51
|
Wen S, Li F, Tang Y, Dong L, He Y, Deng Y, Tao Z. MIR222HG attenuates macrophage M2 polarization and allergic inflammation in allergic rhinitis by targeting the miR146a-5p/TRAF6/NF-κB axis. Front Immunol 2023; 14:1168920. [PMID: 37205104 PMCID: PMC10185836 DOI: 10.3389/fimmu.2023.1168920] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Although M2 macrophages are involved in the orchestration of type 2 inflammation in allergic diseases, the mechanisms underlying non-coding RNA (ncRNA)-mediated macrophage polarization in allergic rhinitis (AR) have not been systematically understood. Here, we identified long non-coding RNA (lncRNA) MIR222HG as a key regulator of macrophage polarization and revealed its role in AR. Consistent with our bioinformatic analysis of GSE165934 dataset derived from the Gene Expression Omnibus (GEO) database, lncRNA-MIR222HG and murine mir222hg were downregulated in our clinical samples and animal models of AR, respectively. Mir222hg was upregulated in M1 macrophages and downregulated in M2 macrophages. The allergen-ovalbumin facilitated polarization of RAW264.7 cells to the M2 phenotype, accompanied by the downregulation of mir222hg expression in a dose-dependent manner. Mir222hg facilitates macrophage M1 polarization and reverses M2 polarization caused by ovalbumin. Furthermore, mir222hg attenuates macrophage M2 polarization and allergic inflammation in the AR mouse model. Mechanistically, a series of gain- and loss-of-function experiments and rescue experiments were performed to verify the role of mir222hg as a ceRNA sponge that adsorbed miR146a-5p, upregulated Traf6, and activated the IKK/IκB/P65 pathway. Collectively, the data highlight the remarkable role of MIR222HG in the modulation of macrophage polarization and allergic inflammation, as well as its potential role as a novel AR biomarker or therapeutic target.
Collapse
Affiliation(s)
- Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulei Tang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Lin Dong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Yan He
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Zezhang Tao, ; Yuqin Deng,
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Zezhang Tao, ; Yuqin Deng,
| |
Collapse
|
52
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
53
|
Management of Adult Patients with Gastrointestinal Symptoms from Food Hypersensitivity-Narrative Review. J Clin Med 2022; 11:jcm11247326. [PMID: 36555942 PMCID: PMC9784954 DOI: 10.3390/jcm11247326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The incidence of food hypersensitivity has increased dramatically over the years not only among children but also in adults. Adult patients are usually less suspected of food hypersensitivity symptoms since food allergies are more typical for small children, with a tendency to outgrow the condition. The aim of this article is to increase awareness of hypersensitivity to food symptoms and their diagnosis and treatment possibilities among gastroenterologists and other health care professionals dealing with this type of patient. Symptoms of many gastrointestinal disorders, especially functional, may be driven by different types of mechanisms, and food intolerance or allergy should be considered as a potential cause. This article presents the current understanding of the epidemiology, diagnosis and treatment of immune- and non-immune-mediated food-induced diseases. Diagnosis of food hypersensitivity is based mainly on medical history, different types of sensitivity tests, e.g., hydrogen breath test, specific IgE (sIgE) serum concentration, tissue eosinophil count, skin tests and oral food challenges considered as a "gold standard" for food allergy. Elimination diet and pharmacologic treatment for allergy symptoms are first-line therapies. Eosinophilic gastrointestinal diseases are often caused by non-IgE-mediated food allergies, require endoscopic biopsy samples to confirm diagnosis and proper elimination diet often combined with steroids or proton pump inhibitor agents for treatment. Mast cell activation syndrome (MCAS) derives from pathologic reaction of mast cells with increased tryptase serum level as a marker. Symptoms may occur in the digestive, respiratory, skin, neurologic and cardiovascular system. Treatment is based on histamine type 1, type 2 (H1, H2) receptor antagonists and other mast cell stabilizing agents. Carbohydrate intolerances are the most common type of food hypersensitivity in adult patients, and an elimination diet is effective for reducing symptoms. Food additives hypersensitivity remains difficult to diagnose, but use of a diet low in chemical substances alleviates symptoms and helps to diagnose the triggering factors.
Collapse
|
54
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
55
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
56
|
Grados L, Pérot M, Barbezier N, Delayre-Orthez C, Bach V, Fumery M, Anton PM, Gay-Quéheillard J. How advanced are we on the consequences of oral exposure to food contaminants on the occurrence of chronic non communicable diseases? CHEMOSPHERE 2022; 303:135260. [PMID: 35688194 DOI: 10.1016/j.chemosphere.2022.135260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The development of an individual during fetal life and childhood is characterized by rapid growth as well as gradual maturation of organs and systems. Beyond the nutritional intake in essential nutrients, food contaminants can permanently influence the way organs mature and function. These processes are called "programming" and play an essential role in the occurrence of non-communicable chronic diseases throughout the lifespan. Populations as pregnant women, fetuses and young children are vulnerable and particularly sensitive to food contaminants which can induce epigenetic modifications transmissible to future generations. Among these contaminants, pesticides are found in most food matrices exposing humans to cocktails of molecules through variable concentrations and duration of exposure. The Maillard reaction products (MRPs) represent other food contaminants resulting from heat treatment of food. Modern diet, rich in fats and sugars, is also rich in neoformed pathogenic compounds, Advanced Glycation End products (AGEs), the levels of which depend on the heat treatment of foods and eating habits and whose effects on health are controversial. In this review, we have chosen to present the current knowledge on the impacts of selected pesticides and MRPs, on the risk of developing during life non-communicable chronic diseases such as IBD, metabolic disorders or allergies. A large review of literature was performed via Pubmed, and the most appropriate studies were summarised.
Collapse
Affiliation(s)
- Lucien Grados
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Maxime Pérot
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Nicolas Barbezier
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France
| | - Mathurin Fumery
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Pauline M Anton
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France.
| |
Collapse
|
57
|
Kelly MS, Bunyavanich S, Phipatanakul W, Lai PS. The Environmental Microbiome, Allergic Disease, and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2206-2217.e1. [PMID: 35750322 PMCID: PMC9704440 DOI: 10.1016/j.jaip.2022.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 04/26/2023]
Abstract
The environmental microbiome represents the entirety of the microbes and their metabolites that we encounter in our environments. A growing body of evidence supports the role of the environmental microbiome in risk for and severity of allergic diseases and asthma. The environmental microbiome represents a ubiquitous, lifelong exposure to non-self antigens. During the critical window between birth and 1 year of life, interactions between our early immune system and the environmental microbiome have 2 consequences: our individual microbiome is populated by environmental microbes, and our immune system is trained regarding which antigens to tolerate. During this time, a diversity of exposures appears largely protective, dramatically decreasing the risk of developing allergic diseases and asthma. As we grow older, our interactions with the environmental microbiome change. While it continues to exert influence over the composition of the human microbiome, the environmental microbiome becomes increasingly a source for antigenic stimulation and infection. The same microbial exposure protective against disease development may exacerbate disease severity. Although much has been learned about the importance of the environmental microbiome in allergic disease, much more remains to be understood about these complicated interactions between our environment, our microbiome, our immune system, and disease.
Collapse
Affiliation(s)
- Michael S Kelly
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Peggy S Lai
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass; Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Mass; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
58
|
Fu X, Ou Z, Sun Y. Indoor microbiome and allergic diseases: From theoretical advances to prevention strategies. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:133-146. [PMID: 38075599 PMCID: PMC10702906 DOI: 10.1016/j.eehl.2022.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/20/2023]
Abstract
The prevalence of allergic diseases, such as asthma, rhinitis, eczema, and sick building syndrome (SBS), has increased drastically in the past few decades. Current medications can only relieve the symptoms but not cure these diseases whose development is suggested to be greatly impacted by the indoor microbiome. However, no study comprehensively summarizes the progress and general rules in the field, impeding subsequent translational application. To close knowledge gaps between theoretical research and practical application, we conducted a comprehensive literature review to summarize the epidemiological, environmental, and molecular evidence of indoor microbiome studies. Epidemiological evidence shows that the potential protective indoor microorganisms for asthma are mainly from the phyla Actinobacteria and Proteobacteria, and the risk microorganisms are mainly from Bacilli, Clostridia, and Bacteroidia. Due to extremely high microbial diversity and geographic variation, different health-associated species/genera are detected in different regions. Compared with indoor microbial composition, indoor metabolites show more consistent associations with health, including microbial volatile organic compounds (MVOCs), lipopolysaccharides (LPS), indole derivatives, and flavonoids. Therefore, indoor metabolites could be a better indicator than indoor microbial taxa for environmental assessments and health outcome prediction. The interaction between the indoor microbiome and environmental characteristics (surrounding greenness, relative humidity, building confinement, and CO2 concentration) and immunology effects of indoor microorganisms (inflammatory cytokines and pattern recognition receptors) are briefly reviewed to provide new insights for disease prevention and treatment. Widely used tools in indoor microbiome studies are introduced to facilitate standard practice and the precise identification of health-related targets.
Collapse
Affiliation(s)
- Xi Fu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
59
|
Kress S, Hara A, Wigmann C, Sato T, Suzuki K, Pham KO, Zhao Q, Areal A, Tajima A, Schwender H, Nakamura H, Schikowski T. The Role of Polygenic Susceptibility on Air Pollution-Associated Asthma between German and Japanese Elderly Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9869. [PMID: 36011501 PMCID: PMC9407879 DOI: 10.3390/ijerph19169869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Polygenic susceptibility likely influences individual responses to air pollutants and the risk of asthma. We compared the role of polygenic susceptibility on air pollution-associated asthma between German and Japanese women. We investigated women that were enrolled in the German SALIA cohort (n = 771, mean age = 73 years) and the Japanese Shika cohort (n = 847, mean age = 67 years) with known asthma status. Adjusted logistic regression models were used to assess the associations between (1) particulate matter with a median aerodynamic diameter ≤ 2.5μm (PM2.5) and nitrogen dioxide (NO2), (2) polygenic risk scores (PRS), and (3) gene-environment interactions (G × E) with asthma. We found an increased risk of asthma in Japanese women after exposure to low pollutant levels (PM2.5: median = 12.7µg/m3, p-value < 0.001, NO2: median = 8.5µg/m3, p-value < 0.001) and in German women protective polygenic effects (p-value = 0.008). While we found no significant G × E effects, the direction in both groups was that the PRS increased the effect of PM2.5 and decreased the effect of NO2 on asthma. Our study confirms that exposure to low air pollution levels increases the risk of asthma in Japanese women and indicates polygenic effects in German women; however, there was no evidence of G × E effects. Future genome-wide G × E studies should further explore the role of ethnic-specific polygenic susceptibility to asthma.
Collapse
Affiliation(s)
- Sara Kress
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Medical Research School Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Akinori Hara
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Claudia Wigmann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Keita Suzuki
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Kim-Oanh Pham
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Qi Zhao
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Ashtyn Areal
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Medical Research School Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Tamara Schikowski
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
60
|
Danielewicz H. Breastfeeding and Allergy Effect Modified by Genetic, Environmental, Dietary, and Immunological Factors. Nutrients 2022; 14:nu14153011. [PMID: 35893863 PMCID: PMC9331378 DOI: 10.3390/nu14153011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Breastfeeding (BF) is the most natural mode of nutrition. Its beneficial effect has been revealed in terms of both the neonatal period and those of lifelong effects. However, as for protection against allergy, there is not enough data. In the current narrative review, the literature within the last five years from clinical trials and population-based studies on breastfeeding and allergy from different aspects was explored. The aim of this review was to explain how different factors could contribute to the overall effect of BF. Special consideration was given to accompanying exposure to cow milk, supplement use, the introduction of solid foods, microbiota changes, and the epigenetic function of BF. Those factors seem to be modifying the impact of BF. We also identified studies regarding BF in atopic mothers, with SCFA as a main player explaining differences according to this status. Conclusion: Based on the population-based studies, breastfeeding could be protective against some allergic phenotypes, but the results differ within different study groups. According to the new research in that matter, the effect of BF could be modified by different genetic (HMO composition), environmental (cesarean section, allergen exposure), dietary (SCFA, introduction of solid food), and immunologic factors (IgG, IgE), thus partially explaining the variance.
Collapse
Affiliation(s)
- Hanna Danielewicz
- 1st Clinical Department of Pediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland
| |
Collapse
|
61
|
Hong RP, Hou YY, Xu XJ, Lang JD, Jin YF, Zeng XF, Zhang X, Tian G, You X. The Difference of Gut Microbiota and Their Correlations With Urinary Organic Acids Between Autistic Children With and Without Atopic Dermatitis. Front Cell Infect Microbiol 2022; 12:886196. [PMID: 35800387 PMCID: PMC9253573 DOI: 10.3389/fcimb.2022.886196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Autism is a kind of biologically based neurodevelopmental condition, and the coexistence of atopic dermatitis (AD) is not uncommon. Given that the gut microbiota plays an important role in the development of both diseases, we aimed to explore the differences of gut microbiota and their correlations with urinary organic acids between autistic children with and without AD. We enrolled 61 autistic children including 36 with AD and 25 without AD. The gut microbiota was sequenced by metagenomic shotgun sequencing, and the diversity, compositions, and functional pathways were analyzed further. Urinary organic acids were assayed by gas chromatography–mass spectrometry, and univariate/multivariate analyses were applied. Spearman correlation analysis was conducted to explore their relationships. In our study, AD individuals had more prominent gastrointestinal disorders. The alpha diversity of the gut microbiota was lower in the AD group. LEfSe analysis showed a higher abundance of Anaerostipes caccae, Eubacterium hallii, and Bifidobacterium bifidum in AD individuals, with Akkermansia muciniphila, Roseburia intestinalis, Haemophilus parainfluenzae, and Rothia mucilaginosa in controls. Meanwhile, functional profiles showed that the pathway of lipid metabolism had a higher proportion in the AD group, and the pathway of xenobiotics biodegradation was abundant in controls. Among urinary organic acids, adipic acid, 3-hydroxyglutaric acid, tartaric acid, homovanillic acid, 2-hydroxyphenylacetic acid, aconitic acid, and 2-hydroxyhippuric acid were richer in the AD group. However, only adipic acid remained significant in the multivariate analysis (OR = 1.513, 95% CI [1.042, 2.198], P = 0.030). In the correlation analysis, Roseburia intestinalis had a negative correlation with aconitic acid (r = -0.14, P = 0.02), and the latter was positively correlated with adipic acid (r = 0.41, P = 0.006). Besides, the pathway of xenobiotics biodegradation seems to inversely correlate with adipic acid (r = -0.42, P = 0.18). The gut microbiota plays an important role in the development of AD in autistic children, and more well-designed studies are warranted to explore the underlying mechanism.
Collapse
Affiliation(s)
- Ru-ping Hong
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue-ying Hou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin-jie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, Beijing, China
| | | | | | - Xiao-feng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
- Autism Special Fund, Peking Union Medical Foundation, Beijing, China
- *Correspondence: Xin You,
| |
Collapse
|
62
|
Teo CWL, Png SJY, Ung YW, Yap WN. Therapeutic effects of intranasal tocotrienol-rich fraction on rhinitis symptoms in platelet-activating factor induced allergic rhinitis. Allergy Asthma Clin Immunol 2022; 18:52. [PMID: 35698169 PMCID: PMC9195334 DOI: 10.1186/s13223-022-00695-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Background Platelet-activating factor (PAF) has been suggested to be a potent inflammatory mediator in Allergic rhinitis (AR) pathogenesis. Vitamin E, an essential nutrient that comprises tocopherol and tocotrienol, is known as a potential therapeutic agent for airway allergic inflammation. This study aimed to investigate the beneficial effects of intranasal Tocotrienol-rich fraction (TRF) on PAF-induced AR in a rat model. Methods Sprague Dawley rats were randomly assigned into 3 groups: Control, PAF-induced AR and PAF-induced AR with TRF treatment. To induce AR, 50 μl of 16 μg/ml PAF was nasally instilled into each nostril. From day 1 to 7 after AR induction, 10 μl of 16 μg/μl TRF was delivered intranasally to the TRF treatment group. Complete upper skulls were collected for histopathological evaluation on day 8. Results The average severity scores of AR were significantly higher in the PAF-induced AR rats compared to both control and PAF-induced AR with TRF treatment. The histologic examination of the nasal structures showed moderate degree of inflammation and polymorphonuclear cells infiltration in the lamina propria, mucosa damage and vascular congestion in the PAF-induced AR rats. TRF was able to ameliorate the AR symptoms by restoring the nasal structures back to normal. H&E staining demonstrated a statistically significant benefit upon TRF treatment, where minimal degree of inflammation, and a reduction in the infiltration of polymorphonuclear cells, mucosa damage and vascular congestion were observed. Conclusion TRF exhibited symptomatic relief action in AR potentially due to its antioxidant, anti-inflammatory and anti-allergic properties.
Collapse
Affiliation(s)
- Cheryl Wei Ling Teo
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19, Synapse, 138623, Singapore, Singapore. .,Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia.
| | - Stephanie Jia Ying Png
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Yee Wei Ung
- Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Wei Ney Yap
- Research and Development Department, Davos Life Science, 3 Biopolis Drive, #04-19, Synapse, 138623, Singapore, Singapore.,Research and Development Department, KL-Kepong Oleomas (KLK Oleo), Level 8, Menara KLK, No 1, Jalan PJU 7/6, Mutiara Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
63
|
Shonkoff JP, Boyce WT, Bush NR, Gunnar MR, Hensch TK, Levitt P, Meaney MJ, Nelson CA, Slopen N, Williams DR, Silveira PP. Translating the Biology of Adversity and Resilience Into New Measures for Pediatric Practice. Pediatrics 2022; 149:187008. [PMID: 35535547 DOI: 10.1542/peds.2021-054493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
As the science of adversity and resilience advances, and public awareness of the health consequences of stress grows, primary care providers are being increasingly asked to address the effects of adverse experiences on child wellbeing. Given limited tools for assessing these effects early in life, the authors explore how enhanced capacity to measure stress activation directly in young children could transform the role and scope of pediatric practice. When employed within a trusted relationship between caregivers and clinicians, selective use of biological measures of stress responses would help address the documented limitations of rating scales of adverse childhood experiences as a primary indicator of individual risk and strengthen the ability to focus on variation in intervention needs, assess their effectiveness, and guide ongoing management. The authors provide an overview of the potential benefits and risks of such expanded measurement capacity, as well as an introduction to candidate indicators that might be employed in an office setting. The ultimate value of such measures for both pediatricians and parents will require vigilant attention to the ethical responsibilities of assuring their correct interpretation and minimizing the harm of inappropriate labeling, especially for children and families experiencing the hardships and threats of racism, poverty, and other structural inequities. Whereas much work remains to be done to advance measurement development and ensure its equitable use, the potential of validated markers of stress activation and resilience to strengthen the impact of primary health care on the lives of young children facing significant adversity demands increased attention.
Collapse
Affiliation(s)
- Jack P Shonkoff
- Center on the Developing Child.,Harvard Graduate School of Education.,Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts.,Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - W Thomas Boyce
- University of California, San Francisco, San Francisco, California
| | - Nicole R Bush
- Departments of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences.,Department of Pediatrics, Division of Developmental Medicine, University of California, San Francisco, San Francisco, California
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Takao K Hensch
- Center on the Developing Child.,Conte Center for Basic Mental Health Research.,Center for Brain Science, Harvard University, Cambridge, Massachusetts.,Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts
| | - Pat Levitt
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Republic of Singapore
| | - Charles A Nelson
- Center on the Developing Child.,Harvard Graduate School of Education.,Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts
| | - Natalie Slopen
- Center on the Developing Child.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - David R Williams
- Center on the Developing Child.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
64
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
65
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
66
|
Hayashi D, Noguchi E, Maruo K, Hara M, Nakayama SF, Takada H. Maternal BMI and allergy in children until 3 years of age (JECS). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:43-50. [PMID: 37780583 PMCID: PMC10510001 DOI: 10.1016/j.jacig.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 10/03/2023]
Abstract
Background Maternal prepregnancy body mass index (BMI) may influence allergic diseases in the children who are the product of those pregnancies. Objective The purpose of our study was to investigate the association between mothers' prepregnancy BMI and the risk of physician-diagnosed asthma, food allergy (FA), and atopic dermatitis (AD) in their children during the first 3 years of life. Methods Data on mothers' prepregnancy BMI and physician-diagnosed asthma, FA, and AD in their children until the age of 3 years were obtained from the Japan Environment and Children's Study, a nationwide birth cohort study that has recruited 103,099 pregnant women between 2011 and 2014. Logistic regression analysis was used to analyze the results. Results We analyzed 67,204 mother-child pairs with available information on physician-diagnosed allergic diseases. The risk of asthma was significantly higher in children born to overweight mothers (adjusted OR [aOR] =1.17 [95% CI = 1.07-1.28]) and obese mothers (aOR = 1.28 [95% CI = 1.08-1.50]), whereas the risk of FA, cow's milk allergy, and egg allergy decreased significantly in children born to overweight mothers (aOR = 0.84 [95% CI = 0.76-0.92]; aOR = 0.78 [95% CI = 0.64-0.93]; and aOR = 0.83 [95% CI = 0.74-0.94]) and obese mothers (aOR = 0.81 [95% CI = 0.67-0.97]; aOR = 0.58 [95% CI = 0.36-0.87]; and aOR = 0.73 [95% CI = 0.56-0.93]) compared with in children born to normal weight mothers, respectively. Associations between AD and maternal BMI were not detected. Conclusion Our study showed that an increase in mothers' prepregnancy BMI was associated with an increase in asthma prevalence and a decrease in FA prevalence in their children. Further studies are needed to reveal the mechanisms associated with maternal BMI and pediatric allergic diseases.
Collapse
Affiliation(s)
- Daisuke Hayashi
- Japan Environment and Children’s Study Program Office, National Institute for Environmental Studies, Tsukuba, Japan
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Pediatrics, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Emiko Noguchi
- Japan Environment and Children’s Study Program Office, National Institute for Environmental Studies, Tsukuba, Japan
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Monami Hara
- Japan Environment and Children’s Study Program Office, National Institute for Environmental Studies, Tsukuba, Japan
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Shoji F. Nakayama
- Japan Environment and Children’s Study Program Office, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hidetoshi Takada
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| |
Collapse
|
67
|
Olin A, Acevedo N, Lakshmikanth T, Chen Y, Johansson C, Alm J, Scheynius A, Brodin P. Longitudinal analyses of development of the immune system during the first five years of life in relation to lifestyle. Allergy 2022; 77:1583-1595. [PMID: 35094423 DOI: 10.1111/all.15232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Changes in immune cell composition during the immunological window within the first years after birth are not fully understood, especially the effect that different lifestyles might have on immune cell functionality. METHODS Peripheral blood mononuclear cells from mothers and their children at birth and at two anvd five years were analyzed by mass cytometry. Immune cell composition and functionality was analyzed according to family lifestyle (anthroposophic and non-anthroposophic). RESULTS We found no significant differences in the proportions of major immune lineages between anthroposophic and non-anthroposophic children at each time point, but there were clear changes over time in the proportions of mononuclear leukocytes, especially in B-cells and T lymphocytes. Phenotypic distances between cord blood and maternal blood were high at birth but decreased sharply the first two years, indicating strong phenotypic convergence with maternal cells. We found that children exhibited similar stimulation responses at birth, but subsequently segregated into two discrete functional trajectories. Trajectory 1 was associated with a decrease in tumor necrosis factor alpha (TNFa) production by CD4+ T- and NK-cells, while Trajectory 2 depicted an increase in the production of IL-2 and interferon gamma (INFg) by T-cells. In both trajectories, there was an increase in IL-17A production by T-cells resulting in prominent differences at five years of age. CONCLUSIONS This exploratory study suggests that leukocyte frequencies and cell phenotypes change with age in the same way across all children, while functional development follows one of two discrete trajectories that largely segregate by family lifestyle, supporting the hypothesis that early environmental exposures imprint immune cell function which may contribute to IgE sensitization. Our results also support that the first two years are critical for the environmental exposures to imprint the immune cells. Further studies with larger sample sizes are required to validate our findings.
Collapse
Affiliation(s)
- Axel Olin
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Nathalie Acevedo
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
- Institute for Immunological Research University of Cartagena Cartagena Colombia
| | - Tadepally Lakshmikanth
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Yang Chen
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
| | - Catharina Johansson
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Johan Alm
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Annika Scheynius
- Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
- Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
- Science for Life Laboratory Karolinska Institutet Stockholm Sweden
| | - Petter Brodin
- Science for Life Laboratory Department of Women’s and Children's Health Karolinska Institutet Stockholm Sweden
- Department of Newborn Medicine Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
68
|
Nutrition during Pregnancy and Lactation: Epigenetic Effects on Infants’ Immune System in Food Allergy. Nutrients 2022; 14:nu14091766. [PMID: 35565735 PMCID: PMC9103859 DOI: 10.3390/nu14091766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Food allergies are an increasing health problem worldwide. They are multifactorial diseases, in which the genome alone does not explain the development of the disease, but a genetic predisposition and various environmental factors contribute to their onset. Environmental factors, in particular nutritional factors, in the early stages of life are recognized as key elements in the etiology of food allergies. There is growing evidence advising that nutrition can affect the risk of developing food allergies through epigenetic mechanisms elicited by the nutritional factors themselves or by modulating the gut microbiota and its functional products. Gut microbiota and postbiotics can in turn influence the risk of food allergy development through epigenetic mechanisms. Epigenetic programming accounts not only for the short-term effects on the individual’s health status, but also for those observed in adulthood. The first thousand days of life represent an important window of susceptibility in which environmental factors, including nutritional ones, can influence the risk of developing allergies through epigenetic mechanisms. From this point of view, it represents an interesting window of opportunity and intervention. This review reports the main nutritional factors that in the early stages of life can influence immune oral tolerance through the modulation of epigenetic mechanisms.
Collapse
|
69
|
Feng H, Xiong X, Chen Z, Luo N, Wu Y. MALAT1 Induces Food Allergy by Promoting Release of IL-6 from Dendritic Cells and Suppressing the Immunomodulatory Function of Tregs. J Asthma Allergy 2022; 15:529-544. [PMID: 35515816 PMCID: PMC9064454 DOI: 10.2147/jaa.s341742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Background Dendritic cells (DCs) comprise a valuable target for immune-modulation in food allergy (FA). Long noncoding RNA (lncRNA), metastasis associated lung adenocarcinoma transcript 1 (MALAT1) has immunomodulatory capacities and may influence the outcome of DC antigen presentation. However, the precise molecular mechanisms underlying the implication of MALAT1 in FA remain unclear. Methods BALB/c mice were sensitized to ovalbumin in accordance with a model of FA protocol and injected with adenovirus. After modeling, immunohistochemistry was performed to analyze the jejunal tissues of FA mice and hematoxylin-eosin staining and toluidine blue staining were performed to detect inflammation and mast cell numbers. Ovalbumin-sensitized mice were monitored for symptoms of diarrhea and rectal temperature. Immature DCs were stimulated by oxidized low density lipoprotein to trigger their maturation. Results MALAT1 was found highly expressed in mice with FA, and its silencing relieved allergic reactions with reduction in intestinal inflammatory cells and mast cells in FA mice. MALAT1 aggravated symptoms by downregulating zinc finger protein 36 (ZFP36). MALAT1 also downregulated ZFP36 expression to promote interleukin-6 (IL-6) secretion by DCs and maturation of DCs, with increased serum-specific immunoglobulin E (IgE) and IgG1 levels. Conclusion Together, these data suggested that therapeutically blocking MALAT1 in FA could reduce the severity of FA by decreasing secretion of IL-6 by DCs and suppressing the immunomodulation of Tregs.
Collapse
Affiliation(s)
- Hua Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
- School of Public Health, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Zhuo Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Nan Luo
- School of Public Health, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
- China National Center for Food Safety Risk Assessment, Beijing, 100022, People’s Republic of China
- Chinese Academy of Medical Science Research Unit, Beijing, 100730, People’s Republic of China
- Correspondence: Yongning Wu, State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China, Tel +86-10-52165589, Email
| |
Collapse
|
70
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
71
|
Dietary Acid Load Modulation of Asthma-Related miRNAs in the Exhaled Breath Condensate of Children. Nutrients 2022; 14:nu14061147. [PMID: 35334803 PMCID: PMC8949211 DOI: 10.3390/nu14061147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Individual nutrients and bioactive compounds have been implicated in the expression of microRNAs (miRNAs), which are related to inflammation and asthma. However, evidence about the impact of diet is scarce. Therefore, we aimed to assess the association between dietary acid load and asthma-related miRNA in the exhaled breath condensate (EBC) of school-aged children. This cross-sectional analysis included 150 participants aged 7 to 12 years (52% girls) from a nested case–control study, which randomly selected 186 children attending 71 classrooms from 20 public schools located in city of Porto, Portugal. Dietary data were collected by one 24 h-recall questionnaire. Dietary acid load was assessed using the potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores. Based on previous studies, eleven asthma-related miRNAs were chosen and analyzed in EBC by reverse transcription-quantitative real-time PCR. PRAL, NEAP and miRNAs were categorized as high or low according to the median. Logistic regression models were performed to assess the association between dietary acid load scores and miRNAs. Children in high dietary acid load groups (PRAL ≥ 14.43 and NEAP ≥ 55.79 mEq/day) have significantly increased odds of having high miR-133a-3p levels. In conclusion, higher dietary acid loads possibly modulate asthma-related miRNAs of school-aged children.
Collapse
|
72
|
Venter C, Palumbo MP, Sauder KA, Glueck DH, O'Mahony L, Yang I, Davidson EJ, Brough HA, Holloway JW, Fleischer DM, Ben-Abdallah M, Dabelea D. Associations between child filaggrin mutations and maternal diet with the development of allergic diseases in children. Pediatr Allergy Immunol 2022; 33:e13753. [PMID: 35338739 PMCID: PMC9621095 DOI: 10.1111/pai.13753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Filaggrin (FLG) loss-of-function mutations in children and maternal diet in pregnancy have been implicated in child allergy outcomes. This paper studies the questions: "do FLG mutations modify the effect of maternal diet on the odds of development of allergic diseases?" and "which factor leads to the highest rate of diagnosis allergic diseases over time, maternal diet, or FLG mutations?". METHODS Exact logistic regressions studied effect modification. Cox proportional hazard models compared the rate of allergic disease development in three groups (N = 624): (1) children with FLG mutation, (2) children without FLG mutation whose mothers did not eat an allergy preventive diet, and (3) children without FLG mutation whose mothers ate an allergy preventive diet. Maternal diet was classified using a validated index. RESULTS Cox models showed the development of atopic dermatitis, asthma, and wheeze was significantly higher for children in group 1 versus 3 (HR = 2.40 [1.32, 4.37], HR = 2.29 [1.05, 4.97], and HR 2.10 [1.004, 4.38], respectively), but not significantly higher for children in group 1 versus 2 (HR = 1.30 [0.74, 2.29], HR = 1.27 [0.61, 2.63], and HR = 1.29 [0.65, 2.58], respectively). Development of allergic rhinitis was significantly higher for group 1 versus 2 and 3 (1 vs. 2: HR = 2.29 [1.10, 4.76]; 1 vs. 3: HR = 3.21 [1.46, 7.08]). There was no significant effect modification for any outcome. CONCLUSION Children with FLG mutation had similar risk of atopic dermatitis, asthma, and wheeze as children without an FLG mutation whose mothers did not eat an allergy preventive diet during pregnancy. Child FLG mutation did not modify the effect of maternal diet. The results suggest that maternal diet in pregnancy, a modifiable risk factor, could be a target for preventive interventions.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy & Immunology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA.,Children's Hospital Colorado, Aurora, Colorado, USA
| | - Michaela P Palumbo
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA
| | - Katherine A Sauder
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ivana Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| | - Elizabeth J Davidson
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Helen A Brough
- Paediatric Allergy Group, Department Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.,Paediatric Allergy Group, School of Immunology and Microbial Sciences, King's College London, London, UK.,Children's Allergy Service, Evelina Children's Hospital, Guy's and St, Thomas's NHS Foundation Trust, London, UK
| | - John W Holloway
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - David M Fleischer
- Section of Allergy & Immunology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA.,Children's Hospital Colorado, Aurora, Colorado, USA
| | - Miriam Ben-Abdallah
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Denver, Aurora, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
73
|
Vandenplas Y. Early Life and Nutrition and Allergy Development. Nutrients 2022; 14:282. [PMID: 35057463 PMCID: PMC8779902 DOI: 10.3390/nu14020282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Much evidence has been accumulated over recent years on the importance of the first 1000 days of a child's life, starting from conception to the postnatal age of two years, with regard to the risk of developing allergic disease [...].
Collapse
Affiliation(s)
- Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
74
|
Xu Q, Yu J, Liu D, Tan Q, He Y. The Airway Microbiome and Metabolome in Preterm Infants: Potential Biomarkers of Bronchopulmonary Dysplasia. Front Pediatr 2022; 10:862157. [PMID: 35620149 PMCID: PMC9127389 DOI: 10.3389/fped.2022.862157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES We investigated the genomic and metabolic characteristics of the airway microbiome in mild, moderate, severe, and non-bronchopulmonary dysplasia (BPD) preterm infants and explored possible mechanisms underlying BPD. METHODS Twenty-eight preterm infants with gestational age ≤34 weeks and intubated within 24 h after birth were enrolled. According to the severity of BPD, the patients were divided into mild, moderate and severe BPD groups, and the non-BPD group was the control group. Tracheal aspirates (TA) were obtained at intubation and on day 7 after birth. The bacterium in the aspirates were sequenced by 16S rRNA, and the metabolomics of the aspirates were identified by high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-Q-TOF/MS). The correlation between the differential metabolite and differential bacteria was investigated using Pearson's correlation coefficient corrected for gestational age and birth weight and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. RESULTS There were significant differences in the diversity and composition of airway microbiome and metabolome between severe, moderate and mild BPD and non-BPD premature infants. At birth (day 1), the difference was more pronounced than at day 7. The diversity of airway microbial community decreased, the abundance of Stenotrophomonas increased, and the increased level of sn-glycerol 3-phosphoethanolamine was positively correlated with the severity of BPD. There was a significant positive correlation between the abundance of Stenotrophomonas and the level of sn-glycerol 3-phosphoethanolamine. CONCLUSION Decreased diversity of the airway microbiome, increased abundance of Stenotrophomonas, and increased level of sn-glycerol 3-phosphoethanolamine may have potential as biomarkers for BPD. The occurrence and severity of BPD are closely related to Stenotrophomonas, which may influence the composition of the lower airway microbiome through its metabolite sn-glycerol 3-phosphoethanolamine, and may be the triggering factor of the disease. The causal relationship needs further study.
Collapse
Affiliation(s)
- Qi Xu
- Department of Pediatrics, Southern University of Science and Technology Hospital, Shenzhen, China.,Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jialin Yu
- Department of Pediatrics, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Dong Liu
- Department of Neonatology, Shenzhen People's Hospital, Shenzhen, China
| | - Qi Tan
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu He
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
75
|
Perveen K, Quach A, Stark MJ, Prescott SL, Barry SC, Hii CS, Ferrante A. Characterization of the Transient Deficiency of PKC Isozyme Levels in Immature Cord Blood T Cells and Its Connection to Anti-Allergic Cytokine Profiles of the Matured Cells. Int J Mol Sci 2021; 22:ijms222312650. [PMID: 34884454 PMCID: PMC8657888 DOI: 10.3390/ijms222312650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Cord blood T cells (CBTC) from a proportion of newborns express low/deficient levels of some protein kinase C (PKC) isozymes, with low levels of PKCζ correlating with increased risk of developing allergy and associated decrease in interferon-gamma (IFN-γ) producing T cells. Interestingly, these lower levels of PKCζ were increased/normalized by supplementing women during pregnancy with n-3 polyunsaturated fatty acids. However, at present, we have little understanding of the transient nature of the deficiency in the neonate and how PKCζ relates to other PKC isozymes and whether their levels influence maturation into IFN-γ producing T cells. There is also no information on PKCζ isozyme levels in the T cell subpopulations, CD4+ and CD8+ cells. These issues were addressed in the present study using a classical culture model of neonatal T cell maturation, initiated with phytohaemagglutinin (PHA) and recombinant human interleukin-2 (rhIL-2). Of the isozymes evaluated, PKCζ, β2, δ, μ, ε, θ and λ/ι were low in CBTCs. The PKC isozyme deficiencies were also found in the CD4+ and CD8+ T cell subset levels of the PKC isozymes correlated between the two subpopulations. Examination of changes in the PKC isozymes in these deficient cells following addition of maturation signals showed a significant increase in expression within the first few hours for PKCζ, β2 and μ, and 1–2 days for PKCδ, ε, θ and λ/ι. Only CBTC PKCζ isozyme levels correlated with cytokine production, with a positive correlation with IFN-γ, interleukin (IL)-2 and tumour necrosis factor-alpha (TNF), and a negative association with IL-9 and IL-10. The findings reinforce the specificity in using CBTC PKCζ levels as a biomarker for risk of allergy development and identify a period in which this can be potentially ‘corrected’ after birth.
Collapse
Affiliation(s)
- Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (K.P.); (A.Q.); (C.S.H.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (M.J.S.); (S.C.B.)
| | - Alex Quach
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (K.P.); (A.Q.); (C.S.H.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (M.J.S.); (S.C.B.)
| | - Michael J. Stark
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (M.J.S.); (S.C.B.)
- Department of Neonatal Medicine, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Susan L. Prescott
- School of Paediatrics and Child Health, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
- The ORIGINS Project, Telethon Kids Institute and Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Simon C. Barry
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (M.J.S.); (S.C.B.)
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (K.P.); (A.Q.); (C.S.H.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (M.J.S.); (S.C.B.)
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (K.P.); (A.Q.); (C.S.H.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (M.J.S.); (S.C.B.)
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: ; Tel.: +61-8-81617216
| |
Collapse
|
76
|
Fang L, Roth M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J Pers Med 2021; 11:jpm11111229. [PMID: 34834581 PMCID: PMC8625708 DOI: 10.3390/jpm11111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American Thoracic Society released a research statement highlighting the gaps in knowledge and understanding of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling. The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus, the initiation event remains unknown. Recent studies have implied that the interaction between the epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet unknown epigenetic mechanism during early childhood.
Collapse
|
77
|
Mierziak J, Kostyn K, Boba A, Czemplik M, Kulma A, Wojtasik W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021; 13:3673. [PMID: 34835928 PMCID: PMC8619229 DOI: 10.3390/nu13113673] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wroclaw, Poland;
| | - Aleksandra Boba
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Magdalena Czemplik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| |
Collapse
|
78
|
Liu Z, Li SK, Huang CK, Huang CF. A High-Sodium Diet Modulates the Immune Response of Food Allergy in a Murine Model. Nutrients 2021; 13:nu13113684. [PMID: 34835940 PMCID: PMC8621805 DOI: 10.3390/nu13113684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence demonstrates that a high-salt diet (HSD) not only affects hemodynamic changes but also disrupts immune homeostasis. The T helper 17 (Th17) and regulatory T cells (Tregs) are susceptible to hypersalinity. However, research on the influence of sodium on Th2-mediated food allergies remains scarce. We aimed to investigate the effect of dietary sodium on the immune response to food allergies. Mice maintained on an HSD (4% NaCl), low-salt diet (LSD; 0.4% NaCl), or control diet (CTRL; 1.0% NaCl) were orally sensitized with ovalbumin (OVA) and a cholera toxin (CT) adjuvant, and then subjected to an intragastric OVA challenge. OVA-specific immunoglobulin G (IgG), IgG1, IgG2a, and IgE antibodies were significantly higher in the HSD group than in the CTRL group (p < 0.001, p < 0.05, p < 0.01, and p < 0.05, respectively). Mice on HSD had significantly higher interleukin (IL)-4 levels than the CTRL group (p < 0.01). The IL-10 levels were significantly lower in the HSD group than in the CTRL group (p < 0.05). The serum levels of interferon-γ (IFN-γ), sodium, and chloride did not differ among the three groups. This study indicates that excessive salt intake promotes Th2 responses in a mouse model of food allergy.
Collapse
Affiliation(s)
- Zheying Liu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan;
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei City 11696, Taiwan
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Taipei Veterans General Hospital, Taipei City 11217, Taiwan; (S.-K.L.); (C.-K.H.)
| | - Shih-Kuan Li
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Taipei Veterans General Hospital, Taipei City 11217, Taiwan; (S.-K.L.); (C.-K.H.)
- Department of Pediatrics, Yonghe Cardinal Tien Hospital, New Taipei City 23445, Taiwan
| | - Chih-Kang Huang
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Taipei Veterans General Hospital, Taipei City 11217, Taiwan; (S.-K.L.); (C.-K.H.)
- Department of Pediatrics, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan City 33052, Taiwan
| | - Ching-Feng Huang
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Taipei Veterans General Hospital, Taipei City 11217, Taiwan; (S.-K.L.); (C.-K.H.)
- National Defense Medical Center, School of Medicine, Taipei City 11490, Taiwan
- Correspondence: ; Tel.: +886-2-2875-7019; Fax: +886-2-2873-9019
| |
Collapse
|
79
|
Xu X, Qin L, Ren L, Wang C, Zhang Y, Zhang L. Comparative analysis of chronic rhinitis patient profiles during autumn pollen season between grassland and non-grassland cities in North China. Allergy Asthma Clin Immunol 2021; 17:106. [PMID: 34635159 PMCID: PMC8503993 DOI: 10.1186/s13223-021-00591-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022] Open
Abstract
Background The symptoms of patients with respiratory disease are influenced by local environmental factors. The incidence of allergic rhinitis in grassland areas was significantly higher than that in non-grassland areas. We aimed to compare the profiles of chronic rhinitis patients obtained during the autumn pollen season in Baotou (grassland city) and Beijing (non-grassland city), China. Methods Questionnaire surveys and allergen testing were conducted on 1170 and 1232 patients with chronic rhinitis visiting the Second Affiliated Hospital of Baotou Medical College and Beijing Tongren Hospital, respectively, during the autumn pollen period. Information regarding medical history, severity of symptoms, and diagnosis and treatment was collected. Results More patients with moderate to severe chronic rhinitis and asthma (both, P < 0.001) were present in Baotou than in Beijing. Mugwort was the most abundant allergen in both regions, but the number of patients sensitized to outdoor allergens in Baotou was higher than that in Beijing (P < 0.001). Indoor allergens in Beijing represented a considerable proportion of allergens, especially dust mites (33.4%). For patients with allergic rhinitis, nasal congestion, nasal itching, and runny nose were more severe in Baotou than in Beijing (P < 0.001). In both Baotou and Beijing, allergy (P < 0.001 vs. P = 0.004) and combined asthma (P = 0.049 vs. P = 0.005) were common factors affecting the severity of the clinical symptoms chronic rhinitis. In Baotou, age (rs = 0.195, P < 0.001) and family allergy history (P = 0.010) were also associated with symptom severity. Although significantly more patients in Baotou received oral antihistamines, nasal corticosteroids, and surgical treatment than in Beijing (P < 0.001), the number of people receiving allergy immunotherapy in Baotou was lower (P = 0.004) and post-treatment symptom control was worse (P < 0.001) that that in Beijing. Conclusions During the pollen period, there were significant differences in the allergen spectrum between Baotou and Beijing. Allergy and combined asthma were common factors affecting the severity of clinical symptoms. Patients in Baotou presented with more severe clinical symptoms that were not satisfactorily managed due to the impact of pollen exposure, inconsistent access to care, and differing treatment modalities. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-021-00591-w.
Collapse
Affiliation(s)
- Xu Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, Hou Gou Hu Tong, Dong Cheng District, 100005, Beijing, People's Republic of China.,Department of Allergy, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China
| | - Long Qin
- The Second Affiliated Hospital of Baotou Medical College, Baotou Medical College, Baotou, China
| | - Lei Ren
- Department of Allergy, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, Hou Gou Hu Tong, Dong Cheng District, 100005, Beijing, People's Republic of China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China. .,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, Hou Gou Hu Tong, Dong Cheng District, 100005, Beijing, People's Republic of China. .,Department of Allergy, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China. .,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, Hou Gou Hu Tong, Dong Cheng District, 100005, Beijing, People's Republic of China. .,Department of Allergy, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
80
|
Dessì A, Bosco A, Pintus R, Picari G, Mazza S, Fanos V. Epigenetics and Modulations of Early Flavor Experiences: Can Metabolomics Contribute to Prevention during Weaning? Nutrients 2021; 13:nu13103351. [PMID: 34684350 PMCID: PMC8539480 DOI: 10.3390/nu13103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The significant increase in chronic non-communicable diseases has changed the global epidemiological landscape. Among these, obesity is the most relevant in the pediatric field. This has pushed the world of research towards a new paradigm: preventive and predictive medicine. Therefore, the window of extreme plasticity that characterizes the first stage of development cannot be underestimated. In this context, nutrition certainly plays a primary role, being one of the most important epigenetic modulators known to date. Weaning, therefore, has a crucial role that must be analyzed far beyond the simple achievement of nutritional needs. Furthermore, the taste experience and the family context are fundamental for future food choices and can no longer be underestimated. The use of metabolomics allows, through the recognition of early disease markers and food-specific metabolites, the planning of an individualized and precise diet. In addition, the possibility of identifying particular groups of subjects at risk and the careful monitoring of adherence to dietary therapy may represent the basis for this change.
Collapse
|
81
|
Vandenplas Y, Gerlier L, Caekelbergh K, Nan-Study-Group, Possner M. An Observational Real-Life Study with a New Infant Formula in Infants with Functional Gastro-Intestinal Disorders. Nutrients 2021; 13:nu13103336. [PMID: 34684337 PMCID: PMC8539302 DOI: 10.3390/nu13103336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/28/2022] Open
Abstract
Functional gastro-intestinal disorders (FGIDs) impair the quality of life of many infants and their families. A formula with partial whey hydrolysate, starch, high magnesium content, prebiotic fructo-oligosaccharide and galacto-oligosaccharide and the probiotic Lactobacillus reuteri DSM 17938 was given during two weeks to 196 infants with at least two FGIDs. The efficacy was evaluated with the Cow Milk-associated Symptom Score (CoMiSS®) and quality of life with the QUALIN score. The formula was shown to decrease FGIDs within three days (decrease of CoMiSS −1.29 (3.15) (mean (SD), p < 0.0001) followed by an improvement of quality of life after seven days (increase QUALIN +1.4 (7.8); p: 0.008). Constipation decreased from 18.8% to 6.5% within three days. In combination with reassurance and guidance, the nutritional intervention was shown to be effective in infants with FGIDS in real-life circumstances.
Collapse
Affiliation(s)
- Yvan Vandenplas
- KidZ Health Castle, Vrije Universiteit Brussel (VUB), UZ Brussel, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-475748794
| | | | | | | | - Mike Possner
- Nestlé Nutrition Institute, 60528 Frankfurt am Main, Germany;
| |
Collapse
|
82
|
Wang C, Jiang S, Zhang S, Ouyang Z, Wang G, Wang F. Research Progress of Metabolomics in Asthma. Metabolites 2021; 11:567. [PMID: 34564383 PMCID: PMC8466166 DOI: 10.3390/metabo11090567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Asthma is a highly heterogeneous disease, but the pathogenesis of asthma is still unclear. It is well known that the airway inflammatory immune response is the pathological basis of asthma. Metabolomics is a systems biology method to analyze the difference of low molecular weight metabolites (<1.5 kDa) and explore the relationship between metabolic small molecules and pathophysiological changes of the organisms. The functional interdependence between immune response and metabolic regulation is one of the cores of the body's steady-state regulation, and its dysfunction will lead to a series of metabolic disorders. The signal transduction effect of specific metabolites may affect the occurrence of the airway inflammatory immune response, which may be closely related to the pathogenesis of asthma. Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of asthma. The review aims to analyze the changes of metabolites in blood/serum/plasma, urine, lung tissue, and exhaled breath condensate (EBC) samples, and further reveals the potential pathogenesis of asthma according to the disordered metabolic pathways.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Siyu Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Zhuoer Ouyang
- Department of Cellular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (C.W.); (S.J.); (S.Z.)
| |
Collapse
|
83
|
Metabolic Phenotypes in Asthmatic Adults: Relationship with Inflammatory and Clinical Phenotypes and Prognostic Implications. Metabolites 2021; 11:metabo11080534. [PMID: 34436475 PMCID: PMC8400680 DOI: 10.3390/metabo11080534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Bronchial asthma is a chronic disease that affects individuals of all ages. It has a high prevalence and is associated with high morbidity and considerable levels of mortality. However, asthma is not a single disease, and multiple subtypes or phenotypes (clinical, inflammatory or combinations thereof) can be detected, namely in aggregated clusters. Most studies have characterised asthma phenotypes and clusters of phenotypes using mainly clinical and inflammatory parameters. These studies are important because they may have clinical and prognostic implications and may also help to tailor personalised treatment approaches. In addition, various metabolomics studies have helped to further define the metabolic features of asthma, using electronic noses or targeted and untargeted approaches. Besides discriminating between asthma and a healthy state, metabolomics can detect the metabolic signatures associated with some asthma subtypes, namely eosinophilic and non-eosinophilic phenotypes or the obese asthma phenotype, and this may prove very useful in point-of-care application. Furthermore, metabolomics also discriminates between asthma and other “phenotypes” of chronic obstructive airway diseases, such as chronic obstructive pulmonary disease (COPD) or Asthma–COPD Overlap (ACO). However, there are still various aspects that need to be more thoroughly investigated in the context of asthma phenotypes in adequately designed, homogeneous, multicentre studies, using adequate tools and integrating metabolomics into a multiple-level approach.
Collapse
|
84
|
Cooper PJ, Ster IC, Chico ME, Vaca M, Barreto ML, Strachan DP. Patterns of allergic sensitization and factors associated with emergence of sensitization in the rural tropics early in the life course: findings of an Ecuadorian birth cohort. FRONTIERS IN ALLERGY 2021; 2:687073. [PMID: 34888545 PMCID: PMC7612078 DOI: 10.3389/falgy.2021.687073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction There are limited data on emergence of allergic sensitization (or atopy) during childhood in tropical regions. Methods We followed a birth cohort of 2404 newborns to 8 years in tropical Ecuador and collected: risk factor data by maternal questionnaires periodically from birth; atopy was measured by skin prick test reactivity (SPT) to aeroallergens in parents, and aeroallergens and food allergens in children at 2, 3, 5, and 8 years; and stool samples for soil-transmitted helminths (STH) from children periodically to 8 years and from parents and household members at the time of recruitment of cohort children. Data on risk factors were measured either at birth or repeatedly (time-varying) from birth to 8 years. Longitudinal repeated-measures analyses were done using generalized estimating equations to estimate an the age-dependent risk of positive SPT (SPT+) to any allergen or mite during early childhood to school age. Results SPT+ to any allergen was present in 29.0% of fathers and 24.8% of mothers, and in cohort children increased with age, initially to mite but later to cockroach, reaching 14.8% to any allergen (10.7% mite and 5.3% cockroach) at 8 years. Maternal SPT+, particularly presence of polysensitization (OR 2.04, 95% CI 1.49-2.77) significantly increased the risk of SPT+ during childhood, while household overcrowding at birth decreased the risk (OR 0.84, 95% CI 0.72-0.98). For mite sensitization, maternal polysensitization increased (OR 2.14, 95% CI 1.40-3.27) but rural residence (OR 0.69, 95% CI 0.50-0.94) and birth order (3rd -4th vs. 1st - 2nd: OR 0.71, 95% CI 0.52-0.98) decreased the risk. Time-varying exposures to agricultural activities (OR 0.77, 95% CI 0.60-0.98) and STH parasites (OR 0.70, 95% CI 0.64-0.91) during childhood decreased while anthelmintics increased the childhood risk (OR 1.47, 95% CI 1.05-2.05) of mite sensitization. Conclusion Our data showed the emergence of allergic sensitization, primarily to mite and cockroach allergens, during childhood in tropical Ecuador. A role for both antenatal and postnatal factors acting as potential determinants of SPT+ emergence was observed.
Collapse
Affiliation(s)
- Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,Escuela de Medicina, Universidad Internacional del Ecuador, Quito, Ecuador.,Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Martha E Chico
- Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Maritza Vaca
- Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Mauricio L Barreto
- Center for Data and Knowledge Integration for Health (CIDACS)-FIOCRUZ, Salvador, Brazil
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| |
Collapse
|
85
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
86
|
Mate A, Reyes-Goya C, Santana-Garrido Á, Sobrevia L, Vázquez CM. Impact of maternal nutrition in viral infections during pregnancy. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166231. [PMID: 34343638 PMCID: PMC8325560 DOI: 10.1016/j.bbadis.2021.166231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Other than being a physiological process, pregnancy is a condition characterized by major adaptations of maternal endocrine and metabolic homeostasis that are necessary to accommodate the fetoplacental unit. Unfortunately, all these systemic, cellular, and molecular changes in maternal physiology also make the mother and the fetus more prone to adverse outcomes, including numerous alterations arising from viral infections. Common infections during pregnancy that have long been recognized as congenitally and perinatally transmissible to newborns include toxoplasmosis, rubella, cytomegalovirus, and herpes simplex viruses (originally coined as ToRCH infections). In addition, enterovirus, parvovirus B19, hepatitis virus, varicella-zoster virus, human immunodeficiency virus, Zika and Dengue virus, and, more recently, coronavirus infections including Middle Eastern respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) infections (especially the novel SARS-CoV-2 responsible for the ongoing COVID-19 pandemic), constitute relevant targets for current research on maternal-fetal interactions in viral infections during pregnancy. Appropriate maternal education from preconception to the early postnatal period is crucial to promote healthy pregnancies in general and to prevent and/or reduce the impact of viral infections in particular. Specifically, an adequate lifestyle based on proper nutrition plans and feeding interventions, whenever possible, might be crucial to reduce the risk of virus-related gestational diseases and accompanying complications in later life. Here we aim to provide an overview of the emerging literature addressing the impact of nutrition in the context of potentially harmful viral infections during pregnancy.
Collapse
Affiliation(s)
- Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Luis Sobrevia
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
87
|
Bayer F, Ascher S, Kiouptsi K, Kittner JM, Stauber RH, Reinhardt C. Colonization with Altered Schaedler Flora Impacts Leukocyte Adhesion in Mesenteric Ischemia-Reperfusion Injury. Microorganisms 2021; 9:1601. [PMID: 34442681 PMCID: PMC8401286 DOI: 10.3390/microorganisms9081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota impacts mesenteric ischemia-reperfusion injury, aggravating the interaction of leukocytes with endothelial cells in mesenteric venules. The role of defined gut microbiomes in this life-threatening pathology is unknown. To investigate how a defined model microbiome affects the adhesion of leukocytes in mesenteric ischemia-reperfusion, we took advantage of gnotobiotic isolator technology and transferred altered Schaedler flora (ASF) from C3H/HeNTac to germ-free C57BL/6J mice. We were able to detect all eight bacterial taxa of ASF in fecal samples of colonized C57BL/6J mice by PCR. Applying qRT-PCR for quantification of species-specific 16S rDNA sequences of ASF bacteria, we found a major shift in the abundance of ASF 500, which was greater in C57BL/6J mice relative to the C3H/HeNTac founder breeding pair. Using high-speed epifluorescence intravital microscopy to visualize the venules of the small bowel mesentery, we found that gnotobiotic ASF-colonized mice showed reduced leukocyte adherence, both pre- and post-ischemia. Relative to germ-free mice, the counts of adhering leukocytes were increased pre-ischemia but did not significantly increase in ASF-colonized mice in the post-ischemic state. Collectively, our results suggest a protective role of the minimal microbial consortium ASF in mesenteric ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Franziska Bayer
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (S.A.); (K.K.)
| | - Stefanie Ascher
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (S.A.); (K.K.)
- Department of Chemistry, Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (S.A.); (K.K.)
| | - Jens M. Kittner
- Department of Medicine, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
- Diakonie Klinikum Neunkirchen, Brunnenstraße 20, 66538 Neunkirchen, Germany
| | - Roland H. Stauber
- Department of Nanobiomedicine/ENT, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (S.A.); (K.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, 55131 Mainz, Germany
| |
Collapse
|
88
|
Epigenetic Changes Induced by Maternal Factors during Fetal Life: Implication for Type 1 Diabetes. Genes (Basel) 2021; 12:genes12060887. [PMID: 34201206 PMCID: PMC8227197 DOI: 10.3390/genes12060887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Organ-specific autoimmune diseases, such as type 1 diabetes, are believed to result from T-cell-mediated damage of the target tissue. The immune-mediated tissue injury, in turn, is known to depend on complex interactions between genetic and environmental factors. Nevertheless, the mechanisms whereby environmental factors contribute to the pathogenesis of autoimmune diseases remain elusive and represent a major untapped target to develop novel strategies for disease prevention. Given the impact of the early environment on the developing immune system, epigenetic changes induced by maternal factors during fetal life have been linked to a likelihood of developing an autoimmune disease later in life. In humans, DNA methylation is the epigenetic mechanism most extensively investigated. This review provides an overview of the critical role of DNA methylation changes induced by prenatal maternal conditions contributing to the increased risk of immune-mediated diseases on the offspring, with a particular focus on T1D. A deeper understanding of epigenetic alterations induced by environmental stressors during fetal life may be pivotal for developing targeted prevention strategies of type 1 diabetes by modifying the maternal environment.
Collapse
|
89
|
Tan PX, Thiyagarasaiyar K, Tan CY, Jeon YJ, Nadzir MSM, Wu YJ, Low LE, Atanasov AG, Ming LC, Liew KB, Goh BH, Yow YY. Algae-Derived Anti-Inflammatory Compounds against Particulate Matters-Induced Respiratory Diseases: A Systematic Review. Mar Drugs 2021; 19:317. [PMID: 34070821 PMCID: PMC8227865 DOI: 10.3390/md19060317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Air pollution has recently become a subject of increasing concern in many parts of the world. The World Health Organization (WHO) estimated that nearly 4.2 million early deaths are due to exposure to fine particles in polluted air, which causes multiple respiratory diseases. Algae, as a natural product, can be an alternative treatment due to potential biofunctional properties and advantages. This systematic review aims to summarize and evaluate the evidence of metabolites derived from algae as potential anti-inflammatory agents against respiratory disorders induced by atmospheric particulate matter (PM). Databases such as Scopus, Web of Science, and PubMed were systematically searched for relevant published full articles from 2016 to 2020. The main key search terms were limited to "algae", "anti-inflammation", and "air pollutant". The search activity resulted in the retrieval of a total of 36 publications. Nine publications are eligible for inclusion in this systematic review. A total of four brown algae (Ecklonia cava, Ishige okamurae, Sargassum binderi and Sargassum horneri) with phytosterol, polysaccharides and polyphenols were reported in the nine studies. The review sheds light on the pathways of particulate matter travelling into respiratory systems and causing inflammation, and on the mechanisms of actions of algae in inhibiting inflammation. Limitations and future directions are also discussed. More research is needed to investigate the potential of algae as anti-inflammatory agents against PM in in vivo and in vitro experimental models, as well as clinically.
Collapse
Affiliation(s)
- Pek Xyen Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia; (P.X.T.); (K.T.); (C.-Y.T.)
| | - Krishnapriya Thiyagarasaiyar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia; (P.X.T.); (K.T.); (C.-Y.T.)
| | - Cheng-Yau Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia; (P.X.T.); (K.T.); (C.-Y.T.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - Mohd Shahrul Mohd Nadzir
- Department of Earth Sciences and Environmental, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Yong-Jiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-J.W.); (L.-E.L.)
| | - Liang-Ee Low
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-J.W.); (L.-E.L.)
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei;
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia;
| | - Bey-Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-J.W.); (L.-E.L.)
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia; (P.X.T.); (K.T.); (C.-Y.T.)
| |
Collapse
|
90
|
Extracellular Vesicles and Asthma-More Than Just a Co-Existence. Int J Mol Sci 2021; 22:ijms22094984. [PMID: 34067156 PMCID: PMC8124625 DOI: 10.3390/ijms22094984] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.
Collapse
|
91
|
Perveen K, Quach A, McPhee A, Prescott SL, Barry SC, Hii CS, Ferrante A. Cord Blood T Cells Expressing High and Low PKCζ Levels Develop into Cells with a Propensity to Display Th1 and Th9 Cytokine Profiles, Respectively. Int J Mol Sci 2021; 22:ijms22094907. [PMID: 34063174 PMCID: PMC8124775 DOI: 10.3390/ijms22094907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Low Protein Kinase C zeta (PKCζ) levels in cord blood T cells (CBTC) have been shown to correlate with the development of allergic sensitization in childhood. However, little is known about the mechanisms responsible. We have examined the relationship between the expression of different levels of PKCζ in CBTC and their development into mature T cell cytokine producers that relate to allergy or anti-allergy promoting cells. Maturation of naïve CBTC was initiated with anti-CD3/-CD28 antibodies and recombinant human interleukin-2 (rhIL-2). To stimulate lymphocyte proliferation and cytokine production the cells were treated with Phytohaemagglutinin (PHA) and Phorbol myristate acetate (PMA). Irrespective of the PKCζ levels expressed, immature CBTC showed no difference in lymphocyte proliferation and the production of T helper 2 (Th2) cytokine interleukin-4 (IL-4) and Th1 cytokine, interferon-gamma (IFN-γ), and influenced neither their maturation from CD45RA+ to CD45RO+ cells nor cell viability/apoptosis. However, upon maturation the low PKCζ expressing cells produced low levels of the Th1 cytokines, IFN-γ, IL-2 and tumour necrosis factor-alpha (TNF), no changes to levels of the Th2 cytokines, IL-4, IL-5 and IL-13, and an increase in the Th9 cytokine, IL-9. Other cytokines, lymphotoxin-α (LT-α), IL-10, IL-17, IL-21, IL-22 and Transforming growth factor-beta (TGF-β) were not significantly different. The findings support the view that low CBTC PKCζ levels relate to the increased risk of developing allergic diseases.
Collapse
Affiliation(s)
- Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (K.P.); (A.Q.); (C.S.H.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Alex Quach
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (K.P.); (A.Q.); (C.S.H.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Andrew McPhee
- Department of Neonatal Medicine, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia;
| | - Susan L. Prescott
- School of Paediatrics and Child Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
- The ORIGINS Project, Telethon Kids Institute and Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Simon C. Barry
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (K.P.); (A.Q.); (C.S.H.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (K.P.); (A.Q.); (C.S.H.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: ; Tel.: +61-8-81617216
| |
Collapse
|
92
|
MicroRNA Interference in Hepatic Host-Pathogen Interactions. Int J Mol Sci 2021; 22:ijms22073554. [PMID: 33808062 PMCID: PMC8036276 DOI: 10.3390/ijms22073554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is well recognized as a non-immunological visceral organ that is involved in various metabolic activities, nutrient storage, and detoxification. Recently, many studies have demonstrated that resident immune cells in the liver drive various immunological reactions by means of several molecular modulators. Understanding the mechanistic details of interactions between hepatic host immune cells, including Kupffer cells and lymphocytes, and various hepatic pathogens, especially viruses, bacteria, and parasites, is necessary. MicroRNAs (miRNAs), over 2600 of which have been discovered, are small, endogenous, interfering, noncoding RNAs that are predicted to regulate more than 15,000 genes by degrading specific messenger RNAs. Several recent studies have demonstrated that some miRNAs are associated with the immune response to pathogens in the liver. However, the details of the underlying mechanisms of miRNA interference in hepatic host-pathogen interactions still remain elusive. In this review, we summarize the relationship between the immunological interactions of various pathogens and hepatic resident immune cells, as well as the role of miRNAs in the maintenance of liver immunity against pathogens.
Collapse
|
93
|
Raw Milk-Induced Protection against Food Allergic Symptoms in Mice Is Accompanied by Shifts in Microbial Community Structure. Int J Mol Sci 2021; 22:ijms22073417. [PMID: 33810380 PMCID: PMC8037148 DOI: 10.3390/ijms22073417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
The mechanism underlying the allergy-protective effects of raw cow’s milk is still unknown, but the modulation of the gut microbiome may play a role. The effects of consuming raw cow’s milk or processed milk on fecal microbial communities were therefore characterized in an experimental murine model. C3H/HeOuJ mice were treated with raw milk, pasteurized milk, skimmed raw milk, pasteurized milk supplemented with alkaline phosphatase (ALP), or phosphate-buffered saline (PBS) for eight days prior to sensitization and challenge with ovalbumin (OVA). Fecal samples were collected after milk exposure and after OVA sensitization, and microbiomes were characterized using 16S ribosomal RNA gene amplicon sequencing. Treatment with raw milk prior to OVA sensitization increased the relative abundance of putative butyrate-producing bacteria from the taxa Lachnospiraceae UCG-001, Lachnospiraceae UCG-008, and Ruminiclostridium 5 (Clostridial clusters XIVa and IV), while it decreased the relative abundance of Proteobacterial genera such as Parasutterella, a putative pro-inflammatory bacterial genus. This effect was observed after eight days of raw milk exposure and became more pronounced five weeks later, after allergic sensitization in the absence of milk. Similar trends were observed after treatment with skimmed raw milk. Conversely, the feeding of pasteurized milk led to a loss of allergy protection and a putative dysbiotic microbiome. The addition of ALP to pasteurized milk restored the protective effect observed with raw milk and mitigated some of the microbial community alterations associated with milk pasteurization. Raw milk-induced protection against food allergic symptoms in mice is accompanied by an increased relative abundance of putative butyrate-producing Clostridiales and a decreased relative abundance of putative pro-inflammatory Proteobacteria. Given the safety concerns regarding raw milk consumption, this knowledge is key for the development of new, microbiologically safe, preventive strategies to reduce the incidence of allergic diseases.
Collapse
|