51
|
Abstract
AbstractEpilepsy is a common neurological disease caused by synchronous firing of hyperexcitable neurons. Currently, anti-epileptic drugs remain the main choice to control seizure, but 30% of patients are resistant to the drugs, which calls for more research on new promising targets. Neuroinflammation is closely associated with the development of epilepsy. As an important inflammatory factor, high mobility group protein B1 (HMGB1) has shown elevated expression and an increased proportion of translocation from the nucleus to the cytoplasm in patients with epilepsy and in multiple animal models of epilepsy. HMGB1 can act on downstream receptors such as Toll-like receptor 4 and receptor for advanced glycation end products, thereby activating interleukin (IL)-1β and nuclear factor kappa-B (NF-κB), which in turn act with glutamate receptors such as the N-methyl-D-aspartate (NMDA) receptors to aggravate hyperexcitability and epilepsy. The hyperexcitability can in turn stimulate the expression and translocation of HMGB1. Blocking HMGB1 and its downstream signaling pathways may be a direction for antiepileptic drug therapy. Here, we review the changes of HMGB1-related pathway in epileptic brains and its role in the modulation of neuronal excitability and epileptic seizure. Furthermore, we discuss the potentials of HMGB1 as a therapeutic target for epilepsy and provide perspective on future research on the role of HMGB1 signaling in epilepsy.
Collapse
|
52
|
Lu F, Chen H, Hong Y, Lin Y, Liu L, Wei N, Wu Q, Liao S, Yang S, He J, Shao Y. A gain-of-function NLRP3 3'-UTR polymorphism causes miR-146a-mediated suppression of NLRP3 expression and confers protection against sepsis progression. Sci Rep 2021; 11:13300. [PMID: 34172780 PMCID: PMC8233413 DOI: 10.1038/s41598-021-92547-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (LRR)-containing family protein 3 (NLRP3) regulated the maturation of inflammation-related cytokines by forming NLRP3 inflammasome, which plays pivotal roles in sepsis pathogenesis. In this study, we evaluated the genetic association of NLRP3 polymorphisms with sepsis (640 patients and 769 controls) and characterized the impact of NLRP3 polymorphisms on NLRP3 expression and inflammatory responses. No significant differences were observed in genotype/allelic frequencies of NLRP3 29940G>C between sepsis cases and controls. The G allele was significantly overrepresented in patients with septic shock than those in sepsis subgroup, and the GC/GG genetypes were related to the 28-day mortality of sepsis. Lipopolysaccharide challenge to peripheral blood mononuclear cells showed a significant suppression of NLRP3 mRNA expression and release of IL-1β and TNF-α in CC compared with the GC/GG genotype category. Functional experiments with luciferase reporter vectors containing the NLRP3 3′-UTR with the 29940 G-to-C variation in HUVECs and THP-1 cells showed a potential suppressive effect of miR-146a on NLRP3 transcription in the presence of the C allele. Taken together, these results demonstrated that the 29940 G-to-C mutation within the NLRP3 3′-UTR was a gain-of-function alteration that caused the suppression of NLRP3 expression and downstream inflammatory cytokine production via binding with miR-146a, which ultimately protected patients against susceptibility to sepsis progression and poor clinical outcome.
Collapse
Affiliation(s)
- Furong Lu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Hongpeng Chen
- The Department of Chemotherapy, Jieyang Affiliated Hospital, SunYat-Sen University, Jieyang, Guangdong, People's Republic of China
| | - Yuan Hong
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Yao Lin
- The Clinical Medicine Research Laboratory, The Intensive Care Unit, Jieyang Affiliated Hospital, SunYat-Sen University, Tianfu Road 107, Rongcheng District, Jieyang City, 522000, Guangdong Province, People's Republic of China
| | - Lizhen Liu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China.,The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Ning Wei
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Qinyan Wu
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Shuanglin Liao
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Shuai Yang
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China
| | - Junbing He
- The Clinical Medicine Research Laboratory, The Intensive Care Unit, Jieyang Affiliated Hospital, SunYat-Sen University, Tianfu Road 107, Rongcheng District, Jieyang City, 522000, Guangdong Province, People's Republic of China.
| | - Yiming Shao
- The Key Laboratory of Sepsis Translational Medicine, The Intensive Care Unit, The Second Affiliated Hospital of Guangdong Medical University, Minyou Road 12, Xiashan District, Zhanjiang City, 524001, Guangdong Province, People's Republic of China. .,The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, Guangdong, People's Republic of China.
| |
Collapse
|
53
|
Jiangzhi Ligan Decoction Inhibits GSDMD-Mediated Canonical/Noncanonical Pyroptosis Pathways and Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease. DISEASE MARKERS 2021; 2021:9963534. [PMID: 34239622 PMCID: PMC8235964 DOI: 10.1155/2021/9963534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/05/2021] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests that gasdermin D (GSDMD) mediated pyroptosis signaling pathways play a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Jiangzhi Ligan Decoction (JZLGD) has been verified to prevent NAFLD, but its specific mechanism has not been determined. In this study, an NAFLD model was established in Sprague-Dawley rats by a high-fat diet (HFD). After 12 weeks, JZLGD was orally administered once a day for 6 additional weeks. We investigated the effects of JZLGD on NAFLD rats and determined the GSDMD pathway-associated proteins to explore whether such effects were associated with pyroptosis. Our data show that JZLGD significantly reduced the liver index; improved serum lipid levels, liver function parameters, and lipid droplet content; and relieved NAFLD. We further found that the serum levels of the proinflammatory factors interleukin-1β (IL-1β), IL-18, tumor necrosis factor-α, and IL-6 were obviously decreased in the JZLGD group. HFD rats treated with GSDMD exhibited NLRP3, caspase-1, lipopolysaccharide (LPS), and caspase-11 activation; however, these effects were blunted by JZLGD treatment. Taken together, JZLGD may exert hepatoprotective effects against NAFLD in a rat HFD model by regulating GSDMD-mediated canonical/noncanonical pyroptosis pathways.
Collapse
|
54
|
Muñoz-Jiménez A, Rubio-Romero E, Fuente JLMDL. Proposal for the use of anakinra in acute respiratory distress secondary to COVID-19. REUMATOLOGÍA CLÍNICA (ENGLISH EDITION) 2021. [PMID: 32482538 PMCID: PMC8041148 DOI: 10.1016/j.reumae.2020.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The outcome of the SARS-CoV-2 (COVID-19) infection fundamentally affects the lung field, causing ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS). This process is an inflammatory picture, involving an NLRP3 INFLAMOSOME-triggered cytokine storm, the main player in alveolar destruction. IL-1 beta stands out among the cytokines that are triggered in this picture. ANAKINRA is a potent biological drug, capable of blocking this IL 1 beta. We propose its use in controlling ARDS secondary to COVID-19 infection.
Collapse
|
55
|
Muñoz-Jiménez A, Rubio-Romero E, Marenco de la Fuente JL. [Proposal for the use of anakinra in acute respiratory distress secondary to COVID-19]. REUMATOLOGIA CLINICA 2021; 17:309-312. [PMID: 38620280 PMCID: PMC7183956 DOI: 10.1016/j.reuma.2020.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 02/03/2023]
Abstract
The outcome of the SARS-CoV-2 (COVID-19) infection fundamentally affects the lung field, causing acute respiratory distress syndrome (ARDS). This process is an inflammatory picture, involving an NLRP3 inflamosome-triggered cytokine storm, the main player in alveolar destruction. IL-1 beta stands out among the cytokines that are triggered in this picture. Anakinra is a potent biological drug, capable of blocking this IL-1ß. We propose its use in controlling ARDS secondary to COVID-19 infection.
Collapse
Affiliation(s)
| | - Esteban Rubio-Romero
- Servicio de Reumatología, Hospital Universitario Virgen del Rocío, Sevilla, España
| | | |
Collapse
|
56
|
Gupta M, Wani A, Ahsan AU, Ali M, Chibber P, Singh S, Digra SK, Datt M, Bharate SB, Vishwakarma RA, Singh G, Kumar A. Safranal inhibits NLRP3 inflammasome activation by preventing ASC oligomerization. Toxicol Appl Pharmacol 2021; 423:115582. [PMID: 34019860 DOI: 10.1016/j.taap.2021.115582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/01/2023]
Abstract
NLRP3 inflammasome is involved in several chronic inflammatory diseases. The inflammatory effect of the NLRP3 inflammasome is executed through IL-1β and IL-18. Therefore, IL-1β is one of the primary targets in chronic inflammatory conditions. However, current treatment regimens are dependent on anti- IL-1β biologicals. The therapies targeting IL-1β through inhibition of NLRP3 inflammasome are thus being actively explored. We identified safranal, a small molecule responsible for the essence of saffron as a potential inhibitor of the NLRP3 inflammasome. Safranal significantly suppressed the release of IL-1β from ATP stimulated J774A.1 and bone marrow-derived macrophages (BMDMs) by regulating CASP1 and CASP8 dependent cleavage of pro-IL-1β. Safranal markedly suppressed the expression of NLRP3 and its ATPase activity. Safranal treatment enhanced the expression of NRF2, whereas, si-RNA mediated silencing of Nrf2 abrogated the anti-NLRP3 effect of safranal. Furthermore, safranal inhibited ASC oligomerization and formation of ASC specks. Safranal also displayed anti-NLRP3 activity in multiple mice models. Treatment of animals with safranal reduced the production of IL-1β in ATP elicited peritoneal inflammation, MSU induced air pouch inflammation, and MSU injected foot paw edema in mice. Thus, our data projects safranal as a potential preclinical drug candidate against NLRP3 inflammasome triggered chronic inflammation.
Collapse
Affiliation(s)
- Mehak Gupta
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abubakar Wani
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aitizaz Ul Ahsan
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Mehboob Ali
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Chibber
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surjeet Singh
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjeev K Digra
- Department of Paediatrics, Government Medical College, Jammu, India
| | - Manish Datt
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat 380009, India
| | - Sandip B Bharate
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Ram A Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Medicinal Chemistry Division, Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Gurdarshan Singh
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ajay Kumar
- PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
57
|
Cai S, Paudel S, Jin L, Ghimire L, Taylor CM, Wakamatsu N, Bhattarai D, Jeyaseelan S. NLRP6 modulates neutrophil homeostasis in bacterial pneumonia-derived sepsis. Mucosal Immunol 2021; 14:574-584. [PMID: 33230225 PMCID: PMC8084869 DOI: 10.1038/s41385-020-00357-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/04/2023]
Abstract
Bacterial pneumonia is a significant cause of morbidity, mortality, and health care expenditures. Optimum neutrophil recruitment and their function are critical defense mechanisms against respiratory pathogens. The nucleotide-binding oligomerization domain-like receptor (NLRP) 6 controls gut microbiota and immune response to systemic and enteric infections. However, the importance of NLRP6 in neutrophil homeostasis following lung infection remains elusive. To investigate the role of NLRs in neutrophil homeostasis, we used Nlrp6 gene-deficient (Nlrp6-/-) mice in a model of Klebsiella pneumoniae-induced pneumonia-derived sepsis. We demonstrated that NLRP6 is critical for host survival, bacterial clearance, neutrophil influx, and CXC-chemokine production. Kp-infected Nlrp6-/- mice have reduced numbers of hematopoietic stem cells and granulocyte-monocyte progenitors but increased retention of matured neutrophils in bone marrow. Neutrophil extracellular trap (NET) formation and NET-mediated bacterial killing were also impaired in Nlrp6-/- neutrophils in vitro. Furthermore, recombinant CXCL1 rescued the impaired host defense, granulopoietic response, and NETosis in Kp-infected Nlrp6-/- mice. Using A/J background mice and co-housing experiments, our findings revealed that the susceptible phenotype of Nlrp6-/- mice is not strain-specific and gut microbiota-dependent. Taken together, these data unveil NLRP6 as a central regulator of neutrophil recruitment, generation, and function during bacterial pneumonia followed by sepsis.
Collapse
Affiliation(s)
- Shanshan Cai
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803;,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803
| | - Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803;,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803;,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803;,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112
| | - Nobuko Wakamatsu
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803
| | - Dinesh Bhattarai
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803;,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA 70803;,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112,Address Correspondence: S. Jeyaseelan, DVM, PhD, Professor and Director, Center for Lung Biology and Disease, Pathobiological Sciences, LSU, Baton Rouge, LA 70803; Phone: 225-578-9524; Fax: 225-578-9701;
| |
Collapse
|
58
|
Morimoto N, Kono T, Sakai M, Hikima JI. Inflammasomes in Teleosts: Structures and Mechanisms That Induce Pyroptosis during Bacterial Infection. Int J Mol Sci 2021; 22:4389. [PMID: 33922312 PMCID: PMC8122782 DOI: 10.3390/ijms22094389] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pattern recognition receptors (PRRs) play a crucial role in inducing inflammatory responses; they recognize pathogen-associated molecular patterns, damage-associated molecular patterns, and environmental factors. Nucleotide-binding oligomerization domain-leucine-rich repeat-containing receptors (NLRs) are part of the PRR family; they form a large multiple-protein complex called the inflammasome in the cytosol. In mammals, the inflammasome consists of an NLR, used as a sensor molecule, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as an adaptor protein, and pro-caspase1 (Casp1). Inflammasome activation induces Casp1 activation, promoting the maturation of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and the induction of inflammatory cell death called pyroptosis via gasdermin D cleavage in mammals. Inflammasome activation and pyroptosis in mammals play important roles in protecting the host from pathogen infection. Recently, numerous inflammasome-related genes in teleosts have been identified, and their conservation and/or differentiation between their expression in mammals and teleosts have also been elucidated. In this review, we summarize the current knowledge of the molecular structure and machinery of the inflammasomes and the ASC-spec to induce pyroptosis; moreover, we explore the protective role of the inflammasome against pathogenic infection in teleosts.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan;
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| |
Collapse
|
59
|
Ismael S, Nasoohi S, Yoo A, Mirzahosseini G, Ahmed HA, Ishrat T. Verapamil as an Adjunct Therapy to Reduce tPA Toxicity in Hyperglycemic Stroke: Implication of TXNIP/NLRP3 Inflammasome. Mol Neurobiol 2021; 58:3792-3804. [PMID: 33847912 DOI: 10.1007/s12035-021-02384-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022]
Abstract
Thrombolytic therapy has remained quite challenging in hyperglycemic patients for its association with poor prognosis and increased hemorrhagic conversions. We recently showed that tissue plasminogen activator (tPA)-induced cerebrovascular damage is associated with thioredoxin-interacting protein (TXNIP) upregulation, which has an established role in the detrimental effects of hyperglycemia. In the present work, we investigated whether verapamil, an established TXNIP inhibitor, may provide protection against hyperglycemic stroke and tPA-induced blood-brain barrier (BBB) disruption. Acute hyperglycemia was induced by intraperitoneal administration of 20% glucose, 15 min prior to transient middle cerebral artery occlusion (tMCAO). Verapamil (0.15 mg/kg) or saline was intravenously infused with tPA at hyperglycemic reperfusion, 1 h post tMCAO. After 24 h of ischemia/reperfusion (I/R), mice were assessed for neurobehavioral deficits followed by sacrifice and evaluation of brain infarct volume, edema, and microbleeding. Alterations in TXNIP, inflammatory mediators, and BBB markers were further analyzed using immunoblotting or immunostaining techniques. As adjunctive therapy, verapamil significantly reduced tPA-induced BBB leakage, matrix metalloproteinase 9 (MMP-9) upregulation, and tight junction protein deregulation, which resulted in lesser hemorrhagic conversions. Importantly, verapamil strongly reversed tPA-induced TXNIP/NLRP3 (NOD-like receptor pyrin domain-containing-3) inflammasome activation and reduced infarct volume. This concurred with a remarkable decrease in high-mobility group box protein 1 (HMGB-1) and nuclear factor kappa B (NF-κB) stimulation, leading to less priming of NLRP3 inflammasome. This preclinical study supports verapamil as a safe adjuvant that may complement thrombolytic therapy by inhibiting TXNIP's detrimental role in hyperglycemic stroke.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sanaz Nasoohi
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arum Yoo
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA. .,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
60
|
Yang Z, Wang S, Liu H, Xu S. MAPK/iNOS pathway is involved in swine kidney necrosis caused by cadmium exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116497. [PMID: 33540250 DOI: 10.1016/j.envpol.2021.116497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution in the environment could cause toxic damage to animals and humans. MAPK pathways could regulate their downstream inflammatory factors, and plays a crucial role in necrosis. Since the swine kidney tissue is an important accumulation site of Cd and target organ of its toxic damage, but the damage form of Cd to swine kidney and the role of MAPK pathways in it are still not clear, we selected six week old weaned piglets as the research object, and fed a diet supplemented CdCl2 (20 mg/kg) to establish the model of liver injury induced by Cd. The expressions and phosphorylation of MAPK pathways (ERK, JNK, p38), expression levels of inflammatory factors (TNF-α, NF-κB, iNOS, COX-2 and PTGE) and necrosis related genes (MLKL, RIPK1, RIPK3 and FADD) and heat shock proteins (HSPs) were detected by RT-PCR and Western blot. H.E. staining was used to determine the damage of kidney caused by Cd exposure. The results showed that Cd exposure could activate p38 and JNK pathway phosphorylation, rather than ERK 1/2, up regulated the expressions of inflammatory factors, finally induced programmed necrosis (increasing the expressions of MLKL, RIPK1, RIPK3 and FADD) in swine kidney. Our study elucidated the mechanism of Cd-damage to swine kidney and the relationship among MAPK pathways, inflammatory factors and programmed necrosis in swine.
Collapse
Affiliation(s)
- Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
61
|
Kang S, Zhou L, Wang Y, Li H, Zhang H. Identification of Differential Expression Cytokines in Hemolysis, Elevated Liver Enzymes, and Low Platelet Syndrome by Proteome Microarray Analysis and Further Verification. Cell Transplant 2021; 30:963689720975398. [PMID: 33757334 PMCID: PMC7995311 DOI: 10.1177/0963689720975398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To screen the differential expression cytokines (DECs) in hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome, establish its differential cytokines spectra, and provide the clues for its diagnosis and pathogenic mechanism researches. Sera from four HELLP syndrome patients and four healthy controls were detected by proteome microarray. Then the analysis of Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction (PPI) network were performed and possible hub proteins were selected out, further verified by Enzyme Linked Immunosorbent Assay (ELISA) in sera from 21 HELLP syndrome patients and 21 healthy controls. Thirty DECs were defined according to P-value and fold change between HELLP group and control group. GO enrichment analysis showed that DECs were mainly involved in the regulation of inflammatory response and have relationship to growth factor binding, transmembrane receptor protein kinase, and cytokine receptor activity. Seven possible hub proteins were defined by PPI analysis, including IGFBP-3/Follistatin-like 1/FLRG/Fetuin A and MMP-13/Thrombospondin-5/Aggrecan. ELISA showed higher serum levels of Fetuin A/IGFBP-3/FLGR/MMP-13/Thrombospondin-5 in HELLP group than those in controls, while the levels of Follistatin-like 1 and Aggrecan were lower in HELLP patients (all P < 0.05 or <0.01).The serological DECs spectra of HELLP syndrome was established and seven possible hub proteins that may be more closely related to the disease have been verified, providing new clues for its pathogenesis, diagnosis, and clinical treatment.
Collapse
Affiliation(s)
- Suya Kang
- Department of Gynecology and Obstetrics, 105860The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liping Zhou
- Department of Obstetrics, 12461Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou, China
| | - Yun Wang
- Department of Obstetrics, 12461Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou, China
| | - Hui Li
- Central Laboratory, 12461Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Zhang
- Department of Gynecology and Obstetrics, 105860The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
62
|
Liu N, Wu Y, Wen X, Li P, Lu F, Shang H. Chronic stress promotes acute myeloid leukemia progression through HMGB1/NLRP3/IL-1β signaling pathway. J Mol Med (Berl) 2021; 99:403-414. [PMID: 33409553 DOI: 10.1007/s00109-020-02011-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/08/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with poor prognosis and overall survival. Clinical investigations show that chronic stress is commonly present in the course of AML and associated with adverse outcome. However, the underlying molecular mechanisms are elusive. In the present study, a chronic restraint stress mouse model was established to evaluate the effect of stress on AML. We found that mice under chronic stress exhibited significantly increased liver and spleen infiltration of leukemic cells and poorer overall survival. This was accompanied by elevated cellular NLR family pyrin domain containing 3 (NLRP3) and interleukin-1β (IL-1β) in the liver or bone marrow, and secreted IL-1β in the plasma, indicating the activation of inflammasomes under chronic restraint stress. High mobility group box 1 (HMGB1) expression was markedly increased in newly diagnosed AML patients, but reduced in complete remission AML patients. The expression level of HMGB1 was positively correlated with NLRP3 mRNA in AML patients. Knockdown of HMGB1 significantly decreased NLRP3 and IL-1β expression in AML cell lines, and secreted IL-1β in supernatant of AML cell culture, while HMGB1 stimulation caused contrary effects. These results implied that HMGB1 could be involved in the regulation of inflammasome activation in AML development. Mice model showed that chronic restraint stress-facilitated proliferation and infiltration of AML cells were largely abrogated by knocking down HMGB1. Knockdown of HMGB1 also ameliorated overall survival and remarkably neutralized NLRP3 and IL-1β expression under chronic restraint stress. These findings provide evidences that chronic stress promotes AML progression via HMGB1/NLRP3/IL-1β dependent mechanism, suggesting that HMGB1 is a potential therapeutic target for AML. KEY MESSAGES: • Chronic restraint stress promoted acute myeloid leukemia (AML) progression and mediated NLRP3 inflammasome activation in xenograft mice. • HMGB1 mediated NLRP3 inflammasome activation in AML cells. • Knockdown of HMGB1 inhibited AML progression under chronic stress in vivo.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Cell Line, Tumor
- Chronic Disease
- Disease Progression
- Female
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- HMGB1 Protein/antagonists & inhibitors
- HMGB1 Protein/biosynthesis
- HMGB1 Protein/genetics
- HMGB1 Protein/physiology
- Heterografts
- Humans
- Inflammasomes/metabolism
- Inflammation
- Interleukin-1beta/biosynthesis
- Interleukin-1beta/genetics
- Interleukin-1beta/physiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Liver/metabolism
- Liver/pathology
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/biosynthesis
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/physiology
- Neoplasm Proteins/physiology
- RNA Interference
- Remission Induction
- Restraint, Physical
- Signal Transduction/physiology
- Spleen/metabolism
- Spleen/pathology
- Stress, Physiological
- Toll-Like Receptor 4/physiology
- Mice
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yifan Wu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 202150, China
| | - Xin Wen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hong Shang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
63
|
Riaz M, Rehman AU, Shah SA, Rafiq H, Lu S, Qiu Y, Wadood A. Predicting Multi-Interfacial Binding Mechanisms of NLRP3 and ASC Pyrin Domains in Inflammasome Activation. ACS Chem Neurosci 2021; 12:603-612. [PMID: 33504150 DOI: 10.1021/acschemneuro.0c00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NLRP3-PYD inflammasome activates an inflammatory pathway in response to a wide variety of cell damage or infections. Dysregulated NLRP3 inflammatory signaling has many chronic inflammatory and autoimmune disorders. NLRP3 and ASC have a PYD, a superfamily member of the Death Domain, which plays a key role in inflammatory assembly. The ASC interacts with NLRP3 through a homotypic PYD and recruits the procaspase-1 through a homotypic caspase recruitment domain interaction. Here, we used several computational approaches to reveal the interactions of the NLRP3 and ASC PYD domains that lead to the activation of the inflammasome complex. We have characterized ASC and NLRP3-PYD intermolecular interactions by protein-protein docking, and further molecular dynamics (MD) simulations were conducted to evaluate the stability of NLRP3/ASC-PYD complex. Subsequently, we have identified several residues that stabilize the NLRP3/ASC-PYD complex in different faces (i.e., Face-1 to Face-4). The research framework offers new insights into the molecular mechanisms of inflammasome and apoptosis signaling as well as the ease of the drug discovery process.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shahid Ali Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Humaira Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yingying Qiu
- Department of Neurology, Tiantai Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang 317200, China
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
64
|
High-mobility group box protein-1 induces acute pancreatitis through activation of neutrophil extracellular trap and subsequent production of IL-1β. Life Sci 2021; 286:119231. [PMID: 33600865 DOI: 10.1016/j.lfs.2021.119231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of this study is to evaluate acute pancreatitis (AP)-associated NET activation mediated by a novel inflammatory mediator (high-mobility group box protein-1 [HMGB1]) and proinflammatory cytokine responses. METHODS In this study, primary neutrophils, monocytes, and monocytic cell line Thp-1-derived macrophages were isolated and treated with HMGB1, lipopolysaccharide (LPS), adenosine triphosphate (ATP), and ATP + ATP inhibitor. The effects of HMGB1, ATP, and deoxyribonuclease (DNAse) were then examined for their in vivo effects using a newly established AP mouse model. RESULTS The mRNA and protein levels of inflammasome and interleukin IL-1β in cells, blood, and pancreatic tissues were examined. Within-cell nuclear DNA signal, cell-free DNA concentration, and pancreatic tissue damage were investigated. Our study showed that HMGB1 triggers NET formation in neutrophils and promotes the activation of inflammasome complexes (the NLR family, pyrin domain containing 3, and NLRP3; ASC; and caspase-1); therefore, the production of IL-1β is induced in human monocytes/macrophages. HMGB1 and NET cooperatively stimulate IL-1β processing in macrophages. Furthermore, the AP mouse model confirmed these HMGB1-mediated molecular mechanisms in vivo and indicated that HMGB1 is required for NET activation. CONCLUSIONS We found that NET inhibition reverses HMGB1-stimulated inflammasome activation and IL-1β production. HMGB1 thus leads to pancreatic injury through the activation of NET and subsequently induces IL-1β processing from neutrophils to pancreatic tissues. These findings demonstrate that HMGB1 and NET are new therapeutic targets for inflammation suppression in severe AP.
Collapse
|
65
|
Purinergic Signaling Within the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:73-87. [PMID: 33123994 DOI: 10.1007/978-3-030-47189-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Accumulating studies have clearly demonstrated high concentrations of extracellular ATP (eATP) within the tumor microenvironment (TME). Implications of these findings are multifold as ATP-mediated purinergic signaling has been shown to mediate a variety of cancer-related processes, including cell migration, resistance to cytotoxic therapy, and immune regulation. Broad roles of ATP within the tumor microenvironment are linked to the abundance of ATP-regulated purinergic receptors on cancer and stromal and various immune cell types, as well as on the importance of ATP release and signaling in the regulation of multiple cellular processes. ATP release and downstream purinergic signaling are emerging as a central regulator of tumor growth and an important target for therapeutic intervention. In this chapter, we summarize the major roles of purinergic signaling in the tumor microenvironment with a specific focus on its critical roles in the induction of immunogenic cancer cell death and immune modulation.
Collapse
|
66
|
Wu J, Cai W, Du R, Li H, Wang B, Zhou Y, Shen D, Shen H, Lan Y, Chen L, Zheng X, Huang D, Shi G. Sevoflurane Alleviates Myocardial Ischemia Reperfusion Injury by Inhibiting P2X7-NLRP3 Mediated Pyroptosis. Front Mol Biosci 2021; 8:768594. [PMID: 34765646 PMCID: PMC8576530 DOI: 10.3389/fmolb.2021.768594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Myocardial ischemia is common in aging population. This study investigates the protective effect of Sevoflurane on myocardial ischemia reperfusion injury (MIRI) and its underlying mechanism. A total of 87 patients with a history of myocardial ischemia who underwent abdominal surgery with Sevoflurane general anesthesia were recruited in the study. The clinical data, blood pressure, heart rate, pressure-rate quotient (PRQ) and rate-pressure product (RPP) were recorded. Serum samples were collected and heart-type fatty acid binding protein (H-FABP), ischemia modified albumin (IMA), interleukin-1β (IL-1β), and interleukin-18 (IL-18) were measured to observe whether Sevoflurane anesthesia had protective effect on myocardium. In addition, MIRI rats and hypoxia/reoxygenation (H/R) injury cell model was established using neonatal rat ventricular myocytes (NRVM). Rats or NRVM were pretreated with sevoflurane for 45min before hypoxia. The mRNA expression of purinergic receptor-7 (P2X7) and NLR family pyrin domain containing 3(NLRP3) were examined. The protein expression of P2X7, NLRP3, apoptosis-associated speck-like protein (ASC), cysteine aspartic acid specific protease-1(Caspase-1), Gasdermin-D (GSDMD), Bcl-2 Associated X Protein (Bax), B-cell lymphoma-2 (Bcl-2) in myocardial tissue and cells were evaluated. The serum contents of IL-1β, IL-18, Malondialdehyde (MDA), Superoxide dismutase (SOD), Lactate dehydrogenase (LDH), Creatine kinase (CK), and Creatine kinase isoenzymes (CK-MB) were measured. The cellular localization and fluorescence intensity of NLRP3 and ASC in cells were detected. It was found that the secretion of IL-1β and IL-18 decreased in the patients. After I45 min/R3h in SD rats and H3h/R1h in NRVM, the protein expressions of P2X7, NLRP3, ASC, Caspase-1 and GSDMD were increased, the release of IL-1β, IL-18, CK, CK-MB, LDH and MDA were increased, and SOD activity was decreased. Sevoflurane treatment inhibited the high expression of P2X7, NLRP3, ASC, Caspase-1 and GSDMD, inhibited the release of LDH, CK,CK-MB and MDA in cells, and improved the activity of SOD, indicating that Sevoflurane alleviated the damage of MIRI of rats and H/R of NRVM, and had myocardial protective effect. Taken together, our study suggests that Sevoflurane inhibited the expression of IL-1β, IL-18 and GSDMD by inhibiting the P2X7-NLRP3 signaling pathway. It reduced the H/R injury of cardiomyocytes and protected the cardiac function by regulating inflammatory reaction and pyroptosis.
Collapse
Affiliation(s)
- Jiaxuan Wu
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenfeng Cai
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ruiming Du
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Haiyang Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanqiong Zhou
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Daifei Shen
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huimin Shen
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yang Lan
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lesi Chen
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoxia Zheng
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Ganggang Shi,
| |
Collapse
|
67
|
Zhao J, Xie F, Chen R, Zhang Z, Dai R, Zhao N, Wang R, Sun Y, Chen Y. Transcription factor NF-κB promotes acute lung injury via microRNA-99b-mediated PRDM1 down-regulation. J Biol Chem 2020; 295:18638-18648. [PMID: 33109608 PMCID: PMC7939479 DOI: 10.1074/jbc.ra120.014861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Indexed: 01/12/2023] Open
Abstract
Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1.
Collapse
Affiliation(s)
- Jie Zhao
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China.
| | - Fei Xie
- The Six Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Ruidong Chen
- The Six Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Zhen Zhang
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Rujun Dai
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Na Zhao
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Rongxin Wang
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Yanhong Sun
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Yue Chen
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| |
Collapse
|
68
|
Yang K, Liu J, Zhang X, Ren Z, Gao L, Wang Y, Lin W, Ma X, Hao M, Kuang H. H3 Relaxin Alleviates Migration, Apoptosis and Pyroptosis Through P2X7R-Mediated Nucleotide Binding Oligomerization Domain-Like Receptor Protein 3 Inflammasome Activation in Retinopathy Induced by Hyperglycemia. Front Pharmacol 2020; 11:603689. [PMID: 33584279 PMCID: PMC7873867 DOI: 10.3389/fphar.2020.603689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction: P2X7R excitation-interrelated NLRP3 inflammasome activation induced by high glucose contributes to the pathogenesis of diabetic retinopathy (DR). Relaxin-3 is a bioactive peptide with a structure similar to insulin, which has been reported to be effective in diabetic cardiomyopathy models in vivo and in vitro. However, it is not known whether relaxin-3 has a beneficial impact on DR, and the underlying mechanisms of the effect are also remain unknown. Methods and Results: The retinas of male streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats were characterized. Human retinal microvascular endothelial cells (HRMECs) were used to evaluate the anti-inflammatory, antiapoptotic, antipyroptotic and anti-migration effects of H3 relaxin by transmission electron microscopy, wound-healing assay, transwell assay, flow cytometry, cytokine assays and western-blot analysis. After H3 relaxin treatment, changes of the ultrastructure and expression of NLRP3 inflammasome related proteins in the retinas of rats were compared with those in the diabetic group. In vitro, H3 relaxin played a beneficial role that decreased cell inflammation, apoptosis, pyroptosis and migration stimulated by advanced glycation end products (AGEs). Moreover, inhibition of P2X7R and NLRP3 inflammasome activation decreased NLRP3 inflammasome-mediated injury that similar to the effects of H3 relaxin. H3 relaxin suppressed the stimulation of apoptosis, pyroptosis and migration of HRMECs in response to AGEs mediated by P2X7R activation of the NLRP3 inflammasome. Conclusion: Our findings provide new insights into the mechanisms of the inhibitory effect of H3 relaxin on AGE-induced retinal injury, including migration, apoptosis and pyroptosis, mediated by P2X7R-dependent activation of the NLRP3 inflammasome in HRMECs.
Collapse
Affiliation(s)
- Kelaier Yang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiannan Liu
- The Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziqi Ren
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Wang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
69
|
Sharma I, Behl T, Bungau S, Sachdeva M, Kumar A, Zengin G, Arora S. Understanding the role of Inflammasome in Angina Pectoris. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-112184. [PMID: 33292150 DOI: 10.2174/1389203721999201208200242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Angina pectoris, associated with coronary artery disease, a cardiovascular disease where, pain is caused by adverse oxygen supply in myocardium, resulting in contractility and discomfort in chest. Inflammasomes, triggered by stimuli due to infection and cellular stress have identified to play a vital role in the progression of cardiovascular disorders and thus, causing various symptoms like angina pectoris. Nlrp3 inflammasome, a key contributor in the pathogenesis of angina pectoris, requires activation and primary signaling for the commencement of inflammation. Nlrp3 inflammasome elicit out an inflammatory response by emission of pro inflammatory cytokines by ROS (reactive oxygen species) production, mobilization of K+ efflux and Ca2+ and by activation of lysosome destabilization that eventually causes pyroptosis, a programmed cell death process. Thus, inflammasome are considered to be one of the factors involved in the progression of coronary artery diseases and have an intricate role in development of angina pectoris.
Collapse
Affiliation(s)
- Ishita Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab,. India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab,. India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea,. Romania
| | - Monika Sachdeva
- Fatima College of Health Science, Al Ain,. United Arab Emirates
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab,. India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, University Campus, Konya,. Turkey
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab,. India
| |
Collapse
|
70
|
Downs KP, Nguyen H, Dorfleutner A, Stehlik C. An overview of the non-canonical inflammasome. Mol Aspects Med 2020; 76:100924. [PMID: 33187725 PMCID: PMC7808250 DOI: 10.1016/j.mam.2020.100924] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Inflammasomes are large cytosolic multiprotein complexes assembled in response to infection and cellular stress, and are crucial for the activation of inflammatory caspases and the subsequent processing and release of pro-inflammatory mediators. While caspase-1 is activated within the canonical inflammasome, the related caspase-4 (also known as caspase-11 in mice) and caspase-5 are activated within the non-canonical inflammasome upon sensing of cytosolic lipopolysaccharide (LPS) from Gram-negative bacteria. However, the consequences of canonical and non-canonical inflammasome activation are similar. Caspase-1 promotes the processing and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the release of danger signals, as well as a lytic form of cell death called pyroptosis, whereas caspase-4, caspase-5 and caspase-11 directly promote pyroptosis through cleavage of the pore-forming protein gasdermin D (GSDMD), and trigger a secondary activation of the canonical NLRP3 inflammasome for cytokine release. Since the presence of the non-canonical inflammasome activator LPS leads to endotoxemia and sepsis, non-canonical inflammasome activation and regulation has important clinical ramifications. Here we discuss the mechanism of non-canonical inflammasome activation, mechanisms regulating its activity and its contribution to health and disease.
Collapse
Affiliation(s)
- Kevin P Downs
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Huyen Nguyen
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA, 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA, 90048, USA.
| |
Collapse
|
71
|
Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis 2020; 18:63-84. [PMID: 33124929 DOI: 10.1089/fpd.2020.2847] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen, constituting an ongoing health concern for immunocompromised patients, the elderly, and neonates. Reports on the isolation of K. pneumoniae from other sources are increasing, many of which express multidrug-resistant (MDR) phenotypes. Three phylogroups were identified based on nucleotide differences. Niche environments, including plants, animals, and humans appear to be colonized by different phylogroups, among which KpI (K. pneumoniae) is commonly associated with human infection. Infections with K. pneumoniae can be transmitted through contaminated food or water and can be associated with community-acquired infections or between persons and animals involved in hospital-acquired infections. Increasing reports are describing detections along the food chain, suggesting the possibility exists that this could be a hitherto unexplored reservoir for this opportunistic bacterial pathogen. Expression of MDR phenotypes elaborated by these bacteria is due to the nature of various plasmids carrying antimicrobial resistance (AMR)-encoding genes, and is a challenge to animal, environmental, and human health alike. Raman spectroscopy has the potential to provide for the rapid identification and screening of antimicrobial susceptibility of Klebsiella isolates. Moreover, hypervirulent isolates linked with extraintestinal infections express phenotypes that may support their niche adaptation. In this review, the prevalence, reservoirs, AMR, Raman spectroscopy detection, and pathogenicity of K. pneumoniae are summarized and various extraintestinal infection pathways are further narrated to extend our understanding of its adaptation and survival ability in reservoirs, and associated disease risks.
Collapse
Affiliation(s)
- Yujie Hu
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - João Anes
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
72
|
Immunomodulatory effects of colistin on host responses against carbapenem-resistant Klebsiella pneumoniae biofilms. Int J Antimicrob Agents 2020; 56:106182. [PMID: 33045355 DOI: 10.1016/j.ijantimicag.2020.106182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/04/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Colistin (CST) is a last-resort therapeutic option for carbapenem-resistant Klebsiella pneumoniae (CR-Kp) infections in critically ill patients. The effect of subinhibitory CST concentrations (sub-MICs) on biofilm formation is organism-dependent. We investigated the interactions between CST and innate immune cells against CR-Kp biofilms (CR-KpBF) by studying the effect of biofilm sub-MICs of CST on (i) damage induced by human polymorphonuclear neutrophils (PMNs) on CR-KpBF and (ii) the immunomodulatory potential on human mononuclear cells (MNCs) exposed to CR-KpBF. The impact of CST on PMN-induced biofilm damage was assessed by XTT reduction assay. Signal transduction and gene expression profiles in response to CST sub-MICs of MNCs exposed to CR-KpBF were studied by RT-PCR and multiplex ELISA. Pre-exposure of CR-Kp to 0.06 mg/L CST led to subsequent increased PMN-mediated biofilm damage against CR-KpBF in the presence of CST biofilm sub-MICs: there was an additive effect at 2, 4, 8 and 16 mg/L. However, the overall biofilm damage was not >52%. MNCs responded to CR-KpBF through Toll-like receptor 2 (TLR2) by 2.5-fold upregulation and NLRP3 inflammasome activation. CR-KpBF stimulated increased production of interleukin 1-beta (IL-1β), tumour necrosis factor-alpha (TNFα), IL-8 and IL-6. In the combination treatment, 0.5 mg/L CST reduced IL-1β, TNFα and IL-8 levels, whereas at 2 mg/L and 8 mg/L it increased the anti-inflammatory cytokine IL-10 (P < 0.05). Biofilm sub-MICs of CST enhance PMN killing capacity and attenuate production of inflammatory cytokines by MNCs exposed to CR-KpBF, playing a potentially important immunotherapeutic role especially for patients with cytokine deregulation.
Collapse
|
73
|
Islam MT, Bardaweel SK, Mubarak MS, Koch W, Gaweł-Beben K, Antosiewicz B, Sharifi-Rad J. Immunomodulatory Effects of Diterpenes and Their Derivatives Through NLRP3 Inflammasome Pathway: A Review. Front Immunol 2020; 11:572136. [PMID: 33101293 PMCID: PMC7546345 DOI: 10.3389/fimmu.2020.572136] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein (NLRP) inflammasomes are involved in the molecular pathogenesis of many diseases and disorders. Among NLRPs, the NLRP3 (in humans encoded by the NLRP3 gene) is expressed predominantly in macrophages as a component of the inflammasome and is associated with many diseases, including gout, type 2 diabetes, multiple sclerosis, atherosclerosis, and neurological diseases and disorders. Diterpenes containing repeated isoprenoid units in their structure are a member of some essential oils that possess diverse biological activities and are becoming a landmark in the field of drug discovery and development. This review sketches a current scenario of diterpenes or their derivatives acting through NLRPs, especially NLRP3-associated pathways with anti-inflammatory effects. For this, a literature survey on the subject has been undertaken using a number of known databases with specific keywords. Findings from the aforementioned databases suggest that diterpenes and their derivatives can exert anti-inflammatory effects via NLRPs-related pathways. Andrographolide, triptolide, kaurenoic acid, carnosic acid, oridonin, teuvincenone F, and some derivatives of tanshinone IIA and phorbol have been found to act through NLRP3 inflammasome pathways. In conclusion, diterpenes and their derivatives could be one of the promising compounds for the treatment of NLRP3-mediated inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Pharmacy, Ho Chi Minh City, Vietnam
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Gaweł-Beben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Beata Antosiewicz
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
74
|
Kumar V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front Immunol 2020; 11:1722. [PMID: 32849610 PMCID: PMC7417316 DOI: 10.3389/fimmu.2020.01722] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is a primary organ for gas exchange in mammals that represents the largest epithelial surface in direct contact with the external environment. It also serves as a crucial immune organ, which harbors both innate and adaptive immune cells to induce a potent immune response. Due to its direct contact with the outer environment, the lung serves as a primary target organ for many airborne pathogens, toxicants (aerosols), and allergens causing pneumonia, acute respiratory distress syndrome (ARDS), and acute lung injury or inflammation (ALI). The current review describes the immunological mechanisms responsible for bacterial pneumonia and sepsis-induced ALI. It highlights the immunological differences for the severity of bacterial sepsis-induced ALI as compared to the pneumonia-associated ALI. The immune-based differences between the Gram-positive and Gram-negative bacteria-induced pneumonia show different mechanisms to induce ALI. The role of pulmonary epithelial cells (PECs), alveolar macrophages (AMs), innate lymphoid cells (ILCs), and different pattern-recognition receptors (PRRs, including Toll-like receptors (TLRs) and inflammasome proteins) in neutrophil infiltration and ALI induction have been described during pneumonia and sepsis-induced ALI. Also, the resolution of inflammation is frequently observed during ALI associated with pneumonia, whereas sepsis-associated ALI lacks it. Hence, the review mainly describes the different immune mechanisms responsible for pneumonia and sepsis-induced ALI. The differences in immune response depending on the causal pathogen (Gram-positive or Gram-negative bacteria) associated pneumonia or sepsis-induced ALI should be taken in mind specific immune-based therapeutics.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Faculty of Medicine, School of Clinical Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
75
|
Brock RM, Beitel-White N, Davalos RV, Allen IC. Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation Strategies. Front Oncol 2020; 10:1235. [PMID: 32850371 PMCID: PMC7399335 DOI: 10.3389/fonc.2020.01235] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
New therapeutic strategies and paradigms are direly needed for the treatment of cancer. While the surgical removal of tumors is favored in most cancer treatment plans, resection options are often limited based on tumor localization. Over the last two decades, multiple tumor ablation strategies have emerged as promising stand-alone or combination therapeutic options for patients. These strategies are often employed to treat tumors in areas where surgical resection is not possible or where chemotherapeutics have proven ineffective. The type of cell death induced by the ablation modality is a critical aspect of therapeutic success that can impact the efficacy of the treatment and systemic anti-tumor immune system responses. Electroporation-based ablation technologies include electrochemotherapy, irreversible electroporation, and other modalities that rely on pulsed electric fields to create pores in cell membranes. These pores can either be reversible or irreversible depending on the electric field parameters and can induce cell death either alone or in combination with a therapeutic agent. However, there have been many controversial findings among these technologies as to the cell death type initiated, from apoptosis to pyroptosis. As cell death mechanisms can impact treatment side effects and efficacy, we review the main types of cell death induced by electroporation-based treatments and summarize the impact of these mechanisms on treatment response. We also discuss potential reasons behind the variability of findings such as the similarities between cell death pathways, differences between cell-types, and the variation in electric field strength across the treatment area.
Collapse
Affiliation(s)
- Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Natalie Beitel-White
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Science, Blacksburg, VA, United States
| |
Collapse
|
76
|
FitzGerald ES, Luz NF, Jamieson AM. Competitive Cell Death Interactions in Pulmonary Infection: Host Modulation Versus Pathogen Manipulation. Front Immunol 2020; 11:814. [PMID: 32508813 PMCID: PMC7248393 DOI: 10.3389/fimmu.2020.00814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
In the context of pulmonary infection, both hosts and pathogens have evolved a multitude of mechanisms to regulate the process of host cell death. The host aims to rapidly induce an inflammatory response at the site of infection, promote pathogen clearance, quickly resolve inflammation, and return to tissue homeostasis. The appropriate modulation of cell death in respiratory epithelial cells and pulmonary immune cells is central in the execution of all these processes. Cell death can be either inflammatory or anti-inflammatory depending on regulated cell death (RCD) modality triggered and the infection context. In addition, diverse bacterial pathogens have evolved many means to manipulate host cell death to increase bacterial survival and spread. The multitude of ways that hosts and bacteria engage in a molecular tug of war to modulate cell death dynamics during infection emphasizes its relevance in host responses and pathogen virulence at the host pathogen interface. This narrative review outlines several current lines of research characterizing bacterial pathogen manipulation of host cell death pathways in the lung. We postulate that understanding these interactions and the dynamics of intracellular and extracellular bacteria RCD manipulation, may lead to novel therapeutic approaches for the treatment of intractable respiratory infections.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
77
|
Perlee D, de Beer R, Florquin S, van der Poll T, van 't Veer C, de Vos AF. Caspase-11 contributes to pulmonary host defense against Klebsiella pneumoniae and local activation of coagulation. Am J Physiol Lung Cell Mol Physiol 2020; 319:L105-L114. [PMID: 32401674 DOI: 10.1152/ajplung.00422.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Klebsiella (K.) pneumoniae is a common cause of gram-negative pneumonia and sepsis. Caspase-11 is an intracellular receptor for lipopolysaccharide and regulates pyroptosis, a specific form of inflammatory cell death, which aids in host defense against intracellular gram-negative bacteria. Recently, caspase-11 has also been implicated in blood coagulation. Previously, we found that local fibrin formation contributes to protective immunity against Klebsiella infection of the lung. The aim of the present study was to determine the role of caspase-11 in host defense during K. pneumoniae-evoked pneumonia and sepsis. Therefore, we infected wild-type and caspase-11-deficient (Casp11-/-) mice with a low-dose K. pneumoniae via the airways to induce a gradually evolving pneumosepsis. Casp11-/- mice displayed increased bacterial numbers in the lung 12 h and 48 h after inoculation. Analysis of pulmonary IL-1α, IL-1β, and TNF levels showed reduced IL-1α levels in bronchoalveolar lavage fluid and increased TNF levels in the lung of Casp11-/- mice at 48 h after inoculation. Lung γH2AX staining (marker for cell death), lung pathology and neutrophil influx in the lung, as well as bacterial dissemination and organ damage, however, were not altered in Casp11-/- mice after Klebsiella infection. Strikingly, analysis of cross-linked fibrin and D-dimer (markers for coagulation) revealed significantly less fibrin formation in the lungs of Casp11-/- mice at either time point after Klebsiella infection. These data reveal that caspase-11 contributes to protective immunity against K. pneumoniae possibly by activation of blood coagulation in the lung.
Collapse
Affiliation(s)
- Desiree Perlee
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Regina de Beer
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis van 't Veer
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam, The Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
78
|
Wu XB, Sun HY, Luo ZL, Cheng L, Duan XM, Ren JD. Plasma-derived exosomes contribute to pancreatitis-associated lung injury by triggering NLRP3-dependent pyroptosis in alveolar macrophages. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165685. [DOI: 10.1016/j.bbadis.2020.165685] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
|
79
|
Ismael S, Nasoohi S, Yoo A, Ahmed HA, Ishrat T. Tissue Plasminogen Activator Promotes TXNIP-NLRP3 Inflammasome Activation after Hyperglycemic Stroke in Mice. Mol Neurobiol 2020; 57:2495-2508. [PMID: 32172516 DOI: 10.1007/s12035-020-01893-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/14/2020] [Indexed: 12/23/2022]
Abstract
Hyperglycemia has been shown to counterbalance the beneficial effects of tissue plasminogen activator (tPA) and increase the risk of intracerebral hemorrhage in ischemic stroke. Thioredoxin interacting protein (TXNIP) mediates hyperglycemia-induced oxidative damage and inflammation in the brain and reduces cerebral glucose uptake/utilization. We have recently reported that TXNIP-induced NLRP3 (NOD-like receptor pyrin domain-containing-3) inflammasome activation contributes to neuronal damage after ischemic stroke. Here, we tested the hypothesis that tPA induces TXNIP-NLRP3 inflammasome activation after ischemic stroke, in hyperglycemic mice. Acute hyperglycemia was induced in mice by intraperitoneal (IP) administration of a 20% glucose solution. This was followed by transient middle cerebral artery occlusion (t-MCAO), with or without intravenous (IV) tPA administered at reperfusion. The IV-tPA exacerbated hyperglycemia-induced neurological deficits, ipsilateral edema and hemorrhagic transformation, and accentuated peroxisome proliferator activated receptor-γ (PPAR-γ) upregulation and TXNIP/NLRP3 inflammasome activation after ischemic stroke. Higher expression of TXNIP in hyperglycemic t-MCAO animals augmented glucose transporter 1 (GLUT-1) downregulation and increased vascular endothelial growth factor-A (VEGF-A) expression/matrix metallopeptidase 9 (MMP-9) signaling, all of which result in blood brain barrier (BBB) disruption and increased permeability to endogenous immunoglobulin G (IgG). It was also associated with a discernible buildup of nitrotyrosine and accumulation of dysfunctional tight junction proteins: zonula occludens-1 (ZO-1), occludin and claudin-5. Moreover, tPA administration triggered activation of high mobility group box protein 1 (HMGB-1), nuclear factor kappa B (NF-κB), and tumor necrosis factor-α (TNF-α) expression in the ischemic penumbra of hyperglycemic animals. All of these observations suggest a powerful role for TXNIP-NLRP3 inflammasome activation in the tPA-induced toxicity seen with hyperglycemic stroke.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sanaz Nasoohi
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arum Yoo
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA. .,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
80
|
Chen Y, Zhang F, Wang D, Li L, Si H, Wang C, Liu J, Chen Y, Cheng J, Lu Y. Mesenchymal Stem Cells Attenuate Diabetic Lung Fibrosis via Adjusting Sirt3-Mediated Stress Responses in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8076105. [PMID: 32089781 PMCID: PMC7024095 DOI: 10.1155/2020/8076105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/25/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023]
Abstract
Diabetes affects a variety of organs such as the kidneys, eyes, and liver, and there is increasing evidence that the lung is also one of the target organs of diabetes and imbalance of Sirt3-mediated stress responses such as inflammation, oxidative stress, apoptosis, autophagy, and ER stress may contribute to diabetic lung fibrosis. Although previous studies have reported that mesenchymal stem cells (MSCs) have beneficial effects on various diabetic complications, the effect and mechanisms of MSCs on diabetes-induced lung injury are not clear. In this study, the STZ-induced diabetes model was constructed in rats, and the effect and potential mechanisms of bone marrow MSCs on diabetic lung fibrosis were investigated. The results revealed that fibrotic changes in the lung were successfully induced in the diabetic rats, while MSCs significantly inhibited or even reversed the changes. Specifically, MSCs upregulated the expression levels of Sirt3 and SOD2 and then activated the Nrf2/ARE signaling pathway, thereby controlling MDA, GSH content, and iNOS and NADPH oxidase subunit p22phox expression levels in the lung tissue. Meanwhile, high levels of Sirt3 and SOD2 induced by MSCs reduced the expression levels of IL-1β, TNF-α, ICAM-1, and MMP9 by suppressing the NF-κB/HMGB1/NLRP3/caspase-1 signaling pathway, as well as regulating the expression levels of cleaved caspasese-3, Bax, and Bcl2 by upregulating the expression level of P-Akt, thereby inhibiting the apoptosis of the lung tissue. In addition, MSCs also regulated the expression levels of LC3, P62, BiP, Chop, and PERK, thereby enhancing autophagy and attenuating endoplasmic reticulum stress. Taken together, our results suggest that MSCs effectively attenuate diabetic lung fibrosis via adjusting Sirt3-mediated responses, including inflammation, oxidative stress, apoptosis, autophagy, and endoplasmic reticulum stress, providing a theoretical foundation for further exploration of MSC-based diabetic therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Fuping Zhang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Di Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Haibo Si
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Regenerative Medicine Research Center, Sichuan University, Chengdu 610041, China
| |
Collapse
|
81
|
Lacey CA, Miao EA. Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036459. [PMID: 31501197 DOI: 10.1101/cshperspect.a036459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innate immune sensors can recognize when host cells are irrevocably compromised by pathogens, and in response can trigger programmed cell death (pyroptosis, apoptosis, and necroptosis). Innate sensors can directly bind microbial ligands; for example, NAIP/NLRC4 detects flagellin/rod/needle, whereas caspase-11 detects lipopolysaccharide. Other sensors are guards that monitor normal function of cellular proteins; for instance, pyrin monitors Rho GTPases, whereas caspase-8 and receptor-interacting protein kinase (RIPK)3 guards RIPK1 transcriptional signaling. Some proteins that need to be guarded can be duplicated as decoy domains, as seen in the integrated decoy domains within NLRP1 that watch for microbial attack. Here, we discuss the evolutionary battle between pathogens and host innate immune sensors/guards, illustrated by the Red Queen hypothesis. We discuss in depth four pathogens, and how they either fail in this evolutionary race (Chromobacterium violaceum, Burkholderia thailandensis), or how the evolutionary race generates increasingly complex virulence factors and host innate immune signaling pathways (Yersinia species, and enteropathogenic Escherichia coli [EPEC]).
Collapse
Affiliation(s)
- Carolyn A Lacey
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
82
|
Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting out the Fire of Inflammation. Inflammation 2020; 42:1147-1159. [PMID: 30937839 DOI: 10.1007/s10753-019-01008-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine, comprised of ulcerative colitis and Crohn's disease. Among the complicated pathogenic factors of IBD, the overaction of inflammatory and immune reaction serves as an important factor. Inflammasome is a form of innate immunity as well as inflammation. Among all kinds of inflammasomes, the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the most studied one, and has been revealed to be involved in the pathogenesis and progression of IBD. Here, in this review, the association between the NLRP3 inflammasome and IBD will be discussed. Furthermore, several NLRP3 inflammasome inhibitors which have been demonstrated to be effective in the alleviation of IBD will be described in this review.
Collapse
|
83
|
Abstract
Sepsis, a life threating syndrome characterized by organ failure after infection, is the most common cause of death in hospitalized patients. The treatment of sepsis is generally supportive in nature, involving the administration of intravenous fluids, vasoactive substances and oxygen plus antibiotics to eliminate the pathogen. No drugs have been approved specifically for the treatment of sepsis, and clinical trials of potential therapies have failed to reduce mortality - suggesting that new approaches are needed. Abnormalities in the immune response elicited by the pathogen, ranging from excessive inflammation to immunosuppression, contribute to disease pathogenesis. Although hundreds of immunomodulatory agents are potentially available, it remains unclear which patient benefits from which immune therapy at a given time point. Results indicate the importance of personalized therapy, specifically the need to identify the type of intervention required by each individual patient at a given point in the disease process. To address this issue will require using biomarkers to stratify patients based on their individual immune status. This article reviews recent and ongoing clinical investigations using immunostimulatory or immunosuppressive therapies against sepsis including non-pharmacological and novel preclinical approaches.
Collapse
|
84
|
Park JY, Jo SG, Lee HN, Choi JH, Lee YJ, Kim YM, Cho JY, Lee SK, Park JH. Tendril extract of Cucurbita moschata suppresses NLRP3 inflammasome activation in murine macrophages and human trophoblast cells. Int J Med Sci 2020; 17:1006-1014. [PMID: 32410829 PMCID: PMC7211156 DOI: 10.7150/ijms.39003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is the root cause of many diseases that pose a serious threat to human health. Excessive inflammation can also result in preterm birth or miscarriage in pregnant women. Pumpkin (Cucurbita moschata Duchesne, CMD) is a well-known traditional health food and medicinal herb used in many countries to treat diabetes, obesity, osteoporosis, cancer and other diseases. In this study, we investigated the effects of hot water extract derived from the tendrils of C. moschata Duchesne (TCMD) on NLRP3 inflammasome activation in murine macrophages and human trophoblast cells. The TCMD treatment of LPS-primed bone marrow-derived macrophages (BMDMs) and human trophoblast cells attenuated NLRP3 inflammasome activation induced by inflammasome activators such as ATP, nigericin, and monosodium urate (MSU). TCMD treatment suppressed IL-1β secretion in a dose-dependent manner, without affecting IL-6 secretion. In addition, TCMD inhibited NLRP3-dependent pyroptosis in BMDMs. TCMD also suppressed the release of mature IL-1β and activation of cleaved-caspase-1 via limited ASC oligomerization. Furthermore, TCMD significantly inhibited IL-1β secretion and pyroptotic cell death in human trophoblast cells. These results suggest that TCMD exhibits anti-inflammatory effects mediated via inhibition of NLRP3 inflammasome activation suggesting therapeutic potential against inflammatory diseases, preterm birth, and miscarriage.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Gang Jo
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Ha-Nul Lee
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Joo-Hee Choi
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea.,Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Yeon-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
85
|
Marino A, Tirelli F, Giani T, Cimaz R. Periodic fever syndromes and the autoinflammatory diseases (AIDs). J Transl Autoimmun 2019; 3:100031. [PMID: 32743516 PMCID: PMC7388371 DOI: 10.1016/j.jtauto.2019.100031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Innate immune system represents the ancestral defense against infectious agents preserved along the evolution and species; it is phylogenetically older than the adaptive immune system, which exists only in the vertebrates. Cells with phagocytic activity such as neutrophils, macrophages, and natural killer (NK) cells play a key role in innate immunity. In 1999 Kastner et al. first introduced the term “autoinflammation” describing two diseases characterized by recurrent episodes of systemic inflammation without any identifiable infectious trigger: Familial Mediterranean Fever (FMF) and TNF Receptor Associated Periodic Syndrome (TRAPS). Autoinflammatory diseases (AIDs) are caused by self-directed inflammation due to an alteration of innate immunity leading to systemic inflammatory attacks typically in an on/off mode. In addition to inflammasomopathies, nuclear factor (NF)-κB-mediated disorders (also known as Rhelopathies) and type 1 interferonopathies are subjects of more recent studies. This review aims to provide an overview of the field with the most recent updates (see “Most recent developments in..” paragraphs) and a description of the newly identified AIDs. Autoinflammatory diseases are caused by self-directed inflammation. Alteration of innate immunity leads to systemic inflammation attacks. The autoinflammatory field is exponentially expanding. The advances in AIDs have led to new insights into immune system understanding. Autoimmunity and autoinflammation features may be simultaneously present.
Collapse
Affiliation(s)
- Achille Marino
- Department of Pediatrics, Desio Hospital, ASST Monza, Desio, MB, Italy.,Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesca Tirelli
- Rheumatology Unit, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Teresa Giani
- Rheumatology Unit, Meyer Children's Hospital, University of Florence, Florence, Italy.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| |
Collapse
|
86
|
Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2019; 36:145-164. [PMID: 31820165 DOI: 10.1007/s10565-019-09496-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|
87
|
Gaskell H, Ge X, Desert R, Das S, Han H, Lantvit D, Guzman G, Nieto N. Ablation of Hmgb1 in Intestinal Epithelial Cells Causes Intestinal Lipid Accumulation and Reduces NASH in Mice. Hepatol Commun 2019; 4:92-108. [PMID: 31909358 PMCID: PMC6939545 DOI: 10.1002/hep4.1448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic disorder in which poor nutrition and the gut-to-liver interaction play a major role. We previously established that hepatic high mobility group box-1 (HMGB1) is involved in chronic liver disease. HMGB1 increases in patients with NASH and it is expressed in intestinal epithelial cells (IEC); yet, the role of intestinal HMGB1 in the pathogenesis of NASH has not been investigated. Thus, we hypothesized that IEC-derived HMGB1 could play a role in NASH due to local effects in the intestine that govern hepatic steatosis. Control littermates and Hmgb1 ΔIEC mice were fed for 1 or 24 weeks a control diet or a high fat, high cholesterol (CHO) and fructose-enriched diet (HFCFD). Hepatic and intestinal injury were analyzed. Hmgb1 ΔIEC mice were protected from HFCFD-induced NASH after 1 or 24 weeks of feeding; however, they showed extensive atypical lipid droplet accumulation and increased concentrations of triglycerides (TG) and CHO in jejunal IEC together with lower TG and other lipid classes in serum. Olive oil or CHO gavage resulted in decreased serum TG and CHO in Hmgb1 ΔIEC mice, respectively, indicating delayed and/or reduced chylomicron (CM) efflux. There was significant up-regulation of scavenger receptor class B type 1 (SR-B1) and down-regulation of apolipoprotein B48 (ApoB48) proteins, suggesting decreased lipid packaging and/or CM formation that resulted in lesser hepatosteatosis. Conclusion: Ablation of Hmgb1 in IEC causes up-regulation of SR-B1 and down-regulation of ApoB48, leads to lipid accumulation in jejunal IEC, decreases CM packaging and/or release, reduces serum TG, and lessens liver steatosis, therefore protecting Hmgb1 ΔIEC mice from HFCFD-induced NASH.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Romain Desert
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Sukanta Das
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Hui Han
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Daniel Lantvit
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Grace Guzman
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine Division of Gastroenterology and Hepatology University of Illinois at Chicago Chicago IL
| |
Collapse
|
88
|
Wang R, Wu W, Li W, Huang S, Li Z, Liu R, Shan Z, Zhang C, Li W, Wang S. Activation of NLRP3 Inflammasome Promotes Foam Cell Formation in Vascular Smooth Muscle Cells and Atherogenesis Via HMGB1. J Am Heart Assoc 2019; 7:e008596. [PMID: 30371306 PMCID: PMC6404867 DOI: 10.1161/jaha.118.008596] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background This study aimed at investigating whether NLRP3 (the Nod like receptor family, pyrin domain‐containing 3 protein) inflammasome activation induced HMGB1 (high mobility group box‐1 protein) secretion and foam cell formation in human vascular smooth muscle cells (VSMCs) and atherosclerosis in ApoE−/− mice. Methods and Results VSMCs or ApoE−/− mice were treated with lipopolysaccharides (LPS) and/or ATP or LPS and high‐fat diet to induce NLRP3 inflammasome activation. HMGB1 distribution and foam cell formation in VSMCs were characterized. Liver X receptor α and ATP‐binding cassette transporter expression were determined. The impact of NLRP3 or receptor for advanced glycation end product silencing, ZYVAD‐FMK (caspase‐1 inhibitor), glycyrrhizin (HMGB1 inhibitor) or receptor for advanced glycation end product antagonist peptide on HMGB1 secretion, foam cell formation, liver X receptor α and ATP‐binding cassette transporter expression was examined. Expression level of HMGB1 in human atherosclerosis obliterans arterial tissues was characterized. Our results found that NLRP3 inflammasome activation promoted foam cell formation and HMGB1 secretion in VSMCs. Extracellular HMGB1 was a key signal molecule in inflammasome activation‐mediated foam cell formation. Furthermore, inflammasome activation‐induced HMGB1 activity and foam cell formation were achieved by receptor for advanced glycation end product/liver X receptor α /ATP‐binding cassette transporter glycyrrhizin. Experiments in vivo found glycyrrhizin significantly attenuated the LPS/high‐fat diet‐induced atherosclerosis and serum HMGB1 levels in mice. Finally, levels of HMGB1 and NLRP3 were increased in tunica media adjacent to intima of atherosclerosis obliteran arteries. Conclusions Our results revealed that HMGB1 is a key downstream signal molecule of NLRP3 inflammasome activation and plays an important role in VSMCs foam cell formation and atherogenesis by downregulating liver X receptor α and ATP‐binding cassette transporter expression through receptor for advanced glycation end product.
Collapse
Affiliation(s)
- Rui Wang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Weibin Wu
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Wen Li
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shuichuan Huang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zilun Li
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Ruiming Liu
- 2 Laboratory of General Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhen Shan
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Chunxiang Zhang
- 3 Department of Biomedical Engineering School of Medicine University of Alabama at Birmingham AL
| | - Wen Li
- 2 Laboratory of General Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shenming Wang
- 1 Division of Vascular Surgery Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease First Affiliated Hospital Sun Yat-sen University Guangzhou China.,3 Department of Biomedical Engineering School of Medicine University of Alabama at Birmingham AL
| |
Collapse
|
89
|
Alcohol-dependent pulmonary inflammation: A role for HMGB-1. Alcohol 2019; 80:45-52. [PMID: 30287211 DOI: 10.1016/j.alcohol.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 01/29/2023]
Abstract
Previous studies have demonstrated that acute alcohol intoxication significantly impairs lung immune responses, which can lead to the tissue being undefended from microbial infection and resulting disease. Data suggest that acute intoxication presents an axis where simultaneously suppressing early pro-inflammatory cytokines while inducing anti-inflammatory signals contributes to alcohol-dependent immune suppression in the lung, and thus undeterred microbial replication. Interestingly, alcoholics and those with alcohol use disorder present with increased pneumonia and acute respiratory diseases (ARDs), suggesting a more active priming of inflammatory responses in the lungs. There is current research evaluating the acute effects of binge ethanol consumption on adolescents, which is of grave concern, though long-term effects of adolescent ethanol binge exposure are less studied. We hypothesize that adolescent binge drinking may prime the individual to severe pulmonary distress, when later challenged by a microbial pathogen. Herein, we evaluate a model of adolescent intermittent ethanol (AIE) exposure to investigate pulmonary pathology after microbial challenge. Ethanol was administered to adolescent mice using a binge exposure schedule, and mice were then rested to early adulthood. These mice were then challenged with a sub-lethal intranasal inoculation of Klebsiella pneumoniae and evaluated for severity of disease. We find that AIE exposure initially activates inflammatory mediators within the lung, which resolves over time. However, when challenged with a microbial pathogen after this resolution period, these animals present with more severity of inflammation, pulmonary tissue damage, and mortality when challenged with a pulmonary microbial infection. Interestingly, our data suggest a role for alcohol-dependent release of the protein HMGB-1 from host cells, for both morbidity and mortality in our model of microbial-dependent pulmonary inflammation.
Collapse
|
90
|
Armstrong H, Bording-Jorgensen M, Chan R, Wine E. Nigericin Promotes NLRP3-Independent Bacterial Killing in Macrophages. Front Immunol 2019; 10:2296. [PMID: 31632394 PMCID: PMC6779719 DOI: 10.3389/fimmu.2019.02296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/11/2019] [Indexed: 01/23/2023] Open
Abstract
Altered microbiota has been associated with a number of diseases, including inflammatory bowel diseases, diabetes, and cancer. This dysregulation is thought to relate the host inflammatory response to enteric pathogens. Macrophages play a key role in host response to microbes and are involved in bacterial killing and clearance. This process is partially mediated through the potassium efflux-dependent, cytosolic, PYCARD-containing inflammasome protein complex. Surprisingly, we discovered an alternative mechanism for bacterial killing, independent of the NLRP3 inflammasome/PYCARD. Using the NLRP3 inflammasome-deficient Raw 264.7 and PYCARD-deficient J77 macrophages, which both lack PYCARD, we found that the potassium efflux activator nigericin enhances bacterial killing. Macrophage response to nigericin was examined by RT gene profiling and subsequent qPCR, which demonstrated altered expression of a series of genes involved in the IL-18 bacterial killing pathway. Based on our results we propose a model of bacterial killing, unrelated to NLRP3 inflammasome activation in macrophage cells. Improving understanding of the molecular pathways driving bacterial clearance within macrophage cells will aid in the development of novel immune-targeted therapeutics in a number of diseases.
Collapse
Affiliation(s)
- Heather Armstrong
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, AB, Canada
| | - Michael Bording-Jorgensen
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Richard Chan
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
91
|
Abstract
Inflammation is an important driver of atherosclerosis, the underlying pathology of cardiovascular diseases. Therefore, therapeutic targeting of inflammatory pathways is suggested to improve cardiovascular outcomes in patients with cardiovascular diseases. This concept was recently proven by CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study), which demonstrated the therapeutic potential of the monoclonal IL (interleukin)-1β-neutralizing antibody canakinumab. IL-1β and other IL-1 family cytokines are important vascular and systemic inflammatory mediators, which contribute to atherogenesis. The NLRP3 (NOD [nucleotide oligomerization domain]-, LRR [leucine-rich repeat]-, and PYD [pyrin domain]-containing protein 3) inflammasome, an innate immune signaling complex, is the key mediator of IL-1 family cytokine production in atherosclerosis. NLRP3 is activated by various endogenous danger signals abundantly present in atherosclerotic lesions, such as oxidized low-density lipoprotein and cholesterol crystals. Consequently, NLRP3 inflammasome activation contributes to the vascular inflammatory response driving atherosclerosis development and progression. Here, we review the mechanisms of NLRP3 inflammasome activation and proinflammatory IL-1 family cytokine production in the context of atherosclerosis and discuss treatment possibilities in light of the positive outcomes of the CANTOS trial.
Collapse
Affiliation(s)
- Alena Grebe
- From the Institute of Innate Immunity, University Hospital Bonn, Germany (A.G., F.H., E.L.)
| | - Florian Hoss
- From the Institute of Innate Immunity, University Hospital Bonn, Germany (A.G., F.H., E.L.)
| | - Eicke Latz
- From the Institute of Innate Immunity, University Hospital Bonn, Germany (A.G., F.H., E.L.) .,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester (E.L.).,German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany (E.L.).,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (E.L.)
| |
Collapse
|
92
|
Zhang B, Swamy S, Balijepalli S, Panicker S, Mooliyil J, Sherman MA, Parkkinen J, Raghavendran K, Suresh MV. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J 2019; 33:13294-13309. [PMID: 31530014 DOI: 10.1096/fj.201901047rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is associated with reduced lung compliance and hypoxemia. Curcumin exhibits potent anti-inflammatory properties but has poor solubility and rapid plasma clearance. To overcome these physiochemical limitations and uncover the full therapeutic potential of curcumin in lung inflammation, in this study we utilized a novel water-soluble curcumin formulation (CDC) and delivered it directly into the lungs of C57BL/6 mice inoculated with a lethal dose of Klebsiella pneumoniae (KP). Administration of CDC led to a significant reduction in mortality, in bacterial presence within blood and lungs, as well as in lung injury, inflammation, and oxidative stress. The expression of Klebsiella hemolysin gene; TNF-α; IFN-β; nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; hypoxia-inducible factor 1/2α; and NF-κB were also decreased following CDC treatment, suggesting modulation of the inflammasome complex and hypoxia signaling pathways as an underlying mechanism by which CDC reduces the severity of pneumonia. On a cellular level, CDC led to diminished cell death, improved viability, and protection of human lung epithelial cells in vitro. Overall, our studies demonstrate that CDC administration improves cell survival and reduces injury, inflammation, and mortality in a murine model of lethal gram-negative pneumonia. CDC, therefore, has promising anti-inflammatory potential in pneumonia and likely other inflammatory lung diseases, demonstrating the importance of optimizing the physicochemical properties of active natural products to optimize their clinical application.-Zhang, B., Swamy, S., Balijepalli, S., Panicker, S., Mooliyil, J., Sherman, M. A., Parkkinen, J., Raghavendran, K., Suresh, M. V. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha Swamy
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sreehari Panicker
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jashitha Mooliyil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew A Sherman
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Jaakko Parkkinen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
93
|
Zhang X, Huang H, Zhang G, Li D, Wang H, Jiang W. Raltegravir Attenuates Experimental Pulmonary Fibrosis In Vitro and In Vivo. Front Pharmacol 2019; 10:903. [PMID: 31481891 PMCID: PMC6710384 DOI: 10.3389/fphar.2019.00903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Raltegravir, an inhibitor of human immunodeficiency virus-1 (HIV-1) integrase, has been used to treat HIV/acquired immunodeficiency syndrome; however, its therapeutic effects on pulmonary fibrosis have not been investigated. In this study, the in vitro effects of raltegravir (RAV) on transforming growth factor beta 1 (TGF-β1)-induced pulmonary fibrosis on L929 mouse fibroblasts were investigated. In addition, the effects of RAV on an in vivo pulmonary fibrosis model induced by intratracheal instillation of bleomycin were investigated. The proliferation of L929 cells was inhibited after RAV treatment. Meanwhile, the in vitro and in vivo protein expression of nucleotide-binding oligomerization domain-like receptor 3 (NLRP3), high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), prolyl hydroxylase domain protein 2, phosphorylated nuclear factor-κB (p-NF-κB), hypoxia-inducible factor-1α (HIF-1α), collagens I and III was reduced relative to TGF-β1 or the bleomycin group. Raltegravir ameliorated pulmonary fibrosis by reducing the pathology score, collagen deposition, and expression of α-smooth muscle actin, NLRP3, HMGB1, TLR4, inhibitor of kappa B, p-NF-κB, HIF-1α, collagen I, and collagen III. The results of this study demonstrate that RAV attenuated experimental attenuates pulmonary fibrosis by inhibiting NLRP3 activation.
Collapse
Affiliation(s)
- Xue Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Haidi Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guanghua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Defang Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai, China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
94
|
Wang Y, Li H, Li Y, Zhao Y, Xiong F, Liu Y, Xue H, Yang Z, Ni S, Sahil A, Che H, Wang L. Coriolus versicolor
alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation. Phytother Res 2019; 33:2737-2748. [PMID: 31338905 DOI: 10.1002/ptr.6448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yueqiu Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yang Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yihan Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Fangfei Xiong
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yining Liu
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hongru Xue
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Zhenyu Yang
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Sha Ni
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Abbas Sahil
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Che
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| | - Lihong Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| |
Collapse
|
95
|
High Mobility Group Box 1 Mediates TMAO-Induced Endothelial Dysfunction. Int J Mol Sci 2019; 20:ijms20143570. [PMID: 31336567 PMCID: PMC6678463 DOI: 10.3390/ijms20143570] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
The intestinal microbe-derived metabolite trimethylamine N-oxide (TMAO) is implicated in the pathogenesis of cardiovascular diseases (CVDs). The molecular mechanisms of how TMAO induces atherosclerosis and CVDs’ progression are still unclear. In this regard, high-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to disrupt cell–cell junctions, resulting in vascular endothelial hyper permeability leading to endothelial dysfunction. The present study tested whether TMAO associated endothelial dysfunction results via HMGB1 activation. Biochemical and RT-PCR analysis showed that TMAO increased the HMGB1 expression in a dose-dependent manner in endothelial cells. However, prior treatment with glycyrrhizin, an HMGB1 binder, abolished the TMAO-induced HMGB1 production in endothelial cells. Furthermore, Western blot and immunofluorescent analysis showed significant decrease in the expression of cell–cell junction proteins ZO-2, Occludin, and VE-cadherin in TMAO treated endothelial cells compared with control cells. However, prior treatment with glycyrrhizin attenuated the TMAO-induced cell–cell junction proteins’ disruption. TMAO increased toll-like receptor 4 (TLR4) expression in endothelial cells. Inhibition of TLR4 expression by TLR4 siRNA protected the endothelial cells from TMAO associated tight junction protein disruption via HMGB1. In conclusion, our results demonstrate that HMGB1 is one of the important mediators of TMAO-induced endothelial dysfunction.
Collapse
|
96
|
Zhang G, Jiang C, Xie N, Xu Y, Liu L, Liu N. Treatment with andrographolide sulfonate provides additional benefits to imipenem in a mouse model of Klebsiella pneumoniae pneumonia. Biomed Pharmacother 2019; 117:109065. [PMID: 31220744 DOI: 10.1016/j.biopha.2019.109065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae is a primary cause of community-acquired and nosocomial respiratory infections, and K. pneumoniae resistance to the current treatment approach with carbapenem is worsening. Andrographolide is a natural diterpenoid from Andrographis paniculata that was shown to exert anti-inflammatory activity. We herein show that pretreatment with a water-soluble andrographolide sulfonate significantly attenuate lung injury and infiltration of inflammatory cells. Interestingly, mice receiving combined treatment with andrographolide sulfonate displayed perfect survival rate than the mice treatment with imipenem alone, and monocyte chemotactic protein 5 (MCP-5) level was decreased further. These findings suggest that andrographolide sulfonate could as a potential synergist for antibiotic treatment of bacteria-induced inflammation.
Collapse
Affiliation(s)
- Guorong Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, China
| | - Yang Xu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Li Liu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Professional and Technical Service Center for Biological Material Druggability Evaluation, Shanghai, China.
| | - Nan Liu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China.
| |
Collapse
|
97
|
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, Tang Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol 2019; 24:101215. [PMID: 31121492 PMCID: PMC6529775 DOI: 10.1016/j.redox.2019.101215] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Mountainous evidence suggests that inflammation, cardiomyocyte apoptosis and pyroptosis are involved in the development of sepsis and sepsis-induced cardiomyopathy (SIC). Stimulator of interferon genes (STING) is an indispensable molecule that could regulate inflammation and immune response in multiple diseases. However, the role of STING in cardiovascular disease, especially SIC remains unclear. This study was designed to investigate the potential molecular mechanisms of STING in lipopolysaccharide (LPS)-induced cardiac injury using STING global knockout mice. In wild type mice and cardiomyocytes, LPS stimulation triggered the perinuclear translocation of STING, which further bound to Type-I interferons (IFN) regulatory factor 3 (IRF3) and phosphorylated IRF3. Phosphorylated (P-) IRF3 subsequently translocated into nucleus and increased the expression of NOD-like receptor protein 3 (NLRP3). Knockout of STING in mice significantly improved survival rate and cardiac function, apart from suppressing myocardial and serum inflammatory cytokines, apoptosis, as well as cardiomyocyte pyroptosis. In vitro experiments revealed that NLRP3 overexpression by adenovirus could offset protective effects of STING knockdown in LPS-induced cardiomyocytes. Additionally, LPS stimulation also promoted the production of intracellular reactive oxygen (ROS), which further induced the NLRP3 translocation to the cytoplasm from the nucleus. Dissociative TXNIP could directly interact with cytoplasmic NLRP3 and form inflammasome, eventually triggering cardiomyocyte injury. Collectively, our findings disclose that STING deficiency could alleviate LPS-induced SIC in mice. Hence, targeting STING in cardiomyocytes may be a promising therapeutic strategy for preventing SIC.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Mingxia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| |
Collapse
|
98
|
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, Brock RM, Huie KE, Coutermarsh-Ott S, Eden K, McDaniel DK, Verbridge SS, Rossmeisl JH, Oestreich KJ, Davalos RV, Allen IC. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 2019; 44:112-125. [PMID: 31130474 PMCID: PMC6606957 DOI: 10.1016/j.ebiom.2019.05.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Background Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. Methods Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. Findings H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. Interpretation Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Veronica M Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Natalie Beitel-White
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Melvin F Lorenzo
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kathleen E Huie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Dylan K McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA
| | - John H Rossmeisl
- Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA; Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kenneth J Oestreich
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA; Virginia Tech, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Rafael V Davalos
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA.
| |
Collapse
|
99
|
Yu S, Wang D, Huang L, Zhang Y, Luo R, Adah D, Tang Y, Zhao K, Lu B. The complement receptor C5aR2 promotes protein kinase R expression and contributes to NLRP3 inflammasome activation and HMGB1 release from macrophages. J Biol Chem 2019; 294:8384-8394. [PMID: 30971430 DOI: 10.1074/jbc.ra118.006508] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/31/2019] [Indexed: 01/21/2023] Open
Abstract
The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is a multimeric protein complex that mediates maturation of the cytokines IL-1β and IL-18 as well as release of the proinflammatory protein high-mobility group box 1 (HMGB1) and contributes to several inflammatory diseases, including sepsis, gout, and type 2 diabetes. In this context, the well-studied active complement fragment C5a and its receptor C5aR1 or C5aR2 orchestrate the inflammatory responses in many diseases. Although a C5a-C5aR interaction in NLRP3-associated diseases has been suggested, little is known about the details of C5a-C5aR cross-talk with the NLRP3 inflammasome in macrophages. In this study, using mice and murine macrophages and cytokines, immunoblotting, siRNA, and quantitative real-time PCR assays, we demonstrate that C5aR2 deficiency restricts activation of the NLRP3 inflammasome and release of HMGB1 both in vitro and in vivo Mechanistically, we found that C5aR2 promotes NLRP3 activation by amplifying dsRNA-dependent PKR expression, which is an important NLRP3-activating factor. We also observed that elevation of PKR expression because of the C5a-C5aR2 interaction depends on the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase pathway and type I IFN signaling. In conclusion, these findings reveal that C5aR2 contributes to NLRP3 inflammasome activation and HMGB1 release from macrophages.
Collapse
Affiliation(s)
- Songlin Yu
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; Postdoctoral Research Station of Clinical Medicine, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Dan Wang
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Lingmin Huang
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Yening Zhang
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Ruiheng Luo
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Dickson Adah
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510632, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410000, China
| | - Kai Zhao
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China.
| | - Ben Lu
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan 410000, China; Key Laboratory of Sepsis and Translational Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan 410000, China; Department of Pathophysiology, School of Basic Medical Science, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
100
|
Lian D, Yuan H, Yin X, Wu Y, He R, Huang Y, Chen Y. Puerarin inhibits hyperglycemia-induced inter-endothelial junction through suppressing endothelial Nlrp3 inflammasome activation via ROS-dependent oxidative pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:310-319. [PMID: 30385134 DOI: 10.1016/j.phymed.2018.10.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Recent studies indicate that vascular complications are closely related to diabetes mellitus; in particular, inflammatory-mediated endothelial dysfunction plays a crucial role in diabetes-induced cardiovascular diseases. Therefore, exploring effective methods to suppress endothelial dysfunction via inhibition of inflammatory responses is imperative. Puerarin (Pu), a flavonoid common in Pueraria, has been widely and successfully used to treat cardiovascular diseases in China for many years. However, information on its protective properties in hyperglycemia-induced vascular complications is insufficient. Hypothesis/Purpose: In this study, we investigate the protective effects of puerarin against high glucose-induced endothelial dysfunction and the underlying mechanism of the flavonoid. METHODS we investigated the protective effects of Pu against hyperglycemia-induced inter-endothelial junction by permeability and transendothelial electrical resistance (TEER) assay. In addition, changes in the Nlrp3 inflammasome activation via reactive oxygen species (ROS)-dependent oxidative pathway were investigated using western blot, immunofluorescence microscopy analyses and flow cytometry. ROS scavenger and Nlrp3 gene silencing were used to determine the roles of the ROS-Nlrp3 pathway involved in the molecular mechanism of Pu. RESULTS Our findings demonstrate that puerarin inhibits high glucose-induced Nlrp3 inflammasome formation and activation, as shown by fluorescence confocal microscopy and Western blot. Puerarin decreases Nlrp3 protein, which is a critical factor necessary to form an inflammasome complex. We demonstrate that puerarin exerts anti-oxidation and ROS scavenged effects, similar to apocynin (APO). Interestingly, thioredoxin-interacting protein (TXNIP) protein and TXNIP binding to Nlrp3 markedly decreased with puerarin treatment. Together with these changes, puerarin could decrease high mobility group box 1 (HMGB1) release from mouse vascular endothelial cell (mMVECs). We also demonstrate the decreased expression of the tight junction proteins ZO-1/ZO-2, which are related to endothelial permeability after stimulation by high glucose in endothelial cells. Puerarin could recover the gap junction protein and decrease monolayer cell permeability in endothelial cells. In conclusion, we reveal a new protection mechanism of puerarin that inhibits Nlrp3 inflammasome activation and decreases subsequent caspase-1 activation, triggering the release of HMGB1 by reducing ROS generation. CONCLUSIONS Our findings indicate that puerarin exhibits immense potential and specific therapeutic value in hyperglycemia-related cardiovascular disease and the development of innovative drugs.
Collapse
Affiliation(s)
- Dawei Lian
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou University Town, No. 232 Waihuan Dong Rd., Panyu District, Guangzhou Higher Education Mega Center, Guangzhou 510000, China
| | - Huiqi Yuan
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou University Town, No. 232 Waihuan Dong Rd., Panyu District, Guangzhou Higher Education Mega Center, Guangzhou 510000, China
| | - Xiongzhang Yin
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yanjiao Wu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou University Town, No. 232 Waihuan Dong Rd., Panyu District, Guangzhou Higher Education Mega Center, Guangzhou 510000, China
| | - Rongrong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, No. 601W. Huangpu Avenue, Guangzhou 510630, China
| | - Yi Huang
- Department of Stomatology, The First Affiliated Hospital, The school of Dental Medicine, Jinan University, No. 613W. Huangpu Avenue, Guangzhou 510630, China
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou University Town, No. 232 Waihuan Dong Rd., Panyu District, Guangzhou Higher Education Mega Center, Guangzhou 510000, China.
| |
Collapse
|