51
|
Lee JU, Chang HS, Lee HJ, Jung CA, Bae DJ, Song HJ, Park JS, Uh ST, Kim YH, Seo KH, Park CS. Upregulation of interleukin-33 and thymic stromal lymphopoietin levels in the lungs of idiopathic pulmonary fibrosis. BMC Pulm Med 2017; 17:39. [PMID: 28202030 PMCID: PMC5312598 DOI: 10.1186/s12890-017-0380-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Innate T helper type 2 (Th2) immune responses mediated by interleukin (IL)-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been shown to play an important role in pulmonary fibrosis of animal models; however, their clinical implications remain poorly understood. METHODS TSLP, IL-25, and IL-33 concentrations were measured in bronchoalveolar lavage fluids obtained from normal controls (NCs; n = 40) and from patients with idiopathic pulmonary fibrosis (IPF; n = 100), non-specific interstitial pneumonia (NSIP; n = 22), hypersensitivity pneumonitis (HP; n = 20), and sarcoidosis (n = 19). RESULTS The TSLP and IL-33 levels were significantly higher in patients with IPF relative to the NCs (p = 0.01 and p = 0.0001, respectively), NSIP (p = 4.95E - 7 and p = 0.0002, respectively), HP (p = 0.00003 and p = 0.000005, respectively), and sarcoidosis groups (p = 0.003 and p = 0.0001, respectively). However, the IL-25 levels were not significantly different between NC and IPF group (p = 0.432). Receiver operating characteristic curves of the TSLP and IL-33 levels revealed clear differences between the IPF and NC groups (AUC = 0.655 and 0.706, respectively), as well as between the IPF and the other lung disease groups (AUC = 0.786 and 0.781, respectively). Cut-off values of 3.52 pg/μg TSLP and 3.77 pg/μg IL-33 were shown to differentiate between the IPF and NC groups with 99.2 and 94.3% accuracy. Cut-off values of 4.66 pg/μg TSLP and 2.52 pg/μg IL-33 possessed 99.4 and 93.2% accuracy for differentiating among the IPF and other interstitial lung disease groups. CONCLUSIONS Innate immune responses may be associated with the development of IPF. Furthermore, the IL-33 and TSLP levels in BAL fluids may be useful for differentiating IPF from other chronic interstitial lung diseases.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea.,Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hyeon Ju Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Chang An Jung
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Da Jeong Bae
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Hyun Ji Song
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea
| | - Jong Sook Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Soo-Taek Uh
- Division of Respiratory and Allergy Medicine, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Young Hoon Kim
- Division of Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Chunan Hospital, Cheonan, Korea
| | - Ki-Hyun Seo
- Division of Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Chunan Hospital, Cheonan, Korea
| | - Choon-Sik Park
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Bucheon, Korea. .,Genome Research Center and Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea. .,Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 1174, Jung-Dong, Wonmi-Ku, Bucheon, Kyeonggi-Do, 420-767, Korea.
| |
Collapse
|
52
|
Cardani A, Boulton A, Kim TS, Braciale TJ. Alveolar Macrophages Prevent Lethal Influenza Pneumonia By Inhibiting Infection Of Type-1 Alveolar Epithelial Cells. PLoS Pathog 2017; 13:e1006140. [PMID: 28085958 PMCID: PMC5268648 DOI: 10.1371/journal.ppat.1006140] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/26/2017] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Influenza A virus (IAV) is a major human pathogen that produces significant morbidity and mortality. To explore the contribution of alveolar macrophages (AlvMΦs) in regulating the severity of IAV infection we employed a murine model in which the Core Binding Factor Beta gene is conditionally disrupted in myeloid cells. These mice exhibit a selective deficiency in AlvMΦs. Following IAV infection these AlvMΦ deficient mice developed severe diffuse alveolar damage, lethal respiratory compromise, and consequent lethality. Lethal injury in these mice resulted from increased infection of their Type-1 Alveolar Epithelial Cells (T1AECs) and the subsequent elimination of the infected T1AECs by the adaptive immune T cell response. Further analysis indicated AlvMΦ-mediated suppression of the cysteinyl leukotriene (cysLT) pathway genes in T1AECs in vivo and in vitro. Inhibition of the cysLT pathway enzymes in a T1AECs cell line reduced the susceptibility of T1AECs to IAV infection, suggesting that AlvMΦ-mediated suppression of this pathway contributes to the resistance of T1AECs to IAV infection. Furthermore, inhibition of the cysLT pathway enzymes, as well as blockade of the cysteinyl leukotriene receptors in the AlvMΦ deficient mice reduced the susceptibility of their T1AECs to IAV infection and protected these mice from lethal infection. These results suggest that AlvMΦs may utilize a previously unappreciated mechanism to protect T1AECs against IAV infection, and thereby reduce the severity of infection. The findings further suggest that the cysLT pathway and the receptors for cysLT metabolites represent potential therapeutic targets in severe IAV infection. A primary feature of lethal influenza infection is viral pneumonia. Influenza viral pneumonia is caused by the direct infection of alveolar epithelial cells, which subsequently causes extensive alveolar inflammation and injury. Clinically this pathology manifests as diffuse alveolar damage leading to acute respiratory distress syndrome. As alveolar macrophages are positioned in the alveoli, they are the ideally localized to be a first-line of defense against alveolar invading pathogens, such as influenza. To explore the contribution of alveolar macrophages to the development of lethal influenza pneumonia, we generated a novel mouse model with a selective deficiency in alveolar macrophages. As a result of the alveolar macrophage deficiency, these mice developed severe diffuse alveolar damage and lethal respiratory compromise after influenza infection. Lethal injury resulted from increased infection of type-1 alveolar epithelial cells, and the elimination of these infected cells by effector T cells. Further analysis indicated that in order to render type 1 cells resistant to influenza infection, alveolar macrophages suppress leukotrieneD4 production and autocrine-signaling in type 1 cells. These results suggest that alveolar macrophages play a previously unappreciated role in protecting type 1 alveolar epithelial cells against IAV infection, and thus the severity of infection.
Collapse
Affiliation(s)
- Amber Cardani
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Adam Boulton
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Thomas J. Braciale
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
53
|
Chen S, Yin R, Mutze K, Yu Y, Takenaka S, Königshoff M, Stoeger T. No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Part Fibre Toxicol 2016; 13:33. [PMID: 27328634 PMCID: PMC4915176 DOI: 10.1186/s12989-016-0144-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Carbonaceous nanoparticles (CNP) represent a major constituent of urban particulate air pollution, and inhalation of high CNP levels has been described to trigger a pro-inflammatory response of the lung. While several studies identified specific particle characteristics driving respiratory toxicity of low-solubility and low-toxicity particles such as CNP, the major lung cell type, which initiates and drives that response, remains still uncertain. Since alveolar macrophages (AM) are known to effectively phagocytose inhaled particles and play a crucial role for the initiation of pulmonary inflammation caused by invading microbes, we aimed to determine their role for sterile stimuli such as CNP by profiling the primary alveolar cell compartments of the lung. We exposed C57BL/6 mice to 20 μg CNP by intratracheal instillation and comprehensively investigated the expression of the underlying mediators during a time span of 3 to 72 h in three different lung cell populations: CD45- (negative) structural cells, CD45+ (positive) leukocytes, and by BAL recovered cells. Results Bronchoalveolar lavage (BAL) analysis revealed an acute inflammatory response characterized by the most prominent culmination of neutrophil granulocytes from 12 to 24 h after instillation, which declined to basal levels by day 7. As early as 3 h after CNP exposure 50 % of the AM revealed particle laden. BAL concentrations and lung gene expression profiles of TNFα, and the neutrophil chemoattractants CXCL1,-2 and-5 preceded the neutrophil recruitment and showed highest levels after 12 h of CNP exposure, pointing to a significant activation of the inflammation-evoking lung cells at this point of time. AM, isolated from lungs 3 to 12 h after CNP instillation, however, did not show a pro-inflammatory signature. On the contrary, gene expression analysis of different lung cell populations isolated 12 h after CNP instillation revealed CD45-, mainly representing alveolar epithelial type II (ATII) cells as major producer of inflammatory CXCL cytokines. Particularly by CD45- cells expressed Cxcl5 proved to be the most abundant chemokine, being 12 h after CNP exposure 24 (±11) fold induced. Conclusion Our data suggests that AM are noninvolved in the initiation of the inflammatory response. ATII cells, which induced highest CXCL levels early on, might in contrast be the driver of acute neutrophilic inflammation upon pulmonary CNP exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanze Chen
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Renfu Yin
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Youjia Yu
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Shinji Takenaka
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
54
|
Anas AA, van Lieshout MHP, Claushuis TAM, de Vos AF, Florquin S, de Boer OJ, Hou B, Van't Veer C, van der Poll T. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2016; 311:L219-28. [PMID: 27288486 DOI: 10.1152/ajplung.00078.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a flagellated pathogen frequently causing pneumonia in hospitalized patients and sufferers of chronic lung disease. Here we investigated the role of the common Toll-like receptor (TLR) adaptor myeloid differentiation factor (MyD)88 in myeloid vs. lung epithelial cells in clearance of P. aeruginosa from the airways. Mice deficient for MyD88 in lung epithelial cells (Sftpccre-MyD88-lox mice) or myeloid cells (LysMcre-MyD88-lox mice) and bone marrow chimeric mice deficient for TLR5 (the receptor recognizing Pseudomonas flagellin) in either parenchymal or hematopoietic cells were infected with P. aeruginosa via the airways. Sftpccre-MyD88-lox mice demonstrated a reduced influx of neutrophils into the bronchoalveolar space and an impaired early antibacterial defense after infection with P. aeruginosa, whereas the response of LysMcre-MyD88-lox mice did not differ from control mice. The immune-enhancing role of epithelial MyD88 was dependent on recognition of pathogen-derived flagellin by epithelial TLR5, as demonstrated by an unaltered clearance of mutant P. aeruginosa lacking flagellin from the lungs of Sftpccre-MyD88-lox mice and an impaired bacterial clearance in bone marrow chimeric mice lacking TLR5 in parenchymal cells. These data indicate that early clearance of P. aeruginosa from the airways is dependent on flagellin-TLR5-MyD88-dependent signaling in respiratory epithelial cells.
Collapse
Affiliation(s)
- Adam A Anas
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;
| | - Miriam H P van Lieshout
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodora A M Claushuis
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China; and
| | - Cornelis Van't Veer
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
55
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
56
|
|
57
|
Traber KE, Hilliard KL, Allen E, Wasserman GA, Yamamoto K, Jones MR, Mizgerd JP, Quinton LJ. Induction of STAT3-Dependent CXCL5 Expression and Neutrophil Recruitment by Oncostatin-M during Pneumonia. Am J Respir Cell Mol Biol 2015; 53:479-88. [PMID: 25692402 DOI: 10.1165/rcmb.2014-0342oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute bacterial pneumonia is a significant public health concern worldwide. Understanding the signals coordinating lung innate immunity may foster the development of therapeutics that limit tissue damage and promote host defense. We have previously shown that lung messenger RNA expression of the IL-6 family cytokine oncostatin-M (OSM) is significantly elevated in response to bacterial stimuli. However, its physiological significance during pneumonia is unknown. Here we demonstrate that OSM is rapidly increased in the airspaces of mice after pulmonary infection with Escherichia coli. Neutralization of OSM caused a substantial decrease in airspace neutrophils and macrophages. OSM blockade also caused a marked reduction in lung chemokine (C-X-C motif) ligand (CXCL) 5 expression, whereas other closely related neutrophil chemokines, CXCL1 and CXCL2, were unaffected. Intratracheal administration of recombinant OSM was sufficient to recapitulate the effect on CXCL5 induction, associated with robust activation of the signal transducer and activator of transcription 3 (STAT3) transcription factor. Cell sorting revealed that OSM effects were specific to lung epithelial cells, including a positive feedback loop in which OSM may facilitate expression of its own receptor. Finally, in vitro studies demonstrated that STAT3 was required for maximal OSM-induced CXCL5 expression. These studies demonstrate a novel role for OSM during pneumonia as an important signal to epithelial cells for chemokine induction mediating neutrophil recruitment.
Collapse
Affiliation(s)
| | | | | | | | - Kazuko Yamamoto
- 1 Pulmonary Center and.,4 Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Joseph P Mizgerd
- 1 Pulmonary Center and.,Departments of 2 Medicine.,3 Microbiology.,5 Biochemistry, and
| | - Lee J Quinton
- 1 Pulmonary Center and.,Departments of 2 Medicine.,6 Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; and
| |
Collapse
|
58
|
Hielpos MS, Ferrero MC, Fernández AG, Bonetto J, Giambartolomei GH, Fossati CA, Baldi PC. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection. PLoS One 2015; 10:e0140408. [PMID: 26448160 PMCID: PMC4598116 DOI: 10.1371/journal.pone.0140408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/24/2015] [Indexed: 01/18/2023] Open
Abstract
Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site.
Collapse
Affiliation(s)
- M Soledad Hielpos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Ferrero
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea G Fernández
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Josefina Bonetto
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", Buenos Aires, Argentina
| | - Carlos A Fossati
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo C Baldi
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
59
|
Breakdown of Epithelial Barrier Integrity and Overdrive Activation of Alveolar Epithelial Cells in the Pathogenesis of Acute Respiratory Distress Syndrome and Lung Fibrosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:573210. [PMID: 26523279 PMCID: PMC4615219 DOI: 10.1155/2015/573210] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/05/2015] [Accepted: 09/15/2015] [Indexed: 12/29/2022]
Abstract
Individual alveolar epithelial cells (AECs) collaboratively form a tight barrier between atmosphere and fluid-filled tissue to enable normal gas exchange. The tight junctions of AECs provide intercellular sealing and are integral to the maintenance of the AEC barrier integrity. Disruption and failure of reconstitution of AEC barrier result in catastrophic consequences, leading to alveolar flooding and subsequent devastating fibrotic scarring. Recent evidences reveal that many of the fibrotic lung diseases involve AECs both as a frequent target of injury and as a driver of ongoing pathological processes. Aberrantly activated AECs express most of the growth factors and chemokines responsible for the proliferation, migration, and activation of fibroblasts. Current evidences suggest that AECs may acquire overdrive activation in the initial step of fibrosis by several mechanisms, including abnormal recapitulation of the developmental pathway, defects of the molecules essential for epithelial integrity, and acceleration of aging-related properties. Among these initial triggering events, epithelial Pten, a multiple phosphatase that negatively regulates the PI3K/Akt pathway and is crucial for lung development, is essential for the prevention of alveolar flooding and lung fibrosis through the regulation of AEC barrier integrity after injury. Reestablishment of AEC barrier integrity also involves the deployment of specialized stem/progenitor cells.
Collapse
|
60
|
Polymorphisms of Toll-like receptors (TLR2 and TLR4) are associated with the risk of infectious complications in acute myeloid leukemia. Genes Immun 2014; 16:83-8. [PMID: 25427560 DOI: 10.1038/gene.2014.67] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/03/2014] [Accepted: 10/10/2014] [Indexed: 01/26/2023]
Abstract
Infectious complications continue to be one of the major causes of morbidity and mortality in patients with acute myeloid leukemia (AML). Several single-nucleotide polymorphisms (SNPs) of Toll-like receptors (TLRs) can affect the genetic susceptibility to infections or even sepsis. We sought to investigate the impact of different SNPs on the incidence of developing sepsis and pneumonia in patients with newly diagnosed AML following induction chemotherapy. We analyzed three SNPs in the TLR2 (Arg753Gln) and TLR4 (Asp299Gly and Thr399Ile) gene in a cohort of 155 patients with AML who received induction chemotherapy. The risk of developing sepsis and pneumonia was assessed by multiple logistic regression analyses. The presence of the TLR2 Arg753Gln polymorphism was significantly associated with pneumonia in AML patients (odds ratio (OR): 10.78; 95% confidence interval (CI): 2.0-58.23; P=0.006). Furthermore, the cosegregating TLR4 polymorphisms Asp299Gly and Thr399Ile were independent risk factors for the development of both sepsis and pneumonia (OR: 3.55; 95% CI: 1.21-10.4, P=0.021 and OR: 3.57, 95% CI: 1.3-9.86, P=0.014, respectively). To our best knowledge, this study represents the first analysis demonstrating that polymorphisms of TLR2 and TLR4 influence the risk of infectious complications in patients with AML undergoing induction chemotherapy.
Collapse
|
61
|
Mock JR, Garibaldi BT, Aggarwal NR, Jenkins J, Limjunyawong N, Singer BD, Chau E, Rabold R, Files DC, Sidhaye V, Mitzner W, Wagner EM, King LS, D’Alessio FR. Foxp3+ regulatory T cells promote lung epithelial proliferation. Mucosal Immunol 2014; 7:1440-51. [PMID: 24850425 PMCID: PMC4205163 DOI: 10.1038/mi.2014.33] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/06/2014] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality each year. There is a paucity of information regarding the mechanisms necessary for ARDS resolution. Foxp3(+) regulatory T cells (Foxp3(+) T(reg) cells) have been shown to be an important determinant of resolution in an experimental model of lung injury. We demonstrate that intratracheal delivery of endotoxin (lipopolysaccharide) elicits alveolar epithelial damage from which the epithelium undergoes proliferation and repair. Epithelial proliferation coincided with an increase in Foxp3(+) T(reg) cells in the lung during the course of resolution. To dissect the role that Foxp3(+) T(reg) cells exert on epithelial proliferation, we depleted Foxp3(+) T(reg) cells, which led to decreased alveolar epithelial proliferation and delayed lung injury recovery. Furthermore, antibody-mediated blockade of CD103, an integrin, which binds to epithelial expressed E-cadherin decreased Foxp3(+) T(reg) numbers and decreased rates of epithelial proliferation after injury. In a non-inflammatory model of regenerative alveologenesis, left lung pneumonectomy, we found that Foxp3(+) T(reg) cells enhanced epithelial proliferation. Moreover, Foxp3(+) T(reg) cells co-cultured with primary type II alveolar cells (AT2) directly increased AT2 cell proliferation in a CD103-dependent manner. These studies provide evidence of a new and integral role for Foxp3(+) T(reg) cells in repair of the lung epithelium.
Collapse
Affiliation(s)
- Jason R. Mock
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian T. Garibaldi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neil R. Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Jenkins
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathachit Limjunyawong
- Department of Medicine and Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eric Chau
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard Rabold
- Department of Medicine and Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel C. Files
- Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Venkataramana Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wayne Mitzner
- Department of Medicine and Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M. Wagner
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Landon S. King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Franco R. D’Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
62
|
Quinton LJ, Mizgerd JP. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling. Annu Rev Physiol 2014; 77:407-30. [PMID: 25148693 DOI: 10.1146/annurev-physiol-021014-071937] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps.
Collapse
|
63
|
Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses. J Virol 2014; 88:8981-97. [PMID: 24899188 DOI: 10.1128/jvi.00907-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus infection. We identified differences in the viral replicative ability of and in disease severity caused by these H5N1 viruses. A comparison of global host responses between severe and mild disease cases identified the limited upregulation of interferon-stimulated genes early in infection in severe cases. The dynamics of the host responses indicated that the limited response early in infection failed to suppress virus replication and led to hyperinduction of pathological condition-related genes late in infection. These findings provide insight into the pathogenesis of H5N1 viruses in mammals.
Collapse
|
64
|
Yamamoto K, Ahyi ANN, Pepper-Cunningham ZA, Ferrari JD, Wilson AA, Jones MR, Quinton LJ, Mizgerd JP. Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumonia. Am J Respir Cell Mol Biol 2014; 50:253-62. [PMID: 24010952 DOI: 10.1165/rcmb.2013-0114oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epithelial cells line the respiratory tract and interface with the external world. Epithelial cells contribute to pulmonary inflammation, but specific epithelial roles have proven difficult to define. To discover unique epithelial activities that influence immunity during infection, we generated mice with nuclear factor-κB RelA mutated throughout all epithelial cells of the lung and coupled this approach with epithelial cell isolation from infected and uninfected lungs for cell-specific analyses of gene induction. The RelA mutant mice appeared normal basally, but in response to pneumococcus in the lungs they were unable to rapidly recruit neutrophils to the air spaces. Epithelial cells expressed multiple neutrophil-stimulating cytokines during pneumonia, all of which depended on RelA. Cytokine expression by nonepithelial cells was unaltered by the epithelial mutation of RelA. Epithelial cells were the predominant sources of CXCL5 and granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas nonepithelial cells were major sources for other neutrophil-activating cytokines. Epithelial RelA mutation decreased whole lung levels of CXCL5 and GM-CSF during pneumococcal pneumonia, whereas lung levels of other neutrophil-recruiting factors were unaffected. Defective neutrophil recruitment in epithelial mutant mice could be rescued by administration of CXCL5 or GM-CSF. These results reveal a specialized immune function for the pulmonary epithelium, the induction of CXCL5 and GM-CSF, to accelerate neutrophil recruitment in the infected lung.
Collapse
Affiliation(s)
- Kazuko Yamamoto
- 1 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Zhou Q, Ye X, Sun R, Matsumoto Y, Moriyama M, Asano Y, Ajioka Y, Saijo Y. Differentiation of mouse induced pluripotent stem cells into alveolar epithelial cells in vitro for use in vivo. Stem Cells Transl Med 2014; 3:675-85. [PMID: 24763685 DOI: 10.5966/sctm.2013-0142] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alveolar epithelial cells (AECs) differentiated from induced pluripotent stem cells (iPSCs) represent new opportunities in lung tissue engineering and cell therapy. In this study, we modified a two-step protocol for embryonic stem cells that resulted in a yield of ∼9% surfactant protein C (SPC)(+) alveolar epithelial type II (AEC II) cells from mouse iPSCs in a 12-day period. The differentiated iPSCs showed morphological characteristics similar to those of AEC II cells. When differentiated iPSCs were seeded and cultured in a decellularized mouse lung scaffold, the cells reformed an alveolar structure and expressed SPC or T1α protein (markers of AEC II or AEC I cells, respectively). Finally, the differentiated iPSCs were instilled intratracheally into a bleomycin-induced mouse acute lung injury model. The transplanted cells integrated into the lung alveolar structure and expressed SPC and T1α. Significantly reduced lung inflammation and decreased collagen deposition were observed following differentiated iPSC transplantation. In conclusion, we report a simple and rapid protocol for in vitro differentiation of mouse iPSCs into AECs. Differentiated iPSCs show potential for regenerating three-dimensional alveolar lung structure and can be used to abrogate lung injury.
Collapse
Affiliation(s)
- Qiliang Zhou
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Xulu Ye
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ruowen Sun
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshifumi Matsumoto
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masato Moriyama
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshiya Asano
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoichi Ajioka
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuo Saijo
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
66
|
L-plastin is essential for alveolar macrophage production and control of pulmonary pneumococcal infection. Infect Immun 2014; 82:1982-93. [PMID: 24595139 DOI: 10.1128/iai.01199-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that mice deficient for the hematopoietic-specific, actin-bundling protein L-plastin (LPL) succumb rapidly to intratracheal pneumococcal infection. The increased susceptibility of LPL(-/-) mice to pulmonary pneumococcal challenge correlated with reduced numbers of alveolar macrophages, consistent with a critical role for this cell type in the immediate response to pneumococcal infection. LPL(-/-) mice demonstrated a very early clearance defect, with an almost 10-fold-higher bacterial burden in the bronchoalveolar lavage fluid 3 h following infection. Clearance of pneumococci from the alveolar space in LPL(-/-) mice was defective compared to that in Rag1(-/-) mice, which lack all B and T lymphocytes, indicating that innate immunity is defective in LPL(-/-) mice. We did not identify defects in neutrophil or monocyte recruitment or in the production of inflammatory cytokines or chemokines that would explain the early clearance defect. However, efficient alveolar macrophage regeneration following irradiation required LPL. We thus identify LPL as being key to alveolar macrophage development and essential to an effective antipneumococcal response. Further analysis of LPL(-/-) mice will illuminate critical regulators of the generation of alveolar macrophages and, thus, effective pulmonary innate immunity.
Collapse
|
67
|
Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J, Faé KC, Arrey F, Kuhlmann S, Bandermann S, Loewe D, Mollenkopf HJ, Vogelzang A, Meyer-Schwesinger C, Mittrücker HW, McEwen G, Kaufmann SHE. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 2014; 124:1268-82. [PMID: 24509076 DOI: 10.1172/jci72030] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/27/2013] [Indexed: 12/17/2022] Open
Abstract
Successful host defense against numerous pulmonary infections depends on bacterial clearance by polymorphonuclear leukocytes (PMNs); however, excessive PMN accumulation can result in life-threatening lung injury. Local expression of CXC chemokines is critical for PMN recruitment. The impact of chemokine-dependent PMN recruitment during pulmonary Mycobacterium tuberculosis infection is not fully understood. Here, we analyzed expression of genes encoding CXC chemokines in M. tuberculosis-infected murine lung tissue and found that M. tuberculosis infection promotes upregulation of Cxcr2 and its ligand Cxcl5. To determine the contribution of CXCL5 in pulmonary PMN recruitment, we generated Cxcl5(-/-) mice and analyzed their immune response against M. tuberculosis. Both Cxcr2(-/-) mice and Cxcl5(-/-) mice, which are deficient for only one of numerous CXCR2 ligands, exhibited enhanced survival compared with that of WT mice following high-dose M. tuberculosis infection. The resistance of Cxcl5(-/-) mice to M. tuberculosis infection was not due to heightened M. tuberculosis clearance but was the result of impaired PMN recruitment, which reduced pulmonary inflammation. Lung epithelial cells were the main source of CXCL5 upon M. tuberculosis infection, and secretion of CXCL5 was reduced by blocking TLR2 signaling. Together, our data indicate that TLR2-induced epithelial-derived CXCL5 is critical for PMN-driven destructive inflammation in pulmonary tuberculosis.
Collapse
|
68
|
Dorhoi A, Iannaccone M, Maertzdorf J, Nouailles G, Weiner J, Kaufmann SHE. Reverse translation in tuberculosis: neutrophils provide clues for understanding development of active disease. Front Immunol 2014; 5:36. [PMID: 24550920 PMCID: PMC3913996 DOI: 10.3389/fimmu.2014.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/22/2014] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is a major health issue globally. Although typically the disease can be cured by chemotherapy in all age groups, and prevented in part in newborn by vaccination, general consensus exists that development of novel intervention measures requires better understanding of disease mechanisms. Human TB is characterized by polarity between host resistance as seen in 2 billion individuals with latent TB infection and susceptibility occurring in 9 million individuals who develop active TB disease every year. Experimental animal models often do not reflect this polarity adequately, calling for a reverse translational approach. Gene expression profiling has allowed identification of biomarkers that discriminate between latent infection and active disease. Functional analysis of most relevant markers in experimental animal models can help to better understand mechanisms driving disease progression. We have embarked on in-depth characterization of candidate markers of pathology and protection hereby harnessing mouse mutants with defined gene deficiencies. Analysis of mutants deficient in miR-223 expression and CXCL5 production allowed elucidation of relevant pathogenic mechanisms. Intriguingly, these deficiencies were linked to aberrant neutrophil activities. Our findings point to a detrimental potential of neutrophils in TB. Reciprocally, measures that control neutrophils should be leveraged for amelioration of TB in adjunct to chemotherapy.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Marco Iannaccone
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Geraldine Nouailles
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
69
|
Cheng CP, Liu YC, Tsai YL, Tseng VS. An efficient method for mining cross-timepoint gene regulation sequential patterns from time course gene expression datasets. BMC Bioinformatics 2013; 14 Suppl 12:S3. [PMID: 24267918 PMCID: PMC3848764 DOI: 10.1186/1471-2105-14-s12-s3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Observation of gene expression changes implying gene regulations using a repetitive experiment in time course has become more and more important. However, there is no effective method which can handle such kind of data. For instance, in a clinical/biological progression like inflammatory response or cancer formation, a great number of differentially expressed genes at different time points could be identified through a large-scale microarray approach. For each repetitive experiment with different samples, converting the microarray datasets into transactional databases with significant singleton genes at each time point would allow sequential patterns implying gene regulations to be identified. Although traditional sequential pattern mining methods have been successfully proposed and widely used in different interesting topics, like mining customer purchasing sequences from a transactional database, to our knowledge, the methods are not suitable for such biological dataset because every transaction in the converted database may contain too many items/genes. RESULTS In this paper, we propose a new algorithm called CTGR-Span (Cross-Timepoint Gene Regulation Sequential pattern) to efficiently mine CTGR-SPs (Cross-Timepoint Gene Regulation Sequential Patterns) even on larger datasets where traditional algorithms are infeasible. The CTGR-Span includes several biologically designed parameters based on the characteristics of gene regulation. We perform an optimal parameter tuning process using a GO enrichment analysis to yield CTGR-SPs more meaningful biologically. The proposed method was evaluated with two publicly available human time course microarray datasets and it was shown that it outperformed the traditional methods in terms of execution efficiency. After evaluating with previous literature, the resulting patterns also strongly correlated with the experimental backgrounds of the datasets used in this study. CONCLUSIONS We propose an efficient CTGR-Span to mine several biologically meaningful CTGR-SPs. We postulate that the biologist can benefit from our new algorithm since the patterns implying gene regulations could provide further insights into the mechanisms of novel gene regulations during a biological or clinical progression. The Java source code, program tutorial and other related materials used in this program are available at http://websystem.csie.ncku.edu.tw/CTGR-Span.rar.
Collapse
|
70
|
Guillot L, Nathan N, Tabary O, Thouvenin G, Le Rouzic P, Corvol H, Amselem S, Clement A. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol 2013; 45:2568-73. [PMID: 23988571 DOI: 10.1016/j.biocel.2013.08.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/12/2013] [Accepted: 08/16/2013] [Indexed: 01/04/2023]
Abstract
The lung interfaces with the environment across a continuous epithelium composed of various cell types along the proximal and distal airways. At the alveolar structure level, the epithelium, which is composed of type I and type II alveolar epithelial cells, represents a critical component of lung homeostasis. Indeed, its fundamental role is to provide an extensive surface for gas exchange. Additional functions that act to preserve the capacity for such unique gas transfer have been progressively identified. The alveolar epithelium represents a physical barrier that protects from environmental insults by segregating inhaled foreign agents and regulating water and ions transport, thereby contributing to the maintenance of alveolar surface fluid balance. The homeostatic role of alveolar epithelium relies on the regulated/controlled production of the pulmonary surfactant, which is not only a key determinant of alveolar mechanical stability but also a complex structure that participates in the cross-talk between local cells and the lung immune and inflammatory response. In regard to these critical functions, a major point is the maintenance of alveolar surface integrity, which relies on the renewal capacity of type II alveolar epithelial cells, and the contribution of progenitor populations within the lung.
Collapse
Affiliation(s)
- Loïc Guillot
- Inserm, UMR S-938, F-75012 Paris, France; UPMC Univ Paris 06, F-75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Aggarwal NR, Chau E, Garibaldi BT, Mock JR, Sussan T, Rao K, Rao K, Menon AG, D'Alessio FR, Damarla M, Biswal S, King LS, Sidhaye VK. Aquaporin 5 regulates cigarette smoke induced emphysema by modulating barrier and immune properties of the epithelium. Tissue Barriers 2013; 1:e25248. [PMID: 24665410 PMCID: PMC3783223 DOI: 10.4161/tisb.25248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/22/2013] [Accepted: 06/01/2013] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure. To determine how AQP5-derived epithelial barrier modulation affects epithelial immune response to cigarette smoke and development of emphysema, WT and AQP5−/− mice were exposed to cigarette smoke (CS). We measured alveolar cell counts and differentials, and assessed histology, mean-linear intercept (MLI), and surface-to-volume ratio (S/V) to determine severity of emphysema. We quantified epithelial-derived signaling proteins for neutrophil trafficking, and manipulated AQP5 levels in an alveolar epithelial cell line to determine specific effects on neutrophil transmigration after CS exposure. We assessed paracellular permeability and epithelial turnover in response to CS. In contrast to WT mice, AQP5−/− mice exposed to 6 months of CS did not demonstrate a significant increase in MLI or a significant decrease in S/V compared with air-exposed mice, conferring protection against emphysema. After sub-acute (4 weeks) and chronic (6 mo) CS exposure, AQP5−/− mice had fewer alveolar neutrophil but similar lung neutrophil numbers as WT mice. The presence of AQP5 in A549 cells, an alveolar epithelial cell line, was associated with increase neutrophil migration after CS exposure. Compared with CS-exposed WT mice, neutrophil ligand (CD11b) and epithelial receptor (ICAM-1) expression were reduced in CS-exposed AQP5−/− mice, as was secreted LPS-induced chemokine (LIX), an epithelial-derived neutrophil chemoattractant. CS-exposed AQP5−/− mice demonstrated decreased type I pneumocytes and increased type II pneumocytes compared with CS-exposed WT mice suggestive of enhanced epithelial repair. Absence of AQP5 protected against CS-induced emphysema with reduced epithelial permeability, neutrophil migration, and altered epithelial cell turnover which may enhance repair.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Eric Chau
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Brian T Garibaldi
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Jason R Mock
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Thomas Sussan
- School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Keshav Rao
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Kaavya Rao
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Anil G Menon
- Department of Molecular Genetics; Biochemistry and Microbiology; University of Cincinnati; Cincinnati OH, USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Shyam Biswal
- School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Landon S King
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine; Johns Hopkins Asthma and Allergy Center; Baltimore, MD USA
| |
Collapse
|
72
|
Wong MH, Johnson MD. Differential response of primary alveolar type I and type II cells to LPS stimulation. PLoS One 2013; 8:e55545. [PMID: 23383221 PMCID: PMC3561226 DOI: 10.1371/journal.pone.0055545] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/30/2012] [Indexed: 12/31/2022] Open
Abstract
The alveolar epithelium serves as a barrier between organism and environment and functions as the first line of protection against potential respiratory pathogens. Alveolar type II (TII) cells have traditionally been considered the immune cells of the alveolar epithelium, as they possess immunomodulatory functions; however, the precise role of alveolar type I (TI) cells, which comprise ∼95% of the alveolar epithelial surface area, in lung immunity is not clear. We sought to determine if there was a difference in the response of TI and TII cells to lung injury and if TI cells could actively participate in the alveolar immune response. TI cells isolated via fluorescence activated cell sorting (FACS) from LPS-injured rats demonstrated greater fold-induction of multiple inflammatory mediators than TII cells isolated in the same manner from the same animals. Levels of the cytokines TNF-α, IL-6 and IL-1β from cultured primary rat TI cells after LPS stimulation were significantly increased compared to similarly studied primary rat TII cells. We found that contrary to published reports, cultured TII cells produce relatively small amounts of TNF-α, IL-6 and IL-1β after LPS treatment; the higher levels of cytokine expression from cultured TII cells reported in the literature were likely from macrophage contamination due to traditional non-FACS TII cell isolation methods. Co-culture of TII cells with macrophages prior to LPS stimulation increased TNF-α and IL-6 production to levels reported by other investigators for TII cells, however, co-culture of TI cells and macrophages prior to LPS treatment resulted in marked increases in TNF-α and IL-6 production. Finally, exogenous surfactant blunted the IL-6 response to LPS in cultured TI cells. Taken together, these findings advocate a role for TI cells in the innate immune response and suggest that both TI and TII cells are active players in host defense mechanisms in the lung.
Collapse
Affiliation(s)
- Mandi H. Wong
- San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Meshell D. Johnson
- San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
- Northern California Institute for Research and Education, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|