51
|
Luan Y, Zhang H, Liu Y, Xue J, Wang K, Ma B, Ma K, Lu H, Chen X, Liu Y, Zhang Z. UTX inhibition suppresses proliferation and promotes apoptosis in patient-derived glioblastoma stem cells by modulating periostin expression. J Cell Physiol 2024; 239:e31178. [PMID: 38214211 DOI: 10.1002/jcp.31178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Glioblastoma stem cells (GSCs) exert a crucial influence on glioblastoma (GBM) development, progression, resistance to therapy, and recurrence, making them an attractive target for drug discovery. UTX, a histone H3K27 demethylase, participates in regulating multiple cancer types. However, its functional role in GSCs remains insufficiently explored. This study aims to investigate the role and regulatory mechanism of UTX on GSCs. Analysis of TCGA data revealed heightened UTX expression in glioma, inversely correlating with overall survival. Inhibiting UTX suppressed GBM cell growth and induced apoptosis. Subsequently, we cultured primary GSCs from three patients, observing that UTX inhibition suppressed cell proliferation and induced apoptosis. RNA-seq was performed to analyze the gene expression changes after silencing UTX in GSCs. The results indicated that UTX-mediated genes were strongly correlated with GBM progression and regulatory tumor microenvironment. The transwell co-cultured experiment showed that silencing UTX in the transwell chamber GSCs inhibited the well plate cell proliferation. Protein-protein interaction analysis revealed that periostin (POSTN) played a role in the UTX-mediated transcriptional regulatory network. Replenishing POSTN reversed the effects of UTX inhibition on GSC proliferation and apoptosis. Our study demonstrated that UTX inhibition hindered POSTN expression by enhancing the H3K27me2/3 level, eventually resulting in inhibiting proliferation and promoting apoptosis of patient-derived GSCs. Our findings may provide a novel and effective strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Jingwen Xue
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kaige Ma
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| |
Collapse
|
52
|
Zhang P, Fleming P, Andoniou CE, Waltner OG, Bhise SS, Martins JP, McEnroe BA, Voigt V, Daly S, Kuns RD, Ekwe AP, Henden AS, Saldan A, Olver S, Varelias A, Smith C, Schmidt CR, Ensbey KS, Legg SR, Sekiguchi T, Minnie SA, Gradwell M, Wagenaar I, Clouston AD, Koyama M, Furlan SN, Kennedy GA, Ward ES, Degli-Esposti MA, Hill GR, Tey SK. IL-6-mediated endothelial injury impairs antiviral humoral immunity after bone marrow transplantation. J Clin Invest 2024; 134:e174184. [PMID: 38557487 PMCID: PMC10977988 DOI: 10.1172/jci174184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Endothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss. T cell-specific deletion of IL-6R led to persistence of recipient-derived, CMV-specific IgG and inhibited CMV reactivation. Deletion of IFN-γ in donor T cells also eliminated EC injury and FcRn loss. In a phase III clinical trial, blockade of IL-6R with tocilizumab promoted CMV-specific IgG persistence and significantly attenuated early HCMV reactivation. In sum, IL-6 invoked IFN-γ-dependent EC injury and consequent IgG loss, leading to CMV reactivation. Hence, cytokine inhibition represents a logical strategy to prevent endothelial injury, thereby preserving humoral immunity after immunotherapy.
Collapse
Affiliation(s)
- Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Peter Fleming
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E. Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Olivia G. Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shruti S. Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jose Paulo Martins
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Valentina Voigt
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Sheridan Daly
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Rachel D. Kuns
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Adaeze P. Ekwe
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea S. Henden
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Alda Saldan
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
| | - Stuart Olver
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Samuel R.W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark Gradwell
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Irma Wagenaar
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | | | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Scott N. Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics and
| | - Glen A. Kennedy
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - E Sally Ward
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Mariapia A. Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- University of Queensland, St Lucia, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| |
Collapse
|
53
|
He B, Hu Y, Cao Q, Li Y, Tang Y, Cao T, Zhou X, Liu S. Progression of unfolded protein response and ferroptosis in angiogenesis. Biomed Pharmacother 2024; 173:116354. [PMID: 38442673 DOI: 10.1016/j.biopha.2024.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Angiogenesis is the growth of new blood vessels on preexisting ones. It is the outcome of a multifactorial effect involving several cells, which can be brought on by different stress reactions.The accumulation of unfolded proteins in the endoplasmic reticulum occurs when cells are stressed due to environmental changes, where physical or chemical stimuli induce endoplasmic reticulum stress, thereby activating the unfolded protein response (UPR), a homeostasis response designed to re-establish protein balance. Ferroptosis is a planned death of lipid peroxidation and anomalies in metabolism that is dependent on iron. Large concentrations of iron ions accumulate there, along with high concentrations of lipid peroxides and reactive oxygen species, all of which can contribute to the development of several diseases. Through the production of growth factors, adhesion factors, and inflammatory factors that trigger the start of angiogenesis, both UPR and Ferroptosis can be implicated in angiogenesis.To set the stage for further research on angiogenesis, this work concentrated on the effects of Ferroptosis and UPR on angiogenesis, respectively.
Collapse
Affiliation(s)
- Bisha He
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qian Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yue Li
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
54
|
Zhao Y, Jiang J, Zhou P, Deng K, Liu Z, Yang M, Yang X, Li J, Li R, Xia J. H3K18 lactylation-mediated VCAM1 expression promotes gastric cancer progression and metastasis via AKT-mTOR-CXCL1 axis. Biochem Pharmacol 2024; 222:116120. [PMID: 38461905 DOI: 10.1016/j.bcp.2024.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The role of the Immunoglobulin Superfamily (IgSF) as adhesion molecules in orchestrating inflammation is pivotal, yet its specific involvement in gastric cancer (GC) remains unknown. We analyzed IgSF components and discerned conspicuously elevated VCAM1 expression in GC, correlating with a poor prognosis. Remarkably, VCAM1 enhances GC cell proliferation and migration by activating AKT-mTOR signaling. Moreover, lactate in the tumor microenvironment (TME) promotes dynamic lactylation of H3K18 (H3K18la), leading to transcriptional activation of VCAM1 in GC cells. Furthermore, VCAM1 actively mediates intercellular communication in the TME. AKT-mTOR-mediated CXCL1 expression is increased by VCAM1, facilitating the recruitment of human GC-derived mesenchymal stem cells (hGC-MSCs), thereby fostering immunesuppression and accelerating cancer progression. In summary, H3K18 lactylation upregulated VCAM1 transcription, which activated AKT-mTOR signaling, and promoted tumor cell proliferation, EMT Transition and tumor metastasis. VCAM1 upregulated CXCL1 expression by AKT-mTOR pathway, so as to facilitate hGC-MSCs and M2 macrophage recruitment and infiltration. These findings provide novel therapeutic targets for GC.
Collapse
Affiliation(s)
- Yupeng Zhao
- Department of General Surgery, The affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jiang Jiang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Zhou
- Department of General Surgery, The affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Kaiyuan Deng
- Department of General Surgery, The affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Ziyuan Liu
- Department of General Surgery, The affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mengqi Yang
- Department of General Surgery, The affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiao Yang
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jianfang Li
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiazeng Xia
- Department of General Surgery, The affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China; Wuxi Clinical College, Nantong University, Wuxi, China.
| |
Collapse
|
55
|
Gao P, Liu Y, Wang X, Feng X, Liu H, Liu S, Huang X, Wu X, Xiong F, Jia X, Hui H, Jiang J, Tian J. Adhesion molecule-targeted magnetic particle imaging nanoprobe for visualization of inflammation in acute lung injury. Eur J Nucl Med Mol Imaging 2024; 51:1233-1245. [PMID: 38095676 DOI: 10.1007/s00259-023-06550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/27/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE Uncontrolled intra-alveolar inflammation is a central pathogenic feature, and its severity translates into a valid prognostic indicator of acute lung injury (ALI). Unfortunately, current clinical imaging approaches are unsuitable for visualizing and quantifying intra-alveolar inflammation. This study aimed to construct a small-sized vascular cell adhesion molecule-1 (VCAM-1)-targeted magnetic particle imaging (MPI) nanoprobe (ESPVPN) to visualize and accurately quantify intra-alveolar inflammation at the molecular level. METHODS ESPVPN was engineered by conjugating a peptide (VHPKQHRGGSK(Cy7)GC) onto a polydopamine-functionalized superparamagnetic iron oxide core. The MPI performance, targeting, and biosafety of the ESPVPN were characterized. VCAM-1 expression in HUVECs and mouse models was evaluated by western blot. The degree of inflammation and distribution of VCAM-1 in the lungs were assessed using histopathology. The expression of pro-inflammatory markers and VCAM-1 in lung tissue lysates was measured using ELISA. After intravenous administration of ESPVPN, MPI and CT imaging were used to analyze the distribution of ESPVPN in the lungs of the LPS-induced ALI models. RESULTS The small-sized (~10 nm) ESPVPN exhibited superior MPI performance compared to commercial MagImaging® and Vivotrax, and ESPVPN had effective targeting and biosafety. VCAM-1 was highly expressed in LPS-induced ALI mice. VCAM-1 expression was positively correlated with the LPS-induced dose (R = 0.9381). The in vivo MPI signal showed positive correlations with both VCAM-1 expression (R = 0.9186) and representative pro-inflammatory markers (MPO, TNF-α, IL-6, IL-8, and IL-1β, R > 0.7). CONCLUSION ESPVPN effectively targeted inflammatory lungs and combined the advantages of MPI quantitative imaging to visualize and evaluate the degree of ALI inflammation.
Collapse
Affiliation(s)
- Pengli Gao
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Liu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, 261053, China
| | - Xin Feng
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, No. 16 Xinjiekou Outer Street, Beijing, 100088, China
| | - Songlu Liu
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiazi Huang
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Wu
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Xiong
- School of Biological Science and Medicine Engineering & School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jingying Jiang
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, No. 37, Xueyuan Road, Beijing, 100191, China.
- School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
56
|
Song L, Gao Y, Wang Z, Shi Y. Serum Levels of Intercellular Adhesion Molecule 1 and Vascular Cell Adhesion Molecule 1 as Biomarkers to Predict Radiotherapy Sensitivity in Cervical Cancer. Geburtshilfe Frauenheilkd 2024; 84:370-377. [PMID: 38618575 PMCID: PMC11006555 DOI: 10.1055/a-2275-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/22/2024] [Indexed: 04/16/2024] Open
Abstract
Background Cervical cancer is a significant global health burden, and individualized treatment approaches are necessary due to its heterogeneity. Radiotherapy is a common treatment modality; however, the response varies among patients. The identification of reliable biomarkers to predict radiotherapy sensitivity is crucial. Methods A cohort of 189 patients with stage IB2-IVA cervical cancer, treated with radiotherapy alone or concurrent chemoradiotherapy, was included. Serum samples were collected before treatment, and intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) concentrations were determined. Patients were categorized into radiotherapy-sensitive (RS) and radiotherapy-resistant (RR) groups based on treatment response. Clinicopathological characteristics and survival rates were analyzed. Results The analysis of clinicopathological characteristics showed that age, family history of cervical cancer and post-menopausal status did not significantly differ between RS and RR groups. Tumor size demonstrated a borderline significant association with radiotherapy response, while differentiation degree was significantly associated. Serum ICAM-1 and VCAM-1 concentrations were significantly higher in the RR group compared to the RS group. Combined detection of ICAM-1 and VCAM-1 improved the predictive ability for radiotherapy sensitivity. Higher serum ICAM-1 and VCAM-1 levels were observed in patients with lower tumor differentiation. Five-year overall survival rates differed significantly between patients with high and low ICAM-1 and VCAM-1 levels. Conclusion Serum ICAM-1 and VCAM-1 levels show potential as predictive biomarkers for radiotherapy sensitivity in cervical cancer.
Collapse
Affiliation(s)
- Lina Song
- Department of Radiation Therapy, Cangzhou Central Hospital, Cangzhou, China
| | - Yali Gao
- Department of Radiation Therapy, Cangzhou Central Hospital, Cangzhou, China
| | - Zhicong Wang
- Department of Radiation Therapy, Cangzhou Central Hospital, Cangzhou, China
| | - Yufeng Shi
- Department of Radiation Therapy, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
57
|
Castro R, Adair JH, Mastro AM, Neuberger T, Matters GL. VCAM-1-targeted nanoparticles to diagnose, monitor and treat atherosclerosis. Nanomedicine (Lond) 2024; 19:723-735. [PMID: 38420919 DOI: 10.2217/nnm-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) was identified over 2 decades ago as an endothelial adhesion receptor involved in leukocyte recruitment and cell-based immune responses. In atherosclerosis, a chronic inflammatory disease of the blood vessels that is the leading cause of death in the USA, endothelial VCAM-1 is robustly expressed beginning in the early stages of the disease. The interactions of circulating immune cells with VCAM-1 on the activated endothelial cell surface promote the uptake of monocytes and the progression of atherosclerotic lesions in susceptible vessels. Herein, we review the role of VCAM-1 in atherosclerosis and the use of VCAM-1 binding peptides, antibodies and aptamers as targeting agents for nanoplatforms for early detection and treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Pharmaceutical Sciences & Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - James H Adair
- Department of Materials Science, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Pharmacology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Thomas Neuberger
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gail L Matters
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
58
|
Doeleman SE, Reijnders TDY, Joosten SCM, Schuurman AR, van Engelen TSR, Verhoeff J, Léopold V, Brands X, Haak BW, Prins JM, Kanglie MMNP, van den Berk IAH, Faber DR, Douma RA, Stoker J, Saris A, Garcia Vallejo JJ, Wiersinga WJ, van der Poll T. Lymphopenia is associated with broad host response aberrations in community-acquired pneumonia. J Infect 2024; 88:106131. [PMID: 38431153 DOI: 10.1016/j.jinf.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Lymphopenia at hospital admission occurs in over one-third of patients with community-acquired pneumonia (CAP), yet its clinical relevance and pathophysiological implications remain underexplored. We evaluated outcomes and immune features of patients with lymphopenic CAP (L-CAP), a previously described immunophenotype characterized by admission lymphocyte count <0.724 × 109 cells/L. METHODS Observational study in 149 patients admitted to a general ward for CAP. We measured 34 plasma biomarkers reflective of inflammation, endothelial cell responses, coagulation, and immune checkpoints. We characterized lymphocyte phenotypes in 29 patients using spectral flow cytometry. RESULTS L-CAP occurred in 45 patients (30.2%) and was associated with prolonged time-to-clinical-stability (median 5 versus 3 days), also when we accounted for competing events for reaching clinical stability and adjusted for baseline covariates (subdistribution hazard ratio 0.63; 95% confidence interval 0.45-0.88). L-CAP patients demonstrated a proportional depletion of CD4 T follicular helper cells, CD4 T effector memory cells, naïve CD8 T cells and IgG+ B cells. Plasma biomarker analyses indicated increased activation of the cytokine network and the vascular endothelium in L-CAP. CONCLUSIONS L-CAP patients have a protracted clinical recovery course and a more broadly dysregulated host response. These findings highlight the prognostic and pathophysiological relevance of admission lymphopenia in patients with CAP.
Collapse
Affiliation(s)
- Susanne E Doeleman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tom D Y Reijnders
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Sebastiaan C M Joosten
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Alex R Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tjitske S R van Engelen
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, 1117 Amsterdam, the Netherlands
| | - Valentine Léopold
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Xanthe Brands
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jan M Prins
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maadrika M N P Kanglie
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Radiology, Spaarne Gasthuis, Haarlem and Hoofddorp, the Netherlands
| | - Inge A H van den Berk
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Daniël R Faber
- Department of Internal Medicine, BovenIJ Hospital, Amsterdam, the Netherlands
| | - Renée A Douma
- Department of Internal Medicine, Flevo Hospital, Almere, the Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anno Saris
- Infectious Disease, Leiden Universitair Medisch Centrum, Leiden, the Netherlands
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan, 1117 Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
59
|
Zhang J, Wang C, Yu Y. Comprehensive analyses and experimental verification of NETs and an EMT gene signature for prognostic prediction, immunotherapy, and chemotherapy in pancreatic adenocarcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:2006-2023. [PMID: 38088494 DOI: 10.1002/tox.24082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is an aggressive malignancy with high mortality and poor prognosis. Neutrophil extracellular traps (NETs) and the epithelial-mesenchymal transition (EMT) significantly influence on the progression of various cancers. However, the underlying relevance of NETs- and EMT-associated genes on the outcomes of patients with PAAD remains to be elucidated. Transcriptome RNA sequencing data, together with clinical information and single-cell sequencing data of PAAD were collected from public databases. In the TCGA-PAAD cohort, ssGSEA was used to calculate NET and EMT scores. WGCNA was used to determine the key gene modules. A risk model with eight NET- and EMT-related genes (NERGs) was established using LASSO and multivariate Cox regression analysis. Patients in the reduced risk (RR) group showed better prognostic values compared with those in the elevated risk (ER) group. The prognostic model exhibited reliable and robust prediction when validated using an external database. The distributions of risk genes were explored in a single-cell sequencing data set. Immune infiltration, immune cycle, and immune checkpoints were compared between the RR and ER groups. Moreover, potential chemotherapeutic drugs were examined. DCBLD2 was identified as a key gene in PAAD cell lines by qRT-PCR, and was highly expressed in PAAD tissues. GSEA demonstrated that DCBLD2 induced the EMT. Transwell assays and western blotting showed that cell invasion and EMT induction were significantly reduced after DCBLD2 knockdown. Collectively, we constructed a prognosis model based on a NET and EMT gene signature, providing a valuable perspective for the prognostic evaluation and management of PAAD patient.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
60
|
Ali I, Zhang H, Zaidi SAA, Zhou G. Understanding the intricacies of cellular senescence in atherosclerosis: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 96:102273. [PMID: 38492810 DOI: 10.1016/j.arr.2024.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is currently the largest cause of mortality and disability globally, surpassing communicable diseases, and atherosclerosis is the main contributor to this epidemic. Aging is intimately linked to atherosclerosis development and progression, however, the mechanism of aging in atherosclerosis is not well known. To emphasize the significant research on the involvement of senescent cells in atherosclerosis, we begin by outlining compelling evidence that indicates various types of senescent cells and SASP factors linked to atherosclerotic phenotypes. We subsequently provide a comprehensive summary of the existing knowledge, shedding light on the intricate mechanisms through which cellular senescence contributes to the pathogenesis of atherosclerosis. Further, we cover that senescence can be identified by both structural changes and several senescence-associated biomarkers. Finally, we discuss that preventing accelerated cellular senescence represents an important therapeutic potential, as permanent changes may occur in advanced atherosclerosis. Together, the review summarizes the relationship between cellular senescence and atherosclerosis, and inspects the molecular knowledge, and potential clinical significance of senescent cells in developing senescent-based therapy, thus providing crucial insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Hongliang Zhang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, PR China
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
61
|
Hatch CJ, Piombo SD, Fang JS, Gach JS, Ewald ML, Van Trigt WK, Coon BG, Tong JM, Forthal DN, Hughes CCW. SARS-CoV-2 infection of endothelial cells, dependent on flow-induced ACE2 expression, drives hypercytokinemia in a vascularized microphysiological system. Front Cardiovasc Med 2024; 11:1360364. [PMID: 38576426 PMCID: PMC10991679 DOI: 10.3389/fcvm.2024.1360364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, has caused nearly 7 million deaths worldwide. Severe cases are marked by an aggressive inflammatory response known as hypercytokinemia, contributing to endothelial damage. Although vaccination has reduced hospitalizations, hypercytokinemia persists in breakthrough infections, emphasizing the need for disease models mimicking this response. Using a 3D microphysiological system (MPS), we explored the vascular role in SARS-CoV-2-induced hypercytokinemia. Methods The vascularized micro-organ (VMO) MPS, consisting of human-derived primary endothelial cells (ECs) and stromal cells within an extracellular matrix, was used to model SARS-CoV-2 infection. A non-replicative pseudotyped virus fused to GFP was employed, allowing visualization of viral entry into human ECs under physiologic flow conditions. Expression of ACE2, TMPRSS2, and AGTR1 was analyzed, and the impact of viral infection on ACE2 expression, vascular inflammation, and vascular morphology was assessed. Results The VMO platform facilitated the study of COVID-19 vasculature infection, revealing that ACE2 expression increased significantly in direct response to shear stress, thereby enhancing susceptibility to infection by pseudotyped SARS-CoV-2. Infected ECs secreted pro-inflammatory cytokines, including IL-6 along with coagulation factors. Cytokines released by infected cells were able to activate downstream, non-infected EC, providing an amplification mechanism for inflammation and coagulopathy. Discussion Our findings highlight the crucial role of vasculature in COVID-19 pathogenesis, emphasizing the significance of flow-induced ACE2 expression and subsequent inflammatory responses. The VMO provides a valuable tool for studying SARS-CoV-2 infection dynamics and evaluating potential therapeutics.
Collapse
Affiliation(s)
- Christopher J. Hatch
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Sebastian D. Piombo
- Department of Pediatrics, School of Medicine, Institute for Clinical and Translational Science, University of California, Irvine, CA, United States
| | - Jennifer S. Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Johannes S. Gach
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Makena L. Ewald
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - William K. Van Trigt
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Brian G. Coon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jay M. Tong
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Donald N. Forthal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
62
|
Lin TC, Wang KH, Chuang KH, Kao AP, Kuo TC. Celecoxib attenuates interleukin 33-induced expression of vascular cell adhesion molecule-1 in human ovarian endometriotic stromal cells. Taiwan J Obstet Gynecol 2024; 63:178-185. [PMID: 38485312 DOI: 10.1016/j.tjog.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE Endometriosis is an estrogen-dependent chronic inflammatory disease in women of reproductive age. A review of the literature revealed that cytokines and inflammatory factors are associated with endometriosis-associated infertility. Interleukin 33 (IL-33) is a strong inducer of other pro-inflammatory cytokines. Vascular cell adhesion molecule-1 (VCAM-1) plays a central role in recruiting inflammatory cells, whose expression facilitates leukocyte adhesion and is rapidly induced by pro-inflammatory cytokines. Many studies have indicated that VCAM-1 expression is high in endometriosis; however, whether the expression of VCAM-1 is related to IL-33 is unclear. MATERIALS AND METHODS Human ovarian endometriotic stromal cells (hOVEN-SCs) were treated with IL-33 to enable investigation of cell characterization, gene and protein expression, and signal pathways. Proliferation potential was measured using an MTT assay. Gene expression was analyzed using reverse transcription-polymerase chain reaction. Protein expression assay was performed using western blot analysis. RESULTS This study investigated the effects of IL-33 on VCAM-1 and COX-2 expression in hOVEN-SCs. First, the results revealed that the IL-33/ST2/mitogen-activated protein kinase (MAPK) signaling pathway could increase the expression of VCAM-1 and COX-2 in hOVEN-SCs. Second, we discovered that COX-2 expression was essential for IL-33-induced VCAM-1 expression because the effects could be negated through NS398, a selective COX-2 inhibitor. Finally, treatment of IL-33-treated hOVEN-SCs with celecoxib significantly and dose-responsively decreased VCAM-1 expression. CONCLUSION Taken together, these results indicate that IL-33 can upregulate VCAM-1 expression in hOVEN-SCs through the IL-33/ST2/MAPK/COX-2 signaling pathway and thereby contribute to endometriosis.
Collapse
Affiliation(s)
- Ta-Chin Lin
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kai-Hung Wang
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan; Department of Laboratory Medicine, Kuo General Hospital, Tainan, Taiwan.
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi, Taiwan
| | - Tsung-Cheng Kuo
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| |
Collapse
|
63
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of circulating adhesion molecules in rheumatoid arthritis. Inflamm Res 2024; 73:305-327. [PMID: 38240792 PMCID: PMC10894129 DOI: 10.1007/s00011-023-01837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The availability of robust biomarkers of endothelial activation might enhance the identification of subclinical atherosclerosis in rheumatoid arthritis (RA). We investigated this issue by conducting a systematic review and meta-analysis of cell adhesion molecules in RA patients. METHODS We searched electronic databases from inception to 31 July 2023 for case-control studies assessing the circulating concentrations of immunoglobulin-like adhesion molecules (vascular cell, VCAM-1, intercellular, ICAM-1, and platelet endothelial cell, PECAM-1, adhesion molecule-1) and selectins (E, L, and P selectin) in RA patients and healthy controls. Risk of bias and certainty of evidence were assessed using the JBI checklist and GRADE, respectively. RESULTS In 39 studies, compared to controls, RA patients had significantly higher concentrations of ICAM-1 (standard mean difference, SMD = 0.81, 95% CI 0.62-1.00, p < 0.001; I2 = 83.0%, p < 0.001), VCAM-1 (SMD = 1.17, 95% CI 0.73-1.61, p < 0.001; I2 = 95.8%, p < 0.001), PECAM-1 (SMD = 0.82, 95% CI 0.57-1.08, p < 0.001; I2 = 0.0%, p = 0.90), E-selectin (SMD = 0.64, 95% CI 0.42-0.86, p < 0.001; I2 = 75.0%, p < 0.001), and P-selectin (SMD = 1.06, 95% CI 0.50-1.60, p < 0.001; I2 = 84.8%, p < 0.001), but not L-selectin. In meta-regression and subgroup analysis, significant associations were observed between the effect size and use of glucocorticoids (ICAM-1), erythrocyte sedimentation rate (VCAM-1), study continent (VCAM-1, E-selectin, and P-selectin), and matrix assessed (P-selectin). CONCLUSIONS The results of our study support a significant role of cell adhesion molecules in mediating the interplay between RA and atherosclerosis. Further studies are warranted to determine whether the routine use of these biomarkers can facilitate the detection and management of early atherosclerosis in this patient group. PROSPERO Registration Number: CRD42023466662.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA, 5042, Australia.
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
64
|
Tian C, Wang Y, Su M, Huang Y, Zhang Y, Dou J, Zhao C, Cai Y, Pan J, Bai S, Wu Q, Chen S, Li S, Xie D, Lv R, Chen Y, Wang Y, Fu S, Zhang H, Bai L. Motility and tumor infiltration are key aspects of invariant natural killer T cell anti-tumor function. Nat Commun 2024; 15:1213. [PMID: 38332012 PMCID: PMC10853287 DOI: 10.1038/s41467-024-45208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Dysfunction of invariant natural killer T (iNKT) cells contributes to immune resistance of tumors. Most mechanistic studies focus on their static functional status before or after activation, not considering motility as an important characteristic for antigen scanning and thus anti-tumor capability. Here we show via intravital imaging, that impaired motility of iNKT cells and their exclusion from tumors both contribute to the diminished anti-tumor iNKT cell response. Mechanistically, CD1d, expressed on macrophages, interferes with tumor infiltration of iNKT cells and iNKT-DC interactions but does not influence their intratumoral motility. VCAM1, expressed by cancer cells, restricts iNKT cell motility and inhibits their antigen scanning and activation by DCs via reducing CDC42 expression. Blocking VCAM1-CD49d signaling improves motility and activation of intratumoral iNKT cells, and consequently augments their anti-tumor function. Interference with macrophage-iNKT cell interactions further enhances the anti-tumor capability of iNKT cells. Thus, our findings provide a direction to enhance the efficacy of iNKT cell-based immunotherapy via motility regulation.
Collapse
Affiliation(s)
- Chenxi Tian
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Wang
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Miya Su
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanyuan Huang
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuwei Zhang
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaxiang Dou
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Changfeng Zhao
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuting Cai
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Pan
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shiyu Bai
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qielan Wu
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sanwei Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuhang Li
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Xie
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rong Lv
- Anhui Blood Center, Heifei, China
| | - Yusheng Chen
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Yucai Wang
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sicheng Fu
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Huimin Zhang
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Li Bai
- Hefei national Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
65
|
Zinellu A, Mangoni AA. The pathophysiological role of circulating adhesion molecules in schizophrenia: A systematic review and meta-analysis. Schizophr Res 2024; 264:157-169. [PMID: 38150848 DOI: 10.1016/j.schres.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Increasing evidence suggests an association between schizophrenia and atherosclerosis. We conducted a systematic review and meta-analysis of cell adhesion molecules, critically involved in early atherosclerosis, in schizophrenia. METHODS We searched electronic databases from inception to 11 November 2023 for case-control studies assessing vascular cell, VCAM-1, intercellular, ICAM-1, platelet endothelial cell, PECAM-1, neural cell, NCAM, and Down syndrome cell, DSCAM, adhesion molecules, selectins (E-, L-, and P-selectin), integrins, and cadherins in patients with schizophrenia and healthy controls. Risk of bias and certainty of evidence were assessed using the JBI checklist and GRADE, respectively. RESULTS In 19 eligible studies, there were non-significant between-group differences in the concentrations of cell adhesion molecules, barring higher P-selectin in patients with schizophrenia (standard mean difference, SMD = 2.05, 95 % CI 0.72 to 3.38, p = 0.003; I2 = 97.2 %, p<0.001; very low certainty of evidence). Limited or no information was available regarding PECAM-1, DSCAM, ESAM, integrins, and cadherins. In meta-regression and subgroup analysis, there were significant associations between the SMD of ICAM-1 and matrix used (plasma or serum) and pharmacological treatment of schizophrenia, and between the SMD of VCAM-1 and pharmacological treatment, but not with other study and patient characteristics. CONCLUSIONS The results of our systematic review and meta-analysis do not support a significant role of immunoglobulin-like adhesion molecules, selectins, integrins, or cadherins in mediating the associations between schizophrenia, atherosclerosis, and cardiovascular disease. Further studies are warranted to investigate these associations in patients with different cardiovascular risk and the effects of antipsychotic treatments on cell adhesion molecules and surrogate markers of atherosclerosis (PROSPERO registration number: CRD42023463916).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
66
|
Marto CM, Laranjo M, Gonçalves AC, Paula A, Jorge J, Caetano-Oliveira R, Sousa MI, Oliveiros B, Ramalho-Santos J, Sarmento-Ribeiro AB, Marques-Ferreira M, Cabrita A, Botelho MF, Carrilho E. In Vitro Characterization of Reversine-Treated Gingival Fibroblasts and Their Safety Evaluation after In Vivo Transplantation. Pharmaceutics 2024; 16:207. [PMID: 38399261 PMCID: PMC10892828 DOI: 10.3390/pharmaceutics16020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Reversine is a purine derivative that has been investigated with regard to its biological effects, such as its anticancer properties and, mostly, its ability to induce the dedifferentiation of adult cells, increasing their plasticity. The obtained dedifferentiated cells have a high potential for use in regenerative procedures, such as regenerative dentistry (RD). Instead of replacing the lost or damaged oral tissues with synthetic materials, RD uses stem cells combined with matrices and an appropriate microenvironment to achieve tissue regeneration. However, the currently available stem cell sources present limitations, thus restricting the potential of RD. Based on this problem, new sources of stem cells are fundamental. This work aims to characterize mouse gingival fibroblasts (GFs) after dedifferentiation with reversine. Different administration protocols were tested, and the cells obtained were evaluated regarding their cell metabolism, protein and DNA contents, cell cycle changes, morphology, cell death, genotoxicity, and acquisition of stem cell characteristics. Additionally, their teratoma potential was evaluated after in vivo transplantation. Reversine caused toxicity at higher concentrations, with decreased cell metabolic activity and protein content. The cells obtained displayed polyploidy, a cycle arrest in the G2/M phase, and showed an enlarged size. Additionally, apoptosis and genotoxicity were found at higher reversine concentrations. A subpopulation of the GFs possessed stem properties, as supported by the increased expression of CD90, CD105, and TERT, the existence of a CD106+ population, and their trilineage differentiation capacity. The dedifferentiated cells did not induce teratoma formation. The extensive characterization performed shows that significant functional, morphological, and genetic changes occur during the dedifferentiation process. The dedifferentiated cells have some stem-like characteristics, which are of interest for RD.
Collapse
Affiliation(s)
- Carlos Miguel Marto
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Anabela Paula
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Joana Jorge
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Caetano-Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Germano de Sousa—Centro de Diagnóstico Histopatológico CEDAP, University of Coimbra, 3000-377 Coimbra, Portugal
| | - Maria Inês Sousa
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bárbara Oliveiros
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Ramalho-Santos
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel Marques-Ferreira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - António Cabrita
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Eunice Carrilho
- Institute of Integrated Clinical Practice and Laboratory of Evidence-Based and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal (E.C.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (B.O.); (M.M.-F.)
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
67
|
Yan P, Ke B, Fang X. Bioinformatics reveals the pathophysiological relationship between diabetic nephropathy and periodontitis in the context of aging. Heliyon 2024; 10:e24872. [PMID: 38304805 PMCID: PMC10830875 DOI: 10.1016/j.heliyon.2024.e24872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Periodontitis (PD) is a microbially-induced chronic inflammatory disease that is thought to have a bidirectional relationship with diabetes mellitus. DN and PD are recognized as models associated with accelerated aging. This study is divided into two parts, the first of which explores the bidirectional causal relationship through Mendelian randomization (MR). The second part aims to investigate the relationship between PD and DN in terms of potential crosstalk genes, aging-related genes, biological pathways, and processes using bioinformatic methods. MR analysis showed no evidence to support a causal relationship between DN and PD (P = 0.34) or PD and DN (P = 0.77). Using the GEO database, we screened 83 crosstalk genes overlapping in two diseases. Twelve paired genes identified by Pearson correlation and the four hub genes in the key cluster were jointly evaluated as key crosstalk-aging genes. Using support vector machine recursive feature elimination (SVM-RFE) and maximal clique centrality (MCC) algorithms, feature selection established five genes as the key crosstalk-aging genes. Based on five key genes, an ANN diagnostic model with reliable diagnosis of two diseases was developed. Gene enrichment analysis indicates that AGE-RAGE pathway signaling, the complement system, and multiple immune inflammatory pathways may be involved in common features of both diseases. Immune infiltration analysis reveals that most immune cells are differentially expressed in PD and DN, with dendritic cells and T cells assuming vital roles in both diseases. Overall, although there is no causal link, CSF1R, CXCL6, VCAM1, JUN and IL1B may be potential crosstalk-aging genes linking PD and DN. The common pathways and markers explored in this study could contribute to a deeper understanding of the common pathogenesis of both diseases in the context of aging and provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Peng Yan
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
68
|
Liu J, Hua Z, Liao S, Li B, Tang S, Huang Q, Wei Z, Lu R, Lin C, Ding X. Prediction of the active compounds and mechanism of Biochanin A in the treatment of Legg-Calvé-Perthes disease based on network pharmacology and molecular docking. BMC Complement Med Ther 2024; 24:26. [PMID: 38195507 PMCID: PMC10775507 DOI: 10.1186/s12906-023-04298-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease is a special self-limited disease in pediatric orthopedics with a high disability rate and a long-term course, and there is still no clear and effective therapeutic drug in clinic. This study aimed to investigate the potential efficacy of biochanin A, a kind of oxygen-methylated isoflavone compound, in treating Perthes disease based on network pharmacology, molecular docking and in vitro experiments. METHODS IL-6 was used to stimulate human umbilical vein endothelial cells to construct endothelial cell dysfunction model. We demonstrated whether biochanin A could alleviate endothelial dysfunction through CCK8 assay, immunofluorescence. Targets of biochanin A from pharmMappeer, SWISS, and TargetNet databases were screened. Targets of endothelial dysfunction were obtained from Genecards and OMIM databases. Protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomics analyses were used to analyze the potential target and the key pathway of the anti-endothelial dysfunction activity of biochanin A. To validate the potential target-drug interactions, molecular docking and molecular dynamics simulations were performed and the result was proved by western blot. RESULTS It was found that biochanin A can promote the expression of ZO-1, reduce the expression of ICAM-1, which means improving endothelial dysfunction. A total of 585 targets of biochanin A from pharmMappeer, SWISS, and TargetNet databases were screened. A total of 10,832 targets of endothelial dysfunction were obtained from Genecards and OMIM databases. A total of 527 overlapping targets of endothelial dysfunction and biochanin A were obtained. AKT1, TNF-α, VCAM1, ICAM1, and NOS3 might be the key targets of the anti-endothelial dysfunction activity of biochanin A, and the key pathways might be PI3K-Akt and TNF signaling pathways. Molecular docking results indicated that the AKT1 and TNF-α had the highest affinity binding with biochanin A. CONCLUSION This study indicates that biochanin A can target AKT1 and TNF-α to alleviate endothelial dysfunction induced by IL-6 in Perthes disease, which provides a theoretical basis for the treatment of Perthes disease by using biochanin A.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhirui Hua
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Boxiang Li
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shengping Tang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhendi Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Rongbin Lu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chengsen Lin
- Trauma Center, Emergency Department, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Xiaofei Ding
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
69
|
Zhang Y, Guo S, Mao T, Guo J, Zhang Q, Tian Z, Li X. Tumor-Derived Exosomal LINC01480 Upregulates VCAM1 Expression by Acting as a Competitive Endogenous RNA of miR-204-5p to Promote Gastric Cancer Progression. ACS Biomater Sci Eng 2024; 10:550-562. [PMID: 38133901 DOI: 10.1021/acsbiomaterials.3c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Exosomes are a type of cell-derived vesicles that range in size from 30 to 100 nm. They are widely present in various organisms and participate in diverse biological processes, playing crucial roles in tumorigenesis and progression. This study aimed to investigate whether LINC01480 in tumor-derived exosomes is involved in the molecular mechanism of gastric cancer by competitively upregulating the VCAM1 expression through binding miR-204-5p. The study analyzed transcriptome data related to gastric cancer from the cancer genome atlas database and constructed a risk-scoring model for epithelial-mesenchymal transition (EMT)-related lncRNAs to identify eight EMT-related lncRNAs associated with prognosis. EMT-related mRNAs positively correlated with LINC01480 were screened in the ExoRBase database. In vitro cell experiments showed that exosomal LINC01480 can promote the proliferation, migration, invasion, and EMT of gastric cancer cells by upregulating VCAM1 expression through competitive binding with miR-204-5p. In vivo experiments on nude mice showed that exosomal LINC01480 promotes the development of gastric cancer. These results suggest that exosomal LINC01480 could be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Shan Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Jing Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| |
Collapse
|
70
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
71
|
Park Y, Korzun T, Moses AS, Singh P, Levasseur PR, Demessie AA, Sharma KS, Morgan T, Raitmayr CJ, Avila U, Sabei FY, Taratula OR, Marks DL, Taratula O. Targeted Nanocarriers for Systemic Delivery of IRAK4 Inhibitors to Inflamed Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306270. [PMID: 37702136 PMCID: PMC10840923 DOI: 10.1002/smll.202306270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Persistent and uncontrolled inflammation is the root cause of various debilitating diseases. Given that interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical modulator of inflammation, inhibition of its activity with selective drug molecules (IRAK4 inhibitors) represents a promising therapeutic strategy for inflammatory disorders. To exploit the full potential of this treatment approach, drug carriers for efficient delivery of IRAK4 inhibitors to inflamed tissues are essential. Herein, the first nanoparticle-based platform for the targeted systemic delivery of a clinically tested IRAK4 inhibitor, PF-06650833, with limited aqueous solubility (57 µg mL-1 ) is presented. The developed nanocarriers increase the intrinsic aqueous dispersibility of this IRAK4 inhibitor by 40 times. A targeting peptide on the surface of nanocarriers significantly enhances their accumulation after intravenous injection in inflamed tissues of mice with induced paw edema and ulcerative colitis when compared to non-targeted counterparts. The delivered IRAK4 inhibitor markedly abates inflammation and dramatically suppresses paw edema, mitigates colitis symptoms, and reduces proinflammatory cytokine levels in the affected tissues. Importantly, repeated injections of IRAK4 inhibitor-loaded nanocarriers have no acute toxic effect on major organs of mice. Therefore, the developed nanocarriers have the potential to significantly improve the therapeutic efficacy of IRAK4 inhibitors for different inflammatory diseases.
Collapse
Affiliation(s)
- Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code L481, Portland, Oregon, 97239, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code L481, Portland, Oregon, 97239, USA
| | - Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Kongbrailatpam Shitaljit Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Terry Morgan
- Department of Pathology and Laboratory Medicine, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Constanze J Raitmayr
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Uriel Avila
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Fahad Y Sabei
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Al Maarefah Rd, Jazan, 88723, Kingdom of Saudi Arabia
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code L481, Portland, Oregon, 97239, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
72
|
Kale K, Rajage H, G R K. Determining the association of inflammatory markers, cell-adhesion molecules, and endothelial dysfunction biomarkers with ACS in Indian population. Indian Heart J 2024; 76:63-66. [PMID: 38301959 PMCID: PMC10943524 DOI: 10.1016/j.ihj.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The observational study aims to evaluate inflammatory markers, cell adhesion molecules (CAM) and endothelial dysfunction markers as biomarkers in Indian ACS patients with no conventional risk factors. The study population included 110 healthy individuals and 102 ACS patients without any history of conventional risk factors, except smoking and alcoholism, were included. Patient history, biochemical parameters and levels of biomarkers were estimated. ACS patients had a significant elevation in the circulatory levels of biomarkers, such as IL-6, TNF-α, MCP1, MMP9, VCAM1, ICAM1 and E-selectin. CAM, inflammatory and endothelial biomarkers could help devise strategies for early, effective treatment of ACS.
Collapse
Affiliation(s)
- Keshav Kale
- Cardiology Division, D Y Patil School of Medicine, Nerul, Navi Mumbai, India.
| | - Harshad Rajage
- Cardiology Division, D Y Patil School of Medicine, Nerul, Navi Mumbai, India.
| | - Kane G R
- Cardiology Division, D Y Patil School of Medicine, Nerul, Navi Mumbai, India.
| |
Collapse
|
73
|
Bello C, Filipovic MG, Huber M, Flannery S, Kobel B, Fischer R, Kessler BM, Räber L, Stueber F, Luedi MM. Discovery of plasma proteome markers associated with clinical outcome and immunological stress after cardiac surgery. Front Cardiovasc Med 2023; 10:1287724. [PMID: 38379859 PMCID: PMC10876477 DOI: 10.3389/fcvm.2023.1287724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 02/22/2024] Open
Abstract
Background Molecular mechanisms underlying perioperative acute phase reactions in cardiac surgery are largely unknown. We aimed to characterise perioperative alterations of the acute phase plasma proteome in a cohort of adult patients undergoing on-pump cardiac surgery using high-throughput mass spectrometry and to identify candidate proteins potentially relevant to postoperative clinical outcome through a novel, multi-step approach. Methods This study is an analysis of the Bern Perioperative Biobank, a prospective cohort of adults who underwent cardiac surgery with the use of cardiopulmonary bypass (CPB) at Bern University Hospital between January and December 2019. Blood samples were taken before induction of anaesthesia and on postoperative day one. Proteomic analyses were performed by mass spectrometry. Through a multi-step, exploratory approach, hit-proteins were first identified according to their perioperative prevalence and dynamics. The set of hit-proteins were associated with predefined clinical outcome measures (all-cause one-year mortality, length of hospital stay, postoperative myocardial infarction and stroke until hospital discharge). Results 192 patients [75.5% male, median age 67.0 (IQR 60.0-73.0)] undergoing cardiac surgery with the use of CPB were included in this analysis. In total, we identified and quantified 402 proteins across all samples, whereof 30/402 (7%) proteins were identified as hit-proteins. Three hit-proteins-LDHB, VCAM1 and IGFBP2-demonstrated the strongest associations with clinical outcomes. After adjustment both for age, sex, BMI and for multiple comparisons, the scaled preoperative levels of IGFBP2 were associated with 1-year all-cause mortality (OR 10.63; 95% CI: 2.93-64.00; p = 0.046). Additionally, scaled preoperative levels of LDHB (OR 5.58; 95% CI: 2.58-8.57; p = 0.009) and VCAM1 (OR 2.32; 95% CI: 0.88-3.77; p = 0.05) were found to be associated with length of hospital stay. Conclusions We identified a subset of promising candidate plasma proteins relevant to outcome after on-pump cardiac surgery. IGFBP2 showed a strong association with clinical outcome measures and a significant association of preoperative levels with 1-year all-cause mortality. Other proteins strongly associated with outcome were LDHB and VCAM1, reflecting the dynamics in the acute phase response, inflammation and myocardial injury. We recommend further investigation of these proteins as potential outcome markers after cardiac surgery. Clinical Trial Registration ClinicalTrials.gov; NCT04767685, data are available via ProteomeXchange with identifier PXD046496.
Collapse
Affiliation(s)
- Corina Bello
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mark G. Filipovic
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Huber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah Flannery
- Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Beatrice Kobel
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Nuffield Department of Medicine, Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Frank Stueber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus M. Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
74
|
Roberts R, Huckstepp RT. Innate Sleep Apnea in Spontaneously Hypertensive Rats Is Associated With Microvascular Rarefaction and Neuronal Loss in the preBötzinger Complex. Stroke 2023; 54:3141-3152. [PMID: 38011231 PMCID: PMC10769171 DOI: 10.1161/strokeaha.123.044732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Sleep apnea (SA) is a major threat to physical health and carries a significant economic burden. These impacts are worsened by its interaction with, and induction of, its comorbidities. SA holds a bidirectional relationship with hypertension, which drives atherosclerosis/arteriolosclerosis, ultimately culminating in vascular dementia. METHODS To enable a better understanding of these sequelae of events, we investigated innate SA and its effects on cognition in adult-aged spontaneously hypertensive rats, which have a range of cardiovascular disorders: plethysmography and electroencephalographic/electromyographic recordings were used to assess sleep-wake state, breathing parameters, and sleep-disordered breathing; immunocytochemistry was used to assess vascular and neural health; the forced alteration Y maze and Barnes maze were used to assess short- and long-term memories, respectively; and an anesthetized preparation was used to assess baroreflex sensitivity. RESULTS Spontaneously hypertensive rats displayed a higher degree of sleep-disordered breathing, which emanates from poor vascular health leading to a loss of preBötzinger Complex neurons. These rats also display small vessel white matter disease, a form of vascular dementia, which may be exacerbated by the SA-induced neuroinflammation in the hippocampus to worsen the related deficits in both long- and short-term memories. CONCLUSIONS Therefore, we postulate that hypertension induces SA through vascular damage in the respiratory column, culminating in neuronal loss in the inspiratory oscillator. This induction of SA, which, in turn, will independently exacerbate hypertension and neural inflammation, increases the rate of vascular dementia.
Collapse
Affiliation(s)
- Reno Roberts
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
75
|
Qi X, Chen Y, Liu S, Liu L, Yu Z, Yin L, Fu L, Deng M, Liang S, Lü M. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:696-709. [PMID: 37092313 PMCID: PMC10128503 DOI: 10.1080/13880209.2023.2200787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Sanguinarine (SAG) is the most abundant constituent of Macleaya cordata (Willd.) R. Br. (Popaceae). SAG has shown antimammary and colorectal metastatic effects in mice in vivo, suggesting its potential for cancer chemotherapy. OBJECTIVE To determine the antimetastatic effect and underlying molecular mechanisms of SAG on melanoma. MATERIALS AND METHODS CCK8 assay was used to determine the inhibition of SAG on the proliferation of A375 and A2058 cells. Network pharmacology analysis was applied to construct a compound-target network and select potential therapeutic targets of SAG against melanoma. Molecular docking simulation was conducted for further analysis of the selected targets. In vitro migration/invasion/western blot assay with 1, 1.5, 2 μM SAG and in vivo effect of 2, 4, 8 mg/kg SAG in xenotransplantation model in nude mice. RESULTS The key targets of SAG treatment for melanoma were mainly enriched in PI3K-AKT pathway, and the binding energy of SAG to PI3K, AKT, and mTOR were -6.33, -6.31, and -6.07 kcal/mol, respectively. SAG treatment inhibited the proliferation, migration, and invasion ability of A375 and A2058 cells (p < 0.05) with IC50 values of 2.378 μM and 2.719 μM, respectively. It also decreased the phosphorylation levels of FAK, PI3K, AKT, mTOR and protein expression levels of MMP2 and ICAM-2. In the nude mouse xenograft model, 2, 4, 8 mg/kg SAG was shown to be effective in inhibiting tumour growth. CONCLUSIONS Our research offered a theoretical foundation for the clinical antitumor properties of SAG, further suggesting its potential application in the clinic.
Collapse
Affiliation(s)
- Xiaoyi Qi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Yonglan Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Yin
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Lu Fu
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- CONTACT Sicheng Liang Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
- Muhan Lü Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| |
Collapse
|
76
|
Zhao X, Hu H, Sun K, Liang W, Wang Z, Jin X, Wang S. Actoeside mitigated the renal proximal tubule cells damage triggered by high glucose through miR-766/VCAM1/NF-κB signalling pathway. Arch Physiol Biochem 2023; 129:1177-1186. [PMID: 34338087 DOI: 10.1080/13813455.2021.1920983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/19/2021] [Indexed: 10/20/2022]
Abstract
CONTEXT Diabetic nephropathy (DN) triggered by diabetes mellitus is one of the primary causes of end-stage renal failure worldwide. OBJECTIVE This study intends to explore the function and potential mechanism of actoeside on renal proximal tubule (HK-2) cells damage induced by high-glucose (HG). METHODS The DN model was established in HK-2 cells with 30 mM HG treatment. The viability, apoptosis and inflammation of HK-2 cells were analysed severally via CCK-8, flow cytomery and ELISA. The key factors related to NF-κB were detected by western blotting. RESULTS Actoeside attenuated the HG-induced HK-2 cells damage. The differentially expression of miR-766 and VCAM1 in DN patients was reversed by actoeside. Moreover, the increased phosphorylation levels of p65 NF-κB/IκBα induced by HG were attenuated by actoeside. CONCLUSIONS Actoeside promoted the growth and repressed the apoptosis and inflammation of HK-2 cells via miR-766/VCAM1/NF-κB signalling pathway, affording a promising idea for the treatment of DN.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Honglei Hu
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Kun Sun
- Department of Nephropathy, Zibo Central Hospital, Zibo City, PR China
| | - Wenlong Liang
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Zhenzhen Wang
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Xingqian Jin
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| | - Shujuan Wang
- Department of Endocrinology, Zibo Central Hospital, Zibo City, PR China
| |
Collapse
|
77
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
78
|
Kim GM, Kim J, Lee JY, Park MC, Lee SY. IgSF11 deficiency alleviates osteoarthritis in mice by suppressing early subchondral bone changes. Exp Mol Med 2023; 55:2576-2585. [PMID: 38036734 PMCID: PMC10767117 DOI: 10.1038/s12276-023-01126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 12/02/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. While it is classically characterized by articular cartilage destruction, OA affects all tissues in the joints and is thus also accompanied by local inflammation, subchondral bone changes, and persistent pain. However, our understanding of the underlying subchondral bone dynamics during OA progression is poor. Here, we demonstrate the contribution of immunoglobulin superfamily 11 (IgSF11) to OA subchondral bone remodeling by using a murine model. In particular, IgSF11 was quickly expressed by differentiating osteoclasts and upregulated in subchondral bone soon after destabilization-of-the-medial-meniscus (DMM)-induced OA. In mice, IgSF11 deficiency not only suppressed subchondral bone changes in OA but also blocked cartilage destruction. The IgSF11-expressing cells in OA subchondral bone were found to be involved in osteoclast maturation and bone resorption and colocalized with receptor-activator of nuclear-factor κ-B (RANK), the key osteoclast differentiation factor. Thus, our study shows that blocking early subchondral bone changes in OA can ameliorate articular cartilage destruction in OA.
Collapse
Affiliation(s)
- Gyeong Min Kim
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jihee Kim
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min-Chan Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
79
|
Deng W, Yi C, Pan W, Liu J, Qi J, Chen J, Zhou Z, Duan Y, Ning X, Li J, Ye C, Chen Z, Xu H. Vascular Cell Adhesion Molecule-1 (VCAM-1) contributes to macular fibrosis in neovascular age-related macular degeneration through modulating macrophage functions. Immun Ageing 2023; 20:65. [PMID: 37985993 PMCID: PMC10659061 DOI: 10.1186/s12979-023-00389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD) is a major cause of blindness in the elderly. The disease is due to the growth of abnormal blood vessels into the macula, leading to the loss of central vision. Intravitreal injection of vascular endothelial growth factor (VEGF) inhibitors (e.g., anti-VEGF) is the standard of care for nAMD. However, nearly 50% of patients do not respond or respond poorly to the therapy. More importantly, up to 70% of nAMD patients develop macular fibrosis after 10 years of anti-VEGF therapy. The underlying mechanism of nAMD-mediated macular fibrosis is unknown although inflammation is known to play an important role in the development of abnormal macular blood vessels and its progression to fibro-vascular membrane. In this study, we measured the intraocular levels of adhesion molecule VCAM-1, ICAM-1, CD44, CD62L, and CD62P in nAMD patients with and without macular fibrosis and investigated the link between the levels of adhesion molecule and clinical features (e.g., visual improvement, retinal thickness, etc.). We further investigated the effect of VCAM-1 in macrophage function in vitro and the development of subretinal fibrosis in vivo using a two-stage laser-induced protocol. RESULTS The aqueous levels of ICAM-1, VCAM-1, CD44, and CD62L were significantly higher in nAMD patients compared to cataract controls. The aqueous level of VCAM-1 (but not other adhesion molecules) was significantly higher in patients with macular fibrosis than those without and the level correlated positively with the retinal thickness. VCAM-1 was highly expressed at the lesion site in the mouse model of subretinal fibrosis. Blocking VCAM-1 or its receptor VLA-4 significantly prevented macrophage infiltration and reduced subretinal fibrosis in vivo. VCAM-1 induced macrophage migration and upregulated the expression of Arg-1, Mmp12 and Il6 but down-regulated the expression of iNOS and Il1b in macrophages. CONCLUSIONS VCAM-1 may contribute to the development of macular fibrosis in nAMD patients by modulating macrophage functions, including migration and profibrotic polarization.
Collapse
Affiliation(s)
- Wen Deng
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Caijiao Yi
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Wei Pan
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Jian Liu
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Jinyan Qi
- Aier School of Ophthalmology, Central South University, Changsha, China
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Juan Chen
- Changsha Aier Eye Hospital, Changsha, China
| | | | - Yiqin Duan
- Changsha Aier Eye Hospital, Changsha, China
| | | | - Jun Li
- Changsha Aier Eye Hospital, Changsha, China
| | - Changhua Ye
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Zhongping Chen
- Aier School of Ophthalmology, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Heping Xu
- Aier School of Ophthalmology, Central South University, Changsha, China.
- Aier Institute of Optometry and Vision Science, Changsha, China.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
80
|
Picciolini S, Rodà F, Gualerzi A, Mangolini V, Forleo L, Mangolini A, Sesana S, Antoniou A, Re F, Seneci P, Bedoni M. SPRi analysis of molecular interactions of mApoE-functionalized liposomes as drug delivery systems for brain diseases. Analyst 2023; 148:6070-6077. [PMID: 37904570 DOI: 10.1039/d3an01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The application of liposomes (LPs) to central nervous system disorders could represents a turning point in the therapy and quality of life of patients. Indeed, LPs have demonstrated their ability to cross the blood-brain barrier (BBB) and, as a consequence, to enhance the therapeutics delivery into the brain. Some approaches for BBB crossing involve the modification of LP surfaces with biologically active ligands. Among them, the Apolipoprotein E-modified peptide (mApoE) has been used for several LP-based nanovectors under investigation. In this study, we propose Surface Plasmon Resonance imaging (SPRi) for the characterization of multifunctionalized LPs for Glioblastoma treatment. LPs were functionalized with mApoE and with a metallo-protease sensitive lipopeptide to deliver and guarantee the localized release of an encapsulated drug in diseased areas. The SPRi analysis was optimized in order to evaluate the binding affinity between LPs and mApoE receptors, finding that mApoE-LPs generated SPRi signals referred to interactions between mApoE and receptors mainly present in the brain. Moreover, a significant binding between LPs and VCAM-1 (endothelial receptor) was observed, whereas LPs did not interact significantly with peripheral receptors expressed on monocytes and lymphocytes. SPRi results confirmed not only the presence of mApoE on LP surfaces, but also its binding affinity, thanks to the specific interaction with selected receptors. In conclusion, the high sensitivity and the multiplexing capability associated with the low volumes of sample required and the minimal sample preparation, make SPRi an excellent technique for the characterization of multifunctionalized nanoparticles-based formulations.
Collapse
Affiliation(s)
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | - Valentina Mangolini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Brescia, Italy
| | - Luana Forleo
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| | | | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Antonia Antoniou
- Chemistry Department, Università Statale di, Milano, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | | | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy.
| |
Collapse
|
81
|
Ebrahimi F, Ghazimoradi MM, Fatima G, Bahramsoltani R. Citrus flavonoids and adhesion molecules: Potential role in the management of atherosclerosis. Heliyon 2023; 9:e21849. [PMID: 38028000 PMCID: PMC10663934 DOI: 10.1016/j.heliyon.2023.e21849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis as a chronic inflammatory disorder is accompanied with oxidative stress which causes a high morbidity and mortality. Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), P-selectin, and E-selectin, are amongst the most important contributors in atherosclerosis. In such cases, dietary interventions with functional foods containing natural antioxidant and anti-inflammatory constituents are of a great interest. Citrus fruits are rich sources of flavonoids as natural pigments with potent antioxidant and anti-inflammatory activities. This study aims to review current evidence regarding the role of citrus flavonoids in the management of atherosclerosis with a focus on their effect on adhesion molecules. Electronic databases including PubMed, Scopus, and Web of Science were searched with the names of adhesion molecules and flavonoids from inception until January 2023. The included articles highly support the beneficial effects of citrus flavonoids in preclinical models of atherosclerosis. Quercetin, naringin and naringenin, hesperidin and hesperetin, nobiletin, rutin, luteolin, apigenin, and kaempferol are the most common flavonoids in citrus fruits which could modulate adhesion molecules including ICAM-1, VCAM-1, E-selectin, and P-selectin. Additionally, markers of chronic inflammation such as interleukins, tumor necrosis factor-α, nuclear factor-κB, and nitric oxide signaling, as well as oxidative stress markers like superoxide dismutase and glutathione were all normalized upon administration of citrus flavonoids. Conclusively, this review confirms the modulatory role of flavonoids on adhesion molecules in atherosclerosis based on the preclinical evaluations. Thus, citrus fruits can be further studied in atherosclerotic patients regarding their activity in reducing adhesion molecules.
Collapse
Affiliation(s)
- Farnaz Ebrahimi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | | | - Ghizal Fatima
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
82
|
Fan Y, Li Y, Fu X, Peng J, Chen Y, Chen T, Zhang D. Identification of potential ferroptosis key genes and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis. Heliyon 2023; 9:e21167. [PMID: 37920499 PMCID: PMC10618794 DOI: 10.1016/j.heliyon.2023.e21167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/23/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Objective Ferroptosis is of vital importance in the development of Rheumatoid arthritis (RA). The purpose of this project is to clarify the potential ferroptosis-related genes, pathways, and immune infiltration in RA by bioinformatics analysis. Methods We acquired ferroptosis-related genes (FRGs) from Ferroptosis database (FerrDb). We obtained the Gene dataset of RA (GSE55235) from the Gene Expression Omnibus (GEO) Database, screened the differentially expressed genes (DEGs) in RA and control samples, and then took the intersection of it and FRGs. Aiming to construct the protein-protein interaction (PPI) networks of the FRGs-DEGs, STRING database and Cytoscape software 3.7.0 would be used. Furthermore, hub genes were identified by CytoNCA, a Cytoscape plug-in. The gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of FRGs-DEGs were performed. Results We identified 34 FRGs-DEGs, including 7 upregulated and 27 downregulated genes by taking the intersection of the FRGs and DEGs. PPI analysis identified a total of 3 hub genes(VEGFA, PTGS2, and JUN). GO enrichment analyses and KEGG Pathway enrichment displayed that the FRGs-DEGs are involved in the response to oxidative stress and corticosteroid, heme binding, FoxO-signal pathway. Results of immune infiltration displayed that increased infiltration of T cells, while Macrophages M2 less may be related to the occurrence of RA. Conclusion The hub genes involved in ferroptosis in RA may be VEGFA, PTGS2, and JUN, which are mainly involved in FoxO-signal pathway. T cell, Mac, and plasma cells may be involved in the regulation of RA-joints-synovial-inflammation.
Collapse
Affiliation(s)
- Yihua Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yuan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Xiaoyan Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Jing Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yuchi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Tao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Di Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong Province, China
| |
Collapse
|
83
|
Merges GE, Arévalo L, Kovacevic A, Lohanadan K, de Rooij DG, Simon C, Jokwitz M, Witke W, Schorle H. Actl7b deficiency leads to mislocalization of LC8 type dynein light chains and disruption of murine spermatogenesis. Development 2023; 150:dev201593. [PMID: 37800308 PMCID: PMC10652042 DOI: 10.1242/dev.201593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Actin-related proteins (Arps) are classified according to their similarity to actin and are involved in diverse cellular processes. ACTL7B is a testis-specific Arp, and is highly conserved in rodents and primates. ACTL7B is specifically expressed in round and elongating spermatids during spermiogenesis. Here, we have generated an Actl7b-null allele in mice to unravel the role of ACTL7B in sperm formation. Male mice homozygous for the Actl7b-null allele (Actl7b-/-) were infertile, whereas heterozygous males (Actl7b+/-) were fertile. Severe spermatid defects, such as detached acrosomes, disrupted membranes and flagella malformations start to appear after spermiogenesis step 9 in Actl7b-/- mice, finally resulting in spermatogenic arrest. Abnormal spermatids were degraded and levels of autophagy markers were increased. Co-immunoprecipitation with mass spectrometry experiments identified an interaction between ACTL7B and the LC8 dynein light chains DYNLL1 and DYNLL2, which are first detected in step 9 spermatids and mislocalized when ACTL7B is absent. Our data unequivocally establish that mutations in ACTL7B are directly related to male infertility, pressing for additional research in humans.
Collapse
Affiliation(s)
- Gina E. Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andjela Kovacevic
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Keerthika Lohanadan
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Dirk G. de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Carla Simon
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Melanie Jokwitz
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Walter Witke
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
84
|
Ahmed BM, Mansour NO, Sallam RA, Soliman MM. Efficacy of montelukast as an adjuvant therapy in rheumatoid arthritis patients: A randomized controlled study. Int Immunopharmacol 2023; 124:110959. [PMID: 37725847 DOI: 10.1016/j.intimp.2023.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy of montelukast in conjunction with non-biologic disease modifying anti-rheumatic drugs (nDMARDs) in rheumatoid arthritis (RA) patients. METHODS This study was a single-center randomized double-blinded placebo-controlled study. Adult RA patients were included if they had moderate to severe disease activity and were receiving monotherapy or combination of nDMARDs. Eligible patients were randomized, in 1:1 ratio, to receive either 10 mg montelukast or placebo, once daily for 16 weeks. The primary endpoint was the change in the 28-joints disease activity score (DAS28) 16 weeks after treatment. The patients' quality of life (QoL) was assessed by the Arabic version of the Health Assessment Questionnaire-Disability Index. Moreover, serum levels of vascular adhesion molecule-1 (VCAM-1) were measured. RESULTS A total of 87 patients completed the study; 44 in the montelukast arm and 43 in the control arm. After 16 weeks of treatment, disease activity decreased significantly in the montelukast arm with mean change in DAS28 (95% CIs) of -1.5 (-1.7, -1.2) while the control arm showed no improvement (0.2 (0.0, 0.4), p < 0.01). The QoL of the patients improved significantly from baseline in the montelukast arm (p < 0.01) but not in the control arm (p = 0.08). The median (IQR) serum levels of VCAM-1 were significantly lower in the montelukast arm (22.8 (15.0-32.7)) than in the control arm (28.9 (15.4-42.8), p = 0.004). CONCLUSION The co-administration of montelukast with nDMARDs in RA patients enhanced the anti-rheumatic effect which was reflected clinically by decreased disease activity.
Collapse
Affiliation(s)
- Basma M Ahmed
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Noha O Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Rehab A Sallam
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Moetaza M Soliman
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
85
|
Pickett JR, Wu Y, Zacchi LF, Ta HT. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc Res 2023; 119:2278-2293. [PMID: 37595265 PMCID: PMC10597632 DOI: 10.1093/cvr/cvad130] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.
Collapse
Affiliation(s)
- Jessica R Pickett
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
| | - Lucia F Zacchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hang T Ta
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
86
|
Ye L, Li C, Zhao X, Ou W, Wang L, Wan M. Exploring the pharmacological mechanism of Tripterygium wilfordii hook for treatment of Behcet's disease using network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e34512. [PMID: 37861497 PMCID: PMC10589559 DOI: 10.1097/md.0000000000034512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 10/21/2023] Open
Abstract
Tripterygium wilfordii hook (TWH) has been used to treat Behcet's disease (BD) but its underlying mechanism remains unclear. This study aims to explore the mechanism of TWH on BD using network pharmacology and molecular docking. The bioactive constituents of TWH and their corresponding target genes were extracted from the Traditional Chinese Medicine systems pharmacology database and analysis platform. BD target genes were obtained by searching the DisGeNet and GeneCards databases. Gene ontology annotation and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were conducted to elucidate the function of overlapping genes between TWH and BD target genes. A protein-protein interaction network was constructed using Cytoscape and STRING platforms, and the core target genes were identified from the overlapping genes. Finally, molecular docking was used to assess the binding affinity between the core targets and TWH bioactive constituents. We identified 25 intersection genes related to both TWH and BD and 27 bioactive ingredients of TWH. Through analysis of protein-protein interaction network, 6 core targets (TNF, IFNG, prostaglandin-endoperoxide synthase 2, NOS2, VCAM-1, and interleukin-2) were screened out. Enrichment analysis demonstrated that the antioxidant properties of TWH constituents might play a significant role in their therapeutic effects. Molecular docking revealed high binding affinity between the bioactive constituents of TWH, such as kaempferol, triptolide, 5, 8-Dihydroxy-7-(4-hydroxy-5-methyl-coumarin-3)-coumarin, and their corresponding target genes, suggesting the potential of TWH to treat BD. Our investigation clarified the active components, therapeutic targets of BD in the treatment of TWH and provided a theoretical foundation for further researches.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| | - Changrong Li
- Medical Cosmetology Clinic, Hainan Yilimei Medical Cosmetology Co., Hainan, China
| | - Xiaoxia Zhao
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| | - WeiHong Ou
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| | - Li Wang
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| | - Mengjie Wan
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Hainan, China
| |
Collapse
|
87
|
Moallemi S, Lloyd AR, Rodrigo C. Early biomarkers for prediction of severe manifestations of dengue fever: a systematic review and a meta-analysis. Sci Rep 2023; 13:17485. [PMID: 37838744 PMCID: PMC10576797 DOI: 10.1038/s41598-023-44559-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
Early identification of dengue patients at risk of adverse outcomes is important to prevent hospital overcrowding in low- to middle- income countries during epidemics. We performed a systematic review to identify which biomarkers measured in first 96 h of fever could predict dengue haemorrhagic fever (DHF, World Health Organization 1997 clinical classification) or severe dengue (SD, WHO 2009, clinical classification). PubMed, Scopus, CINAHL, Web of Science, and EMBASE databases were searched for prospective cohort and nested case-control studies published from 1997 to Feb 27, 2022. The protocol for the study was registered in PROSPERO (ID: CRD42021230053). After screening 6747 publications, and analysing 37 eligible studies reporting on 5925 patients, elevated C-reactive protein, aspartate aminotransferase, interleukin-8 and decreased albumin levels were strongly associated with dengue haemorrhagic fever (by meta-analyses of multiple studies, p < 0.05), while elevated vascular cell adhesion protein 1, syndecan-1, aspartate aminotransferase and C-reactive protein levels were strongly associated with severe dengue (by meta-analyses of multiple studies, p < 0.05). Further 44 and 28 biomarkers were associated with the risk of DHF and SD respectively, but only in a single study. The meta-analyses suggest the importance of early acute inflammation with hepatic involvement in determining the subsequent course of illness in dengue.
Collapse
Affiliation(s)
- Samaneh Moallemi
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- Viral Immunology Systems Program, Kirby Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, Kirby Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Viral Immunology Systems Program, Kirby Institute, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
88
|
Zhang P, Yan X, Zhang X, Liu Y, Feng X, Yang Z, Zhang J, Xu X, Zheng Q, Liang L, Han H. TMEM215 Prevents Endothelial Cell Apoptosis in Vessel Regression by Blunting BIK-Regulated ER-to-Mitochondrial Ca Influx. Circ Res 2023; 133:739-757. [PMID: 37750320 DOI: 10.1161/circresaha.123.322686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND In developmental and pathological tissues, nascent vessel networks generated by angiogenesis require further pruning/regression to delete nonfunctional endothelial cells (ECs) by apoptosis and migration. Mechanisms underlying EC apoptosis during vessel pruning remain elusive. TMEM215 (transmembrane protein 215) is an endoplasmic reticulum-located, 2-pass transmembrane protein. We have previously demonstrated that TMEM215 knockdown in ECs leads to cell death, but its physiological function and mechanism are unclear. METHODS We characterized the role and mechanism of TMEM215 in EC apoptosis using human umbilical vein endothelial cells by identifying its interacting proteins with immunoprecipitation-mass spectrometry. The physiological function of TMEM215 in ECs was assessed by establishing a conditional knockout mouse strain. The role of TMEM215 in pathological angiogenesis was evaluated by tumor and choroidal neovascularization models. We also tried to evaluate its translational value by delivering a Tmem215 small interfering RNA (siRNA) using nanoparticles in vivo. RESULTS TMEM215 knockdown in ECs induced apoptotic cell death. We identified the chaperone BiP as a binding partner of TMEM215, and TMEM215 forms a complex with and facilitates the interaction of BiP (binding immunoglobin protein) with the BH (BCL-2 [B-cell lymphoma 2] homology) 3-only proapoptotic protein BIK (BCL-2 interacting killer). TMEM215 knockdown triggered apoptosis in a BIK-dependent way and was abrogated by BCL-2. Notably, TMEM215 knockdown increased the number and diminished the distance of mitochondria-associated endoplasmic reticulum membranes and increased mitochondrial calcium influx. Inhibiting mitochondrial calcium influx by blocking the IP3R (inositol 1,4,5-trisphosphate receptor) or MCU (mitochondrial calcium uniporter) abrogated TMEM215 knockdown-induced apoptosis. TMEM215 expression in ECs was induced by physiological laminar shear stress via EZH2 downregulation. In EC-specific Tmem215 knockout mice, induced Tmem215 depletion impaired the regression of retinal vasculature characterized by reduced vessel density, increased empty basement membrane sleeves, and increased EC apoptosis. Moreover, EC-specific Tmem215 ablation inhibited tumor growth with disrupted vasculature. However, Tmem215 ablation in adult mice attenuated lung metastasis, consistent with reduced Vcam1 expression. Administration of nanoparticles carrying Tmem215 siRNA also inhibited tumor growth and choroidal neovascularization injury. CONCLUSIONS TMEM215, which is induced by blood flow-derived shear stress via downregulating EZH2, protects ECs from BIK-triggered mitochondrial apoptosis mediated by calcium influx through mitochondria-associated ER membranes during vessel pruning, thus providing a novel target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- The Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, China (Y.L.)
| | - Xingxing Feng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyuan Xu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, China (Q.Z.)
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology (P.Z., X.Y., X.Z., Y.L., X.F., Z.Y., J.Z., X.X., L.L., H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Gastroenterology (H.H.), Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
89
|
Shao Y, Sun L, Ma B, Jin R, Ban Y, Li R, Wang J, Lian H, Yue H. VCAM-1 Promotes Angiogenesis of Bone Marrow Mesenchymal Stem Cells Derived from Patients with Trauma-Induced Osteonecrosis of the Femoral Head by Regulating the Apelin/CCN2 Pathway. Stem Cells Int 2023; 2023:6684617. [PMID: 37868703 PMCID: PMC10586908 DOI: 10.1155/2023/6684617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
Trauma-induced osteonecrosis of the femoral head (TI-ONFH) is a pathological process in which the destruction of blood vessels supplying blood to the femoral head causes the death of bone tissue cells. Vascular cell adhesion molecule 1 (VCAM-1) has been shown to have potent proangiogenic activity, but the role in angiogenesis of TI-ONFH is unclear. In this work, we discovered that VCAM-1 was significantly downregulated in the bone marrow mesenchymal stem cells (BMSCs) derived from patients with TI-ONFH. Subsequently, we constructed BMSCs overexpressing VCAM-1 using a lentiviral vector. VCAM-1 enhances the migration and angiogenesis of BMSCs. We further performed mRNA transcriptome sequencing to explore the mechanisms by which VCAM-1 promotes angiogenesis. Gene ontology biological process enrichment analysis demonstrated that upregulated differentially expressed genes (DEGs) were related to blood vessel development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that upregulated DEGs were engaged in the Apelin signaling pathway. Apelin-13 is the endogenous ligand of the APJ receptor and activates this G protein-coupled receptor. Treatment with Apelin-13 activated the Apelin signaling pathway and suppressed the expression of cellular communication network factor 2 in BMSCs. Furthermore, Apelin-13 also inhibits the migration and angiogenesis of VCAM-1-BMSCs. In summary, VCAM-1 plays an important role in vascular microcirculation disorders of TI-ONFH, which provides a new direction for the molecular mechanism and treatment of TI-ONFH.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Lei Sun
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Baodong Ma
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Ranran Jin
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Yueyao Ban
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Ruibo Li
- Department of Trauma Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Jianfa Wang
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Hongkai Lian
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| | - Han Yue
- Center of Stem Cell and Regenerative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
90
|
Starzonek S, Maar H, Mereiter S, Freytag V, Haider MT, Riecken K, Huang YL, Jacob F, Wicklein D, Schumacher U, Lange T. Identification of potential classes of glycoligands mediating dynamic endothelial adhesion of human tumor cells. Glycobiology 2023; 33:637-650. [PMID: 37486674 PMCID: PMC10560084 DOI: 10.1093/glycob/cwad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
One critical step of metastasis formation is the extravasation of circulating tumor cells from the bloodstream. This process requires the dynamic interaction of cell adhesion molecules like E-selectin on endothelial cells with carbohydrate ligands on tumor cells. To characterize these glycans in a comprehensible approach, the rolling, tethering, and firm adhesion of nine human tumor cell lines on human umbilical vein endothelial cells was analyzed using laminar flow adhesion assays. The tumor cell lines were grouped into three subsets by their canonical E-selectin ligand status (sialyl-Lewis A and X +/+, -/+, -/-) and their adhesiveness was compared after enzymatic, pharmacologic, chemical treatment or antibody blockade of the tumor cells or endothelial cells, respectively. Tumor cells were also screened regarding their glycosyltransferase expression profile. We found that although E-selectin and terminal α2,3-sialic acid largely determined firm adhesion, adhesive events did not exclusively depend on the presence of sialyl-Lewis A and/or sialyl-Lewis X. Nevertheless, two of the three sialyl-Lewis A/X-/- tumor cells additionally or fully depended on vascular cell adhesion molecule-1 for firm adhesion. The significance of O-GalNAc- and N-glycans for adhesion varied remarkably among the tumor cells. The sialyl-Lewis A/X+/+ subset showed glycoprotein-independent adhesion, suggesting a role of glycolipids as well. All sialyl-Lewis A/X-/- tumor cells lacked FUT3 and FUT7 expression as opposed to sialyl-Lewis A/X+/+ or -/+ cell lines. In summary, the glycans on tumor cells mediating endothelial adhesion are not as much restricted to sialyl-Lewis A /X as previously assumed. The present study specifically suggests α2,3-linked sialic acid, O-GalNAc glycans, glycosphingolipids, and FUT3/FUT7 products as promising targets for future studies.
Collapse
Affiliation(s)
- Sarah Starzonek
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Anatomy I, University Hospital Jena, Teichgraben 7, 07743 Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| | - Stefan Mereiter
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vera Freytag
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Marie-Therese Haider
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Yen-Lin Huang
- Ovarian Cancer Research, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Daniel Wicklein
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Department of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Strasse 8, 35037 Marburg, Germany
| | - Udo Schumacher
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Medical School Berlin, Leipziger Platz 10, 10117 Berlin, Germany
| | - Tobias Lange
- Institute of Anatomy & Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Anatomy I, University Hospital Jena, Teichgraben 7, 07743 Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| |
Collapse
|
91
|
Lau SF, Wu W, Wong HY, Ouyang L, Qiao Y, Xu J, Lau JHY, Wong C, Jiang Y, Holtzman DM, Fu AKY, Ip NY. The VCAM1-ApoE pathway directs microglial chemotaxis and alleviates Alzheimer's disease pathology. NATURE AGING 2023; 3:1219-1236. [PMID: 37735240 PMCID: PMC10570140 DOI: 10.1038/s43587-023-00491-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
In Alzheimer's disease (AD), sensome receptor dysfunction impairs microglial danger-associated molecular pattern (DAMP) clearance and exacerbates disease pathology. Although extrinsic signals, including interleukin-33 (IL-33), can restore microglial DAMP clearance, it remains largely unclear how the sensome receptor is regulated and interacts with DAMP during phagocytic clearance. Here, we show that IL-33 induces VCAM1 in microglia, which promotes microglial chemotaxis toward amyloid-beta (Aβ) plaque-associated ApoE, and leads to Aβ clearance. We show that IL-33 stimulates a chemotactic state in microglia, characterized by Aβ-directed migration. Functional screening identified that VCAM1 directs microglial Aβ chemotaxis by sensing Aβ plaque-associated ApoE. Moreover, we found that disrupting VCAM1-ApoE interaction abolishes microglial Aβ chemotaxis, resulting in decreased microglial clearance of Aβ. In patients with AD, higher cerebrospinal fluid levels of soluble VCAM1 were correlated with impaired microglial Aβ chemotaxis. Together, our findings demonstrate that promoting VCAM1-ApoE-dependent microglial functions ameliorates AD pathology.
Collapse
Grants
- This work was supported in part by the National Key R&D Program of China (2021YFE0203000), the Research Grants Council of Hong Kong (the Collaborative Research Fund [C6027-19GF], the Theme-Based Research Scheme [T13-605/18W], and the General Research Fund [HKUST16103122]), the Areas of Excellence Scheme of the University Grants Committee (AoE/M-604/16), the Innovation and Technology Commission (InnoHK, and ITCPD/17-9), the Guangdong Provincial Key S&T Program Grant (2018B030336001); the Guangdong Provincial Fund for Basic and Applied Basic Research (2019B1515130004), the NSFC-RGC Joint Research Scheme (32061160472), the Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence Fund (2019001 and 2019003), and the Fundamental Research Program of Shenzhen Virtual University Park (2021Szvup137).
- S.-F.L. is a recipient of the Hong Kong Postdoctoral Fellowship Award from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKUST PDFS2122-6S02).
- W.W. is a recipient of the Hong Kong PhD Fellowship Award.
Collapse
Affiliation(s)
- Shun-Fat Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Wei Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Hiu Yi Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Li Ouyang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yi Qiao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jiahui Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jessica Hiu-Yan Lau
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Carlton Wong
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yuanbing Jiang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong, China.
| |
Collapse
|
92
|
Ryser FS, Yalamanoglu A, Valaperti A, Brühlmann C, Mauthe T, Traidl S, Soyka MB, Steiner UC. Dupilumab-induced eosinophilia in patients with diffuse type 2 chronic rhinosinusitis. Allergy 2023; 78:2712-2723. [PMID: 37548395 DOI: 10.1111/all.15844] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Dupilumab, a monoclonal anti-IL-4Rα antibody, is approved for several type 2 mediated inflammatory diseases like asthma, atopic dermatitis, and diffuse type 2 chronic rhinosinusitis (CRS). Clinical studies had reported a transient increase in blood eosinophils during dupilumab therapy. This study aimed to assess the impact of elevated blood eosinophils on clinical outcome and to investigate the cause of high blood eosinophil levels under dupilumab therapy. METHODS Patients suffering from diffuse type 2 CRS treated with dupilumab were examined on days 0, 28, 90, and 180 after therapy start. Sino-Nasal-Outcome-Test Score (SNOT-22), Total Nasal Polyp Score (TNPS), and blood samples were collected. Cytokine measurements and proteomics analysis were conducted. Flow cytometry analysis measured receptor expression on eosinophils. RESULTS Sixty-eighty patients were included. Baseline eosinophilia ≥0.3G/L was observed in 63.2% of patients, and in 30.9% of patients, eosinophils increased by ≥0.5G/L under dupilumab. Subjects with eosinophilia ≥0.3G/L at baseline had the best SNOT-22 mean change compared to no eosinophilia. Eosinophil elevation during dupilumab therapy had no impact on clinical scores. The eosinophil adhesion molecule VCAM-1 decreased significantly during therapy in all patients. The chemokine receptor CXCR4 was significantly down- and IL-4 upregulated in subjects with eosinophil increase. CONCLUSION Our findings suggest that increased eosinophils in type 2 CRS are associated with a good clinical response to dupilumab. Patients with elevated IL-4 at baseline developed dupilumab-induced transient eosinophilia. We identified the downregulation of VCAM-1 and surface markers CD49d and CXCR4 on eosinophils as possible explanations of dupilumab-induced eosinophilia.
Collapse
Affiliation(s)
- Fabio S Ryser
- Department of Rheumatology and Immunology, University Hospital Bern, University of Bern, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Ayla Yalamanoglu
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alan Valaperti
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Catrin Brühlmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tina Mauthe
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephan Traidl
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Swiss Institute for Asthma and Allergy Research, Davos, Switzerland
| | - Michael B Soyka
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Urs C Steiner
- Department of Rheumatology and Immunology, University Hospital Bern, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
93
|
Koning T, Cordova F, Aguilar G, Sarmiento J, Mardones GA, Boric M, Varas-Godoy M, Lladser A, Duran WN, Ehrenfeld P, Sanchez FA. S-Nitrosylation in endothelial cells contributes to tumor cell adhesion and extravasation during breast cancer metastasis. Biol Res 2023; 56:51. [PMID: 37773178 PMCID: PMC10540418 DOI: 10.1186/s40659-023-00461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Nitric oxide is produced by different nitric oxide synthases isoforms. NO activates two signaling pathways, one dependent on soluble guanylate cyclase and protein kinase G, and other where NO post-translationally modifies proteins through S-nitrosylation, which is the modification induced by NO in free-thiol cysteines in proteins to form S-nitrosothiols. High levels of NO have been detected in blood of breast cancer patients and increased NOS activity has been detected in invasive breast tumors compared to benign or normal breast tissue, suggesting a positive correlation between NO biosynthesis, degree of malignancy and metastasis. During metastasis, the endothelium plays a key role allowing the adhesion of tumor cells, which is the first step in the extravasation process leading to metastasis. This step shares similarities with leukocyte adhesion to the endothelium, and it is plausible that it may also share some regulatory elements. The vascular cell adhesion molecule-1 (VCAM-1) expressed on the endothelial cell surface promotes interactions between the endothelium and tumor cells, as well as leukocytes. Data show that breast tumor cells adhere to areas in the vasculature where NO production is increased, however, the mechanisms involved are unknown. RESULTS We report that the stimulation of endothelial cells with interleukin-8, and conditioned medium from breast tumor cells activates the S-nitrosylation pathway in the endothelium to induce leukocyte adhesion and tumor cell extravasation by a mechanism that involves an increased VCAM-1 cell surface expression in endothelial cells. We identified VCAM-1 as an S-nitrosylation target during this process. The inhibition of NO signaling and S-nitrosylation blocked the transmigration of tumor cells through endothelial monolayers. Using an in vivo model, the number of lung metastases was inhibited in the presence of the S-nitrosylation inhibitor N-acetylcysteine (NAC), which was correlated with lower levels of S-nitrosylated VCAM-1 in the metastases. CONCLUSIONS S-Nitrosylation in the endothelium activates pathways that enhance VCAM-1 surface localization to promote binding of leukocytes and extravasation of tumor cells leading to metastasis. NAC is positioned as an important tool that might be tested as a co-therapy against breast cancer metastasis.
Collapse
Affiliation(s)
- T Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
- Escuela de Graduados de Ciencias, Universidad Austral de Chile, 511-0566, Valdivia, Chile
| | - F Cordova
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
| | - G Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
| | - J Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
| | - G A Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - M Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - M Varas-Godoy
- Cancer Cell Biology Lab., Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, 7780272, Santiago, Chile
| | - A Lladser
- Centro Ciencia & Vida, Fundación Ciencia & Vida, 7780272, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - W N Duran
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - P Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile.
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, 5110566, Valdivia, Chile.
| | - F A Sanchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, 511-0566, Valdivia, Chile.
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, 5110566, Valdivia, Chile.
| |
Collapse
|
94
|
Wang Z, Fang C, Yao M, Wu D, Chen M, Guo T, Mo J. Research progress of NF-κB signaling pathway and thrombosis. Front Immunol 2023; 14:1257988. [PMID: 37841272 PMCID: PMC10570553 DOI: 10.3389/fimmu.2023.1257988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Venous thromboembolism is a very common and costly health problem. Deep-vein thrombosis (DVT) can cause permanent damage to the venous system and lead to swelling, ulceration, gangrene, and other symptoms in the affected limb. In addition, more than half of the embolus of pulmonary embolism comes from venous thrombosis, which is the most serious cause of death, second only to ischemic heart disease and stroke patients. It can be seen that deep-vein thrombosis has become a serious disease affecting human health. In recent years, with the deepening of research, inflammatory response is considered to be an important pathway to trigger venous thromboembolism, in which the transcription factor NF-κB is the central medium of inflammation, and the NF-κB signaling pathway can regulate the pro-inflammatory and coagulation response. Thus, to explore the mechanism and make use of it may provide new solutions for the prevention and treatment of thrombosis.
Collapse
Affiliation(s)
- Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maga Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Ganzhou City Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| |
Collapse
|
95
|
Zerikiotis S, Efentakis P, Dapola D, Agapaki A, Seiradakis G, Kostomitsopoulos N, Skaltsounis AL, Tseti I, Triposkiadis F, Andreadou I. Synergistic Pulmonoprotective Effect of Natural Prolyl Oligopeptidase Inhibitors in In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Int J Mol Sci 2023; 24:14235. [PMID: 37762537 PMCID: PMC10531912 DOI: 10.3390/ijms241814235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid inflammatory lung disease with limited pharmacological interventions. The present study aims to evaluate and compare the potential pulmonoprotective effects of natural prolyl oligopeptidase (POP) inhibitors namely rosmarinic acid (RA), chicoric acid (CA), epigallocatechin-3-gallate (EGCG) and gallic acid (GA), against lipopolysaccharide (LPS)-induced ARDS. Cell viability and expression of pro-inflammatory mediators were measured in RAW264.7 cells and in primary murine lung epithelial and bone marrow cells. Nitric oxide (NO) production was also assessed in unstimulated and LPS-stimulated RAW264.7 cells. For subsequent in vivo experiments, the two natural products (NPs) with the most favorable effects, RA and GA, were selected. Protein, cell content and lipid peroxidation levels in bronchoalveolar lavage fluid (BALF), as well as histopathological changes and respiratory parameters were evaluated in LPS-challenged mice. Expression of key mediators involved in ARDS pathophysiology was detected by Western blotting. RA and GA favorably reduced gene expression of pro-inflammatory mediators in vitro, while GA decreased NO production in macrophages. In LPS-challenged mice, RA and GA co-administration improved respiratory parameters, reduced cell and protein content and malondialdehyde (MDA) levels in BALF, decreased vascular cell adhesion molecule-1 (VCAM-1) and the inducible nitric oxide synthase (iNOS) protein expression, activated anti-apoptotic mechanisms and down-regulated POP in the lung. Conclusively, these synergistic pulmonoprotective effects of RA and GA co-administration could render them a promising prophylactic/therapeutic pharmacological intervention against ARDS.
Collapse
Affiliation(s)
- Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Danai Dapola
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Anna Agapaki
- Histochemistry Facility, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Georgios Seiradakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Section of Pharmacognosy and Natural Product Chemistry Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece;
| | | | - Filippos Triposkiadis
- Department of Cardiology, University General Hospital of Larissa, 413 34 Larissa, Greece;
- Faculty of Health Sciences, University of Thessaly, 413 34 Larissa, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| |
Collapse
|
96
|
Shi M, Wang Y, Zhang H, Ling Z, Chen X, Wang C, Liu J, Ma Y. Single-cell RNA sequencing shows the immune cell landscape in the kidneys of patients with idiopathic membranous nephropathy. Front Immunol 2023; 14:1203062. [PMID: 37731504 PMCID: PMC10507359 DOI: 10.3389/fimmu.2023.1203062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a leading pathological type of the adult primary nephrotic syndrome. Some patients develop end-stage renal disease due to poor response to treatment with steroid and immunosuppressive agents. In order to explore the molecular mechanism of IMN, we collected renal tissue samples from IMN patients and healthy controls and performed analysis by single-cell RNA sequencing (scRNA-seq). A total of 11 kidney cell clusters were identified, including multiple myeloid cell clusters, NK/T cell clusters, and B cell clusters. Most kidney parenchymal and immune cells were enriched in the regulation of immune response, inflammation, fibrosis and endoplasmic reticulum stress. The macrophage population in the IMN group showed a highly activated profile with up-regulated genes related to chemotaxis, inflammation, phagocytosis and fibrosis. CD8+ T cells continued to be cytotoxic in IMN; however, a transition to "inflammageing" GZMK+ CD8+ T cells was observed. The proportion of activated B cells in renal tissues of IMN patients was much higher than that of normal controls, indicating that B cells in IMN might be activated by constant antigenic stimulation. Moreover, the cell-cell interaction analysis revealed the potential communication between renal glomerular cells and immune cells in IMN. Overall, scRNA-seq was applied to IMN to unravel the characteristics of immune cells and elucidate possible underlying mechanisms involved in the pathogenesis of IMN.
Collapse
Affiliation(s)
- Manman Shi
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Yuxin Wang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Huan Zhang
- Department of Nephrology, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zicheng Ling
- Department of Internal Medicine, Weiting Community Health Center of Suzhou Industrial Park, Suzhou, Jiangsu, China
| | - Xue Chen
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Chaojun Wang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Jian Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuhua Ma
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, Jiangsu, China
| |
Collapse
|
97
|
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y, Fu P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 2023; 14:586. [PMID: 37666809 PMCID: PMC10477350 DOI: 10.1038/s41419-023-06119-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, 313000, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, 315300, Cixi, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, 318000, Taizhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| |
Collapse
|
98
|
Cazzola A, Calzón Lozano D, Menne DH, Dávila Pedrera R, Liu J, Peña-Jiménez D, Fontenete S, Halin C, Perez-Moreno M. Lymph Vessels Associate with Cancer Stem Cells from Initiation to Malignant Stages of Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:13615. [PMID: 37686421 PMCID: PMC10488284 DOI: 10.3390/ijms241713615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor-associated lymph vessels and lymph node involvement are critical staging criteria in several cancers. In skin squamous cell carcinoma, lymph vessels play a role in cancer development and metastatic spread. However, their relationship with the cancer stem cell niche at early tumor stages remains unclear. To address this gap, we studied the lymph vessel localization at the cancer stem cell niche and observed an association from benign skin lesions to malignant stages of skin squamous cell carcinoma. By co-culturing lymphatic endothelial cells with cancer cell lines representing the initiation and promotion stages, and conducting RNA profiling, we observed a reciprocal induction of cell adhesion, immunity regulation, and vessel remodeling genes, suggesting dynamic interactions between lymphatic and cancer cells. Additionally, imaging analyses of the cultured cells revealed the establishment of heterotypic contacts between cancer cells and lymph endothelial cells, potentially contributing to the observed distribution and maintenance at the cancer stem cell niche, inducing downstream cellular responses. Our data provide evidence for an association of lymph vessels from the early stages of skin squamous cell carcinoma development, opening new avenues for better comprehending their involvement in cancer progression.
Collapse
Affiliation(s)
- Anna Cazzola
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David Calzón Lozano
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dennis Hirsch Menne
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Raquel Dávila Pedrera
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jingcheng Liu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Silvia Fontenete
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
99
|
Taskinen JH, Ruhanen H, Matysik S, Käkelä R, Olkkonen VM. Systemwide effects of ER-intracellular membrane contact site disturbance in primary endothelial cells. J Steroid Biochem Mol Biol 2023; 232:106349. [PMID: 37321512 DOI: 10.1016/j.jsbmb.2023.106349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Membrane contact sites (MCS) make up a crucial route of inter-organelle non-vesicular transport within the cell. Multiple proteins are involved in this process, which includes the ER-resident proteins vesicle associated membrane protein associated protein A and -B (VAPA/B) that form MCS between the ER and other membrane compartments. Currently most functional data on VAP depleted phenotypes have shown alterations in lipid homeostasis, induction of ER stress, dysfunction of UPR and autophagy, as well as neurodegeneration. Literature on concurrent silencing of VAPA/B is still sparse; therefore, we investigated how it affects the macromolecule pools of primary endothelial cells. Our transcriptomics results showed significant upregulation in genes related to inflammation, ER and Golgi dysfunction, ER stress, cell adhesion, as well as Coat Protein Complex-I and -II (COP-I, COP-II) vesicle transport. Genes related to cellular division were downregulated, as well as key genes of lipid and sterol biosynthesis. Lipidomics analyses revealed reductions in cholesteryl esters, very long chain highly unsaturated and saturated lipids, whereas increases in free cholesterol and relatively short chain unsaturated lipids were evident. Furthermore, the knockdown resulted in an inhibition of angiogenesis in vitro. We speculate that ER MCS depletion has led to multifaceted outcomes, which include elevated ER free cholesterol content and ER stress, alterations in lipid metabolism, ER-Golgi function and vesicle transport, which have led to a reduction in angiogenesis. The silencing also induced an inflammatory response, consistent with upregulation of markers of early atherogenesis. To conclude, ER MCS mediated by VAPA/B play a crucial role in maintaining cholesterol traffic and sustain normal endothelial functions.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014 University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
100
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|