51
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
52
|
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 2022; 16:18. [PMID: 35879774 PMCID: PMC9317453 DOI: 10.1186/s13036-022-00298-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Since the first dendrimer was reported in 1978 by Fritz Vögtle, dendrimer research has grown exponentially, from synthesis to application in the past four decades. The distinct structure characteristics of dendrimers include nanoscopic size, multi-functionalized surface, high branching, cavernous interior, and so on, making dendrimers themselves ideal drug delivery vehicles. This mini review article provides a brief overview of dendrimer’s history and properties and the latest developments of dendrimers as drug delivery systems. This review focuses on the latest progress in the applications of dendrimers as drug and gene carriers, including 1) active drug release strategies to dissociate drug/gene from dendrimer in response to stimuli; 2) size-adaptive and charge reversal dendrimer delivery systems that can better take advantage of the size and surface properties of dendrimer; 3) bulk and micro/nano dendrimer gel delivery systems. The recent advances in dendrimer formulations may lead to the generation of new drug and gene products and enable the development of novel combination therapies.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Qiao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| |
Collapse
|
53
|
Smith R, Wafa EI, Geary SM, Ebeid K, Alhaj-Suliman SO, Salem AK. Cationic nanoparticles enhance T cell tumor infiltration and antitumor immune responses to a melanoma vaccine. SCIENCE ADVANCES 2022; 8:eabk3150. [PMID: 35857851 PMCID: PMC9299550 DOI: 10.1126/sciadv.abk3150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
In clinical settings, cancer vaccines as monotherapies have displayed limited success compared to other cancer immunotherapeutic treatments. Nanoscale formulations have the ability to increase the efficacy of cancer vaccines by combatting the immunosuppressive nature of the tumor microenvironment. Here, we have synthesized a previously unexplored cationic polymeric nanoparticle formulation using polyamidoamine dendrimers and poly(d,l-lactic-co-glycolic acid) that demonstrate adjuvant properties in vivo. Tumor-challenged mice vaccinated with an adenovirus-based cancer vaccine [encoding tumor-associated antigen (TAA)] and subsequently treated with this nanoparticulate formulation showed significant increases in TAA-specific T cells in the peripheral blood, reduced tumor burden, protection against tumor rechallenge, and a significant increase in median survival. An investigation into cell-based pathways suggests that administration of the nanoformulation at the site of the developing tumor may have created an inflammatory environment that attracted activated TAA-specific CD8+ T cells to the vicinity of the tumor, thus enhancing the efficacy of the vaccine.
Collapse
Affiliation(s)
| | | | | | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Suhaila O. Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
54
|
Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches. Polymers (Basel) 2022; 14:2963. [PMID: 35890738 PMCID: PMC9322801 DOI: 10.3390/polym14142963] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Translation of novel therapies for brain cancer into clinical practice is of the utmost importance as primary brain tumors are responsible for more than 200,000 deaths worldwide each year. While many research efforts have been aimed at improving survival rates over the years, prognosis for patients with glioblastoma and other primary brain tumors remains poor. Safely delivering chemotherapeutic drugs and other anti-cancer compounds across the blood-brain barrier and directly to tumor cells is perhaps the greatest challenge in treating brain cancer. Polymeric nanoparticles (NPs) are powerful, highly tunable carrier systems that may be able to overcome those obstacles. Several studies have shown appropriately-constructed polymeric NPs cross the blood-brain barrier, increase drug bioavailability, reduce systemic toxicity, and selectively target central nervous system cancer cells. While no studies relating to their use in treating brain cancer are in clinical trials, there is mounting preclinical evidence that polymeric NPs could be beneficial for brain tumor therapy. This review includes a variety of polymeric NPs and how their associated composition, surface modifications, and method of delivery impact their capacity to improve brain tumor therapy.
Collapse
Affiliation(s)
- Chad A. Caraway
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- NIH-Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizabeth E. Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
- University of Mississippi School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Anita Kalluri
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Navya Kunadi
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| | - Betty M. Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.A.C.); (H.G.); (E.E.W.); (A.K.); (N.K.)
| |
Collapse
|
55
|
Guizze F, Serra CHR, Giarolla J. PAMAM Dendrimers: A Review of Methodologies Employed in Biopharmaceutical Classification. J Pharm Sci 2022; 111:2662-2673. [PMID: 35850238 DOI: 10.1016/j.xphs.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
The oral route is the preferred way of drug administration for most drugs, whose treatment success is directly related to the compound intestinal absorption. This absorption process, in its turn, is influenced by several factors impacting the drug bioavailability, which is extremely dependent on the maximum solubility and permeability. However, optimizing these last two factors, without chemical structural modification, is challenging. Although poly(amidoamine) dendrimers (PAMAM) are an innovative and promising strategy as drug delivery compounds, there are few studies that determine the permeability and solubility of PAMAM-drugs derivatives. Considering this scenario, this paper aimed to carry out a literature review of the last five years concerning biopharmaceutical characterizations of dendrimer delivery systems. In vitro methodologies, such as the Parallel artificial membrane permeability assay (PAMPA) (non-cellular based model) and Caco-2 cells (cellular based model), used for the permeability evaluation in the early stages of drug discovery proved to be the most promising methodologies. As a result, we discussed, for instance, that through the usage of PAMPA it was possible to evaluate the higher capacity for transdermal delivery of DNA of TAT-conjugated PAMAM, when in comparison with unmodified PAMAM dendrimer with a P<0.05. We also presented the importance of choosing the best methods of biopharmaceutical characterization, which will be essential to guarantee the efficacy and safety of the drug candidate.
Collapse
Affiliation(s)
- Felipe Guizze
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil
| | - Cristina Helena Reis Serra
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil.
| | - Jeanine Giarolla
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil.
| |
Collapse
|
56
|
Thuy LT, Kang N, Choi M, Lee M, Choi JS. Dendrimeric micelles composed of polyamidoamine dendrimer-peptide-cholesterol conjugates as drug carriers for the treatment of melanoma and bacterial infection. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
57
|
Olson LB, Hunter NI, Rempel RE, Sullenger BA. Targeting DAMPs with nucleic acid scavengers to treat lupus. Transl Res 2022; 245:30-40. [PMID: 35245691 PMCID: PMC9167234 DOI: 10.1016/j.trsl.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic and often progressive autoimmune disorder marked clinically by a variable constellation of symptoms including fatigue, rash, joint pains, and kidney damage. The lungs, heart, gastrointestinal system, and brain can also be impacted, and individuals with lupus are at higher risk for atherosclerosis, thrombosis, thyroid disease, and other disorders associated with chronic inflammation . Autoimmune diseases are marked by erroneous immune responses in which the target of the immune response is a "self"-antigen, or autoantigen, driven by the development of antigen-specific B or T cells that have overcome the normal systems of self-tolerance built into the development of B and T cells. SLE is specifically characterized by the production of autoantibodies against nucleic acids and their binding proteins, including anti-double stranded DNA, anti-Smith (an RNA binding protein), and many others . These antibodies bind their nuclear-derived antigens to form immune complexes that cause injury and scarring through direct deposition in tissues and activation of innate immune cells . In over 50% of SLE patients, immune complex aggregation in the kidneys drives intrarenal inflammation and injury and leads to lupus nephritis, a progressive destruction of the glomeruli that is one of the most common causes of lupus-related death . To counter this pathology increasing attention has turned to developing approaches to reduce the development and continued generation of such autoantibodies. In particular, the molecular and cellular events that lead to long term, continuous activation of such autoimmune responses have become the focus of new therapeutic strategies to limit renal and other pathologies in lupus patients. The focus of this review is to consider how the innate immune system is involved in the development and progression of lupus nephritis and how a novel approach to inhibit innate immune activation by neutralizing the activators of this response, called Damage Associated Molecular Patterns, may represent a promising approach to treat this and other autoimmune disorders.
Collapse
Affiliation(s)
- Lyra B Olson
- Department of Surgery, Duke University, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Nicole I Hunter
- Department of Surgery, Duke University, Durham, North Carolina; Department of Chemistry, Duke University, Durham, North Carolina
| | - Rachel E Rempel
- Department of Surgery, Duke University, Durham, North Carolina
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
58
|
Mascarenhas-Melo F, Gonçalves MBS, Peixoto D, Pawar KD, Bell V, Chavda VP, Zafar H, Raza F, Paiva-Santos AC, Paiva-Santos AC. Application of nanotechnology in management and treatment of diabetic wounds. J Drug Target 2022; 30:1034-1054. [PMID: 35735061 DOI: 10.1080/1061186x.2022.2092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic wounds are one of the most common health problems worldwide, enhancing the demand for new management strategies. Nanotechnology, as a developing subject in diabetic wound healing, is proving to be a promising and effective tool in treatment and care. It is, therefore, necessary to ascertain the available and distinct nanosystems and evaluate their performance when topically applied to the injury site, especially in diabetic wound healing. Several active ingredients, including bioactive ingredients, growth factors, mesenchymal stem cells, nucleic acids, and drugs, benefit from improved properties when loaded into nanosystems. Given the risk of problems associated with systemic administration, the topical application should be considered, provided stability and efficacy are assured. After nanoencapsulation, active ingredients-loaded nanosystems have been showing remarkable features of biocompatibility, healing process hastening, angiogenesis, and extracellular matrix compounds synthesis stimulation, contributing to a decrease in wound inflammation. Despite limitations, nanotechnology has attracted widespread attention in the scientific community and seems to be a valuable technological ally in the treatment and dressing of diabetic wounds. The use of nanotechnology in topical applications enables efficient delivery of the active ingredients to the specific skin site, increasing their bioavailability, stability, and half-life time, without compromising their safety.
Collapse
Affiliation(s)
- Filipa Mascarenhas-Melo
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Maria Beatriz S Gonçalves
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Victoria Bell
- Laboratory of Social Pharmacy and Public Health, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
59
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
60
|
Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348:206-238. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive drug delivery systems (DDSs) can achieve targeted drug delivery, reduce drug side effects and improve drug efficacies. Among them, pH-responsive DDSs have gained popularity since the pH in the diseased tissues such as cancer, bacterial infection and inflammation differs from a physiological pH of 7.4 and this difference could be harnessed for DDSs to release encapsulated drugs specifically to these diseased tissues. A variety of synthetic approaches have been developed to prepare pH-sensitive DDSs, including introduction of a variety of pH-sensitive chemical bonds or protonated/deprotonated chemical groups. A myriad of nano DDSs have been explored to be pH-responsive, including liposomes, micelles, hydrogels, dendritic macromolecules and organic-inorganic hybrid nanoparticles, and micron level microspheres. The prodrugs from drug-loaded pH-sensitive nano DDSs have been applied in research on anticancer therapy and diagnosis of cancer, inflammation, antibacterial infection, and neurological diseases. We have systematically summarized synthesis strategies of pH-stimulating DDSs, illustrated commonly used and recently developed nanocarriers for these DDSs and covered their potential in different biomedical applications, which may spark new ideas for the development and application of pH-sensitive nano DDSs.
Collapse
|
61
|
Thuy LT, Choi M, Lee M, Choi JS. Preparation and characterization of polyamidoamine dendrimers conjugated with cholesteryl-dipeptide as gene carriers in HeLa cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:976-994. [PMID: 35038285 DOI: 10.1080/09205063.2022.2030657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Improving the transfection efficiency of non-viral carriers by using cationic polymers is a useful approach to addressing several challenges in gene therapy, such as cellular uptake, endosomal escape, and toxicity. Among the various cationic polymers, polyamidoamine (PAMAM) dendrimers have been widely utilized because of the abundance of terminal functional groups, thereby enabling further functionalization and enhancing DNA condensation and internalization into cells. The combination of various functional groups is required for these PAMAM dendrimer derivatives to function appropriately for gene delivery. Herein, we synthesized PAMAM G2-HRChol by conjugating dipeptide (histidine-arginine) and cholesterol at different ratios (6% or 23%) on the surface of PAMAM dendrimer generation 2 (PAMAM G2). Both PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% have buffering capacity, leading to improved endosomal escape after entering the cells. PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% dendrimers were condensed with pDNA to form nano-polyplexes at a weight ratio of 4 (polymer/pDNA). Polyplexes are positively charged, which facilitates cellular uptake. The transfection efficiency of PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23% dendrimers was similar to that of PEI 25 kDa under optimum conditions, and the cytotoxicity was much lower than that of PEI 25 kDa in HeLa cells. In addition, after apoptin gene transfection was performed, cell death ratios of 34.47% and 22.47% were observed for PAMAM G2-HRChol 6% and PAMAM G2-HRChol 23%, respectively. The results show that a suitable amount of cholesterol can improve gene transfection efficiency, and the PAMAM G2-HRChol 6% dendrimer could be a potential gene carrier in HeLa cells.
Collapse
Affiliation(s)
- Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Minyoung Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
62
|
Drug-dendrimer complexes and conjugates: Detailed furtherance through theory and experiments. Adv Colloid Interface Sci 2022; 303:102639. [PMID: 35339862 DOI: 10.1016/j.cis.2022.102639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
Dendritic nanovectors-based drug delivery has gained significant attention in the past couple of decades. Dendrimers play a crucial role in deciding the solubility of sparingly soluble drug molecules and help in improving pharmacokinetics. A few important steps in drug delivery through dendrimers, such as drug encapsulation, formulation, and target-specific delivery, play an important role in deciding the fate of a drug molecule. It is also of prime importance to understand the interactions between a drug molecule and dendrimers at atomistic levels to decode the mechanism of action of drug-dendrimer complexes and their reliability in terms of drug delivery. Colossal progress in current experimental and computational approaches in the field has resulted in a vast amount of data that needs to be curated to be further implemented efficiently. Improved computational power has led to greater accuracy and prompt predictions of properties of drug-dendrimer complexes and their mechanism of action. The current review encapsulates the pioneering work in the field, experimental achievements in terms of drug delivery, and newer computational techniques employed in the advancement of the field.
Collapse
|
63
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
64
|
Lesniak WG, Azad BB, Chatterjee S, Lisok A, Pomper MG. An Evaluation of CXCR4 Targeting with PAMAM Dendrimer Conjugates for Oncologic Applications. Pharmaceutics 2022; 14:655. [PMID: 35336029 PMCID: PMC8953329 DOI: 10.3390/pharmaceutics14030655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The chemokine receptor 4 (CXCR4) is a promising diagnostic and therapeutic target for the management of various cancers. CXCR4 has been utilized in immunotherapy, targeted drug delivery, and endoradiotherapy. Poly(amidoamine) [PAMAM] dendrimers are well-defined polymers with unique properties that have been used in the fabrication of nanomaterials for several biomedical applications. Here, we describe the formulation and pharmacokinetics of generation-5 CXCR4-targeted PAMAM (G5-X4) dendrimers. G5-X4 demonstrated an IC50 of 0.95 nM to CXCR4 against CXCL12-Red in CHO-SNAP-CXCR4 cells. Single-photon computed tomography/computed tomography imaging and biodistribution studies of 111In-labeled G5-X4 showed enhanced uptake in subcutaneous U87 glioblastoma tumors stably expressing CXCR4 with 8.2 ± 2.1, 8.4 ± 0.5, 11.5 ± 0.9, 10.4 ± 2.6, and 8.8 ± 0.5% injected dose per gram of tissue at 1, 3, 24, 48, and 120 h after injection, respectively. Specific accumulation of [111In]G5-X4 in CXCR4-positive tumors was inhibited by the peptidomimetic CXCR4 inhibitor, POL3026. Our results demonstrate that while CXCR4 targeting is beneficial for tumor accumulation at early time points, differences in tumor uptake are diminished over time as passive accumulation takes place. This study further confirms the applicability of PAMAM dendrimers for imaging and therapeutic applications. It also emphasizes careful consideration of image acquisition and/or treatment times when designing dendritic nanoplatforms for tumor targeting.
Collapse
Affiliation(s)
- Wojciech G. Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA; (B.B.A.); (S.C.); (A.L.); (M.G.P.)
| | | | | | | | | |
Collapse
|
65
|
Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BIOTECH 2022; 11:biotech11010006. [PMID: 35822814 PMCID: PMC9245904 DOI: 10.3390/biotech11010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have been limited. One of the main causes of this has been the imbalance in development of delivery vectors as compared with sophisticated nucleic acid payloads, such as siRNA, mRNA, etc. This paper reviews non-viral vectors that can be used to deliver nucleic acids for cancer treatment. It discusses various types of vectors and highlights their current applications. Additionally, it discusses a perspective on the current regulatory landscape to facilitate the commercial translation of gene therapy.
Collapse
Affiliation(s)
- Shrey Kanvinde
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
- Correspondence:
| | - Tanmay Kulkarni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deep Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
66
|
Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, Khurana I, Banothu AK, Weiskirchen R, Bharani KK. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022; 294:120375. [PMID: 35123997 DOI: 10.1016/j.lfs.2022.120375] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Gene therapy is the product of man's quest to eliminate diseases. Gene therapy has three facets namely, gene silencing using siRNA, shRNA and miRNA, gene replacement where the desired gene in the form of plasmids and viral vectors, are directly administered and finally gene editing based therapy where mutations are modified using specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short tandem repeats (CRISPR)/CRISPR-associated protein (Cas)-associated nucleases. Transfer of gene is either through transformation where under specific conditions the gene is directly taken up by the bacterial cells, transduction where a bacteriophage is used to transfer the genetic material and lastly transfection that involves forceful delivery of gene using either viral or non-viral vectors. The non-viral transfection methods are subdivided into physical, chemical and biological. The physical methods include electroporation, biolistic, microinjection, laser, elevated temperature, ultrasound and hydrodynamic gene transfer. The chemical methods utilize calcium- phosphate, DAE-dextran, liposomes and nanoparticles for transfection. The biological methods are increasingly using viruses for gene transfer, these viruses could either integrate within the genome of the host cell conferring a stable gene expression, whereas few other non-integrating viruses are episomal and their expression is diluted proportional to the cell division. So far, gene therapy has been wielded in a plethora of diseases. However, coherent and innocuous delivery of genes is among the major hurdles in the use of this promising therapy. Hence this review aims to highlight the current options available for gene transfer along with the advantages and limitations of every method.
Collapse
Affiliation(s)
- Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik 400020, Maharashtra, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | | | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India.
| |
Collapse
|
67
|
Liu F, Wang X, Li Y, Ren M, He P, Wang L, Xu J, Yang S, Ji P. Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration. Stem Cell Res Ther 2022; 13:26. [PMID: 35073961 PMCID: PMC8785478 DOI: 10.1186/s13287-022-02705-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cartilage defects pose a significant burden on medical treatment, leading to an urgent need to develop regenerative medicine approaches for cartilage repair, such as stem cell therapy. However, the direct injection of stem cells can result in insufficient delivery or inaccurate differentiation. Hence, it is necessary to choose appropriate stem cell delivery scaffolds with high biocompatibility, injectability and chondral differentiation induction ability for cartilage regeneration. Methods In this study, the photocrosslinked gelatin methacrylate (GelMA) hydrogel with high cell affinity and plasticity was selected and strengthened by incorporating methacrylic anhydride-modified poly(amidoamine) (PAMAM-MA) to fabricate an adipose-derived stromal/stem cells (ASCs) delivery scaffold for cartilage repair. The physiochemical properties of the GelMA/PAMAM-MA hydrogel, including the internal structure, stability and mechanical properties, were tested. Then, ASCs were encapsulated into the hydrogels to determine the in vitro and in vivo chondrogenic differentiation induction abilities of the GelMA/PAMAM-MA hydrogel. Results Compared with the GelMA hydrogel, the GelMA/PAMAM-MA hydrogel exhibited more uniform structure, stability and mechanical properties. Moreover, on the basis of good biocompatibility, the hybrid hydrogel was proven to exert a sufficient ability to promote cartilage regeneration by in vitro three-dimensional (3D) culture of rASCs and in vivo articular cartilage defect repair. Conclusions The injectable photocrosslinked GelMA/PAMAM-MA hydrogel was proven to be a capable stem cell carrier for cartilage repair and provides new insight into the design strategy of stem cell delivery scaffolds. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02705-6.
Collapse
Affiliation(s)
- Fengyi Liu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xu Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping He
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lu Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
68
|
Tetteh-Quarshie S, Blough ER, Jones CB. Exploring Dendrimer Nanoparticles for Chronic Wound Healing. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:661421. [PMID: 35047918 PMCID: PMC8757741 DOI: 10.3389/fmedt.2021.661421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
The United States spends billions of dollars to treat chronic wounds each year. Wound healing is complex in nature which involves several intricate multiphase processes that can be delayed for a number of reasons leading to the development of chronic wounds. Wound healing therapies range from topical preparations to surgical repair with treatment options that vary based on other underlying factors like co-infection, age, or co-morbidities such as diabetes. Historically, micelles and liposomes are some of the nanoparticle drug delivery systems explored to treat chronic wounds; however, recent data suggests that dendrimers have shown potential to rival these systems in treating chronic wounds as well as other diseases. This mini review examines advances in dendrimer nanoparticle drug delivery systems to treat chronic wounds.
Collapse
Affiliation(s)
- Samuel Tetteh-Quarshie
- Department of Pharmaceutical Science and Research, School of Pharmacy, Marshall University, Huntington, WV, United States
| | - Eric R Blough
- Department of Pharmaceutical Science and Research, School of Pharmacy, Marshall University, Huntington, WV, United States.,Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Cynthia B Jones
- Department of Pharmaceutical Science and Research, School of Pharmacy, Marshall University, Huntington, WV, United States
| |
Collapse
|
69
|
Almarghalani DA, Boddu SHS, Ali M, Kondaka A, Ta D, Shah RA, Shah ZA. Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regen Res 2022; 17:1717-1725. [PMID: 35017419 PMCID: PMC8820693 DOI: 10.4103/1673-5374.332129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke associated with higher rates of mortality. Currently, no effective drug treatment is available for ICH. The molecular pathways following ICH are complicated and diverse. Nucleic acid therapeutics such as gene knockdown by small interfering RNAs (siRNAs) have been developed in recent years to modulate ICH’s destructive pathways and mitigate its outcomes. However, siRNAs delivery to the central nervous system is challenging and faces many roadblocks. Existing barriers to systemic delivery of siRNA limit the use of naked siRNA; therefore, siRNA-vectors developed to protect and deliver these therapies into the specific-target areas of the brain, or cell types seem quite promising. Efficient delivery of siRNA via nanoparticles emerged as a viable and effective alternative therapeutic tool for central nervous system-related diseases. This review discusses the obstacles to siRNA delivery, including the advantages and disadvantages of viral and nonviral vectors. Additionally, we provide a comprehensive overview of recent progress in nanotherapeutics areas, primarily focusing on the delivery system of siRNA for ICH treatment.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Akhila Kondaka
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Devin Ta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Rayyan A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
70
|
Dodd A, Natfji AA, Evangelinos A, Grigoletto A, Pasut G, Beards F, Renshall L, Osborn HMI, Greco F, Harris LK. Conjugation to PEG as a Strategy to Limit the Uptake of Drugs by the Placenta: Potential Applications for Drug Administration in Pregnancy. Mol Pharm 2022; 19:345-353. [PMID: 34842438 DOI: 10.1021/acs.molpharmaceut.1c00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we evaluated the feasibility of non-prodrug PEG-drug conjugates to decrease the accumulation of drugs within the placental tissues. The results showed that PEG was biocompatible with the human placenta with no alteration of the basal rate of proliferation or apoptosis in term placental explants. No significant changes in the released levels of lactate dehydrogenase and the human chorionic gonadotropin were observed after PEG treatment. The cellular uptake studies revealed that conjugating Cy5.5 and haloperidol to PEG significantly reduced (by up to ∼40-fold) their uptake by the placenta. These findings highlight the viability of novel non-prodrug polymer-drug conjugates to avoid the accumulation of drugs within the placenta.
Collapse
Affiliation(s)
- Abbie Dodd
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom.,St. Mary's Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, United Kingdom
| | - Az Alddien Natfji
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Angelos Evangelinos
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom.,St. Mary's Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, United Kingdom
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35100 Padova, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35100 Padova, Italy
| | - Frances Beards
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom.,St. Mary's Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, United Kingdom.,Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lewis Renshall
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom.,St. Mary's Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, United Kingdom.,Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom.,St. Mary's Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, United Kingdom.,Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
71
|
Sadhu P, Kumari M, Rathod F, Shah N, Patel S. A Review on Poly(amidoamine) Dendrimers: Properties, Synthesis, and Characterization Prospects. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/eawu3ry0yc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
72
|
Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials 2021; 280:121303. [PMID: 34871877 DOI: 10.1016/j.biomaterials.2021.121303] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Dendrimers are well-defined, highly branched, multivalent and monodisperse molecules which host a range of attractive, yet functional, chemical and biological characteristics. A dendrimers accessible surface groups enable coupling to different functional moieties (e.g., antibodies, peptides, proteins, etc), which is further assisted by the dendrimers tailored size and surface charge. This adaptability allows for the preparation of molecularly precise vaccines with highly specific and predictable properties, and in conjunction with a dendrimers immune stimulating (adjuvanting) property, makes dendrimers attractive substrates for biomedical applications, including vaccines. This review highlights the structural and synthetic evolution of dendrimers throughout history, detailing the dendrimers role as both an adjuvant and carrier system for vaccine antigens, in addition to reviewing the development of commercially available vaccines for use in humans.
Collapse
Affiliation(s)
- Silvia Chowdhury
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
73
|
Memarian P, Solouk A, Bagher Z, Akbari S, Nazarpak MH. Ionic conductive nanocomposite based on poly( l-lactic acid)/poly(amidoamine) dendrimerelectrospun nanofibrous for biomedical application. Biomed Mater 2021; 17. [PMID: 34731842 DOI: 10.1088/1748-605x/ac361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
The modification of poly (l-lactic acid) (PLLA) electrospun nanofibrous scaffolds was carried out by blending with second-generation poly amidoamine (PAMAM) for enhancement of their ionic conductivity. The samples containing PLLA and various amounts of PAMAM (1%, 3%, 5%, and 7% by wt.) were fabricated by electrospinning techniques. The electrospun fibers were characterized using scanning electron microscopy (SEM), porosity, Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry, contact angle measurement, water uptake measurement, mechanical properties, and electrical properties. Furthermore,in vitrodegradation study and cell viability assay were investigated in biomaterial applications. Creating amide groups through aminolysis reaction was confirmed by FTIR analysis successfully. The results reveal that adding PAMAM caused an increase in fiber diameter, crystallinity percentage, hydrophilicity, water absorption, elongation-at-break, and OE-mesenchymal stem cell viability. It is worth mentioning that this is the first report investigating the conductivity of PLLA/PAMAM nanofiber. The results revealed that by increasing the amount of PAMAM, the ionic conductivity of scaffolds was enhanced by about nine times. Moreover, the outcomes indicated that the presence of PAMAM could improve the limitations of PLLA like hydrophobicity, lack of active group, and poor cell adhesion.
Collapse
Affiliation(s)
- Paniz Memarian
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, Tehran, Iran
| | - Atefeh Solouk
- ENT and Head & Neck Research Center and Department, The Five Senses Health Institute, Tehran, Iran
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine,, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
74
|
Kheraldine H, Rachid O, Habib AM, Al Moustafa AE, Benter IF, Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev 2021; 178:113908. [PMID: 34390777 DOI: 10.1016/j.addr.2021.113908] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Drug delivery systems or vectors are usually needed to improve the bioavailability and effectiveness of a drug through improving its pharmacokinetics/pharmacodynamics at an organ, tissue or cellular level. However, emerging technologies with sensitive readouts as well as a greater understanding of physiological/biological systems have revealed that polymeric drug delivery systems are not biologically inert but can have innate or intrinsic biological actions. In this article, we review the emerging multiple innate biological/toxicological properties of naked polyamidoamine (PAMAM) dendrimer delivery systems in the absence of any drug cargo and discuss their correlation with the defined physicochemical properties of PAMAMs in terms of molecular size (generation), architecture, surface charge and chemistry. Further, we assess whether any of the reported intrinsic biological actions of PAMAMs such as their antimicrobial activity or their ability to sequester glucose and modulate key protein interactions or cell signaling pathways, can be exploited clinically such as in the treatment of diabetes and its complications.
Collapse
|
75
|
Thalji MR, Ibrahim AA, Ali GA. Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
76
|
Kharwade R, Badole P, Mahajan N, More S. Toxicity And Surface Modification Of Dendrimers: A Critical Review. Curr Drug Deliv 2021; 19:451-465. [PMID: 34674620 DOI: 10.2174/1567201818666211021160441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
As compared to other nano polymers, dendrimers have novel three dimensional, synthetic hyperbranched, nano-polymeric structures. The characteristic of these supramolecular dendritic structures has a high degree of significant surface as well as core functionality in the transportation of drugs for targeted therapy, specifically in host-guest response, gene transfer therapy and imaging of biological systems. However, there are conflicting shreds of evidence regarding biological safety and dendrimers toxicity due to their positive charge at the surface. It includes cytotoxicity, hemolytic toxicity, haematological toxicity, immunogenicity and in vivo toxicity. Therefore to resolve these problems surface modification of the dendrimer group is one of the methods. From that point, this review involves different strategies which reduce the toxicity and improve the biocompatibility of different types of dendrimers. From that viewpoint, we broaden the structural and safe characteristics of the dendrimers in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Rohini Kharwade
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Payal Badole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Nilesh Mahajan
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Sachin More
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| |
Collapse
|
77
|
Poly(amidoamine) Dendrimers as Nanocarriers for 5-Fluorouracil: Effectiveness of Complex Formation and Cytotoxicity Studies. Int J Mol Sci 2021; 22:ijms222011167. [PMID: 34681827 PMCID: PMC8537672 DOI: 10.3390/ijms222011167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Two generations of positively charged poly(amidoamine) dendrimers (PAMAMs) were selected for study as potential carriers for the anticancer drug 5-fluorouracil (5FU), a drug primarily used in the treatment of colorectal cancer. Analytical techniques, such as UV-Vis spectrophotometry, NMR Spectroscopy and Laser Doppler Velocimetry (LDV), have shown that the most critical factor determining the formation of a PAMAM-5FU complex is the starting components' protonation degree. The tests confirmed the system's ability to attach about 20 5FU molecules per one dendrimer molecule for the G4PAMAM dendrimer and about 25 molecules for the G6PAMAM dendrimer, which gives a system yield of 16% for the fourth generation and 5% for sixth generation dendrimers. Additionally, using the QCM-D method, the adsorption efficiency and the number of drug molecules immobilized in the dendrimer structure were determined. A new aspect in our study was the determination of the change in zeta potential (ζ) induced by the immobilization of 5FU molecules on the dendrimer's outer shell and the importance of this effect in the direct contact of the carrier with cells. Cytotoxicity tests (resazurin reduction and MTS tests) showed no toxicity of dendrimers against mouse fibroblast cells (L929) and a significant decrease in cell viability in the case of four human malignant cell lines: malignant melanoma (A375), glioblastoma (SNB-19), prostate cancer (Du-145) and colon adenocarcinoma (HT-29) during incubation with PAMAM-5FU complexes. The purpose of our work was to investigate the correlation between the physicochemical properties of the carrier and active substance and the system efficiency and optimizing conditions for the formation of an efficient system based on PAMAM dendrimers as nanocarriers for 5-fluorouracil. An additional aspect was to identify potential application properties of the complexes, as demonstrated by cytotoxicity tests.
Collapse
|
78
|
Delyanee M, Solouk A, Akbari S, Daliri M. Hemostatic Electrospun Nanocomposite Containing Poly(lactic acid)/Halloysite Nanotube Functionalized by Poly(amidoamine) Dendrimer for Wound Healing Application: In Vitro and In Vivo Assays. Macromol Biosci 2021; 22:e2100313. [PMID: 34644007 DOI: 10.1002/mabi.202100313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Indexed: 11/09/2022]
Abstract
The main challenge in treating injuries is excessive bleeding whereas intervention is required if the body's hemostatic systems fail to control the bleeding. Herein, a novel nanocomposite consisting of poly(lactic acid) (PLA) and poly(amidoamine) (PAMAM) dendrimer functionalized halloysite nanotube (HNT) with a highly porous structure via electrospinning is developed. HNT is functionalized by PAMAM via divergent synthetic routes from zero to third-generation numbers. The effect of different percentages and generation numbers of PAMAM dendrimer (G1, G2, and G3) functionalized HNT on PLA is studied using physicochemical nanocomposite characteristics. These resultant nanocomposites provide a nanofibrous structure with appropriate physicochemical characteristics such as mechanical properties, surface wettability, and water permeability. The hemostatic assays indicate that nanocomposite with PAMAM G3 functionalized HNT have the quickest blood clotting time due to the abundant amino functional group. Furthermore, the nanocomposites with 10 wt% of nanoparticles significantly promote cellular behavior in vitro. The in vivo study demonstrates that PLA/PAMAM G3 functionalized HNT promotes angiogenesis, collagen deposition, and re-epithelialization in the wound sites of the rat model, as well as inhibiting inflammatory response. The findings indicate that nanofibrous structure and the presence of dendrimer functionalized HNT have a synergetic effect on the enhanced nanocomposite wound healing performance.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Morteza Daliri
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
79
|
Wang X, Limpouchová Z, Procházka K, Liu Y, Min Y. Phase equilibria and conformational behavior of dendrimers in porous media: Towards chromatographic analysis of dendrimers. J Colloid Interface Sci 2021; 608:830-839. [PMID: 34689112 DOI: 10.1016/j.jcis.2021.09.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS The intricate entropy-enthalpy interplay of dendrimers confined in pores affects their conformation and retention in the porous stationary phase. This work aims at providing important insights into its impacts on partitioning and chromatographic separation in both size-exclusion chromatography (SEC) and interaction chromatography (IC) regimes. SIMULATIONS Using Monte Carlo (MC) simulations, we investigated the bulk-pore phase equilibria and the conformational behavior of flexible dendrimers differing in generation, in spacer length and in fraction of modified terminal groups interacting differently with pore walls than the majority building units. FINDINGS With increasing interaction strength, a distinct transition from a roughly spherical shape caused by simultaneous interactions with two walls to an ellipsoidal (or even disklike) conformation tenaciously adhering to only one wall was observed for moderately confined dendrimers. The strongly deformed dendrimers subjected to severe confinement gain high energy and the samples differing in the degree of modification become chromatographically discernable thanks to large energy differences. Consequently, our results suggest that the column fillings with fairly narrow pores which are ineffective in SEC, are highly efficient separation media for dendrimer studies by IC above the critical adsorption point (CAP). Overall, our simulations reveal useful information for advancing and optimizing experimental liquid chromatography studies of dendrimers.
Collapse
Affiliation(s)
- Xiu Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 43, Czech Republic.
| | - Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 43, Czech Republic.
| | - Yidong Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
80
|
Devadas B, Periasamy AP, Bouzek K. A review on poly(amidoamine) dendrimer encapsulated nanoparticles synthesis and usage in energy conversion and storage applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
81
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021; 26:5976. [PMID: 34641519 PMCID: PMC8512881 DOI: 10.3390/molecules26195976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been intensively studied as a promising new strategy of prodrug delivery, with its main advantages being represented by an enhanced efficacy and a reduced off-target toxicity of the active drug. In recent years, numerous therapeutic systems based on GDEPT strategy have entered clinical trials. In order to deliver the desired gene at a specific site of action, this therapeutic approach uses vectors divided in two major categories, viral vectors and non-viral vectors, with the latter being represented by chemical delivery agents. There is considerable interest in the development of non-viral vectors due to their decreased immunogenicity, higher specificity, ease of synthesis and greater flexibility for subsequent modulations. Dendrimers used as delivery vehicles offer many advantages, such as: nanoscale size, precise molecular weight, increased solubility, high load capacity, high bioavailability and low immunogenicity. The aim of the present work was to provide a comprehensive overview of the recent advances regarding the use of dendrimers as non-viral carriers in the GDEPT therapy.
Collapse
Affiliation(s)
| | | | | | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | | | | | | | | | | |
Collapse
|
82
|
Cai SS, Li T, Akinade T, Zhu Y, Leong KW. Drug delivery carriers with therapeutic functions. Adv Drug Deliv Rev 2021; 176:113884. [PMID: 34302897 PMCID: PMC8440421 DOI: 10.1016/j.addr.2021.113884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Design of micro- or nanocarriers for drug delivery has primarily been focused on properties such as hydrophobicity, biodegradability, size, shape, surface charge, and toxicity, so that they can achieve optimal delivery with respect to drug loading, release kinetics, biodistribution, cellular uptake, and biocompatibility. Incorporation of stimulus-sensitive moieties into the carriers would lead to "smart" delivery systems. A further evolution would be to endow the carrier with a therapeutic function such that it no longer serves as a mere passive entity to release the drug at the target tissue but can be viewed as a therapeutic agent in itself. In this review, we will discuss recent and ongoing efforts over the past decade to design therapeutic drug carriers that confer a biological benefit, including ROS scavenging or generating, pro- or anti-inflammatory, and immuno-evasive properties, to enhance the overall therapeutic efficacy of the delivery systems.
Collapse
Affiliation(s)
- Shuting S. Cai
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York 10027, New York, United States
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States,Department of Systems Biology, Columbia University, New York 10027, New York, United States,Corresponding author , Mailing address: 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
83
|
Xie D, Wang J, Hu G, Chen C, Yang H, Ritter JK, Qu Y, Li N. Kidney-Targeted Delivery of Prolyl Hydroxylase Domain Protein 2 Small Interfering RNA with Nanoparticles Alleviated Renal Ischemia/Reperfusion Injury. J Pharmacol Exp Ther 2021; 378:235-243. [PMID: 34103333 PMCID: PMC11047054 DOI: 10.1124/jpet.121.000667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Inhibition of hypoxia-inducible factor-prolyl hydroxylase (PHD) has been shown to protect against various kidney diseases. However, there are controversial reports on the effect of PHD inhibition in renoprotection. The present study determined whether delivery of PHD2 small interfering RNA (siRNA) using an siRNA carrier, folic acid (FA)-decorated polyamidoamine dendrimer generation 5 (G5-FA), would mainly target kidneys and protect against renal ischemia/reperfusion injury (I/R). The renal I/R was generated by clipping the renal pedicle for 30 minutes in uninephrectomized mice. Mice were sacrificed 48 hours after I/R. Normal saline or G5-FA complexed with control or PHD2 siRNA was injected via tail vein 24 hours before ischemia. After the injection of near-infrared fluorescent dye-labeled G5-FA, the fluorescence was mainly detected in kidneys but not in other organs. The reduction of PHD2 mRNA and protein was only observed in kidneys but not in other organs after injection of PHD2-siRNA-G5-FA complex. The injection of PHD2-siRNA-G5-FA significantly alleviated renal I/R injury, as shown by the inhibition of increases in serum creatinine and blood urea nitrogen, the blockade of increases in kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, and the improvement of histologic damage compared with mice treated with control siRNA. PHD2 siRNA can be delivered specifically into kidneys using G5-FA, and that local knockdown of PHD2 gene expression within the kidney alleviates renal I/R injury. Therefore, G5-FA is an efficient siRNA carrier to deliver siRNA into the kidney, and that local inhibition of PHD2 within the kidney may be a potential strategy for the management of acute I/R injury. SIGNIFICANCE STATEMENT: Folic acid (FA)-decorated polyamidoamine dendrimer generation 5 (G5-FA) was demonstrated to be an effective carrier to deliver small interfering RNA (siRNA) into kidneys. Delivery of prolyl hydroxylase domain protein 2 siRNA with G5-FA effectively protected the kidneys against the acute renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dengpiao Xie
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Juan Wang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Gaizun Hu
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Chaoling Chen
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Hu Yang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Joseph K Ritter
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Yun Qu
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| |
Collapse
|
84
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
85
|
Simms BL, Ji N, Chandrasiri I, Zia MF, Udemgba CS, Kaur R, Delcamp JH, Flynt A, Tan C, Watkins DL. Physicochemical properties and bio‐interfacial interactions of surface modified
PDLLA‐PAMAM
linear dendritic block copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Briana L. Simms
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Nan Ji
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy University of Mississippi University Oxford Mississippi USA
| | - Indika Chandrasiri
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Mohammad Farid Zia
- Department of Biological Sciences The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Chinwe S. Udemgba
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Ravinder Kaur
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| | - Alex Flynt
- Department of Biological Sciences The University of Southern Mississippi Hattiesburg Mississippi USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy University of Mississippi University Oxford Mississippi USA
| | - Davita L. Watkins
- Department of Chemistry and Biochemistry University of Mississippi University Oxford Mississippi USA
| |
Collapse
|
86
|
Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul 2021; 38:414-436. [PMID: 34157915 DOI: 10.1080/02652048.2021.1942275] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fast progress in nanomedicine and nanoparticles (NP) materials presents unconventional solutions which are expected to revolutionise health care with great potentials including, enhanced efficacy, bioavailability, drug targeting, and safety. This review provides a comprehensive update on widely used organic and inorganic NP with emphasis on the recent development, challenges and future prospective for bio applications where, further investigations into innovative synthesis methodologies, properties and applications of NP would possibly reveal new improved biomedical relevance. NP exhibits exceptional physical and chemical properties due to their high surface area to volume ratio and nanoscale size, which led to breakthroughs in therapeutic, diagnostic and screening techniques repeated line. Finally, an update of FDA-approved NP is explored where innovative design engineering allowed a paradigmatic shift in their market share. This review would serve as a discerning comprehensive source of information for learners who are seeking a cutting-edge review but have been astounded by the size of publications.
Collapse
Affiliation(s)
- Heidi Mohamed Abdel-Mageed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
| | - Nermeen Zakaria AbuelEzz
- Biochemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Rasha Ali Radwan
- Biochemistry Department Faculty of Pharmacy, Sinai University-Kantara branch, El Ismailia; Egypt
| | - Saleh Ahmed Mohamed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
87
|
Yadav S, Sharma AK, Kumar P. Tight Binding of Plasmid DNA With Self-Assembled Tetramethylguanidinium Conjugated Polyethylenimine Suppresses Transfection Efficiency. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.674360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here, we have demonstrated that on modification of linear polyethylenimine (lPEI, LP) with amphiphilic 3-bromopropyltetramethylguanidinium (PTMG) linker, the transfection efficiency exhibited by the modified polymers decreased while cell viability improved. A series of LP-PTMG polymers was synthesized by the reaction of varying amounts of 3-bromopropyl tetramethylguanidinium linker with lPEI (25 kDa). These modified polymers interacted efficiently with pDNA and formed nanosized complexes as shown by dynamic light scattering analysis. The size of the complexes in the series LP-PTMG/pDNA was observed in the range of ∼178–205 nm. The interaction of modified polymers with plasmid DNA was stronger than linear PEI as evidenced by heparin release assay which showed ∼83% pDNA release from LP-PTMG-3/pDNA complexes in comparison to ∼95% in lPEI/pDNA complexes on treatment with same amount of heparin suggesting the formation of self-assembled structures in modified polymers. The transfection studies in HeLa and Chinese hamster ovary cells showed a decrease in transfection efficiency of LP-PTMG polymers, the reason for this may be strong binding of modified polymers with pDNA due to accumulation of charge on the surface. This finding showed the significance of optimum binding of polymer and DNA to form polyplexes as well as release of DNA from the polyplexes.
Collapse
|
88
|
Amjad AM. DENDRIMERS IN ANTICANCER TARGETED DRUG DELIVERY: ACCOMPLISHMENTS, CHALLENGES AND DIRECTIONS FOR FUTURE. PHARMACY & PHARMACOLOGY 2021. [DOI: 10.19163/2307-9266-2021-9-1-4-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendrimers are nanoparticles with unique features including globular 3D shape and nanometer size. The availability of numerous terminal functional groups and modifiable surface engineering permit modification of dendrimer surface with several therapeutic agents, diagnostic moieties and targeting substances.The aim. To enlighten the readers regarding design, development, limitations, challenges and future directions regarding anticancer bio-dendrimers.Materials and methods. The data base was represented by such systems as Medline, Cochrane Central Register of Controlled Trials, Scopus, Web of Science Core Collection, PubMed. gov, Google-Academy. A search was carried out for the following keywords and combinations: Polypropylene imine (PPI); Poly-L-lysine (PLL); polyamidoamine (PAMAM); cancer; drug delivery; dendrimers.Results. High encapsulation of drug and effective passive targeting are also among their therapeutic uses. Herein, we have described latest developments in chemotherapeutic delivery of drugs by dendrimers. For the most part, the potential and efficacy of dendrimers are anticipated to have considerable progressive effect on drug targeting and delivery.Conclusion. The newest discoveries have shown that the dendritic nanocarriers have many unique features that endorse more research and development.
Collapse
Affiliation(s)
- A. M. Amjad
- Northern Border University
Rafha, Saudi Arabia, 76322
| |
Collapse
|
89
|
Filik H, Avan AA. Electrochemical and Electrochemiluminescence Dendrimer-based Nanostructured Immunosensors for Tumor Marker Detection: A Review. Curr Med Chem 2021; 28:3490-3513. [PMID: 33076797 DOI: 10.2174/0929867327666201019143647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023]
Abstract
The usage of dendrimers or cascade molecules in the biomedical area has recently attracted much attention worldwide. Furthermore, dendrimers are interesting in clinical and pre-clinical applications due to their unique characteristics. Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. In this review, the recent advances and developments (from 2009 up to 2019) in the field of electrochemical and electroluminescence immunosensors for detection of the cancer markers are presented. Moreover, this review covers the basic fabrication principles and types of electrochemical and electrochemiluminescence dendrimer-based immunosensors. In this review, we have categorized the current dendrimer based-electrochemical/ electroluminescence immunosensors into five groups: dendrimer/ magnetic particles, dendrimer/ferrocene, dendrimer/metal nanoparticles, thiol-containing dendrimer, and dendrimer/quantum dots based-immunosensors.
Collapse
Affiliation(s)
- Hayati Filik
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Turkey
| | - Asiye Aslıhan Avan
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Turkey
| |
Collapse
|
90
|
Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021. [DOI: https:/doi.org/10.1021/acs.biomac.1c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Ivo Martins
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Fernando Lahoz
- Departamento de Física, IUdEA, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, 710072 Xi’an, China
| |
Collapse
|
91
|
Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021; 22:2436-2450. [PMID: 34009977 DOI: 10.1021/acs.biomac.1c00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbon dots (CDs) and G4-G6 (polyamidoamine)PAMAM-NH2 dendrimers were self-assembled to produce CDs@PAMAM nanohybrids for transfection and bioimaging purposes. CDs were synthesized by the hydrothermal method, using ascorbic acid as a starting precursor and characterized by transmission electron microscopy, UV-Vis, and fluorescence (in solution and solid-state) techniques. CDs were electrostatically combined with PAMAM dendrimers at room temperature, and the UV-Vis, fluorescence, and NMR spectroscopies were used to confirm the self-assembly. When compared to pristine CDs, nanohybrids were more photostable, resisting high acidic and basic pH. Moreover, they were considerably internalized by cells, as assessed by flow cytometry and fluorescence microscopy, and, when excited, displayed multi-color emission easily quantified and visualized. These nanoscale hybrids, coined hybridplexes, can condense pDNA and transfecting cells successfully, particularly the G5 CDs@PAMAM nanohybrids. In summary, CDs prepared in mild and smooth lab conditions, showing good optical properties, were used to prepare elegantly CDs@PAMAM nanohybrids with promising biomedical applications.
Collapse
Affiliation(s)
- Ivo Martins
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Fernando Lahoz
- Departamento de Física, IUdEA, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, 710072 Xi'an, China
| |
Collapse
|
92
|
Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26113304. [PMID: 34072765 PMCID: PMC8198206 DOI: 10.3390/molecules26113304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- The Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
93
|
Lesniak WG, Wu Y, Kang J, Boinapally S, Ray Banerjee S, Lisok A, Jablonska A, Boctor EM, Pomper MG. Dual contrast agents for fluorescence and photoacoustic imaging: evaluation in a murine model of prostate cancer. NANOSCALE 2021; 13:9217-9228. [PMID: 33978042 DOI: 10.1039/d1nr00669j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a promising diagnostic and therapeutic target for prostate cancer (PC). Poly(amidoamine) [PAMAM] dendrimers serve as versatile scaffolds for imaging agents and drug delivery that can be tailored to different sizes and compositions depending upon the application. We have developed PSMA-targeted PAMAM dendrimers for real-time detection of PC using fluorescence (FL) and photoacoustic (PA) imaging. A generation-4, ethylenediamine core, amine-terminated dendrimer was consecutively conjugated with on average 10 lysine-glutamate-urea PSMA targeting moieties and a different number of sulfo-cyanine7.5 (Cy7.5) near-infrared dyes (2, 4, 6 and 8 denoted as conjugates II, III, IV and V, respectively). The remaining terminal primary amines were capped with butane-1,2-diol functionalities. We also prepared a conjugate composed of Cy7.5-lysine-suberic acid-lysine glutamate-urea (I) and control dendrimer conjugate (VI). Among all conjugates, IV showed superior in vivo target specificity in male NOD-SCID mice bearing isogenic PSMA+ PC3 PIP and PSMA- PC3 flu xenografts and suitable physicochemical properties for FL and PA imaging. Such agents may prove useful in PC cancer detection and subsequent surgical guidance during excision of PSMA-expressing lesions.
Collapse
Affiliation(s)
- Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Yixuan Wu
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA. and Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeeun Kang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA. and Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Srikanth Boinapally
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Ala Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Anna Jablonska
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA. and Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emad M Boctor
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA. and Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD 21218, USA and Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
94
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
95
|
Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules 2021. [DOI: https://doi.org/10.1021/acs.biomac.1c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivo Martins
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Fernando Lahoz
- Departamento de Física, IUdEA, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, 710072 Xi’an, China
| |
Collapse
|
96
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
97
|
Flores-Mejía R, Fragoso-Vázquez MJ, Pérez-Blas LG, Parra-Barrera A, Hernández-Castro SS, Estrada-Pérez AR, Rodrígues J, Lara-Padilla E, Ortiz-Morales A, Correa-Basurto J. Chemical characterization (LC-MS-ESI), cytotoxic activity and intracellular localization of PAMAM G4 in leukemia cells. Sci Rep 2021; 11:8210. [PMID: 33859258 PMCID: PMC8050087 DOI: 10.1038/s41598-021-87560-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Generation 4 of polyamidoamine dendrimer (G4-PAMAM) has several biological effects due to its tridimensional globular structure, repetitive branched amides, tertiary amines, and amino-terminal subunit groups liked to a common core. G4-PAMAM is cytotoxic due to its positive charges. However, its cytotoxicity could increase in cancer cells due to the excessive intracellular negative charges in these cells. Furthermore, this work reports G4-PAMAM chemical structural characterization using UHPLC-QTOF-MS/MS (LC-MS) by electrospray ionization to measure its population according to its positive charges. Additionally, the antiproliferative effects and intracellular localization were explored in the HMC-1 and K-562 cell lines by confocal microscopy. The LC-MS results show that G4-PAMAM generated multivalent mass spectrum values, and its protonated terminal amino groups produced numerous positive charges, which allowed us to determine its exact mass despite having a high molecular weight. Additionally, G4-PAMAM showed antiproliferative activity in the HMC-1 tumor cell line after 24 h (IC50 = 16.97 µM), 48 h (IC50 = 7.02 µM) and 72 h (IC50 = 5.98 µM) and in the K-562 cell line after 24 h (IC50 = 15.14 µM), 48 h (IC50 = 14.18 µM) and 72 h (IC50 = 9.91 µM). Finally, our results showed that the G4-PAMAM dendrimers were located in the cytoplasm and nucleus in both tumor cell lines studied.
Collapse
Affiliation(s)
- R Flores-Mejía
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - M J Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - L G Pérez-Blas
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - A Parra-Barrera
- Laboratorio de Medicina Regenerativa y Estudios del Cancer, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - S S Hernández-Castro
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico
| | - A R Estrada-Pérez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico
| | - J Rodrígues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - E Lara-Padilla
- Laboratorio de Bioquímica de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - A Ortiz-Morales
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - J Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico.
| |
Collapse
|
98
|
Flores-Mejía R, Fragoso-Vázquez MJ, Pérez-Blas LG, Parra-Barrera A, Hernández-Castro SS, Estrada-Pérez AR, Rodrígues J, Lara-Padilla E, Ortiz-Morales A, Correa-Basurto J. Chemical characterization (LC–MS–ESI), cytotoxic activity and intracellular localization of PAMAM G4 in leukemia cells. Sci Rep 2021. [DOI: https://doi.org/10.1038/s41598-021-87560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractGeneration 4 of polyamidoamine dendrimer (G4-PAMAM) has several biological effects due to its tridimensional globular structure, repetitive branched amides, tertiary amines, and amino-terminal subunit groups liked to a common core. G4-PAMAM is cytotoxic due to its positive charges. However, its cytotoxicity could increase in cancer cells due to the excessive intracellular negative charges in these cells. Furthermore, this work reports G4-PAMAM chemical structural characterization using UHPLC-QTOF-MS/MS (LC–MS) by electrospray ionization to measure its population according to its positive charges. Additionally, the antiproliferative effects and intracellular localization were explored in the HMC-1 and K-562 cell lines by confocal microscopy. The LC–MS results show that G4-PAMAM generated multivalent mass spectrum values, and its protonated terminal amino groups produced numerous positive charges, which allowed us to determine its exact mass despite having a high molecular weight. Additionally, G4-PAMAM showed antiproliferative activity in the HMC-1 tumor cell line after 24 h (IC50 = 16.97 µM), 48 h (IC50 = 7.02 µM) and 72 h (IC50 = 5.98 µM) and in the K-562 cell line after 24 h (IC50 = 15.14 µM), 48 h (IC50 = 14.18 µM) and 72 h (IC50 = 9.91 µM). Finally, our results showed that the G4-PAMAM dendrimers were located in the cytoplasm and nucleus in both tumor cell lines studied.
Collapse
|
99
|
Understanding Physico-chemical Interactions of Dendrimers with Guest Molecules for Efficient Drug and Gene Delivery. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
100
|
Zhang H, Wang W, Wei L, Wu D, Cheng J, Gao F. Fabrication of PAMAM antimicrobial monolayer via UV induced grafting on the surface of polyethylene terephthalate. Colloids Surf B Biointerfaces 2021; 201:111601. [PMID: 33618083 DOI: 10.1016/j.colsurfb.2021.111601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/18/2022]
Abstract
Poly (amidoamine) (PAMAM) with 3rd and 5th generation was covalently grafted as the contact active biocidal agent on the surface of polyethylene terephthalate (PET) with the help of UV induced carbene chemistry (PAMAM-g-PET). The graft density and the surface roughness were controlled by turning UV irradiation time and the PAMAM generation. The PAMAM graft monolayer was characterized via the contact angle, XPS, nanoIR, SEM and AFM. The antibacterial ability of PAMAM-g-PET was evaluated ex-vivo with the help of laser scanning confocal microscope (CLSM), and the results indicated that the decorated PET was able to kill both S. aureus and E. coli in the aqueous environment. Increasing the surface graft concentration and using the dendrimer with higher generation enhanced the lethality towards the bacterial. The decorated film was still able to kill the contact bacterial strain when the cationic primary amine groups were shielded by acetyl chloride, however, the bacterial in the suspension was hardly affected in this case. The un-selectivity and instantaneity of carbene chemistry endowed this grafting strategy the potential to be extended to other organic substances.
Collapse
Affiliation(s)
- Haobo Zhang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Weihan Wang
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Lilong Wei
- China-Japan Friendship Hospital, Yinghuayuan North Street 2, Chaoyang District, Beijing, 100029, China.
| | - Dezhen Wu
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Jue Cheng
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| | - Feng Gao
- School of Material Science and Engineering, Beijing University of Chemistry Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|