa FM. Nano-Encapsulated Melatonin: A Promising Mucosal Adjuvant in Intranasal Immunization against Chronic Experimental T. gondii Infection. Trop Med Infect Dis 2022; 7:tropicalmed7120401. [PMID: 36548656 PMCID: PMC9785012 DOI: 10.3390/tropicalmed7120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Melatonin (MLT) is now emerging as one of the universally accepted immunostimulators with broad applications in medicine. It is a biological manipulator of the immune system, including mucosal ones. MLT was encapsulated in solid lipid nanoparticles (SLNs), then 100 mg/kg/dose of MLT-SLNs was used as an adjuvant of Toxoplasma lysate antigen (TLA). Experimental mice were intra-nasally inoculated with three doses of different regimens every two weeks, then challenged with 20 cysts of T. gondii Me49 strain, where they were sacrificed four weeks post-infection. Protective vaccine efficacy was evident via the significant brain cyst count reduction of 58.6%, together with remarkably high levels of humoral systemic and mucosal anti-Toxoplasma antibodies (Ig G, Ig A), supported by a reduced tachyzoites invasion of Vero cells in vitro upon incubation with sera obtained from these vaccinated mice. A cellular immune response was evident through the induction of significant levels of interferon-gamma (IFN γ), associated with morphological deteriorations of cysts harvested from the brains of vaccinated mice. Furthermore, the amelioration of infection-induced oxidative stress (OS) and histopathological changes were evident in mice immunized with TLA/MLT-SLNs. In conclusion, the present study highlighted the promising role of intranasal MLT-SLNs as a novel mucosal adjuvant candidate against chronic toxoplasmosis.
Collapse
Affiliation(s)
- Doaa E. Said
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Eglal I. Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Hala E. Diab
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
- Correspondence:
| | - Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| |
Collapse
|
83
|
Iesanu MI, Zahiu CDM, Dogaru IA, Chitimus DM, Pircalabioru GG, Voiculescu SE, Isac S, Galos F, Pavel B, O’Mahony SM, Zagrean AM. Melatonin-Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants (Basel) 2022; 11:2244. [PMID: 36421432 PMCID: PMC9686962 DOI: 10.3390/antiox11112244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Melatonin is a pineal indolamine, allegedly known as a circadian rhythm regulator, and an antioxidative and immunomodulatory molecule. In both experimental and clinical trials, melatonin has been shown to have positive effects in various pathologies, as a modulator of important biochemical pathways including inflammation, oxidative stress, cell injury, apoptosis, and energy metabolism. The gut represents one of melatonin's most abundant extra pineal sources, with a 400-times-higher concentration than the pineal gland. The importance of the gut microbial community-namely, the gut microbiota, in multiple critical functions of the organism- has been extensively studied throughout time, and its imbalance has been associated with a variety of human pathologies. Recent studies highlight a possible gut microbiota-modulating role of melatonin, with possible implications for the treatment of these pathologies. Consequently, melatonin might prove to be a valuable and versatile therapeutic agent, as it is well known to elicit positive functions on the microbiota in many dysbiosis-associated conditions, such as inflammatory bowel disease, chronodisruption-induced dysbiosis, obesity, and neuropsychiatric disorders. This review intends to lay the basis for a deeper comprehension of melatonin, gut microbiota, and host-health subtle interactions.
Collapse
Affiliation(s)
- Mara Ioana Iesanu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana-Alexandra Dogaru
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Diana Maria Chitimus
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Section Earth, Environmental and Life Sciences, Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sebastian Isac
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Pavel
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
84
|
Ismail HTH. Toxic effects of excess exposure to boric acid on serum biochemical aspect, hematology and histological alterations and ameliorative potential role of melatonin in rats. Saudi J Biol Sci 2022; 29:103425. [PMID: 36060109 PMCID: PMC9436754 DOI: 10.1016/j.sjbs.2022.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The current work clarifies the negative effects of excess exposure to boric acid (H3BO3) as a boron-containing compound on rats and the possible ameliorative effect of melatonin (MEL). Forty rats were equally divided into 5 groups as follows: group 1 was treated as control while groups 2, 3, 4 and 5 were orally administered corn oil (0.5 ml), H3BO3 (1330 mg/kg BW), MEL (10 mg/kg BW) and H3BO3 + MEL for 28 consecutive days, respectively. At the end of the experiment, blood was sampled for biochemical and hematological analysis and tissues were collected for histopathological examination. The obtained results demonstrated that the exposure to H3BO3 induced hepatorenal dysfunctions, alterations in bone-related minerals and hormones levels, prostaglandin E2 as inflammatory mediator and hematological indices. H3BO3 induced histological alterations in the liver, kidneys, bone and skin. The co-administration of MEL with H3BO3 resulted in a significant improvement in most of the measured parameters and restoration of morpho-functional state of different organs compared to the H3BO3 group. In conclusion, the study clearly demonstrated that H3BO3- induced various adverse effects and that melatonin may be beneficial in a partial mitigating the H3BO3 and may represent a novel approach in the counteracting its toxicity.
Collapse
|
85
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
86
|
Ismail HTH. Toxic effects of excess exposure to boric acid on serum biochemical aspect, hematology and histological alterations and ameliorative potential role of melatonin in rats. Saudi J Biol Sci 2022; 29:103425. [DOI: https:/doi.org/10.1016/j.sjbs.2022.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
|
87
|
Huang X, Qiu Y, Gao Y, Zhou R, Hu Q, He Z, Lv Y, Wang X, Chen W, Deng Y, An Z, Zhang H, Mo Z, Lin R. Gut microbiota mediate melatonin signalling in association with type 2 diabetes. Diabetologia 2022; 65:1627-1641. [PMID: 35768541 DOI: 10.1007/s00125-022-05747-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS It has been shown that melatonin plays a general beneficial role in type 2 diabetes in rodents but its role in humans is controversial. In the present study, we investigated the association between serum melatonin and type 2 diabetes risk in a southern Chinese population in a case-control study. We also examined the role of gut microbiota in this relationship. METHODS Individuals with type 2 diabetes (cases) and healthy individuals (controls) (n=2034) were recruited from a cross-sectional study and were matched for age and sex in a case-control study. The levels of serum melatonin were measured and the association between serum melatonin and type 2 diabetes risk was examined using a multivariable logistic regression model. We further conducted a rigorously matched case-control study (n=120) in which gut microbial 16S rRNA was sequenced and metabolites were profiled using an untargeted LC-MS/MS approach. RESULTS Higher levels of serum melatonin were significantly associated with a lower risk of type 2 diabetes (OR 0.82 [95% CI 0.74, 0.92]) and with lower levels of fasting glucose after adjustment for covariates (β -0.25 [95% CI -0.38, -0.12]). Gut microbiota exhibited alteration in the individuals with type 2 diabetes, in whom lower levels of serum melatonin, lower α- and β-diversity of gut microbiota (p<0.05), greater abundance of Bifidobacterium and lower abundance of Coprococcus (linear discriminant analysis [LDA] >2.0) were found. Seven genera were correlated with melatonin and type 2 diabetes-related traits; among them Bifidobacterium was positively correlated with serum lipopolysaccharide (LPS) and IL-10, whereas Coprococcus was negatively correlated with serum IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS (Benjamini-Hochberg-adjusted p value [false discovery rate (FDR)] <0.05). Moreover, altered metabolites were detected in the participants with type 2 diabetes and there was a significant correlation between tryptophan (Trp) metabolites and the melatonin-correlated genera including Bifidobacterium and Coprococcus (FDR<0.05). Similarly, a significant correlation was found between Trp metabolites and inflammation factors, such as IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS (FDR<0.05). Further, we showed that Trp metabolites may serve as a biomarker to predict type 2 diabetes status (AUC=0.804). CONCLUSIONS/INTERPRETATION A higher level of serum melatonin was associated with a lower risk of type 2 diabetes. Gut microbiota-mediated melatonin signalling was involved in this association; especially, Bifidobacterium- and Coprococcus-mediated Trp metabolites may be involved in the process. These findings uncover the importance of melatonin and melatonin-related bacteria and metabolites as potential therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Xueran Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yang Qiu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yongfen Gao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Rong Zhou
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiantu Hu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zouyan He
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yingnan Lv
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Wanrong Chen
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuqing Deng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhuangzhuang An
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
| | - Rui Lin
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China.
| |
Collapse
|
88
|
Immunity, Infection, and the Zebrafish Clock. Infect Immun 2022; 90:e0058821. [PMID: 35972269 PMCID: PMC9476956 DOI: 10.1128/iai.00588-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks are universally used to coordinate biological processes with the Earth's 24-h solar day and are critical for the health and environmental success of an organism. Circadian rhythms in eukaryotes are driven by a cell-intrinsic transcription-translation feedback loop that controls daily oscillations in gene expression which regulate diverse physiological functions. Substantial evidence now exists demonstrating that immune activation and inflammatory responses during infection are under circadian control, however, the cellular mechanisms responsible for this are not well understood. The zebrafish (Danio rerio) is a powerful model organism to study vertebrate circadian biology and immune function. Zebrafish contain homologs of mammalian circadian clock genes which, to our current knowledge, function similarly to impart timekeeping ability. Consistent with studies in mammalian models, several studies in fish have now demonstrated a bidirectional relationship between the circadian clock and inflammation: the circadian clock regulates immune activity, and inflammation can alter circadian rhythms. This review summarizes our current understanding of the molecular mechanisms of the zebrafish clock and the bi-directional relationship between the circadian clock and inflammation in fish.
Collapse
|
89
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
90
|
Lukić I, Ivković S, Mitić M, Adžić M. Tryptophan metabolites in depression: Modulation by gut microbiota. Front Behav Neurosci 2022; 16:987697. [PMID: 36172468 PMCID: PMC9510596 DOI: 10.3389/fnbeh.2022.987697] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical depression is a multifactorial disorder and one of the leading causes of disability worldwide. The alterations in tryptophan metabolism such as changes in the levels of serotonin, kynurenine, and kynurenine acid have been implicated in the etiology of depression for more than 50 years. In recent years, accumulated evidence has revealed that gut microbial communities, besides being essential players in various aspects of host physiology and brain functioning are also implicated in the etiology of depression, particularly through modulation of tryptophan metabolism. Therefore, the aim of this review is to summarize the evidence of the role of gut bacteria in disturbed tryptophan metabolism in depression. We summed up the effects of microbiota on serotonin, kynurenine, and indole pathway of tryptophan conversion relevant for understanding the pathogenesis of depressive behavior. Moreover, we reviewed data regarding the therapeutic effects of probiotics, particularly through the regulation of tryptophan metabolites. Taken together, these findings can open new possibilities for further improvement of treatments for depression based on the microbiota-mediated modulation of the tryptophan pathway.
Collapse
|
91
|
Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH, Mir SM. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy [Biochimie 200 (2022) 44-59]. Biochimie 2022; 200:44-59. [PMID: 35618158 DOI: 10.1016/j.biochi.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Niloufar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Mahdi Rahimi
- Lodz University of Technology, Institute of Polymer and Dye Technology, Stefanowskiego 16, 90-537, Lodz, Poland; International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Babol, Iran.
| |
Collapse
|
92
|
Kholghi G, Eskandari M, Shokouhi Qare Saadlou MS, Zarrindast MR, Vaseghi S. Night shift hormone: How does melatonin affect depression? Physiol Behav 2022; 252:113835. [PMID: 35504318 DOI: 10.1016/j.physbeh.2022.113835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Melatonin is the main hormone secreted by the pineal gland that modulates the circadian rhythm and mood. Previous studies have shown the therapeutic effects of melatonin, or its important analogue, agomelatine, on depression. In this review study, we aimed to discuss the potential mechanisms of melatonin involved in the treatment of depression. It was noted that disrupted circadian rhythm can lead to depressive state, and melatonin via regulating circadian rhythm shows a therapeutic effect. It was also noted that melatonin induces antidepressant effects via promoting antioxidant system and neurogenesis, and suppressing oxidative stress, neuroinflammation, and apoptosis. The interaction effect between melatonin or agomelatine and serotonergic signaling has a significant effect on depression. It was noted that the psychotropic effects of agomelatine are induced by the synergistic interaction between melatonin and 5-HT2C receptors. Agomelatine also interacts with glutamatergic signaling in brain regions involved in regulating mood and circadian rhythm. Interestingly, it was concluded that melatonin exerts both pro- and anti-inflammatory effects, depending on the grade of inflammation. It was suggested that synergistic interaction between melatonin and 5-HT2C receptors may be able to induce therapeutic effects on other psychiatric disorders. Furthermore, dualistic role of melatonin in regulating inflammation is an important point that can be examined at different levels of inflammation in animal models of depression.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
93
|
Topical application of melatonin accelerates the maturation of skin wounds and increases collagen deposition in a rat model of diabetes. J Tissue Viability 2022; 31:606-613. [DOI: 10.1016/j.jtv.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/10/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
|
94
|
Liu Y, Chen XQ, Wang F, Cheng B, Zhou G. Melatonin relieves Th17/CD4−CD8− T cells inflammatory responses via nuclear-receptor dependent manner in peripheral blood of primary Sjögren’s syndrome. Int Immunopharmacol 2022; 109:108778. [DOI: 10.1016/j.intimp.2022.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
95
|
Ge W, Xiao L, Duan H, Zhao X, Li J, Hu J. Proteomic analysis of iTRAQ in melatonin-treated sheep epididymal epithelial cells. Reprod Domest Anim 2022; 57:1406-1417. [PMID: 35881670 DOI: 10.1111/rda.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
During maturation, spermatozoa acquire motility and fertilizing capacity as they transit through the epididymis. Melatonin is a lipophilic hormone with multiple functions in regulating the fertility. Previous studies have shown that melatonin affected the capacitation or maturation of sperm in the epididymis. The aim of this study was to investigate the effects of melatonin on epididymal caput epithelial cells in sheep. In the study, we used iTRAQ labelling coupled with LC-MS/MS for quantitative identification of differentially expressed proteins in melatonin-treated sheep epididymal caput epithelial cells. We identified 69 differentially expressed protein; 41 were upregulated and 28 were downregulated in samples from sheep in melatonin treated. We validated the differential expression of a subset of these proteins using qPCR and Western blot. Gene ontology annotation identified that the differentially expressed proteins function in cellular processes and metabolic processes. Notably, five of the differentially expressed proteins as SOD1, COL1A1, PRM1, NQO2, and FN1 are involved in sperm migration and sperm maturation. KEGG enrichment analysis demonstrated significant enrichment in several cardiac-related pathways, such as "PI3K-Akt signaling pathway", "AGE-RAGE signaling pathway in diabetic complications", "ECM-receptor interaction", and "Ribosome". Our results suggest that candidate biomarker (SOD1, COL1A1, PRM1, NQO2, and FN1) discovery can aid in understanding sperm development and maturation in sheep. These results provide insights into the potential mechanisms of melatonin regulation of sperm maturation in epididymal caput epithelial cells.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
96
|
Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens. Animals (Basel) 2022; 12:ani12141834. [PMID: 35883381 PMCID: PMC9311685 DOI: 10.3390/ani12141834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Chronic heat stress remains the most detrimental factor for broiler productivity in hot and desert regions. The manipulation of the lighting program is a useful and inexpensive tool to alleviate the negative effects of heat stress on broiler performance. The present study aimed to investigate the beneficial effects of an intermittent lighting (I.L.) program consisting of repeated periods of 1 h light to 3 h dark during a day on broiler performance under chronic heat-stress conditions. The results indicate that applying the I.L. program to heat-stressed broilers relieved the stress indicators and improved the immune response, physiological status, and growth performance of broilers. Therefore, the application of the I.L. program could be used as a beneficial strategy to recover broiler performance during heat-stress conditions. Abstract The effects of heat stress on broiler performance and immunological response were explored using lighting-program manipulation as a potential tool. The study included 200 Cobb500 broiler chicks that were one day old at the time of recruitment. The birds were divided into four-compartment groups with similar environments (five cages per compartment, ten chicks per cage). Starting from the fourth day of age, birds of two compartments received a continuous lighting program (23L:1D a day; C.L. groups) while birds of the other two compartments received an intermittent lighting program (1L:3D 6 times per day; I.L. groups). Within each lighting program during 22–42 d of age, one group was subjected either to a thermoneutral temperature at 24 °C or heat stress at 35 °C. The results reveal that stress biomarkers, especially the plasma concentrations of corticosterone (CORT), tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) were relieved by 46%, 27%, and 51%, respectively, in the I.L. treatment groups compared to the C.L. program in broiler chicks subjected to heat stress. The liver function was also improved by 24% and 32% in AST and ALT levels, respectively, in the I.L. program compared to the C.L. program in stressed birds. Furthermore, the I.L. program positively influenced the immune response of the heat-stressed broilers. Eventually, the I.L. program increased the heat-stressed broilers’ body weight gain and feed conversion ratio. It can be concluded that applying the I.L. program to broiler chickens can effectively improve their physiological balance and growth performance under heat-stress conditions.
Collapse
|
97
|
Brazão V, Colato RP, Santello FH, Duarte A, Goulart A, Sampaio PA, Pacheco Silva CB, Tirapelli CR, Costa RM, Tostes RC, do Prado JC. Melatonin regulates antioxidant defense and inflammatory response by activating Nrf2-dependent mechanisms and inhibiting NFkappaB expression in middle-aged T. cruzi infected rats. Exp Gerontol 2022; 167:111895. [PMID: 35843349 DOI: 10.1016/j.exger.2022.111895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Oxidative stress with higher levels of leptin and inflammatory response are key processes related to pathogenesis of both T. cruzi infection and aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the expression of several genes implicated in the oxidative stress response in many pathological conditions. Melatonin is a pleiotropic hormone with, antioxidant, anti-inflammatory and anti-aging actions. Then, we hypothesized that Nrf2 response is impaired during the acute T. cruzi (9 days) infection and that melatonin rescues Nrf2 responses. Young (5 weeks-old) and middle-aged (18 months-old) male Wistar rats were infected with T. cruzi. Nrf2 translocation and markers of inflammation and oxidative stress were analyzed in blood and spleen. Increased apoptosis levels and oxidative stress indicators were observed in the rat spleen during T. cruzi infection. These responses were accompanied by decreased Nrf2 expression and increased expression of nuclear factor kappa B (NFκB). Melatonin (5 mg/kg/day; p.o. gavage) attenuated the superoxide anion (O2-) and hydrogen peroxide (H2O2) production induced by T. cruzi infection. Increased expressions of catalase and superoxide dismutase (SOD) were detected in the spleen of melatonin-treated rats infected with T. cruzi. Melatonin treatment inhibited the spleen NF-κB activation and downregulates the levels of circulating interleukin (IL)-4, IL-10 and tumor necrosis factor (TNF)-α in T. cruzi middle-aged infected rats. Increased levels of the chemokine CXCL1 in middle-aged control rats was observed, confirming that aging alters the production of this chemokine. In T. cruzi infected young animals, CXCL1 was up-regulated when compared to non-infected young ones. For young or middle-aged animals, melatonin treatment had no significant effect on CXCL1 levels. Our findings demonstrate an important role for Nrf2/NF-kB regulation as a possible mechanism by which melatonin attenuates oxidative stress, and provide new insights for further studies of this indoleamine as a therapeutic co-adjuvant agent against T. cruzi infection.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andressa Duarte
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Amanda Goulart
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla B Pacheco Silva
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Rafael M Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil; Special Academic Unit of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
98
|
Tripathi MK, Singh R. Photoperiodic regulation of the splenocyte immune responses in the fresh water snake, Natrixpiscator. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104403. [PMID: 35339533 DOI: 10.1016/j.dci.2022.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Photoperiod and melatonin are important regulators of immunity. We hypothesized that these two factors play an important role in the regulation of immune responses in the Natrix piscator. Animals were kept in either short or long days and splenocyte immune responses were studied. Respiratory burst activity of splenocytes was assessed through reduction of nitrobluetetrazolium salt while production of nitric oxide was assessed indirectly by nitrite assay. Density gradient centrifugation was used to isolate splenic lymphocytes which were utilized to study proliferation with and without mitogens. Super oxide production by splenocytes was reduced significantly in the cultures obtained from animals kept either in short or long days. Nitrite release was decreased when animals were subjected to long days. The photoperiodic alterations acted differentially on proliferations of the splenic lymphocytes. Spontaneous and mitogen-induced proliferation of splenic lymphocytes were enhanced in cultures obtained from snakes maintained in short days when compared with cultures from snakes obtained either from long day or natural day length conditions. In vitro melatonin significantly enhanced the splenic lymphocyte proliferation of the cultures obtained from animals kept in long days when compared with splenic lymphocyte proliferations of the cultures obtained from long day animals or the animals kept in natural day length conditions. We found evidence which suggest that photoperiod may influence seasonal energy budgets and induce adjustments which optimize energy allocation for costly physiological processes such as immune function. In seasonally breeding animals such as Natrix piscator, the pineal hormone melatonin assists in the suppression of reproduction and elevation of immunity, which are the crucial adaptation for perpetuation of species.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, 221 002, Uttar Pradesh, India.
| | - Ramesh Singh
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, 221 002, Uttar Pradesh, India
| |
Collapse
|
99
|
Abstract
Melatonin, the major secretory product of the pineal gland, not only regulates circadian rhythms, mood, and sleep but also has actions in neoplastic processes which are being intensively investigated. Melatonin is a promising molecule which considered a differentiating agent in some cancer cells at both physiological and pharmacological concentrations. It can also reduce invasive and metastatic status through receptors MT1 and MT2 cytosolic binding sites, including calmodulin and quinone reductase II enzyme, and nuclear receptors related to orphan members of the superfamily RZR/ROR. Melatonin exerts oncostatic functions in numerous human malignancies. An increasing number of studies report that melatonin reduces the invasiveness of several human cancers such as prostate cancer, breast cancer, liver cancer, oral cancer, lung cancer, ovarian cancer, etc. Moreover, melatonin's oncostatic activities are exerted through different biological processes including antiproliferative actions, stimulation of anti-cancer immunity, modulation of the cell cycle, apoptosis, autophagy, the modulation of oncogene expression, and via antiangiogenic effects. This review focuses on the oncostatic activities of melatonin that targeted cell cycle control, with special attention to its modulatory effects on the key regulators of the cell cycle, apoptosis, and telomerase activity.
Collapse
|
100
|
Su WL, Wu CC, Wu SFV, Lee MC, Liao MT, Lu KC, Lu CL. A Review of the Potential Effects of Melatonin in Compromised Mitochondrial Redox Activities in Elderly Patients With COVID-19. Front Nutr 2022; 9:865321. [PMID: 35795579 PMCID: PMC9251345 DOI: 10.3389/fnut.2022.865321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Melatonin, an endogenous indoleamine, is an antioxidant and anti-inflammatory molecule widely distributed in the body. It efficiently regulates pro-inflammatory and anti-inflammatory cytokines under various pathophysiological conditions. The melatonin rhythm, which is strongly associated with oxidative lesions and mitochondrial dysfunction, is also observed during the biological process of aging. Melatonin levels decline considerably with age and are related to numerous age-related illnesses. The signs of aging, including immune aging, increased basal inflammation, mitochondrial dysfunction, significant telomeric abrasion, and disrupted autophagy, contribute to the increased severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These characteristics can worsen the pathophysiological response of the elderly to SARS-CoV-2 and pose an additional risk of accelerating biological aging even after recovery. This review explains that the death rate of coronavirus disease (COVID-19) increases with chronic diseases and age, and the decline in melatonin levels, which is closely related to the mitochondrial dysfunction in the patient, affects the virus-related death rate. Further, melatonin can enhance mitochondrial function and limit virus-related diseases. Hence, melatonin supplementation in older people may be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|