51
|
Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Mar Drugs 2023; 21:md21030176. [PMID: 36976225 PMCID: PMC10056084 DOI: 10.3390/md21030176] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Astaxanthin (3,3-dihydroxy-β, β-carotene-4,4-dione) is a ketocarotenoid synthesized by Haematococcus pluvialis/lacustris, Chromochloris zofingiensis, Chlorococcum, Bracteacoccus aggregatus, Coelastrella rubescence, Phaffia rhodozyma, some bacteria (Paracoccus carotinifaciens), yeasts, and lobsters, among others However, it is majorly synthesized by Haematococcus lacustris alone (about 4%). The richness of natural astaxanthin over synthetic astaxanthin has drawn the attention of industrialists to cultivate and extract it via two stage cultivation process. However, the cultivation in photobioreactors is expensive, and converting it in soluble form so that it can be easily assimilated by our digestive system requires downstream processing techniques which are not cost-effective. This has made the cost of astaxanthin expensive, prompting pharmaceutical and nutraceutical companies to switch over to synthetic astaxanthin. This review discusses the chemical character of astaxanthin, more inexpensive cultivating techniques, and its bioavailability. Additionally, the antioxidant character of this microalgal product against many diseases is discussed, which can make this natural compound an excellent drug to minimize inflammation and its consequences.
Collapse
|
52
|
Chen S, Wang J, Feng J, Xuan R. Research progress of Astaxanthin nano-based drug delivery system: Applications, prospects and challenges? Front Pharmacol 2023; 14:1102888. [PMID: 36969867 PMCID: PMC10034004 DOI: 10.3389/fphar.2023.1102888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Astaxanthin (ASX) is a kind of carotenoid widely distributed in nature, which has been shown to extremely strong antioxidative effects and significant preventive and therapeutic effects on cancer, diabetes, cardiovascular disease, etc. However, its application in the medical field is greatly limited due to its poor water solubility, unstable chemical properties and other shortcomings. In recent years, the nano-based drug delivery systems such as nanoparticles, liposomes, nanoemulsions, nanodispersions, and polymer micelles, have been used as Astaxanthin delivery carriers with great potential for clinical applications, which have been proved that they can enhance the stability and efficacy of Astaxanthin and achieve targeted delivery of Astaxanthin. Herein, based on the pharmacological effects of Astaxanthin, we reviewed the characteristics of various drug delivery carriers, which is of great significance for improving the bioavailability of Astaxanthin.
Collapse
Affiliation(s)
- Siqian Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiayi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiating Feng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Rongrong Xuan,
| |
Collapse
|
53
|
Shi L, Chang L, Yu Y, Zhang D, Zhao X, Wang W, Li P, Xin X, Zhang F, Yu S, Su T, Dong Y, Shi F. Recent Advancements and Biotechnological Implications of Carotenoid Metabolism of Brassica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1117. [PMID: 36903976 PMCID: PMC10005552 DOI: 10.3390/plants12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Carotenoids were synthesized in the plant cells involved in photosynthesis and photo-protection. In humans, carotenoids are essential as dietary antioxidants and vitamin A precursors. Brassica crops are the major sources of nutritionally important dietary carotenoids. Recent studies have unraveled the major genetic components in the carotenoid metabolic pathway in Brassica, including the identification of key factors that directly participate or regulate carotenoid biosynthesis. However, recent genetic advances and the complexity of the mechanism and regulation of Brassica carotenoid accumulation have not been reviewed. Herein, we reviewed the recent progress regarding Brassica carotenoids from the perspective of forward genetics, discussed biotechnological implications and provided new perspectives on how to transfer the knowledge of carotenoid research in Brassica to the crop breeding process.
Collapse
Affiliation(s)
- Lichun Shi
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Lin Chang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fumei Shi
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
54
|
Recent advances in delivery systems of fucoxanthin. Food Chem 2023; 404:134685. [DOI: 10.1016/j.foodchem.2022.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
55
|
Sources, dynamics in vivo, and application of astaxanthin and lutein in laying hens: A review. ANIMAL NUTRITION 2023; 13:324-333. [DOI: 10.1016/j.aninu.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
|
56
|
Deng M, Tong R, Bian Y, Hou G. Astaxanthin attenuates cigarette smoking-induced oxidative stress and inflammation in a sirtuin 1-dependent manner. Biomed Pharmacother 2023; 159:114230. [PMID: 36696799 DOI: 10.1016/j.biopha.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
Oxidative stress and chronic inflammation play key roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and anti-inflammatory effects This study aimed to explore the protective role and underlying mechanism of AXT in the pathogenesis of COPD. In this study, we found AXT alleviated pulmonary emphysema in a CS-exposed mouse model and regulated the expression of MMP-9/TIMP-1. And, AXT attenuates CSE-induced small airway fibrosis. Meanwhile, AXT inhibited Nrf2-modulated oxidative stress and the p65 NF-κB-regulated inflammatory pathway in both the mouse model and CSE-treated HBE cells. Mechanistically, AXT could directly bind to SIRT1 (the binding energy of the complex was -8.8 kcal/mol) and regulate the deacetylation activity of SIRT1. Finally, by activating SIRT1 deacetylation, AXT deacetylated Nrf2 and contributed to its action of reducing oxidative stress by generating antioxidant enzymes, and inhibiting p65 NF-κB transcriptional activity to suppress the inflammatory response. Our results show that treatment with AXT significantly reverses the oxidative stress and inflammation induced by cigarette smoke both in vivo and in vitro in a sirtuin 1-dependent manner.
Collapse
Affiliation(s)
- Mingming Deng
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Run Tong
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Yiding Bian
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Gang Hou
- National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital. No.2, East Yinghua Road, Chaoyang District, Beijing 100029, China..
| |
Collapse
|
57
|
Deng Y, Jiang ZM, Han XF, Su J, Yu LY, Liu WH, Zhang YQ. Pangenome analysis of the genus Herbiconiux and proposal of four new species associated with Chinese medicinal plants. Front Microbiol 2023; 14:1119226. [PMID: 36925467 PMCID: PMC10011130 DOI: 10.3389/fmicb.2023.1119226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Five Gram-stain-positive, aerobic, non-motile actinobacterial strains designated as CPCC 205763T, CPCC 203386T, CPCC 205716T, CPCC 203406T, and CPCC 203407 were obtained from different ecosystems associated with four kinds of Chinese traditional medicinal plants. The 16S rRNA gene sequences of these five strains showed closely related to members of the genus Herbiconiux of the family Microbacteriaceae, with the highest similarities of 97.4-99.7% to the four validly named species of Herbiconiux. In the phylogenetic trees based on 16S rRNA gene sequences and the core genome, these isolates clustered into the clade of the genus Herbiconiux within the lineage of the family Microbacteriaceae. The overall genome relatedness indexes (values of ANI and dDDH) and the phenotypic properties (morphological, physiological and chemotaxonomic characteristics) of these isolates, readily supported to affiliate them to the genus Herbiconiux, representing four novel species, with the isolates CPCC 203406T and CPCC 203407 being classified in the same species. For which the names Herbiconiux aconitum sp. nov. (type strain CPCC 205763T = I19A-01430T = CGMCC 1.60067T), Herbiconiux daphne sp. nov. (type strain CPCC 203386T = I10A-01569T = DSM 24546T = KCTC 19839T), Herbiconiux gentiana sp. nov. (type strain CPCC 205716T = I21A-01427T = CGMCC 1.60064T), and Herbiconiux oxytropis sp. nov. (type strain CPCC 203406T = I10A-02268T = DSM 24549T = KCTC 19840T) were proposed, respectively. In the genomes of these five strains, the putative encoding genes for amidase, endoglucanase, phosphatase, and superoxidative dismutase were retrieved, which were classified as biosynthetic genes/gene-clusters regarding plant growth-promotion (PGP) functions. The positive results from IAA-producing, cellulose-degrading and anti-oxidation experiments further approved their potential PGP bio-functions. Pangenome analysis of the genus Herbiconiux supported the polyphasic taxonomy results and confirmed their bio-function potential.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herb, Beijing, China
| | - Zhu-Ming Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herb, Beijing, China
| | - Xue-Fei Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herb, Beijing, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hong Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Dao-di Herb, Beijing, China
| |
Collapse
|
58
|
Gherabli A, Grimi N, Lemaire J, Vorobiev E, Lebovka N. Extraction of Valuable Biomolecules from the Microalga Haematococcus pluvialis Assisted by Electrotechnologies. Molecules 2023; 28:2089. [PMID: 36903334 PMCID: PMC10004699 DOI: 10.3390/molecules28052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The freshwater microalga Haematococcus pluvialis is well known as the cell factory for natural astaxanthin, which composes up to 4-7% of its total dry weight. The bioaccumulation of astaxanthin in H. pluvialis cysts seems to be a very complex process that depends on different stress conditions during its cultivation. The red cysts of H. pluvialis develop thick and rigid cell walls under stress growing conditions. Thus, the biomolecule extraction requires general cell disruption technologies to reach a high recovery rate. This short review provides an analysis of the different steps in H. pluvialis's up and downstream processing including cultivation and harvesting of biomass, cell disruption, extraction and purification techniques. Useful information on the structure of H. pluvialis's cells, biomolecular composition and properties and the bioactivity of astaxanthin is collected. Special emphasis is given to the recent progress in application of different electrotechnologies during the growth stages and for assistance of the recovery of different biomolecules from H. pluvialis.
Collapse
Affiliation(s)
- Adila Gherabli
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110 Pomacle, France
| | - Nabil Grimi
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
| | - Julien Lemaire
- CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Université Paris-Saclay, 3 Rue des Rouges Terres, 51110 Pomacle, France
| | - Eugène Vorobiev
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
| | - Nikolai Lebovka
- Université de technologie de Compiègne, UTC/ESCOM, TIMR (Transformations Intégrées de la Matière Renouvelable), 60200 Compiègne, France
- Laboratory of Physical Chemistry of Disperse Minerals, F. D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 03142 Kyiv, Ukraine
| |
Collapse
|
59
|
Astaxanthin-Loaded Pickering Emulsions Stabilized by Nanofibrillated Cellulose: Impact on Emulsion Characteristics, Digestion Behavior, and Bioaccessibility. Polymers (Basel) 2023; 15:polym15040901. [PMID: 36850184 PMCID: PMC9959445 DOI: 10.3390/polym15040901] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Astaxanthin (AX) is one of the major bioactives that has been found to have strong antioxidant properties. However, AX tends to degrade due to its highly unsaturated structure. To overcome this problem, a Pickering O/W emulsion using nanofibrillated cellulose (NFC) as an emulsifier was investigated. NFC was used because it is renewable, biodegradable, and nontoxic. The 10 wt% O/W emulsions with 0.05 wt% AX were prepared with different concentrations of NFC (0.3-0.7 wt%). After 30 days of storage, droplet size, ζ-potential values, viscosity, encapsulation efficiency (EE), and color were determined. The results show that more stable emulsions are formed with increasing NFC concentrations, which can be attributed to the formulation of the NFC network in the aqueous phase. Notably, the stability of the 0.7 wt% NFC-stabilized emulsion was high, indicating that NFC can improve the emulsion's stability. Moreover, it was found that fat digestibility and AX bioaccessibility decreased with increasing NFC concentrations, which was due to the limitation of lipase accessibility. In contrast, the stability of AX increased with increasing NFC concentrations, which was due to the formation of an NFC layer that acted as a barrier and prevented the degradation of AX during in vitro digestion. Therefore, high concentrations of NFC are useful for functional foods delivering satiety instead of oil-soluble bioactives.
Collapse
|
60
|
Highly Active Astaxanthin Production from Waste Molasses by Mutated Rhodosporidium toruloides G17. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Astaxanthin is increasingly attracting commercial interest for its application in the nutraceutical and pharmaceutical industries. This study aimed to produce astaxanthin from molasses with our newly mutated strain of Rhodosporidium toruloides G17 and to evaluate biological activities of the produced astaxanthin. To maximize the astaxanthin yield, the response surface methodology was used so as to optimize the culture conditions. A maximum astaxanthin yield of 1262.08 ± 14.58 µg/L was achieved by growing R. toruloides G17 in a molasses-based medium containing 49.39 g/L reducing sugar, 1.00 g/L urea, 4.15 g/L MgSO4·7H2O, and 10.05% inoculum ratio. The produced astaxanthin was then purified and studied for its antioxidant and anticancer activities. This compound exhibited 123-fold higher antioxidant activity than α-tocopherol, with an IC50 value of 0.97 ± 0.01 µg/mL. The astaxanthin also showed a potent inhibitory ability against the following three cancer cell lines: HeLa, A549, and MCF7, with IC50 values of 69.07 ± 2.4 µg/mL, 55.60 ± 2.64 µg/mL, and 56.38 ± 4.1 µg/mL, respectively. This study indicates that astaxanthin derived from our newly mutated R. toruloides G17 is a promising anticancer and antioxidant agent for further pharmaceutical applications.
Collapse
|
61
|
A. Eid R, Alaa Edeen M, Soltan MA, Al-Shraim M, Samir A. Zaki M, M. Al-Qahtani S, Fayad E, T. Salem E, K. Abdulsahib W, Emam H, M. Hassan H. Integration of Ultrastructural and Computational Approaches Reveals the Protective Effect of Astaxanthin against BPA-Induced Nephrotoxicity. Biomedicines 2023; 11:biomedicines11020421. [PMID: 36830956 PMCID: PMC9953522 DOI: 10.3390/biomedicines11020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an environmental contaminant that can induce deleterious organ effects. Human Cytochrome P450 CYP2C9 enzyme belongs to the essential xenobiotic-metabolizing enzymes, producing ROS as a byproduct. Astaxanthin (ATX) is a powerful antioxidant that protects organs and tissues from the damaging effects of oxidative stress caused by various diseases. AIM OF THE STUDY This study investigated the possible protective impacts of ATX against BPA-induced nephrotoxicity and its underlying mechanism. MATERIALS AND METHODS Kidney tissues were isolated and examined microscopically from control, protected, and unprotected groups of rats to examine the potential protective effect of ATX against nephrotoxicity. Moreover, a molecular dynamic (MD) simulation was conducted to predict the performance of ATX upon binding to the active site of P450 CYP2C9 protein receptor as a potential mechanism of ATX protective effect. RESULTS Implemented computational methods revealed the possible underlying mechanism of ATX protection; the protective impact of ATX is mediated by inhibiting P450 CYP2C9 through binding to its dimeric state where the RMSF value for apo-protein and ATX-complex system were 5.720.57 and 1.040.41, respectively, implicating the ATX-complex system to have lesser variance in its residues, leading to the prevention of ROS excess production, maintaining the oxidant-antioxidant balance and re-establishing the proper mitochondrial functionality. Furthermore, the experimental methods validated in silico outcomes and revealed that ATX therapy effectively restored the typical histological architecture of pathological kidney tissues. CONCLUSIONS ATX prevents BPA-induced nephrotoxicity by controlling oxidative imbalance and reversing mitochondrial dysfunction. These outcomes shed new light on the appropriate use of ATX as a treatment or prophylactic agent for these severe conditions.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Correspondence: (R.A.E.); (M.A.E.)
| | - Muhammad Alaa Edeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (R.A.E.); (M.A.E.)
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Mubarak Al-Shraim
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Eman T. Salem
- Department of Basic Science, Faculty of Physical Therapy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Waleed K. Abdulsahib
- Pharmacology and Toxicology Department, College of Pharmacy, Al-Farahidi University, Baghdad 10001, Iraq
| | - Hebatallah Emam
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Hesham M. Hassan
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
62
|
Fullam T, Armon C, Barkhaus P, Barnes B, Beauchamp M, Benatar M, Bertorini T, Bowser R, Bromberg M, Mascias Cadavid J, Carter GT, Dimachkie M, Ennist D, Feldman EL, Heiman-Patterson T, Jhooty S, Lund I, Mcdermott C, Pattee G, Ratner D, Wicks P, Bedlack R. ALSUntangled # 69: astaxanthin. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-5. [PMID: 36694292 DOI: 10.1080/21678421.2023.2171302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review astaxanthin which has plausible mechanisms for slowing ALS progression including antioxidant, anti-inflammatory, and anti-apoptotic effects. While there are no ALS-specific pre-clinical studies, one verified "ALS reversal" occurred in a person using a combination of alternative therapies which included astaxanthin. There have been no trials of astaxanthin in people living with ALS. Natural astaxanthin appears to be safe and inexpensive. Based on the above information, we support further pre-clinical and/or clinical trials of astaxanthin in disease models and PALS, respectively, to further elucidate efficacy.
Collapse
Affiliation(s)
| | - Carmel Armon
- Department of Neurology, Loma Linda University, Loma Linda, CA, USA
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Benjamin Barnes
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Tulio Bertorini
- Neurology Department, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Gregory T Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Mazen Dimachkie
- Department of Neurology, University of Kansas, Kansas City, KS, USA
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sartaj Jhooty
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Gary Pattee
- Department of Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Paul Wicks
- Independent Consultant, Lichfield, UK, and
| | | |
Collapse
|
63
|
Li L, Alimu A, Zhong X, Yang B, Ren J, Gong H, Abudurehemen Z, Yilamujiang S, Zou X. Protective effect of astaxanthin on tuberculosis-associated inflammatory lung injury. Exp Biol Med (Maywood) 2023; 248:293-301. [PMID: 36691330 PMCID: PMC10159526 DOI: 10.1177/15353702221147568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) invades the lungs and is the key cause of tuberculosis (TB). MTB induces immune overreaction and inflammatory damage to lung tissue. There is a lack of protective drugs against pulmonary inflammatory damage. Herein, the protective roles and mechanisms of Astaxanthin (ASTA), a natural compound, in inflammatory injured lung epithelial cells were investigated. Lipopolysaccharide (LPS) was used to establish inflammatory injury model in the murine lung epithelial (MLE)-12 cells. Cell counting kit-8 was used for screening of compound concentrations. Cell proliferation was observed real-time with a high content analysis system. Flow cytometry assessed apoptosis. The changes of apoptotic proteins and key proteins in nuclear factor kappa-B (NF-κB) pathway were measured with the western blot. LPS was used to establish an animal model of pulmonary injury. The pathological changes and degree of inflammatory injury in lung tissue were observed with hematoxylin and eosin (HE) staining. The levels of inflammatory mediators were detected with enzyme-linked immunosorbent assay. The results showed that ASTA reduced lung inflammation and attenuated inflammatory damage in lung tissues. ASTA reduced apoptosis stimulated by LPS through suppressing the NF-κB pathway in MLE-12 cells. We believe that ASTA may have great potential for protection against inflammatory damage to lung tissue.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Xinjiang 844000, China.,Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Xinjiang 844000, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Xinjiang Medical University, Xinjiang 830011, China
| | - Ayiguli Alimu
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Xinjiang 844000, China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Xinjiang 844000, China
| | - Boyi Yang
- School of Public Health, Sun Yat-Sen University, Guangzhou 310003, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Xinjiang 844000, China
| | - Hui Gong
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Xinjiang 844000, China
| | - Zulipikaer Abudurehemen
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Xinjiang 844000, China
| | - Subinuer Yilamujiang
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Xinjiang 844000, China
| | - Xiaoguang Zou
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Xinjiang 844000, China
| |
Collapse
|
64
|
Taştan Bal T, Akaras N, Demir Ö, Ugan RA. Protective effect of astaxanthin and metformin in the liver of rats in which the polycystic ovary syndrome model was formed by giving letrozole. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:688-694. [PMID: 37275752 PMCID: PMC10237172 DOI: 10.22038/ijbms.2023.68032.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/27/2023] [Indexed: 06/07/2023]
Abstract
Objectives In this study, the effects of astaxanthin on liver tissue in rats with polycystic ovary syndrome (PCOS) were evaluated. Materials and Methods Fifty-four Spraque-Dawley rats were divided into 9 groups: Groups: Control, PCOS, PCOS+Metformin (Met), PCOS+ Astaxanthin (ASX)10, PCOS+ASX20, PCOS+ASX40, PCOS+Met+ASX10, PCOS+Met+ASX20, and PCOS+Met+ASX40. PCOS was induced in female rats by oral administration of letrozole (1 mg/kg) for 21 days. Rats were treated with ASX (10 mg/kg), ASX (20 mg/kg), ASX (40 mg/kg), and metformin (20 mg/kg) for 7 days after PCOS induction. At the end of the experiment, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured in the liver tissue. The liver was stained with hematoxylin/eosin for histological examination. Additionally, NF-kB and caspase 3 were analyzed immunohistochemically. Results A remarkable abnormality was observed in the biochemical and histological parameters in the liver tissue of the PCOS model rats. Astaxanthin dose-dependently normalized the MDA level. Additionally, astaxanthin showed a protective effect by increasing the SOD level and increasing its antioxidant activities. We observed that administration of astaxanthin in addition to metformin applied in the standard was more effective. Caspase 3 and NF-kB immune positivity was lower in the groups given astaxanthin compared with PCOS. Histologically, it was observed that astaxanthin improved the deteriorated liver morphology in the letrozole-induced PCOS group. Conclusion According to our results, it was observed that astaxanthin had antioxidant, anti-inflammatory and anti-apoptotic effects on PCOS in the treatment groups. Therefore, it was concluded that astaxanthin may have a protective effect against PCOS side effects.
Collapse
Affiliation(s)
- Tuğba Taştan Bal
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Özlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Rüstem Anıl Ugan
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| |
Collapse
|
65
|
Nieman DC, Woo J, Sakaguchi CA, Omar AM, Tang Y, Davis K, Pecorelli A, Valacchi G, Zhang Q. Astaxanthin supplementation counters exercise-induced decreases in immune-related plasma proteins. Front Nutr 2023; 10:1143385. [PMID: 37025615 PMCID: PMC10070989 DOI: 10.3389/fnut.2023.1143385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Objectives Astaxanthin is a dark red keto-carotenoid found in aquatic animals such as salmon and shrimp, and algae (Haematococcus pluvialis). Astaxanthin has a unique molecular structure that may facilitate anti-oxidative, immunomodulatory, and anti-inflammatory effects during physiological stress. The primary objective of this study was to examine the efficacy of 4-week ingestion of astaxanthin in moderating exercise-induced inflammation and immune dysfunction using a multi-omics approach. Methods This study employed a randomized, double blind, placebo controlled, crossover design with two 4-week supplementation periods and a 2-week washout period. Study participants were randomized to astaxanthin and placebo trials, with supplements ingested daily for 4 weeks prior to running 2.25 h at close to 70%VO2max (including 30 min of 10% downhill running). After the washout period, participants repeated all procedures using the counterbalanced supplement. The astaxanthin capsule contained 8 mg of algae astaxanthin. Six blood samples were collected before and after supplementation (overnight fasted state), immediately post-exercise, and at 1.5, 3, and 24 h-post-exercise. Plasma aliquots were assayed using untargeted proteomics, and targeted oxylipin and cytokine panels. Results The 2.25 h running bout induced significant muscle soreness, muscle damage, and inflammation. Astaxanthin supplementation had no effect on exercise-induced muscle soreness, muscle damage, and increases in six plasma cytokines and 42 oxylipins. Notably, astaxanthin supplementation countered exercise-induced decreases in 82 plasma proteins (during 24 h recovery). Biological process analysis revealed that most of these proteins were involved in immune-related functions such as defense responses, complement activation, and humoral immune system responses. Twenty plasma immunoglobulins were identified that differed significantly between the astaxanthin and placebo trials. Plasma levels of IgM decreased significantly post-exercise but recovered after the 24 h post-exercise recovery period in the astaxanthin but not the placebo trial. Discussion These data support that 4-week astaxanthin versus placebo supplementation did not counter exercise-induced increases in plasma cytokines and oxylipins but was linked to normalization of post-exercise plasma levels of numerous immune-related proteins including immunoglobulins within 24 h. Short-term astaxanthin supplementation (8 mg/day during a 4-week period) provided immune support for runners engaging in a vigorous 2.25 h running bout and uniquely countered decreases in plasma immunoglobulin levels.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
- *Correspondence: David C. Nieman,
| | - Jongmin Woo
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Camila A. Sakaguchi
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
| | - Ashraf M. Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Yang Tang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Kierstin Davis
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
| | - Alessandra Pecorelli
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Giuseppe Valacchi
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| |
Collapse
|
66
|
Differentially Expressed Genes Analysis in the Human Small Airway Epithelium of Healthy Smokers Shows Potential Risks of Disease Caused by Oxidative Stress and Inflammation and the Potentiality of Astaxanthin as an Anti-Inflammatory Agent. Int J Inflam 2023; 2023:4251299. [PMID: 36909892 PMCID: PMC10005861 DOI: 10.1155/2023/4251299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
Cigarette smoke (CS) was known for its effect of increasing oxidative stress that could trigger tissue injury and endothelial dysfunction mediated by free radicals and reactive oxygen species (ROS). ROS itself is a key signaling molecule that plays a role in the development of inflammatory disorders. Nuclear factor erythroid2 related factor2 (Nrf2) is the main regulator of antioxidant cellular response to cell and tissue-destroying components caused by CS. Nrf2 protein that is significantly activated in the smokers' small airway epithelium is followed by a series of gene expression changes in the same cells. This study aims to observe differentially expressed genes (DEGs) in the human small airway epithelium of smokers compared to genes whose expression changes due to astaxanthin (AST) treatment, an antioxidant compound that can modulate Nrf2. Gene expression data that was stored in the GEO browser (GSE 11952) was analyzed using GEO2R to search for DEG among smokers and nonsmokers subject. DEG was further compared to those genes whose expression changes due to astaxanthin treatment (AST) that were obtained from the Comparative Toxicogenomics Database (CTD; https://ctdbase.org/). DEG (p < 0.05) analysis result shows that there are 23 genes whose expression regulation is reversed compared to gene expression due to AST treatment. The gene function annotations of the 23 DEGs showed the involvement of some of these genes in chemical and oxidative stress, reactive oxygen species (ROS), and apoptotic signaling pathways. All of the genes were involved/associated with chronic bronchitis, adenocarcinoma of the lung, non-small-cell lung carcinoma, carcinoma, small cell lung carcinoma, type 2 diabetes mellitus, emphysema, ischemic stroke, lung diseases, and inflammation. Thus, AST treatment for smokers could potentially decrease the development of ROS and oxidative stress that leads to inflammation and health risks associated with smoking.
Collapse
|
67
|
Astaxanthin Prevents Tuberculosis-Associated Inflammatory Injury by Inhibiting the Caspase 4/11-Gasdermin-Pyroptosis Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4778976. [DOI: 10.1155/2022/4778976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022]
Abstract
Pyroptosis is a programmed cell death caused by inflammation. Multiple studies have suggested that Mycobacterium tuberculosis infection causes tissue pyroptosis. However, there are currently no protective drugs against the inflammatory damage caused by pyroptosis. In this study, anti-pyroptotic effects of the natural compound astaxanthin (ASTA) were explored in a simulated pulmonary tuberculosis-associated inflammatory environment. The results showed that ASTA maintained the stability of MLE-12 lung epithelial cell numbers in the inflammatory environment established by lipopolysaccharide. The reason is not to promote cell proliferation but to inhibit lipopolysaccharide-induced pyroptosis. The results showed that ASTA significantly inhibited the expression of key proteins in the caspase 4/11-gasdermin D pathway and the release of pyroptosis-related inflammatory mediators. Therefore, ASTA inhibits inflammation-induced pyroptosis by inhibiting the caspase 4/11-gasdermin D pathway and has the potential to protect lung tissue from tuberculosis-related inflammatory injury. ASTA, a functional food component, is a promising candidate for protection against tuberculosis-associated inflammatory lung injury.
Collapse
|
68
|
Malfa GA, De Leo M, Tundis R, Braca A, Loizzo MR, Di Giacomo C, Raimondo FM, Bucchini AEA, Acquaviva R. Biological Investigation and Chemical Study of Brassica villosa subsp. drepanensis (Brassicaeae) Leaves. Molecules 2022; 27:molecules27238447. [PMID: 36500538 PMCID: PMC9736856 DOI: 10.3390/molecules27238447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Brassica villosa subsp. drepanensis (Caruel) Raimondo & Mazzola, belonging to the Brassica oleracea complex, is a wild edible plant endemic to western Sicily and a relative of modern cultivated Brassica crops. In this study, the antioxidant properties, anti-inflammatory activities, enzymatic inhibition, and cytotoxicity in cancer cells of B. villosa subsp. drepanensis leaf ethanolic extract were analysed for the first time. In addition, its chemical profile was investigated partitioning the total 70% ethanol extract among ethyl acetate, n-butanol, and water to obtain three residues that were subjected to chromatographic separation. Two flavonol glycosides, a phenol glucoside, two amino acids, and purine/pyrimidine bases were obtained. The presence of the glucosinolate glucoiberin was detected in the water extract by UHPLC-MS analysis. The total polyphenol and flavonoid content of the 70% ethanol extract showed good antioxidant capacities and anti-inflammatory properties by reducing nitric oxide release and reactive oxygen species levels and increasing glutathione in lipopolysaccharide-stimulated RAW 264.7 cells. The extract inhibited the enzymatic activity of α-amylase, α-glucosidase, and, significantly, of lipase. The MTT assay showed that the extract did not affect the viability of normal HFF-1 and RAW 264.7 cells. Among the cancer cell lines tested, an antiproliferative action was only observed in CaCo-2. The cytotoxicity of the extract was further confirmed by LDH release assay and by the destabilization of the oxidative balance. Results confirmed the antioxidant properties of the crude extract responsible for the anti-inflammatory effect on healthy cells and cytotoxicity in cancer cells.
Collapse
Affiliation(s)
- Giuseppe Antonio Malfa
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods “NUTRAFOOD”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods “NUTRAFOOD”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219688
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Claudia Di Giacomo
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Francesco Maria Raimondo
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Anahi Elena Ada Bucchini
- Department of Biomolecular Sciences, Center of Research ‘Botanic Garden’, University of Urbino, Via Bramante 28, 61029 Urbino, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| |
Collapse
|
69
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
70
|
Mano Y, Tsukamoto M, Wang KY, Nabeshima T, Kosugi K, Tajima T, Yamanaka Y, Suzuki H, Kawasaki M, Nakamura E, Zhou Q, Azuma K, Nakashima T, Tamura Y, Kozaki K, Nakazato K, Li YS, Kawai K, Yatera K, Sakai A. Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model. J Bone Miner Metab 2022; 40:927-939. [PMID: 36163519 DOI: 10.1007/s00774-022-01371-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Sarcopenia is a complication of Chronic Obstructive Pulmonary Disease (COPD) that negatively affects physical activity and quality of life. However, the underlying mechanism by which COPD affects skeletal muscles remains to be elucidated. Therefore, we investigated the association between oxidative stress and structural alterations in muscles in elastase-induced emphysema mouse models. MATERIALS AND METHODS Twelve-week-old male C57BL/6J mice were treated with either intratracheal porcine pancreatic elastase (PPE) dissolved in saline, or saline alone. The mice were euthanized 12 weeks after treatment, and the lungs and limb muscles were used for protein analysis of oxidative stress, p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway and muscle atrophy signaling pathway related with oxidative stress. Furthermore, C57BL/6J mice treated with PPE or saline were analyzed for the effects of oral administration of astaxanthin or p38 inhibitor. RESULTS The weight of the soleus muscle, proportion of type I muscle fibers, and cross-sectional areas of muscle fibers in the PPE group were lower than those in the control group. Oxidative stress marker levels in the PPE group were elevated in skeletal muscles. The p38 MAPK signaling pathway was activated in the soleus muscles, leading to the activation of the ubiquitin-proteasome system and autophagy. Astaxanthin and p38 inhibitors attenuated alterations in muscle structure through the deactivation of the p38 MAPK signaling pathway. CONCLUSIONS This study provides first evidence in COPD mouse model that oxidative stress trigger a series of muscle structural changes. Our findings suggest a novel target for sarcopenia in COPD.
Collapse
Affiliation(s)
- Yosuke Mano
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takayuki Nabeshima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kenji Kosugi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takafumi Tajima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Eiichiro Nakamura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tamiji Nakashima
- Department of Human, Information and Life Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yuki Tamura
- Research Institute for Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya, Tokyo, 158-8508, Japan
| | - Karina Kozaki
- Research Institute for Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya, Tokyo, 158-8508, Japan
| | - Koichi Nakazato
- Research Institute for Sport Science, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya, Tokyo, 158-8508, Japan
| | - Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
71
|
Sun J, Yan J, Dong H, Gao K, Yu K, He C, Mao X. Astaxanthin with different configurations: sources, activity, post-modification and application in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
72
|
Cai X, Hua S, Deng J, Du Z, Zhang D, Liu Z, Khan NU, Zhou M, Chen Z. Astaxanthin Activated the Nrf2/HO-1 Pathway to Enhance Autophagy and Inhibit Ferroptosis, Ameliorating Acetaminophen-Induced Liver Injury. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42887-42903. [PMID: 36094079 DOI: 10.1021/acsami.2c10506] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is a common liver disease in clinical practice. Only one clinically approved drug, N-acetylcysteine (NAC), for the treatment of AILI is available in clinics, but novel treatment strategies are still needed due to the complicated pathological changes of AILI and the side effects of NAC. Here, we found that astaxanthin (ASX) can prevent AILI through the Nrf2/HO-1 pathway. After treatment with ASX, there was a positive activation of the Nrf2/HO-1 pathway in AILI models both in vivo and in vitro accompanied by enhanced autophagy and reduced ferroptosis. In APAP-challenged L02 liver cells, ASX reduced autophagy and enhanced apoptosis of the cells. Furthermore, we developed ASX-loaded hollow mesoporous silica nanoparticles (HMSN@ASX) to improve the aqueous solubility of ASX and targeted delivery of ASX to the liver and then significantly improve the therapeutic effects. Taken together, we found that ASX can protect against AILI by activating the Nrf2/HO-1 pathway, which mainly affects oxidative stress, autophagy, and ferroptosis processes, and the HMSN@ASX nanosystem can target the liver to enhance the treatment efficiency of AILI.
Collapse
Affiliation(s)
- Xiaopeng Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Shiyuan Hua
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
| | - Jingwen Deng
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou310058, China
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Zhen Du
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
| | - Dongxiao Zhang
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
| | - Zhenfeng Liu
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
| | - Nazif Ullah Khan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Min Zhou
- Institute of Translational Medicine, Zhejiang University, Hangzhou310009, China
- Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| |
Collapse
|
73
|
Semenov AN, Gvozdev DA, Zlenko DV, Protasova EA, Khashimova AR, Parshina EY, Baizhumanov AA, Lotosh NY, Kim EE, Kononevich YN, Pakhomov AA, Selishcheva AA, Sluchanko NN, Shirshin EA, Maksimov EG. Modulation of Membrane Microviscosity by Protein-Mediated Carotenoid Delivery as Revealed by Time-Resolved Fluorescence Anisotropy. MEMBRANES 2022; 12:905. [PMID: 36295665 PMCID: PMC9609150 DOI: 10.3390/membranes12100905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with β-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Danil A. Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Dmitry V. Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Elena A. Protasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Anastasia R. Khashimova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Evgenia Yu. Parshina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Adil A. Baizhumanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Natalia Yu. Lotosh
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Eleonora E. Kim
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Pakhomov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alla A. Selishcheva
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., Troitsk, Moscow 108840, Russia
| | - Eugene G. Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
| |
Collapse
|
74
|
Guo J, Yang X, Chen J, Wang C, Kang Y, Jiang T, Chen M, Li W, Zhou C, Chen Z. Accelerated Bone Regeneration by an Astaxanthin-Modified Antioxidant Aerogel through Relieving Oxidative Stress via the NRF2 Signaling Pathway. ACS Biomater Sci Eng 2022; 8:4524-4534. [PMID: 36073984 DOI: 10.1021/acsbiomaterials.2c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bone regeneration of critical-sized bone defects (CSBDs) with biomimetic collagen-based aerogels remains a significant challenge due to the oxidative stress on the microenvironment. The excessive oxidative stress could induce apoptosis and dysfunction of host-derived cells. Astaxanthin (ATX) exhibits excellent antioxidant ability to block free radical chain reactions. In the present study, hybrid antioxidant collagen-derived aerogels (ATX-Col aerogels) were fabricated by a simple one-step method through the covalent cross-linking of Col and ATX. The resulting ATX-Col aerogels show porous and interconnected structures due to freeze-drying strategies. The ATX-Col aerogels exhibited excellent biocompatibility and biosafety. Furthermore, ATX-Col aerogels demonstrated favorable antioxidant capacity by eliminating intracellular ROS by activating the NRF2 signaling pathway. Finally, excellent reparative effects in repairing rat cranial defects were observed in ATX-Col aerogels. Taken together, ATX-Col aerogels can accelerate bone regeneration by relieving oxidative stress via the NRF2 signaling pathway and act as a potential bone graft for CSBD. This study provides a simple method of developing antioxidant aerogels for bone regeneration.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Chen
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, Guangdong, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, Guangdong, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
75
|
Tanase DM, Gosav EM, Anton MI, Floria M, Seritean Isac PN, Hurjui LL, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules 2022; 12:biom12091227. [PMID: 36139066 PMCID: PMC9496369 DOI: 10.3390/biom12091227] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most debilitating chronic diseases worldwide, with increased prevalence and incidence. In addition to its macrovascular damage, through its microvascular complications, such as Diabetic Kidney Disease (DKD), DM further compounds the quality of life of these patients. Considering DKD is the main cause of end-stage renal disease (ESRD) in developed countries, extensive research is currently investigating the matrix of DKD pathophysiology. Hyperglycemia, inflammation and oxidative stress (OS) are the main mechanisms behind this disease. By generating pro-inflammatory factors (e.g., IL-1,6,18, TNF-α, TGF-β, NF-κB, MCP-1, VCAM-1, ICAM-1) and the activation of diverse pathways (e.g., PKC, ROCK, AGE/RAGE, JAK-STAT), they promote a pro-oxidant state with impairment of the antioxidant system (NRF2/KEAP1/ARE pathway) and, finally, alterations in the renal filtration unit. Hitherto, a wide spectrum of pre-clinical and clinical studies shows the beneficial use of NRF2-inducing strategies, such as NRF2 activators (e.g., Bardoxolone methyl, Curcumin, Sulforaphane and their analogues), and other natural compounds with antioxidant properties in DKD treatment. However, limitations regarding the lack of larger clinical trials, solubility or delivery hamper their implementation for clinical use. Therefore, in this review, we will discuss DKD mechanisms, especially oxidative stress (OS) and NRF2/KEAP1/ARE involvement, while highlighting the potential of therapeutic approaches that target DKD via OS.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Madalina Ioana Anton
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
76
|
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential. Mar Drugs 2022; 20:md20080524. [PMID: 36005527 PMCID: PMC9410494 DOI: 10.3390/md20080524] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
For more than 40 years, marine microorganisms have raised great interest because of their major ecological function and their numerous applications for biotechnology and pharmacology. Particularly, Archaea represent a resource of great potential for the identification of new metabolites because of their adaptation to extreme environmental conditions and their original metabolic pathways, allowing the synthesis of unique biomolecules. Studies on archaeal carotenoids are still relatively scarce and only a few works have focused on their industrial scale production and their biotechnological and pharmacological properties, while the societal demand for these bioactive pigments is growing. This article aims to provide a comprehensive review of the current knowledge on carotenoid metabolism in Archaea and the potential applications of these pigments in biotechnology and medicine. After reviewing the ecology and classification of these microorganisms, as well as their unique cellular and biochemical characteristics, this paper highlights the most recent data concerning carotenoid metabolism in Archaea, the biological properties of these pigments, and biotechnological considerations for their production at industrial scale.
Collapse
|
77
|
Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms? Nutrients 2022; 14:nu14153183. [PMID: 35956359 PMCID: PMC9370407 DOI: 10.3390/nu14153183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Carotenoids are organic, liposoluble pigments found in nature, which are responsible for the characteristic colors of ripe tomatoes, carrots, peppers, and crustaceans, among others. Palliative care provided to patients with an incurable disease is aimed at improving the patient’s quality of life through appropriate treatment of symptoms accompanying the disease. Palliative care patients with burdensome symptoms related to advanced-stage cancers are especially interested in the use of natural dietary supplements and herbal remedies to reduce symptoms’ intensity and ameliorate the quality of life. Carotenoids seem to be a group of natural compounds with particularly promising properties in relieving symptoms, mainly due to their strong antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, carotenoids have been used in folk medicine to treat various diseases and alleviate the accompanying symptoms. In this narrative review, the authors decided to determine whether there is any scientific evidence supporting the rationale for carotenoid supplementation in advanced-stage cancer patients, with particular emphasis on the adjuvant treatment of cancer-related symptoms, such as neuropathic pain and cancer-related cachexia.
Collapse
|
78
|
Li X, Zheng J, Wang J, Tang X, Zhang F, Liu S, Liao Y, Chen X, Xie W, Tang Y. Effects of Uremic Clearance Granules on p38 MAPK/NF-κB Signaling Pathway, Microbial and Metabolic Profiles in End-Stage Renal Disease Rats Receiving Peritoneal Dialysis. Drug Des Devel Ther 2022; 16:2529-2544. [PMID: 35946040 PMCID: PMC9357387 DOI: 10.2147/dddt.s364069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Xiaosheng Li
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Jie Zheng
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Jian Wang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xianhu Tang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Fengxia Zhang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Shufeng Liu
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yunqiang Liao
- First Clinical Medical College of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiaoqing Chen
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wenjuan Xie
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yang Tang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- Correspondence: Yang Tang, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Qingnian Road, Suite 23, Ganzhou, 341000, People’s Republic of China, Email
| |
Collapse
|
79
|
Mularczyk M, Bourebaba N, Marycz K, Bourebaba L. Astaxanthin Carotenoid Modulates Oxidative Stress in Adipose-Derived Stromal Cells Isolated from Equine Metabolic Syndrome Affected Horses by Targeting Mitochondrial Biogenesis. Biomolecules 2022; 12:biom12081039. [PMID: 36008933 PMCID: PMC9405637 DOI: 10.3390/biom12081039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin is gaining recognition as a natural bioactive component. This study aimed to test whether astaxanthin could protect adipose-derived stromal stem cells (ASCs) from apoptosis, mitochondrial dysfunction and oxidative stress. Phaffia rhodozyma was used to extract astaxanthin, whose biocompatibility was tested after 24, 48 and 72 h of incubation with the cells; no harmful impact was found. ASCs were treated with optimal concentrations of astaxanthin. Several parameters were examined: cell viability, apoptosis, reactive oxygen levels, mitochondrial dynamics and metabolism, superoxide dismutase activity, and astaxanthin’s antioxidant capacity. A RT PCR analysis was performed after each test. The astaxanthin treatment significantly reduced apoptosis by modifying the normalized caspase activity of pro-apoptotic pathways (p21, p53, and Bax). Furthermore, by regulating the expression of related master factors SOD1, SOD2, PARKIN, PINK 1, and MFN 1, astaxanthin alleviated the oxidative stress and mitochondrial dynamics failure caused by EMS. Astaxanthin restored mitochondrial oxidative phosphorylation by stimulating markers associated with the OXPHOS machinery: COX4I1, COX4I2, UQCRC2, NDUFA9, and TFAM. Our results suggest that astaxanthin has the potential to open new possibilities for potential bio-drugs to control and suppress oxidative stress, thereby improving the overall metabolic status of equine ASCs suffering from metabolic syndrome.
Collapse
Affiliation(s)
- Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (N.B.); (K.M.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
- Correspondence: (M.M.); (L.B.); Tel.: +48-71-320-5248 (L.B.)
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (N.B.); (K.M.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (N.B.); (K.M.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; (N.B.); (K.M.)
- Correspondence: (M.M.); (L.B.); Tel.: +48-71-320-5248 (L.B.)
| |
Collapse
|
80
|
Stonehouse W, Benassi-Evans B, Bednarz J, Vincent AD, Hall S, Hill CL. Krill oil improved osteoarthritic knee pain in adults with mild to moderate knee osteoarthritis: a 6-month multicenter, randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 2022; 116:672-685. [PMID: 35880828 PMCID: PMC9437987 DOI: 10.1093/ajcn/nqac125] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a major cause of chronic pain and disability worldwide. Treatment generally focuses on symptom relief through nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics, which may incur side effects. Krill oil, rich in anti-inflammatory long-chain (LC) omega-3 ( ω-3) PUFAs and astaxanthin, may be a safe and effective alternative treatment. OBJECTIVES This study sought to investigate the effects of a commercially available krill oil supplement on knee pain in adults with mild to moderate knee OA. Secondary outcomes were knee stiffness; physical function; NSAID use; Omega-3 Index; and lipid, inflammatory, and safety markers. METHODS Healthy adults (n = 235, 40-65 y old, BMI >18.5 to <35 kg/m2), clinically diagnosed with mild to moderate knee OA, regular knee pain, and consuming <0.5 g/d LC ω-3 PUFAs, participated in a 6-mo double-blind, randomized, placebo-controlled, multicenter trial. Participants consumed either 4 g krill oil/d (0.60 g EPA/d, 0.28 g DHA/d, 0.45 g astaxanthin/d) or placebo (mixed vegetable oil). Knee outcomes were assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) numeric scale (normalized to scores of 0-100). Outcomes were assessed at baseline, 3 mo, and 6 mo. RESULTS Omega-3 Index increased with the krill oil supplement compared with placebo (from 6.0% to 8.9% compared with from 5.5% to 5.4%, P < 0.001). Knee pain score improved in both groups with greater improvements for krill oil than for placebo (difference in adjusted mean change between groups at 6 mo: -5.18; 95% CI: -10.0, -0.32; P = 0.04). Knee stiffness and physical function also had greater improvements with krill oil than with placebo (difference in adjusted mean change between groups at 6 mo: -6.45; 95% CI: -12.1, -0.9 and -4.67; 95% CI: -9.26, -0.05, respectively; P < 0.05). NSAID use, serum lipids, and inflammatory and safety markers did not differ between groups. CONCLUSIONS Krill oil was safe to consume and resulted in modest improvements in knee pain, stiffness, and physical function in adults with mild to moderate knee OA.This trial was registered at clinicaltrials.gov as NCT03483090.
Collapse
Affiliation(s)
| | - Bianca Benassi-Evans
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Jana Bednarz
- Adelaide Health Technology Assessment, School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Vincent
- Freemasons Centre for Male Health & Wellbeing, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen Hall
- Emeritus Research Pty Ltd, Camberwell, Victoria, Australia,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Catherine L Hill
- Rheumatology Unit, The Queen Elizabeth and Royal Adelaide Hospitals, Adelaide, South Australia, Australia
| |
Collapse
|
81
|
Patil AD, Kasabe PJ, Dandge PB. Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:25. [PMID: 35794254 PMCID: PMC9259778 DOI: 10.1007/s13659-022-00347-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is an orange-red, lipophilic keto-carotenoid pigment. It is majorly found in marine ecosystems particularly in aquatic animals such as salmon, shrimp, trout, krill, crayfish, and so on. It is also synthesized in microalgae Heamatococcus pluvialis, Chlorococcum, Chlorella zofingiensis, red yeast Phaffia rhodozyma and bacterium Paracoccus carotinifaciens. Some aquatic and terrestrial creatures regarded as a primary and secondary sources of the astaxanthin producing and accumulating it through their metabolic pathways. Astaxanthin is the powerful antioxidant, nutritional supplement as well as promising therapeutic compound, observed to have activities against different ravaging diseases and disorders. Researchers have reported remarkable bioactivities of astaxanthin against major non-communicable chronic diseases such as cardiovascular diseases, cancer, diabetes, neurodegenerative, and immune disorders. The current review discusses some structural aspects of astaxanthin. It further elaborates its multiple potencies such as antioxidant, anti-inflammatory, anti-proliferative, anti-cancer, anti-obese, anti-diabetic, anti-ageing, anti-TB, anti-viral, anti-COVID 19, neuro-protective, nephro-protective, and fertility-enhancing properties. These potencies make it a more precious entity in the preventions as well as treatments of prevalent systematic diseases and/or disorders. Also, the review is acknowledging and documenting its powerful bioactivities in relation with the pharmaceutical as well as nutraceutical applicability.
Collapse
Affiliation(s)
- Apurva D. Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| | - Pramod J. Kasabe
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra India
| | - Padma B. Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| |
Collapse
|
82
|
Recent Discoveries on Marine Organism Immunomodulatory Activities. Mar Drugs 2022; 20:md20070422. [PMID: 35877715 PMCID: PMC9324980 DOI: 10.3390/md20070422] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.
Collapse
|
83
|
Li C, Gao Y, Huan Y, Ren P, Zhi J, Wu A, Xu J, Wei Z, Xue C, Tang Q. Colon and gut microbiota greatly affect the absorption and utilization of astaxanthin derived from Haematococcus pluvialis. Food Res Int 2022; 156:111324. [PMID: 35651077 DOI: 10.1016/j.foodres.2022.111324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022]
Abstract
Astaxanthin has been widely favored as a health food supplement by individuals but its absorption in the body seems not to be satisfactory. In addition, the peak time of astaxanthin derived from Haematococcus pluvialis in the plasma was much longer than other carotenoids found in our previous research. Thus, it is necessary to explore the process that affects the absorption of astaxanthin in order to potentially find a novel approach to improve the absorption in the future. In this study, we confirmed that the colon has an ability to absorb astaxanthin and conducted acute feeding experiments with the treatment of antibiotics in C57BL/6J mice and chronic feeding experiments in germ-free (GF) mice to detect the relationship between the gut microbiota and the absorption of astaxanthin. Our study showed that the decrease of gut microbiota led to a less oral absorbability, which might be related to the decreased expression of SR-BI in the small intestine and the reduction of free form and Z-astaxanthin converted by the gut microbiota found in the vitro culture. The experiments of anaerobic culture also implied that Lactobacillus might play an important role in the absorption of astaxanthin.
Collapse
Affiliation(s)
- Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuchen Huan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pengfei Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jinjin Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Axue Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| |
Collapse
|
84
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
85
|
Mirjalili M, Mirzaei E, Vazin A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 2022; 27:64. [PMID: 35525994 PMCID: PMC9077985 DOI: 10.1186/s40001-022-00689-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colistin is a polymyxin antibiotic which has been used for treatment of Gram-negative infections, but it was withdrawn due to its nephrotoxicity. However, colistin has gained its popularity in recent years due to the reemergence of multidrug resistant Gram-negative infections and drug-induced toxicity is considered as the main obstacle for using this valuable antibiotic. RESULTS In total, 30 articles, including 29 animal studies and one clinical trial were included in this study. These compounds, including aged black garlic extract, albumin fragments, alpha lipoic acid, astaxanthin, baicalein, chrysin, cilastatin, colchicine, curcumin, cytochrome c, dexmedetomidine, gelofusine, grape seed proanthocyanidin extract, hesperidin, luteolin, lycopene, melatonin, methionine, N-acetylcysteine, silymarin, taurine, vitamin C, and vitamin E exhibited beneficial effects in most of the published works. CONCLUSIONS In this review, the authors have attempted to review the available literature on the use of several compounds for prevention or attenuation of colistin-induced nephrotoxicity. Most of the studied compounds were potent antioxidants, and it seems that using antioxidants concomitantly can have a protective effect during the colistin exposure.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
86
|
Örs ED, Alkan ŞB, Öksüz A. Possible Effect of Astaxanthin on Obesity-related Increased COVID-19
Infection Morbidity and Mortality. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666211011105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract:
Obesity is defined by the World Health Organisation (WHO) as a body mass index
equal to 30 kg/m2 or greater. It is an important and escalating global public health problem.
Obesity is known to cause low-grade chronic inflammation, increasing the burden of noncommunicable
and possibly communicable diseases. There is considerable evidence that obesity is
associated with an increased risk of contracting coronavirus disease 2019 (COVID-19) infection
as well as significantly higher COVID-19 morbidity and mortality. It appears plausible
that controlling the chronic systemic low-grade inflammation associated with obesity may have
a positive impact on the symptoms and the prognosis of COVID-19 disease in obese patients.
Astaxanthin (ASTX) is a naturally occurring carotenoid with anti-inflammatory, antioxidant,
and immunomodulatory activities. As a nutraceutical agent, it is used as a preventative and a
co-treatment in a number of systemic neurological, cardiovascular, and metabolic diseases.
This review article will discuss the pathogenesis of COVID-19 infection and the effect of
ASTX on obesity and obesity-related inflammation. The potential positive impact of ASTX anti-
inflammatory properties in obese COVID-19 patients will be discussed.
Collapse
Affiliation(s)
- Elif Didem Örs
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Şenay Burçin Alkan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Öksüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
87
|
Liu Y, Guo J, Yang F, Deng Y, Peng Y, Meng Y, Liu W, Cheng B, Fu J, Zhang J, Liao X, Lu H. Effects of chlorobromoisocyanuric acid on embryonic development and immunotoxicity of zebrafish. ENVIRONMENTAL TOXICOLOGY 2022; 37:468-477. [PMID: 34842326 DOI: 10.1002/tox.23413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/31/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Although chlorobromoisocyanuric acid has been widely used in agriculture, its deleterious toxicity on aquatic organisms remains rare. In this study, zebrafish were exposed to chlorobromoisocyanuric acid (0, 30, 40, and 50 mg/L) from 10 to 96 h post-fertilization (hpf). We found a significant reduction in immune cell numbers (neutrophils and macrophages) and the area of thymus at 96 hpf. The expression of immune-related genes and pro-inflammatory cytokines genes were upregulated. Besides, chlorobromoisocyanuric acid triggered neutrophils cell apoptosis. The mRNA and protein levels of pro-apoptotic p53 pathway and the Bax/Bcl-2 ratio further indicated the underlying mechanism. Furthermore, the oxidative stress was observed that the accumulation of reactive oxygen species and malondialdehyde significantly increased. Subsequently, the antioxidant agent astaxanthin significantly attenuated the level of oxidative stress and the dysregulation of inflammatory response. In summary, our results showed that chlorobromoisocyanuric acid induced developmental defects and immunotoxicity of zebrafish, partly owing to oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Fengjie Yang
- College of life sciences, Jiangxi Normal university, Nanchang, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Yuyang Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Yunlong Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Wenjin Liu
- College of life sciences, Jiangxi Normal university, Nanchang, China
| | - Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Jianping Fu
- College of life sciences, Jiangxi Normal university, Nanchang, China
| | - June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, China
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, China
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| |
Collapse
|
88
|
Protective Effects of Alternanthera sessilis Ethanolic Extract against TNF-α or H2O2-Induced Endothelial Activation in Human Aortic Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8738435. [PMID: 35251216 PMCID: PMC8894009 DOI: 10.1155/2022/8738435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/02/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Activation of the endothelium has been shown to contribute to the early stage of vascular diseases such as atherosclerosis and hypertension. In endothelial activation, excess reactive oxygen species (ROS) production and increased expression of cell adhesion molecules cause an increase in vascular permeability. Alternanthera sessilis (L.) R. Br. is an edible traditional herbal plant, which has previously been shown to possess antioxidant and anti-inflammatory effects. However, the effect of A. sessilis on the activation of human aortic endothelial cells (HAECs) remains unknown. This study aimed to investigate the effects of A. sessilis on endothelial permeability, vascular cell adhesion-1 (VCAM-1) expression, production of ROS and hydrogen peroxide (H2O2), and superoxide dismutase (SOD) and catalase (CAT) activities. The viability of HAECs was first determined using the MTT viability assay. The effect of A. sessilis on endothelial permeability was examined using the FITC-dextran permeability assay. Besides, enzyme-linked immunosorbent assay (ELISA) was done to assess soluble VCAM-1 (sVCAM-1) expression. The production of ROS and H2O2 was studied using 2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA) and Amplex Red fluorescent dyes, respectively. SOD and CAT activities were also measured using commercial kits. Our results showed that 25–200 μg/mL of A. sessilis ethanolic extract did not cause significant death in HAECs. A. sessilis at 200 μg/mL significantly inhibited TNF-α-induced hyperpermeability of HAECs. However, A. sessilis did not reduce increased VCAM-1 expression induced by TNF-α. A. sessilis also significantly reduced TNF-α-induced increased ROS production, but not H2O2 production. Furthermore, 100 μM of H2O2 decreased both SOD and CAT activities in HAECs at 2 h. A. sessilis ethanolic extract dramatically increased both reduced SOD and CAT activities caused by H2O2. The liquid chromatography-mass spectrometry (LC-MS) analysis of A. sessilis ethanolic extract demonstrated the presence of arachidonic acid, azadirachtin, astaxanthin, flavanole base + 3O, 2Prenyl, and vicenin 2, while the gas chromatography-mass spectrometry (GC-MS) analysis showed that the extract contains 1,3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one, 3-deoxy-d-mannoic lactone, 4-pyrrolidinobenzaldehyde, and n-hexadecanoic acid. In conclusion, our findings suggest that A. sessilis ethanolic extract protects against endothelial hyperpermeability and oxidative stress elicited by pro-inflammatory or prooxidant stimulus. This study reveals a therapeutic potential of A. sessilis in preventing endothelial activation, which is a key event in early atherosclerosis.
Collapse
|
89
|
Ma X, Yamaguchi A, Maeshige N, Uemura M, Noguchi H, Kondo H, Fujino H. Enhancement of astaxanthin incorporation by pulsed high-intensity ultrasound in LPS-stimulated macrophages. J Med Ultrason (2001) 2022; 49:125-132. [PMID: 35089476 DOI: 10.1007/s10396-022-01189-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/22/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE Ultrasound (US) has been reported to improve the permeability of cell membranes to pharmaceuticals by causing cavitation. Astaxanthin (AX) potently terminates the induction of inflammation, but it has low oral bioavailability, which limits its incorporation in local cells and organs and its therapeutic potential. In this study, we aimed to investigate the contribution of US to AX incorporation to compensate for the limited incorporation of AX, and regulation of the pro-inflammatory factor interleukin-1β (IL-1β) by AX. METHODS Murine bone marrow-derived macrophages were stimulated by lipopolysaccharide (LPS). After 2 h, cells were treated with 10 μM AX and/or pulsed high-intensity US irradiation. The cells were then incubated for another 3 h and harvested. AX incorporation in cells was measured by absorbance, and the expression of IL-1β was measured by qPCR. All values are expressed as means ± standard error of the mean. RESULTS The combination of AX and US significantly increased AX incorporation in cells compared to AX alone (p < 0.05). In addition, this combination further suppressed the expression of IL-1β compared to AX alone (p < 0.05). CONCLUSION Pulsed high-intensity US irradiation combined with AX treatment promoted AX incorporation in cells and enhanced the anti-inflammatory effect on macrophages.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan.
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Hikari Noguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| |
Collapse
|
90
|
Astaxanthin Exerts Anabolic Effects via Pleiotropic Modulation of the Excitable Tissue. Int J Mol Sci 2022; 23:ijms23020917. [PMID: 35055102 PMCID: PMC8778848 DOI: 10.3390/ijms23020917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.
Collapse
|
91
|
Tian L, Wen Y, Li S, Zhang P, Wang Y, Wang J, Cao K, Du L, Wang N, Jie Y. Benefits and Safety of Astaxanthin in the Treatment of Mild-To-Moderate Dry Eye Disease. Front Nutr 2022; 8:796951. [PMID: 35096941 PMCID: PMC8792747 DOI: 10.3389/fnut.2021.796951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: To evaluate the effect of astaxanthin in the treatment of mild-to-moderate dry eye disease (DED) in middle-aged and elderly patients. Methods: 120 eyes of 60 middle-aged and elderly patients with mild-to-moderate DED were enrolled in this prospective, one-group, quasi-experimental study. Six milligram Astaxanthin tablets (Weihong Haematococcus Pluvialis Astaxanthin, Hangzhou Xinwei Low Carbon Technology R&D Co., Ltd., China) were administered orally, twice daily for 30 ± 2 days. History of eye diseases, treatment, systemic disease, and medication before the test were recorded. In addition, the ocular surface disease index (OSDI) questionnaire, non-invasive tear break-up time (NIBUT), fluorescein break-up time (FBUT), corneal fluorescein staining (CFS) score, eyelid margin signs, meibomian gland (MG) expressibility, meibum quality, meibomian gland dropout (MGDR), Schirmer I test (SIt), tear meniscus height (TMH), bulbar conjunctiva congestion degree, blink frequency, incomplete blink rate, and thickness of tear film lipid layer were collected before treatment, 2 weeks after the initiation of treatment, and at the end of treatment. Visual acuity (VA), intraocular pressure (IOP), anterior segment, fundus, discomfort symptoms and other adverse reactions were also monitored throughout the study to assess the safety. Results: OSDI score, NIBUT, BUT, CFS score, eyelid margin signs, MG expressibility, meibum quality, and blink frequency improved significantly to varying degrees after treatment compared with those before the treatment (P < 0.05), while TMH, SIt, conjunctival congestion, the thickness of tear film lipid layer, MGDR, incomplete blink rate, VA and IOP did not differ (P > 0.05). Conclusions: Oral administration of astaxanthin improves the symptoms and signs of middle-aged and elderly patients with mild-to-moderate DED.
Collapse
|
92
|
Sung YJ, Sim SJ. Multifaceted strategies for economic production of microalgae Haematococcus pluvialis-derived astaxanthin via direct conversion of CO 2. BIORESOURCE TECHNOLOGY 2022; 344:126255. [PMID: 34757226 DOI: 10.1016/j.biortech.2021.126255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Owing to its strong antioxidant properties, astaxanthin has a high market price in the nutraceutical and pharmaceutical fields, and its demand is increasing. Furthermore, with an increase in the demand for green technology, astaxanthin production through direct CO2 conversion using the autotrophic green microalga Haematococcus pluvialis as a bio-platform has received much attention. Large-scale outdoor cultivation of H. pluvialis using waste CO2 sources and sunlight can secure sustainability and improve economic efficiency. However, low strain performance, reduced light utilization because of increased cell density, and inefficient transfer of gaseous CO2 into liquid culture broth hinder its large-scale commercialization of astaxanthin. Herein, we presented a multifaceted strategy, including the development of high-efficiency strains, a culture system for astaxanthin accumulation, and astaxanthin extraction from biomass, for economically producing astaxanthin from H. pluvialis through direct CO2 conversion. Future perspectives were presented by comparing and analyzing various previous studies conducted using the latest technology.
Collapse
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
93
|
Karpiński TM, Ożarowski M, Alam R, Łochyńska M, Stasiewicz M. What Do We Know about Antimicrobial Activity of Astaxanthin and Fucoxanthin? Mar Drugs 2021; 20:md20010036. [PMID: 35049891 PMCID: PMC8778043 DOI: 10.3390/md20010036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin (AST) and fucoxanthin (FUC) are natural xanthophylls, having multidirectional activity, including antioxidant, anti-inflammatory, and anticancer. Both compounds also show antimicrobial activity, which is presented in this review article. There are few papers that have presented the antimicrobial activity of AST. Obtained antimicrobial concentrations of AST (200-4000 µg/mL) are much higher than recommended by the European Food Safety Authority for consumption (2 mg daily). Therefore, we suggest that AST is unlikely to be of use in the clinical treatment of infections. Our knowledge about the antimicrobial activity of FUC is better and this compound acts against many bacteria already in low concentrations 10-250 µg/mL. Toxicological studies on animals present the safety of FUC application in doses 200 mg/kg body weight and higher. Taking available research into consideration, a clinical application of FUC as the antimicrobial substance is real and can be successful. However, this aspect requires further investigation. In this review, we also present potential mechanisms of antibacterial activity of carotenoids, to which AST and FUC belong.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
- Correspondence: ; Tel.: +48-61-854-61-38
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland; (M.O.); (M.Ł.)
| | - Rahat Alam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
- Biological Solution Centre (BioSol Centre), Farmgate, Dhaka 1215, Bangladesh
| | - Małgorzata Łochyńska
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland; (M.O.); (M.Ł.)
| | - Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|
94
|
Zhao L, Tao X, Song T. Astaxanthin alleviates neuropathic pain by inhibiting the MAPKs and NF-κB pathways. Eur J Pharmacol 2021; 912:174575. [PMID: 34673033 DOI: 10.1016/j.ejphar.2021.174575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Neuropathic pain is a complex condition that usually lasts a lifetime and has a major negative impact on life after injury. Improving pain management is an important and unmet need. Astaxanthin (AST) is a natural marine medicine with effective antioxidant and anti-inflammatory properties and neuroprotective effects. However, few mechanisms can explain the role of AST in the treatment of neuropathic pain. In the present study, we examined its potential to eliminate spinal nerve ligation (SNL) damage by inhibiting the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-κB (NF-κB) p65 and the inflammatory response. The results of behavior tests indicated the promising role of AST in analgesic effect in SNL mice. AST decreased the neuronal and non-neuronal activation, the levels of the inflammatory signaling mediators (p-ERK1/2 p-p38 MAPK and NF-κB p65) and inflammatory cytokine expression (interleukin [IL]-1, IL-17, IL-6, and tumor necrosis factor-α [TNF-α]. These results suggest that AST is a promising candidate to reduce nociceptive hypersensitization after SNL.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China
| | - Xueshu Tao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China
| | - Tao Song
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China.
| |
Collapse
|
95
|
Chen F, Leng Y, Lu Q, Zhou W. The application of microalgae biomass and bio-products as aquafeed for aquaculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
96
|
Astaxanthin intake alleviates gouty arthritis in patients and rats by modulating the levels of various inflammatory markers. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
97
|
Wang L, Hou Y, Wang R, Pan Q, Li D, Yan H, Sun Z. Inhibitory Effect of Astaxanthin on Testosterone-Induced Benign Prostatic Hyperplasia in Rats. Mar Drugs 2021; 19:md19120652. [PMID: 34940651 PMCID: PMC8704961 DOI: 10.3390/md19120652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Abstract
This study investigates the inhibitory effect of astaxanthin (AST) on testosterone-induced benign prostatic hyperplasia (BPH) in rats. Except for the sham operation, BPH model rats were randomly assigned to five groups: the BPH model control rats, AST-treated BPH model rats (20 mg/kg, 40 mg/kg, and 80 mg/kg), and epristeride (EPR)-treated BPH model rats. After treatment, as compared with the BPH model control rats, the prostate and ventral prostate weights of the AST-treated rats decreased, while there was a marked decline in the 80 mg/kg AST-treated rats. The same effect was also observed in the prostate index and ventral prostate index. The proliferation characteristics of epithelia observed in the BPH model control group were gradually alleviated in the AST-treated rats. As compared with the BPH model control rats, lower epithelial thicknesses of prostates and fewer secretory granules in epithelia were observed in the AST-treated rats. The superoxide dismutase (SOD) activity of prostates increased in all the AST-treated rats with a significant increase in the 40 mg/kg and 80 mg/kg AST-treated rats. The testosterone (T) and dihydrotestosterone (DHT) levels of prostates in the AST-treated groups were lower than those in the BPH model control group, and a significant decline was found in the T level of prostates in the 40 g/kg and 80 mg/kg AST-treated rats and the DHT level of prostates in the 40 mg/kg AST-treated rats. These results indicate that AST might have an inhibitory effect on T-induced BPH in rats, possibly due to SOD activity regulation and T and DHT levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zuyue Sun
- Correspondence: ; Tel.: +86-21-64043044
| |
Collapse
|
98
|
Masoudi A, Jorjani M, Alizadeh M, Mirzamohammadi S, Mohammadi M. Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model. Brain Res Bull 2021; 177:324-331. [PMID: 34688832 DOI: 10.1016/j.brainresbull.2021.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a severely debilitating problem leading to substantial decrease in the quality of life. After spinal cord injury, inflammation and oxidative stress plays a key role in initiating the secondary injury cascades leading to progressive tissue degradation and extreme functional deficits. Given that the primary mechanical injuries to spinal cord are rarely repaired, the pharmacological interventions may improve the neurological outcomes caused by secondary injury. Astaxanthin (AST) is considered as a xanthophyll carotenoid with potent antioxidant and anti-inflammatory properties, which has various pharmacological activities. In the present study, we aimed to firstly assess the protective effect of AST, and then to define the AST mechanism of action on a rat model of SCI. Based on the results of von Frey test, AST treatment significantly alleviated the SCI-induced neuropathic pain compared with the control groups (P < 0.05). The expression analysis by western blot shows reduced expression levels of COX-2, TNF-α, IL-1β, and IL-6 following AST treatment (P < 0.05). The activity of antioxidant enzymes was evaluated using ELISA. Therefore, ELISA experiments showed a significant reduction in the level of oxidative stress in SCI rat following AST treatment (P < 0.05). Furthermore, histopathological evaluations revealed that myelinated white matter and motor neuron number were significantly preserved after treatment with AST (P < 0.05). In conclusion, our study shows that AST could improve SCI through anti-inflammatory and antioxidant effects which leads to decreased tissue damage and mechanical pain after SCI.
Collapse
Affiliation(s)
- Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Morteza Alizadeh
- Department of tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Solmaz Mirzamohammadi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mola Mohammadi
- Physiology Departmen, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
99
|
Giani M, Montoyo-Pujol YG, Peiró G, Martínez-Espinosa RM. Halophilic Carotenoids and Breast Cancer: From Salt Marshes to Biomedicine. Mar Drugs 2021; 19:md19110594. [PMID: 34822465 PMCID: PMC8625793 DOI: 10.3390/md19110594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of death among women worldwide. Over the years, oxidative stress has been linked to the onset and progression of cancer. In addition to the classical histological classification, breast carcinomas are classified into phenotypes according to hormone receptors (estrogen receptor-RE-/progesterone receptor-PR) and growth factor receptor (human epidermal growth factor receptor-HER2) expression. Luminal tumors (ER/PR-positive/HER2-negative) are present in older patients with a better outcome. However, patients with HER2-positive or triple-negative breast cancer (TNBC) (ER/PR/HER2-negative) subtypes still represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Therefore, new alternative therapies have become an urgent clinical need. In recent years, anticancer agents based on natural products have been receiving huge interest. In particular, carotenoids are natural compounds present in fruits and vegetables, but algae, bacteria, and archaea also produce them. The antioxidant properties of carotenoids have been studied during the last years due to their potential in preventing and treating multiple diseases, including cancer. Although the effect of carotenoids on breast cancer during in vitro and in vivo studies is promising, clinical trials are still inconclusive. The haloarchaeal carotenoid bacterioruberin holds great promise to the future of biomedicine due to its particular structure, and antioxidant activity. However, much work remains to be performed to draw firm conclusions. This review summarizes the current knowledge on pre-clinical and clinical analysis on the use of carotenoids as chemopreventive and chemotherapeutic agents in breast cancer, highlighting the most recent results regarding the use of bacterioruberin from haloarchaea.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence:
| | - Yoel Genaro Montoyo-Pujol
- Breast Cancer Research Group, Research Unit, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Gloria Peiró
- Department of Pathology, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
100
|
Kamel SS, Baky NAA, Karkeet RM, Osman AMM, Sayed-Ahmed MM, Fouad MA. Astaxanthin extenuates the inhibition of aldehyde dehydrogenase and Klotho protein expression in cyclophosphamide-induced acute cardiomyopathic rat model. Clin Exp Pharmacol Physiol 2021; 49:291-301. [PMID: 34597426 DOI: 10.1111/1440-1681.13598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
This study evaluated the mechanistic sequel of aldehyde dehyrogenase (ALDH2) and Klotho protein in cyclophosphamide (CP)-induced cardiotoxicity in rats and the protective effect of astaxanthin (AST) against that sequel. A total of 40 male Wistar albino rats were divided into four groups of 10 animals each: Group 1 was injected intraperitoneally (i.p.) with normal saline for 10 successive days. Group 2 was injected with normal saline for 5 days before and after a single dose of CP (200 mg/kg, i.p.). Group 3 received AST (50 mg/kg/day, i.p.) for 10 days. Group 4 received CP as group 2 and AST as group 3. After the last dose of the treatment protocol, serum was separated to measure cardiotoxicity indices and the left ventricle was then dissected for mRNA and protein expression studies and histopathological examinations. Treatment with CP significantly increased serum lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), and troponin, while significantly decreased soluble α Klotho protein and caused histopathological lesions in cardiac tissues. In cardiac tissues, CP significantly decreased gene expression of ALDH2, Klotho protein, mTOR, IGF, AKT, AMPK, BCL2, but significantly increased expression of BAX and caspase-8. Interestingly, administration of AST in combination with CP completely reversed all the biochemical, histopathological and gene expression changes induced by CP to the control values. The current study suggests that inhibition of ALDH2, Klotho protein, mTOR, and AMPK signals in cardiac tissues may contribute to CP-induced acute cardiomyopathy. AST supplementation attenuates CP-induced cardiotoxicity by modulating ALDH2 and Klotho protein expression in heart tissues, along with its downstream apoptosis effector markers.
Collapse
Affiliation(s)
- Somow S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Naiyra A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Riham M Karkeet
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdel-Moneim M Osman
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mariam A Fouad
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt.,Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|