51
|
Bhusal A, Rahman MH, Lee WH, Bae YC, Lee IK, Suk K. Paradoxical role of lipocalin-2 in metabolic disorders and neurological complications. Biochem Pharmacol 2019; 169:113626. [PMID: 31476294 DOI: 10.1016/j.bcp.2019.113626] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Lipocalin-2 (LCN2), also known as 24p3 and neutrophil gelatinase-associated lipocalin (NGAL), is a 25-kDa secreted protein implicated in various metabolic and inflammatory diseases. Early studies suggest the protective function of LCN2 in which it acts as a bacteriostatic agent that competes with bacteria for iron-bound siderophores. However, both detrimental and beneficial roles of LCN2 have recently been documented in metabolic and neuroinflammatory diseases. Metabolic inflammation, as observed in diabetes and obesity, has been closely associated with the upregulation of LCN2 in blood plasma and several tissues in both humans and rodents, suggesting its pro-diabetic and pro-obesogenic role. On the contrary, other studies imply an anti-diabetic and anti-obesogenic role of LCN2 whereby a deficiency in the Lcn2 gene results in the impairment of insulin sensitivity and enhances the high-fat-diet-induced expansion of fat. A similar dual role of LCN2 has also been reported in various animal models for neurological disorders. In the midst of these mixed findings, there is no experimental evidence to explain why LCN2 shows such a contrasting role in the various studies. This debate needs to be resolved (or reconciled) and an integrated view on the topic is desirable. Herein, we attempt to address this issue by reviewing the recent findings on LCN2 in metabolic disorders and assess the potential cellular or molecular mechanisms underlying the dual role of LCN2. We further discuss the possibilities and challenges of targeting LCN2 as a potential therapeutic strategy for metabolic disorders and neurological complications.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Biomedical Science, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Biomedical Science, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Biomedical Science, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
52
|
Chen X, Lu J, Zhao X, Chen C, Qiao D, Wang H, Yue X. Role of C/EBP-β in Methamphetamine-Mediated Microglial Apoptosis. Front Cell Neurosci 2019; 13:366. [PMID: 31496936 PMCID: PMC6712175 DOI: 10.3389/fncel.2019.00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine (MA) is a widely abused psychoactive drug that primarily damages the nervous system. However, the involvement of MA in the survival of microglia remains poorly understood. CCAAT-enhancer binding protein (C/EBP-β) is a transcription factor and an important regulator of cell apoptosis. Lipocalin2 (lcn2) is a known apoptosis inducer and is involved in many cell death processes. We hypothesized that C/EBP-β is involved in MA-induced lcn2-mediated microglial apoptosis. To test this hypothesis, we measured the protein expression of C/EBP-β after MA treatment and evaluated the effects of silencing C/EBP-β or lcn2 on MA-induced apoptosis in BV-2 cells and the mouse striatum after intrastriatal MA injection. MA exposure increased the expression of C/EBP-β and stimulated the lcn2-mediated modulation of apoptosis. Moreover, silencing the C/EBP-β-dependent lcn2 upregulation reversed the MA-induced microglial apoptosis. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-C/EBP-β into the striatum ameliorated the MA-induced decrease survival of microglia. These findings provide a new insight regarding the specific contributions of C/EBP-β-lcn2 to microglial survival in the context of MA abuse.
Collapse
Affiliation(s)
- Xuebing Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xu Zhao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
53
|
Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 2019; 35:921-933. [PMID: 31062335 DOI: 10.1007/s12264-019-00388-3] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Resident microglia are the principal immune cells of the brain, and the first to respond to the pathophysiological changes induced by ischemic stroke. Traditionally, it has been thought that microglial activation is deleterious in ischemic stroke, and therapies to suppress it have been intensively explored. However, increasing evidence suggests that microglial activation is also critical for neurogenesis, angiogenesis, and synaptic remodeling, thereby promoting functional recovery after cerebral ischemia. Here, we comprehensively review the dual role of microglia during the different phases of ischemic stroke, and the possible mechanisms controlling the post-ischemic activity of microglia. In addition, we discuss the dynamic interactions between microglia and other cells, such as neurons, astrocytes, oligodendrocytes, and endothelial cells within the brain parenchyma and the neurovascular unit.
Collapse
|
54
|
Bhusal A, Rahman MH, Lee IK, Suk K. Role of Hippocampal Lipocalin-2 in Experimental Diabetic Encephalopathy. Front Endocrinol (Lausanne) 2019; 10:25. [PMID: 30761088 PMCID: PMC6363678 DOI: 10.3389/fendo.2019.00025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetic encephalopathy is a severe diabetes-related complication in the central nervous system (CNS) that is characterized by degenerative neurochemical and structural changes leading to impaired cognitive function. While the exact pathophysiology of diabetic encephalopathy is not well-understood, it is likely that neuroinflammation is one of the key pathogenic mechanisms that cause this complication. Lipocalin-2 (LCN2) is an acute phase protein known to promote neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes, thereby inducing proinflammatory mediators in a range of neurological disorders. In this study, we investigated the role of LCN2 in multiple aspects of diabetic encephalopathy in mouse models of diabetes. Here, we show that induction of diabetes increased the expression of both Lcn2 mRNA and protein in the hippocampus. Genetic deficiency of Lcn2 significantly reduced gliosis, recruitment of macrophages, and production of inflammatory cytokines in the diabetic mice. Further, diabetes-induced hippocampal toxicity and cognitive decline were both lower in Lcn2 knockout mice than in the wild-type animals. Taken together, our findings highlight the critical role of LCN2 in the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Anup Bhusal
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Habibur Rahman
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - In-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Departments of Biomedical Science and Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
55
|
Mike EV, Makinde HM, Gulinello M, Vanarsa K, Herlitz L, Gadhvi G, Winter DR, Mohan C, Hanly JG, Mok CC, Cuda CM, Putterman C. Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus. J Autoimmun 2019; 96:59-73. [PMID: 30174216 PMCID: PMC6310639 DOI: 10.1016/j.jaut.2018.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric manifestations in lupus (NPSLE) affect ∼20-40% of patients. In the central nervous system, lipocalin-2 (LCN2) can promote injury through mechanisms directly linked to NPSLE, including brain barrier disruption, neurotoxicity, and glial activation. Since LCN2 is elevated in lupus and has been implicated in neuroinflammation, we investigated whether LCN2 is required for the pathogenesis of NPSLE. Here, we investigated the effects of LCN2 deficiency on the development of neurobehavioral deficits in the B6.Sle1.Sle3 (Sle1,3) mouse lupus model. Sle1,3 mice exhibited depression-like behavior and impaired spatial and recognition memory, and these deficits were attenuated in Sle1,3-LCN2KO mice. Whole-brain flow cytometry showed a significant increase in brain infiltrating leukocytes in Sle1,3 mice that was not reduced by LCN2 deficiency. RNA sequencing on sorted microglia revealed that several genes differentially expressed between B6 and Sle1,3 mice were regulated by LCN2, and that these genes are key mediators of the neuroinflammatory cascade. Importantly, LCN2 is upregulated in the cerebrospinal fluid of NPSLE patients across 2 different ethnicities. Our findings establish the Sle1,3 strain as an NPSLE model, demonstrate that LCN2 is a major regulator of the detrimental neuroimmune response in NPSLE, and identify CSF LCN2 as a novel biomarker for NPSLE.
Collapse
Affiliation(s)
- Elise V Mike
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hadijat M Makinde
- Division of Rheumatology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Maria Gulinello
- Dominick P. Purpura Department of Neuroscience Animal Behavioral Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Leal Herlitz
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Gaurav Gadhvi
- Division of Rheumatology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Deborah R Winter
- Division of Rheumatology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine and Department of Pathology, Dalhousie University and Queen Elizabeth II Health Sciences Center, Halifax, Nova Scotia, Canada
| | - C C Mok
- Division of Rheumatology, Tuen Mun Hospital, Hong Kong, China
| | - Carla M Cuda
- Division of Rheumatology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
56
|
Tang W, Ma J, Gu R, Lei B, Ding X, Xu G. Light-Induced Lipocalin 2 Facilitates Cellular Apoptosis by Positively Regulating Reactive Oxygen Species/Bim Signaling in Retinal Degeneration. ACTA ACUST UNITED AC 2018; 59:6014-6025. [PMID: 30574656 DOI: 10.1167/iovs.18-25213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Jun Ma
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Boya Lei
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Yang R, Wang H, Wen J, Ma K, Chen D, Chen Z, Huang C. Regulation of microglial process elongation, a featured characteristic of microglial plasticity. Pharmacol Res 2018; 139:286-297. [PMID: 30476531 DOI: 10.1016/j.phrs.2018.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/08/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Microglia, a type of glia within the brain characterized by a ramified morphology, are essential for removing neuronal debris and restricting the expansion of a lesion site. Upon moderate activation, they undergo a transformation in morphology inducing beneficial responses. However, upon strong stimulation, they mediate neuronal damage via production of pro-inflammatory cytokines. The inhibition of this cascade is considered an effective strategy for neuroinflammation-associated disorder therapy. During this pathological activation microglia also undergo a shortening of process length which contributes to the pathogenesis of such disorders. Thus, microglial plasticity should be considered to have two components: one is the production of inflammatory mediators, and the other is the dynamic changes in their processes. The former role has been well-documented in previous studies, while the latter one remains largely unknown. Recently, we and others have reported that the elongation of microglial process is associated with the transformation of microglia from a pro-inflammatory to an anti-inflammatory state, suggesting that the shortening of process length would make the microglia lose their ability to restrict pathological injury, while the elongation of microglial process would help attenuate neuroinflammation. Compared with the traditional anti-neuroinflammatory strategy, stimulating elongation of microglial process not only reduces the production of pro-inflammatory cytokines, but restores the ability of microglia to scan their surrounding environments, thus rendering their homeostasis regulation more effective. In this review, we provide a discussion of the factors that regulate microglial process elongation in vitro and in vivo, aiming to further drive the understanding of microglial process plasticity.
Collapse
Affiliation(s)
- Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China.
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854, NJ, United States
| | - Jie Wen
- Beijing Allwegene Health, B-607 Wanlin Technology Mansion, 8 Malianwa North Road, Beijing 100094, China
| | - Kai Ma
- Probiotics Australia, 24-30 Blanck Street, Ormeau, QLD, 4208, Australia
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
58
|
Myeloid sirtuin1 deficiency aggravates hippocampal inflammation in mice fed high-fat diets. Biochem Biophys Res Commun 2018; 499:1025-1031. [DOI: 10.1016/j.bbrc.2018.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/06/2018] [Indexed: 11/22/2022]
|
59
|
Jin Z, Jung Y, Yi CO, Lee JY, Jeong EA, Lee JE, Park KJ, Kwon OY, Lim BH, Choi NC, Roh GS. Atorvastatin pretreatment attenuates kainic acid-induced hippocampal neuronal death via regulation of lipocalin-2-associated neuroinflammation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:301-309. [PMID: 29719452 PMCID: PMC5928343 DOI: 10.4196/kjpp.2018.22.3.301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 02/07/2018] [Indexed: 11/15/2022]
Abstract
Statins mediate vascular protection and reduce the prevalence of cardiovascular diseases. Recent work indicates that statins have anticonvulsive effects in the brain; however, little is known about the precise mechanism for its protective effect in kainic acid (KA)-induced seizures. Here, we investigated the protective effects of atorvastatin pretreatment on KA-induced neuroinflammation and hippocampal cell death. Mice were treated via intragastric administration of atorvastatin for 7 days, injected with KA, and then sacrificed after 24 h. We observed that atorvastatin pretreatment reduced KA-induced seizure activity, hippocampal cell death, and neuroinflammation. Atorvastatin pretreatment also inhibited KA-induced lipocalin-2 expression in the hippocampus and attenuated KA-induced hippocampal cyclooxygenase-2 expression and glial activation. Moreover, AKT phosphorylation in KA-treated hippocampus was inhibited by atorvastatin pretreatment. These findings suggest that atorvastatin pretreatment may protect hippocampal neurons during seizures by controlling lipocalin-2-associated neuroinflammation.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Yohan Jung
- Department of Neurology, Changwon Fatima Hospital, Changwon 51394, Korea
| | - Chin-Ok Yi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Ki-Jong Park
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Oh-Young Kwon
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Byeong Hoon Lim
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Nack-Cheon Choi
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
60
|
Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, Asmann Y, Fryer JD. Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry 2018; 23:344-350. [PMID: 28070126 PMCID: PMC5503822 DOI: 10.1038/mp.2016.243] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Sepsis is a prevalent health issue that can lead to central nervous system (CNS) inflammation with long-term behavioral and cognitive alterations. Using unbiased proteomic profiling of over 100 different cytokines, we found that Lipocalin-2 (LCN2) was the most substantially elevated protein in the CNS after peripheral administration of lipopolysaccharide (LPS). To determine whether the high level of LCN2 in the CNS is protective or deleterious, we challenged Lcn2-/- mice with peripheral LPS and determined effects on behavior and neuroinflammation. At a time corresponding to peak LCN2 induction in wild-type (WT) mice injected with LPS, Lcn2-/- mice challenged with LPS had exacerbated levels of pro-inflammatory cytokines and exhibited significantly worsened behavioral phenotypes. To determine the extent of global inflammatory changes dependent upon LCN2, we performed an RNAseq transcriptomic analysis. Compared with WT mice injected with LPS, Lcn2-/- mice injected with LPS had unique transcriptional profiles and significantly elevated levels of multiple pro-inflammatory molecules. Several LCN2-dependent pathways were revealed with this analysis including, cytokine and chemokine signaling, nucleotide-binding oligomerization domain-like receptor signaling and Janus kinase-signal transducer and activator of transcription signaling. These findings demonstrate that LCN2 serves as a potent protective factor in the CNS in response to systemic inflammation and may be a potential candidate for limiting sepsis-related CNS sequelae.
Collapse
Affiliation(s)
- S S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Y Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - C-C Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - A Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - K E Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - G Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Y Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - J D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL, USA,Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. E-mail:
| |
Collapse
|
61
|
Song J, Kim OY. Perspectives in Lipocalin-2: Emerging Biomarker for Medical Diagnosis and Prognosis for Alzheimer's Disease. Clin Nutr Res 2018; 7:1-10. [PMID: 29423384 PMCID: PMC5796918 DOI: 10.7762/cnr.2018.7.1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 01/23/2023] Open
Abstract
Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily was reported to participate in various biological processes including cell migration, cell survival, inflammatory responses, and insulin sensitivity. LCN2 is expressed in the multiple tissues such as kidney, liver, uterus, and bone marrow. The receptors for LCN2 were additionally found in microglia, astrocytes, epithelial cells, and neurons, but the role of LCN2 in the central nervous system (CNS) has not been fully understood yet. Recently, in vitro, in vivo, and clinical studies reported the association between LCN2 and the risk of Alzheimer's disease (AD). Here, we reviewed the significant evidences showing that LCN2 contributes to the onset and progression of AD. It may suggest that the manipulation of LCN2 in the CNS would be a crucial target for regulation of the pathogenesis and risk of AD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Korea.,Human Life Research Center, Dong-A University, Busan 49315, Korea
| | - Oh Yoen Kim
- Human Life Research Center, Dong-A University, Busan 49315, Korea.,Department of Food Science and Nutrition, Brain Busan 21 Project, Dong-A University, Busan 49315, Korea
| |
Collapse
|
62
|
Wei L, Du Y, Wu W, Fu X, Xia Q. Elevation of plasma neutrophil gelatinase-associated lipocalin (NGAL) levels in schizophrenia patients. J Affect Disord 2018; 226:307-312. [PMID: 29028592 DOI: 10.1016/j.jad.2017.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/23/2017] [Accepted: 10/01/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Psychiatric diseases are usually accompanied by immune dysregulation and activation of the inflammatory response system. However, the characteristics of immunoinflammatory markers in psychiatric diseases are not well defined. METHODS Seventy-three patients with psychiatric diseases were divided into four groups, including a schizophrenia group, an anxiety disorder group, a unipolar depression group, and a bipolar disorder group, according to the ICD-10 and DSM-IV codes. Neutrophil gelatinase-associated lipocalin (NGAL) and associated classical immunoinflammatory markers including C-reactive protein (CRP), Th1/Th2 cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ), total leukocyte count (TLC), and neutrophilic granulocyte percentage (NEU%) were analysed; patients with physical diseases were excluded to avoid confounders. Fifteen healthy, age- and gender-matched individuals served as controls. RESULTS Compared with the corresponding values in the control group, the level of CRP in each psychiatric disease group, the levels of IFN-γ and NGAL in the schizophrenia group, and the NEU% in the depression group were significantly elevated (P < 0.05). Compared with the levels in the schizophrenia group, the levels of CRP in the bipolar disorder and depression groups, the level of IFN-γ in the bipolar disorder group, and the levels of NGAL in the anxiety disorder and depression groups were significantly decreased (P < 0.05). Compared with the depression group, the bipolar disorder group showed significant elevation the NGAL level. LIMITATION The sample size was relatively small. CONCLUSIONS Immunoinflammatory markers were elevated in patients with psychiatric diseases, especially schizophrenia. We are the first to report that the level of NGAL is significantly increased in schizophrenia patients.
Collapse
Affiliation(s)
- Li Wei
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yupeng Du
- Department of Rehabilitation, The Third Hospital of Zhejiang University of Chinese Medicine, Hangzhou, China
| | - Wei Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xuyan Fu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Xia
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
63
|
Downregulation of lipocalin-2 and Bim expression after remote limb preconditioning in the ischemic rat brain. Brain Res 2018; 1679:1-9. [DOI: 10.1016/j.brainres.2017.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 11/18/2022]
|
64
|
Shen LJ, Zhou J, Guo M, Yang CS, Xu QC, Lv QW, Yang SB, Huang HB. Serum lipocalin-2 concentrations and mortality of severe traumatic brain injury. Clin Chim Acta 2017; 474:130-135. [DOI: 10.1016/j.cca.2017.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
|
65
|
Hossain MI, Horie M, Yoshioka N, Kurose M, Yamamura K, Takebayashi H. Motoneuron degeneration in the trigeminal motor nucleus innervating the masseter muscle in Dystonia musculorum mice. Neurochem Int 2017; 119:159-170. [PMID: 29061384 DOI: 10.1016/j.neuint.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
Dystonia musculorum (dt) mice, which have a mutation in the Dystonin (Dst) gene, are used as animal models to investigate the human disease known as hereditary sensory and autonomic neuropathy type VI. Massive neuronal cell death is observed, mainly in the peripheral nervous system (PNS) of dt mice. We and others have recently reported a histopathological feature of these mice that neurofilament (NF) accumulates in various areas of the central nervous system (CNS), including motor pathways. Although dt mice show motor disorder and growth retardation, the causes for these are still unknown. Here we performed histopathological analyses on motor units of the trigeminal motor nucleus (Mo5 nucleus), because they are a good system to understand neuronal responses in the mutant CNS, and abnormalities in this system may lead to problems in mastication, with subsequent growth retardation. We report that motoneurons with NF accumulation in the Mo5 nuclei of DstGt homozygous mice express the stress-induced genes CHOP, ATF3, and lipocalin 2 (Lcn2). We also show a reduced number of Mo5 motoneurons and a reduced size of Mo5 nuclei in DstGt homozygous mice, possibly due to apoptosis, given the presence of cleaved caspase 3-positive Mo5 motoneurons. In the mandibular (V3) branches of the trigeminal nerve, which contains axons of Mo5 motoneurons and trigeminal sensory neurons, there was infiltration of Iba1-positive macrophages. Finally, we report atrophy of the masseter muscles in DstGt homozygous mice, which showed abnormal nuclear localization of myofibrils and increased expression of atrogin-1 mRNA, a muscle atrophy-related gene and weaker masseter muscle strength with uncontrolled muscle activity by electromyography (EMG). Taken together, our findings strongly suggest that mastication in dt mice is affected due to abnormalities of Mo5 motoneurons and masseter muscles, leading to growth retardation at the post-weaning stages.
Collapse
Affiliation(s)
- M Ibrahim Hossain
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; Transdisciplinary Research Program, Niigata University, Niigata 951-8510, Japan
| | - Masayuki Kurose
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
66
|
NAMPT inhibitor protects ischemic neuronal injury in rat brain via anti-neuroinflammation. Neuroscience 2017; 356:193-206. [DOI: 10.1016/j.neuroscience.2017.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022]
|
67
|
Pathogenic Upregulation of Glial Lipocalin-2 in the Parkinsonian Dopaminergic System. J Neurosci 2017; 36:5608-22. [PMID: 27194339 DOI: 10.1523/jneurosci.4261-15.2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Lipocalin-2 (LCN2) is a member of the highly heterogeneous secretory protein family of lipocalins and increases in its levels can contribute to neurodegeneration in the adult brain. However, there are no reports on the role of LCN2 in Parkinson's disease (PD). Here, we report for the first time that LCN2 expression is increased in the substantia nigra (SN) of patients with PD. In mouse brains, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment for a neurotoxin model of PD significantly upregulated LCN2 expression, mainly in reactive astrocytes in both the SN and striatum. The increased LCN2 levels contributed to neurotoxicity and neuroinflammation, resulting in disruption of the nigrostriatal dopaminergic (DA) projection and abnormal locomotor behaviors, which were ameliorated in LCN2-deficient mice. Similar to the effects of MPTP treatment, LCN2-induced neurotoxicity was also observed in the 6-hydroxydopamine (6-OHDA)-treated animal model of PD. Moreover, treatment with the iron donor ferric citrate (FC) and the iron chelator deferoxamine mesylate (DFO) increased and decreased, respectively, the LCN2-induced neurotoxicity in vivo In addition to the in vivo results, 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in cocultures of mesencephalic neurons and astrocytes was reduced by LCN2 gene deficiency in the astrocytes and conditioned media derived from MPP(+)-treated SH-SY5Y neuronal enhanced glial expression of LCN2 in vitro Therefore, our results demonstrate that astrocytic LCN2 upregulation in the lesioned DA system may play a role as a potential pathogenic factor in PD and suggest that inhibition of LCN2 expression or activity may be useful in protecting the nigrostriatal DA system in the adult brain. SIGNIFICANCE STATEMENT Lipocalin-2 (LCN2), a member of the highly heterogeneous secretory protein family of lipocalins, may contribute to neuroinflammation and neurotoxicity in the brain. However, LCN2 expression and its role in Parkinson's disease (PD) are largely unknown. Here, we report that LCN2 is upregulated in the substantia nigra of patients with PD and neurotoxin-treated animal models of PD. Our results suggest that LCN2 upregulation might be a potential pathogenic mechanism of PD, which would result in disruption of the nigrostriatal dopaminergic system through neurotoxic iron accumulation and neuroinflammation. Therefore, inhibition of LCN2 expression or activity may be useful in protecting the nigrostriatal dopaminergic projection in PD.
Collapse
|
68
|
Kim JH, Ko PW, Lee HW, Jeong JY, Lee MG, Kim JH, Lee WH, Yu R, Oh WJ, Suk K. Astrocyte-derived lipocalin-2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia. Glia 2017; 65:1471-1490. [DOI: 10.1002/glia.23174] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology; Kyungpook National University School of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Ho-Won Lee
- Department of Neurology; Kyungpook National University School of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Won-Ha Lee
- Department of Genetic Engineering; Kyungpook National University; Daegu Republic of Korea
| | - Ri Yu
- Korea Brain Research Institute; Daegu Republic of Korea
| | - Won-Jong Oh
- Korea Brain Research Institute; Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| |
Collapse
|
69
|
Lattke M, Reichel SN, Magnutzki A, Abaei A, Rasche V, Walther P, Calado DP, Ferger B, Wirth T, Baumann B. Transient IKK2 activation in astrocytes initiates selective non-cell-autonomous neurodegeneration. Mol Neurodegener 2017; 12:16. [PMID: 28193238 PMCID: PMC5307695 DOI: 10.1186/s13024-017-0157-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammation is associated with a wide range of neurodegenerative disorders, however the specific contribution to individual disease pathogenesis and selective neuronal cell death is not well understood. Inflammatory cerebellar ataxias are neurodegenerative diseases occurring in various autoimmune/inflammatory conditions, e.g. paraneoplastic syndromes. However, how inflammatory insults can cause selective cerebellar neurodegeneration in the context of these diseases remains open, and appropriate animal models are lacking. A key regulator of neuroinflammatory processes is the NF-κB signalling pathway, which is activated by the IκB kinase 2 (IKK2) in response to various pathological conditions. Importantly, its activation is sufficient to initiate neuroinflammation on its own. METHODS To investigate the contribution of IKK/NF-κB-mediated neuroinflammation to neurodegeneration, we established conditional mouse models of cerebellar neuroinflammation, which depend either on the tetracycline-regulated expression of IKK2 in astrocytes or Cre-recombination based IKK2 activation in Bergmann glia. RESULTS We demonstrate that IKK2 activation for a limited time interval in astrocytes is sufficient to induce neuroinflammation, astrogliosis and loss of Purkinje neurons, resembling the pathogenesis of inflammatory cerebellar ataxias. We identified IKK2-driven irreversible dysfunction of Bergmann glia as critical pathogenic event resulting in Purkinje cell loss. This was independent of Lipocalin 2, an acute phase protein secreted by reactive astrocytes and well known to mediate neurotoxicity. Instead, downregulation of the glutamate transporters EAAT1 and EAAT2 and ultrastructural alterations suggest an excitotoxic mechanism of Purkinje cell degeneration. CONCLUSIONS Our results suggest a novel pathogenic mechanism how diverse inflammatory insults can cause inflammation/autoimmune-associated cerebellar ataxias. Disease-mediated elevation of danger signals like TLR ligands and inflammatory cytokines in the cerebellum activates IKK2/NF-κB signalling in astrocytes, which as a consequence triggers astrogliosis-like activation of Bergmann glia and subsequent non-cell-autonomous Purkinje cell degeneration. Notably, the identified hit and run mechanism indicates only an early window for therapeutic interventions.
Collapse
Affiliation(s)
- Michael Lattke
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Stephanie N. Reichel
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexander Magnutzki
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal MRI, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Dinis P. Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Boris Ferger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
70
|
Neutrophil gelatinase-associated lipocalin and microglial activity are associated with distinct postoperative behavioral changes in rats. Behav Brain Res 2017; 319:104-109. [DOI: 10.1016/j.bbr.2016.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 12/12/2022]
|
71
|
Furukawa T, Shimoyama S, Miki Y, Nikaido Y, Koga K, Nakamura K, Wakabayashi K, Ueno S. Chronic diazepam administration increases the expression of Lcn2 in the CNS. Pharmacol Res Perspect 2017; 5:e00283. [PMID: 28596835 PMCID: PMC5461642 DOI: 10.1002/prp2.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022] Open
Abstract
Benzodiazepines (BZDs), which bind with high affinity to gamma-aminobutyric acid type A receptors (GABAA-Rs) and potentiate the effects of GABA, are widely prescribed for anxiety, insomnia, epileptic discharge, and as anticonvulsants. The long-term use of BZDs is limited due to adverse effects such as tolerance, dependence, withdrawal effects, and impairments in cognition and learning. Additionally, clinical reports have shown that chronic BZD treatment increases the risk of Alzheimer's disease. Unusual GABAA-R subunit expression and GABAA-R phosphorylation are induced by chronic BZD use. However, the gene expression and signaling pathways related to these effects are not completely understood. In this study, we performed a microarray analysis to investigate the mechanisms underlying the effect of chronic BZD administration on gene expression. Diazepam (DZP, a BZD) was chronically administered, and whole transcripts in the brain were analyzed. We found that the mRNA expression levels were significantly affected by chronic DZP administration and that lipocalin 2 (Lcn2) mRNA was the most upregulated gene in the cerebral cortex, hippocampus, and amygdala. Lcn2 is known as an iron homeostasis-associated protein. Immunostained signals of Lcn2 were detected in neuron, astrocyte, microglia, and Lcn2 protein expression levels were consistently upregulated. This upregulation was observed without proinflammatory genes upregulation, and was attenuated by chronic treatment of deferoxamine mesylate (DFO), iron chelator. Our results suggest that chronic DZP administration regulates transcription and upregulates Lcn2 expression levels without an inflammatory response in the mouse brain. Furthermore, the DZP-induced upregulation of Lcn2 expression was influenced by ambient iron.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shuji Shimoyama
- Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yasuo Miki
- Department of Neuropathology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kohei Koga
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Kazuhiko Nakamura
- Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan.,Department of Neuropsychiatry Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Koichi Wakabayashi
- Department of Neuropathology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shinya Ueno
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan.,Research Center for Child Mental Development Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
72
|
Gouweleeuw L, Hovens IB, Liu H, Naudé PJ, Schoemaker RG. Differences in the association between behavior and neutrophil gelatinase-associated lipocalin in male and female rats after coronary artery ligation. Physiol Behav 2016; 163:7-16. [DOI: 10.1016/j.physbeh.2016.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 01/06/2023]
|
73
|
Zhang JQ, Wu XH, Feng Y, Xie XF, Fan YH, Yan S, Zhao QY, Peng C, You ZL. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway. Acta Pharmacol Sin 2016; 37:1141-1153. [PMID: 27424655 PMCID: PMC5022100 DOI: 10.1038/aps.2016.63] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
AIM Major depressive disorder (MDD) is a debilitating mental disorder associated with dysfunction of the neurotransmitter-neuroendocrine system and neuroinflammatory responses. Salvianolic acid B (SalB) has shown a variety of pharmacological activities, including anti-inflammatory, antioxidant and neuroprotective effects. In this study, we examined whether SalB produced antidepressant-like actions in a chronic mild stress (CMS) mouse model, and explored the mechanisms underlying the antidepressant-like actions of SalB. METHODS Mice were subjected to a CMS paradigm for 6 weeks. In the last 3 weeks the mice were daily administered SalB (20 mg·kg(-1)·d(-1), ip) or a positive control drug imipramine (20 mg·kg(-1)·d(-1), ip). The depressant-like behaviors were evaluated using the sucrose preference test, the forced swimming test (FST), and the tail suspension test (TST). The gene expression of cytokines in the hippocampus and cortex was analyzed with RT-PCR. Plasma corticosterone (CORT) and cerebral cytokines levels were assayed with an ELISA kit. Neural apoptosis and microglial activation in brain tissues were detected using immunofluorescence staining. RESULTS Administration of SalB or imipramine reversed the reduced sucrose preference ratio of CMS-treated mice, and significantly decreased their immobility time in the FST and TST. Administration of SalB significantly decreased the expression of pro-inflammatory cytokines IL-1β and TNF-α, and markedly increased the expression of anti-inflammatory cytokines IL-10 and TGF-β in the hippocampus and cortex of CMS-treated mice, and normalized their elevated plasma CORT levels, whereas administration of imipramine did not significantly affect the imbalance between pro- and anti-inflammatory cytokines in the hippocampus and cortex of CMS-treated mice. Finally, administration of SalB significantly decreased CMS-induced apoptosis and microglia activation in the hippocampus and cortex, whereas administration of imipramine had no significant effect on CMS-induced apoptosis and microglia activation in the hippocampus and cortex. CONCLUSION SalB exerts potent antidepressant-like effects in CMS-induced mouse model of depression, which is associated with the inhibiting microglia-related apoptosis in the hippocampus and the cortex.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Behavior, Animal/drug effects
- Benzofurans/administration & dosage
- Benzofurans/therapeutic use
- Cerebral Cortex/drug effects
- Cerebral Cortex/immunology
- Cerebral Cortex/pathology
- Corticosterone/blood
- Cytokines/genetics
- Depressive Disorder, Major/immunology
- Depressive Disorder, Major/prevention & control
- Depressive Disorder, Major/psychology
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/therapeutic use
- Gene Expression/drug effects
- Hippocampus/drug effects
- Hippocampus/immunology
- Hippocampus/pathology
- Male
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/pathology
- Neuroimmunomodulation/drug effects
- Neurons/drug effects
- Neurons/pathology
- Stress, Psychological/drug therapy
- Stress, Psychological/immunology
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Jin-qiang Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiao-hui Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yi Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiao-fang Xie
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yong-hua Fan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shuo Yan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiu-ying Zhao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zi-li You
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
74
|
Suk K. Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective. Prog Neurobiol 2016; 144:158-72. [DOI: 10.1016/j.pneurobio.2016.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
|
75
|
Shishido H, Toyota Y, Hua Y, Keep RF, Xi G. Role of lipocalin 2 in intraventricular haemoglobin-induced brain injury. Stroke Vasc Neurol 2016; 1:37-43. [PMID: 28959462 PMCID: PMC5435192 DOI: 10.1136/svn-2016-000009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Our recent studies have shown that blood components, including haemoglobin and iron, contribute to hydrocephalus development and brain injury after intraventricular haemorrhage (IVH). The current study investigated the role of lipocalin 2 (LCN2), a protein involved in iron handling, in the ventricular dilation and neuroinflammation caused by brain injury in a mouse model of IVH. DESIGN Female wild-type (WT) C57BL/6 mice and LCN2-deficient (LCN2-/-) mice had an intraventricular injection of haemoglobin, and control mice received an equivalent amount of saline. MRI was performed presurgery and postsurgery to measure ventricular volume and the brains were used for either immunohistochemistry or western blot. RESULTS Ventricular dilation was observed in WT mice at 24 h after haemoglobin (25 mg/mL, 20 µL) injection (12.5±2.4 vs 8.6±1.5 mm3 in the control, p<0.01). Western blotting showed that LCN2 was significantly upregulated in the periventricular area (p<0.01). LCN2 was mainly expressed in astrocytes, whereas the LCN2 receptor was detected in astrocytes, microglia/macrophages and neurons. Haemoglobin-induced ventricle dilation and glia activation were less in LCN2-/- mice (p<0.01). Injection of high-dose haemoglobin (50 mg/mL) resulted in lower mortality in LCN2-/- mice (27% vs 86% in WT; p<0.05). CONCLUSIONS Intraventricular haemoglobin caused LCN2 upregulation and ventricular dilation. Haemoglobin resulted in lower mortality and less ventricular dilation in LCN2-/- mice. These results suggest that LCN2 has a role in haemoglobin-induced brain injury and may be a therapeutic target for IVH.
Collapse
Affiliation(s)
- Hajime Shishido
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Yasunori Toyota
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
76
|
Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG. Postoperative cognitive dysfunction and neuroinflammation; Cardiac surgery and abdominal surgery are not the same. Brain Behav Immun 2016; 54:178-193. [PMID: 26867718 DOI: 10.1016/j.bbi.2016.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a debilitating surgical complication, with cardiac surgery patients at particular risk. To gain insight in the mechanisms underlying the higher incidence of POCD after cardiac versus non-cardiac surgery, systemic and central inflammatory changes, alterations in intraneuronal pathways, and cognitive performance were studied after cardiac and abdominal surgery in rats. Male Wistar rats were subjected to ischemia reperfusion of the upper mesenteric artery (abdominal surgery) or the left coronary artery (cardiac surgery). Control rats remained naïve, received anesthesia only, or received thoracic sham surgery. Rats were subjected to affective and cognitive behavioral tests in postoperative week 2. Plasma concentrations of inflammatory factors, and markers for neuroinflammation (NGAL and microglial activity) and the BDNF pathway (BDNF, p38MAPK and DCX) were determined. Spatial memory was impaired after both abdominal and cardiac surgery, but only cardiac surgery impaired spatial learning and object recognition. While all surgical procedures elicited a pronounced acute systemic inflammatory response, NGAL and TNFα levels were particularly increased after abdominal surgery. Conversely, NGAL in plasma and the paraventricular nucleus of the hypothalamus and microglial activity in hippocampus and prefrontal cortex on postoperative day 14 were increased after cardiac, but not abdominal surgery. Both surgery types induced hippocampal alterations in BDNF signaling. These results suggest that POCD after cardiac surgery, compared to non-cardiac surgery, affects different cognitive domains and hence may be more extended rather than more severe. Moreover, while abdominal surgery effects seem limited to hippocampal brain regions, cardiac surgery seems associated with more wide spread alterations in the brain.
Collapse
Affiliation(s)
- Iris B Hovens
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Surgery and Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Barbara L van Leeuwen
- Department of Surgery and Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Massimo A Mariani
- Department of Cardio-Thoracic Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
77
|
Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci 2016; 10:98. [PMID: 27147970 PMCID: PMC4829593 DOI: 10.3389/fncel.2016.00098] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | | | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
78
|
Kim HJ, Ohk B, Kang WY, Seong SJ, Suk K, Lim MS, Kim SY, Yoon YR. Deficiency of Lipocalin-2 Promotes Proliferation and Differentiation of Osteoclast Precursors via Regulation of c-Fms Expression and Nuclear Factor-kappa B Activation. J Bone Metab 2016; 23:8-15. [PMID: 26981515 PMCID: PMC4791440 DOI: 10.11005/jbm.2016.23.1.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 01/27/2023] Open
Abstract
Background Lipocalin-2 (LCN2), a small glycoprotein, has a pivotal role in diverse biological processes such as cellular proliferation and differentiation. We previously reported that LCN2 is implicated in osteoclast formation induced by receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). In the present study, we used a knockout mouse model to further investigate the role of LCN2 in osteoclast development. Methods Osteoclastogenesis was assessed using primary bone marrow-derived macrophages. RANKL and M-CSF signaling was determined by immunoblotting, cell proliferation by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA), and apoptosis by cell death detection ELISA. Bone morphometric parameters were determined using a micro-computed tomography system. Results Our results showed that LCN2 deficiency increases tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast formation in vitro, a finding that reflects enhanced proliferation and differentiation of osteoclast lineage cells. LCN2 deficiency promotes M-CSF-induced proliferation of bone marrow macrophages (BMMs), osteoclast precursors, without altering their survival. The accelerated proliferation of LCN2-deficient precursors is associated with enhanced expression and activation of the M-CSF receptor, c-Fms. Furthermore, LCN2 deficiency stimulates the induction of c-Fos and nuclear factor of activated T cells c1 (NFATc1), key transcription factors for osteoclastogenesis, and promotes RANKL-induced inhibitor of kappa B (IκBα) phosphorylation. Interestingly, LCN2 deficiency does not affect basal osteoclast formation in vivo, suggesting that LCN2 might play a role in the enhanced osteoclast development that occurs under some pathological conditions. Conclusions Our study establishes LCN2 as a negative modulator of osteoclast formation, results that are in accordance with our previous findings.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea.; Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Boram Ohk
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Woo Youl Kang
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Sook Jin Seong
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Mi-Sun Lim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Shin-Yoon Kim
- Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Young-Ran Yoon
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu, Korea
| |
Collapse
|
79
|
Al Nimer F, Elliott C, Bergman J, Khademi M, Dring AM, Aeinehband S, Bergenheim T, Romme Christensen J, Sellebjerg F, Svenningsson A, Linington C, Olsson T, Piehl F. Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e191. [PMID: 26770997 PMCID: PMC4708925 DOI: 10.1212/nxi.0000000000000191] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/23/2015] [Indexed: 11/15/2022]
Abstract
Objective: We aimed to examine the regulation of lipocalin-2 (LCN2) in multiple sclerosis (MS) and its potential functional relevance with regard to myelination and neurodegeneration. Methods: We determined LCN2 levels in 3 different studies: (1) in CSF and plasma from a case-control study comparing patients with MS (n = 147) with controls (n = 50) and patients with relapsing-remitting MS (n = 75) with patients with progressive MS (n = 72); (2) in CSF and brain tissue microdialysates from a case series of 7 patients with progressive MS; and (3) in CSF at baseline and 60 weeks after natalizumab treatment in a cohort study of 17 patients with progressive MS. Correlation to neurofilament light, a marker of neuroaxonal injury, was tested. The effect of LCN2 on myelination and neurodegeneration was studied in a rat in vitro neuroglial cell coculture model. Results: Intrathecal production of LCN2 was increased predominantly in patients with progressive MS (p < 0.005 vs relapsing-remitting MS) and displayed a positive correlation to neurofilament light (p = 0.005). Levels of LCN2 in brain microdialysates were severalfold higher than in the CSF, suggesting local production in progressive MS. Treatment with natalizumab in progressive MS reduced LCN2 levels an average of 13% (p < 0.0001). LCN2 was found to inhibit remyelination in a dose-dependent manner in vitro. Conclusions: LCN2 production is predominantly increased in progressive MS. Although this moderate increase does not support the use of LCN2 as a biomarker, the correlation to neurofilament light and the inhibitory effect on remyelination suggest that LCN2 might contribute to neurodegeneration through myelination-dependent pathways.
Collapse
Affiliation(s)
- Faiez Al Nimer
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Christina Elliott
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Joakim Bergman
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Mohsen Khademi
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Ann M Dring
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Shahin Aeinehband
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Tommy Bergenheim
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jeppe Romme Christensen
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Finn Sellebjerg
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Svenningsson
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Christopher Linington
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Tomas Olsson
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Fredrik Piehl
- Neuroimmunology Unit (F.A.N., M.K., S.A., T.O., F.P.), Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Infection, Immunity and Inflammation (C.E., C.L.), University of Glasgow, UK; Department of Pharmacology and Clinical Neuroscience (J.B., A.M.D., A.S.) and Neurosurgery (T.B.), Umeå University, Sweden; and Danish Multiple Sclerosis Center (J.R.C., F.S.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
80
|
Role of lipocalin-2 in brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2015; 35:1454-61. [PMID: 25853903 PMCID: PMC4640334 DOI: 10.1038/jcbfm.2015.52] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 01/08/2023]
Abstract
Lipocalin-2 (LCN2) is a siderophore-binding protein involved in cellular iron transport and neuroinflammation. Both iron and inflammation are involved in brain injury after intracerebral hemorrhage (ICH) and this study examined the role of LCN2 in such injury. Male adult C57BL/6 wild-type (WT) or LCN2-deficient (LCN2(-/-)) mice had an intracerebral injection of autologous blood or FeCl2. Control animals had a sham operation or saline injection. T2-weighted magnetic resonance imaging and behavioral tests were performed at days 1, 3, 7, 14, and 28 after injection. In WT mice, brain LCN2 levels were increased in the ipsilateral basal ganglia after ICH or iron injection. Lipocalin-2-positive cells were astrocytes, microglia, neurons, and endothelial cells. Intracerebral hemorrhage resulted in a significant increase in ferritin expression in the ipsilateral basal ganglia. Compared with WT mice, ICH caused less ferritin upregulation, microglia activation, brain swelling, brain atrophy, and neurologic deficits in LCN2(-/-) mice (P<0.05). The size of the lesion induced by FeCl2 injection as well as the degree of brain swelling and blood-brain barrier disruption were also less in LCN2(-/-) mice (P<0.05). These results suggest a role of LCN2 in enhancing brain injury and iron toxicity after ICH.
Collapse
|
81
|
Ferreira AC, Dá Mesquita S, Sousa JC, Correia-Neves M, Sousa N, Palha JA, Marques F. From the periphery to the brain: Lipocalin-2, a friend or foe? Prog Neurobiol 2015; 131:120-36. [PMID: 26159707 DOI: 10.1016/j.pneurobio.2015.06.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/23/2015] [Accepted: 06/28/2015] [Indexed: 01/08/2023]
Abstract
Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.
Collapse
Affiliation(s)
- Ana C Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sandro Dá Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
82
|
Choy YJ, Hong SY, Pack SJ, Woo RS, Baik TK, Song DY. Changes of gene expression of Gal3, Hsp27, Lcn2, and Timp1 in rat substantia nigra following medial forebrain bundle transection using a candidate gene microarray. J Chem Neuroanat 2015; 66-67:10-8. [DOI: 10.1016/j.jchemneu.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 11/24/2022]
|
83
|
Chia WJ, Tan FCK, Ong WY, Dawe GS. Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochem Int 2015; 87:43-59. [PMID: 26004810 DOI: 10.1016/j.neuint.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 01/13/2023]
Abstract
The iron siderophore binding protein lipocalin 2 (LCN2, also known as 24p3, NGAL and siderocalin) may be involved in iron homeostasis, but to date, little is known about expression of its putative receptor, brain-type organic cation transporter (BOCT, also known as BOCT1, 24p3R, NGALR and LCN2R), in the brain during neurodegeneration. The present study was carried out to elucidate the expression of LCN2 and BOCT in hippocampus after excitotoxicity induced by the glutamate analog, kainate (KA) and a possible role of LCN2 in neuronal injury. As reported previously, a rapid and sustained induction in expression of LCN2 was found in the hippocampus after intracerebroventicular injection of KA. BOCT was expressed in neurons of the saline-injected control hippocampus, and immunolabel for BOCT protein was preserved in pyramidal neurons of CA1 at 1 day post-KA injection, likely due to the delayed onset of neurodegeneration after KA injection. At 3 days and 2 weeks after KA injections, loss of immunolabel was observed due to degenerated neurons, although remaining neurons continued to express BOCT, and induction of BOCT was found in OX-42 positive microglia. This resulted in an overall decrease in BOCT mRNA and protein expression after KA treatment. Increased expression of the pro-apoptotic marker, Bim, was found in both neurons and microglia after KA injection, but TUNEL staining indicating apoptosis was found primarily in Bim-expressing neurons, but not microglia. Interaction between LCN2 and BOCT was found by DuoLink assay in cultured hippocampal neurons. Apo-LCN2 without iron caused no significant differences in neuronal Bim expression or cell survival, whereas holo-LCN2 consisting of LCN2:iron:enterochelin complex increased Bim mRNA expression and decreased neuronal survival. Together, results suggest that LCN2 and BOCT may have a role in neuronal injury.
Collapse
Affiliation(s)
- Wan-Jie Chia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; National University of Singapore Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Francis Chee Kuan Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | - Wei-Yi Ong
- Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 4 Medical Drive, Singapore 117597.
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive, Singapore 117597; National University of Singapore Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456; Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, 28 Medical Drive, Singapore 117456.
| |
Collapse
|
84
|
Gouweleeuw L, Naudé PJW, Rots M, DeJongste MJL, Eisel ULM, Schoemaker RG. The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease. Brain Behav Immun 2015; 46:23-32. [PMID: 25576802 DOI: 10.1016/j.bbi.2014.12.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease.
Collapse
Affiliation(s)
- L Gouweleeuw
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - P J W Naudé
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Neurology and Alzheimer Research Center, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rots
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - M J L DeJongste
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - R G Schoemaker
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
85
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
86
|
Valapala M, Edwards M, Hose S, Grebe R, Bhutto IA, Cano M, Berger T, Mak TW, Wawrousek E, Handa JT, Lutty GA, Samuel Zigler J, Sinha D. Increased Lipocalin-2 in the retinal pigment epithelium of Cryba1 cKO mice is associated with a chronic inflammatory response. Aging Cell 2014; 13:1091-4. [PMID: 25257511 PMCID: PMC4244249 DOI: 10.1111/acel.12274] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2014] [Indexed: 02/01/2023] Open
Abstract
Although chronic inflammation is believed to contribute to the pathology of age-related macular degeneration (AMD), knowledge regarding the events that elicit the change from para-inflammation to chronic inflammation in the pathogenesis of AMD is lacking. We propose here that lipocalin-2 (LCN2), a mammalian innate immunity protein that is trafficked to the lysosomes, may contribute to this process. It accumulates significantly with age in retinal pigment epithelial (RPE) cells of Cryba1 conditional knockout (cKO) mice, but not in control mice. We have recently shown that these mice, which lack βA3/A1-crystallin specifically in RPE, have defective lysosomal clearance. The age-related increase in LCN2 in the cKO mice is accompanied by increases in chemokine (C-C motif) ligand 2 (CCL2), reactive gliosis, and immune cell infiltration. LCN2 may contribute to induction of a chronic inflammatory response in this mouse model with AMD-like pathology.
Collapse
Affiliation(s)
- Mallika Valapala
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Malia Edwards
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Stacey Hose
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Rhonda Grebe
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Imran A. Bhutto
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Marisol Cano
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Thorsten Berger
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute University Health Network Toronto ON Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute University Health Network Toronto ON Canada
| | - Eric Wawrousek
- National Eye Institute National Institutes of Health Bethesda MD USA
| | - James T. Handa
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Gerard A. Lutty
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - J. Samuel Zigler
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Debasish Sinha
- Wilmer Eye Institute The Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
87
|
Rojo AI, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, Cuadrado A. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 2014; 21:1766-801. [PMID: 24597893 PMCID: PMC4186766 DOI: 10.1089/ars.2013.5745] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain.
Collapse
Affiliation(s)
- Ana I Rojo
- 1 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Lipocalin-2 test in distinguishing acute lung injury cases from septic mice without acute lung injury. ACTA ACUST UNITED AC 2014; 29:65-77. [PMID: 24998227 DOI: 10.1016/s1001-9294(14)60031-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To explore whether the amount of lipocalin-2 in the biofluid could reflect the onset of sepsis-induced acute lung injury (ALI) in mice. METHODS Lipopolysaccharide (LPS, 10 mg/kg) injection or cecal ligation and puncture (CLP) was performed to induce severe sepsis and ALI in C57 BL/6 male mice randomly divided into 5 groups (n=10 in each group): group A (intraperitoneal LPS injection), group B (intravenous LPS injection via tail vein), group C (CLP with 25% of the cecum ligated), group D (CLP with 75% of the cecum ligated), and the control group (6 sham-operation controls plus 4 saline controls). All the mice received volume resuscitation. Measurements of pulmonary morphological and functional alterations were used to identify the presence of experimental ALI. The expressions of lipocalin-2 and interleukin (IL)-6 in serum, bronchoalveolar lavage fluid (BALF), and lung tissue were quantified at both protein and mRNA levels. The overall abilities of lipocalin-2 and IL-6 tests to diagnose sepsis-induced ALI were evaluated by generating receiver operator characteristic curves (ROC) and computing area under curve (AUC). RESULTS In both group B and group D, most of the main features of experimental ALI were reproduced in mice, while group A and group C showed septic syndrome without definite evidence for the presence of ALI. Compared with septic mice without ALI (group A+group C), lipocalin-2 protein expression in septic mice with ALI (group B+group D) was significantly up-regulated in BALF (P<0.01) and in serum (P<0.01), and mRNA expression boosted in lung tissues (all P<0.05). Lipocalin-2 tests performed better than IL-6 tests in recognizing sepsis-induced ALI cases, evidenced by the larger AUC of the former (BALF tests, 0.8800 versus 0.6625; serum tests, 0.8500 versus 0.7000). Using a dual cutoff system to diagnose sepsis-induced ALI, BALF lipocalin-2 test exhibited the highest positive likelihood ratio (13.000) and the lowest negative likelihood ratio (0.077) among the tests of lipocalin-2 and IL-6 in blood and BALF. A statistically significant correlation was found between lipocalin-2 concentration in BALF and that in serum (Spearman r=0.8803, P<0.0001). CONCLUSIONS Lipocalin-2 expression is significantly up-regulated in septic ALI mice compared with those without ALI. Lipocalin-2 tests with a dual cutoff system could be an effective tool in distinguishing experimental ALI cases.
Collapse
|
89
|
Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2014; 34:1306-14. [PMID: 24780901 PMCID: PMC4126090 DOI: 10.1038/jcbfm.2014.83] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 01/20/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted protein of the lipocalin family, but little is known about the expression or the role of LCN2 in the central nervous system. Here, we investigated the role of LCN2 in ischemic stroke using a rodent model of transient cerebral ischemia. Lipocalin-2 expression was highly induced in the ischemic brain and peaked at 24 hours after reperfusion. After transient middle cerebral artery occlusion, LCN2 was predominantly expressed in astrocytes and endothelial cells, whereas its receptor (24p3R) was mainly detected in neurons, astrocytes, and endothelial cells. Brain infarct volumes, neurologic scores, blood-brain barrier (BBB) permeabilities, glial activation, and inflammatory mediator expression were significantly lower in LCN2-deficient mice than in wild-type animals. Lipocalin-2 deficiency also attenuated glial neurotoxicity in astrocyte/neuron cocultures after oxygen-glucose deprivation. Our results indicate LCN2 has a critical role in brain injury after ischemia/reperfusion, and that LCN2 may contribute to neuronal cell death in the ischemic brain by promoting neurotoxic glial activation, neuroinflammation, and BBB disruption.
Collapse
|
90
|
Maung R, Hoefer MM, Sanchez AB, Sejbuk NE, Medders KE, Desai MK, Catalan IC, Dowling CC, de Rozieres CM, Garden GA, Russo R, Roberts AJ, Williams R, Kaul M. CCR5 knockout prevents neuronal injury and behavioral impairment induced in a transgenic mouse model by a CXCR4-using HIV-1 glycoprotein 120. THE JOURNAL OF IMMUNOLOGY 2014; 193:1895-910. [PMID: 25031461 DOI: 10.4049/jimmunol.1302915] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The innate immune system has been implicated in several neurodegenerative diseases, including HIV-1-associated dementia. In this study, we show that genetic ablation of CCR5 prevents microglial activation and neuronal damage in a transgenic model of HIV-associated brain injury induced by a CXCR4-using viral envelope gp120. The CCR5 knockout (KO) also rescues spatial learning and memory in gp120-transgenic mice. However, the CCR5KO does not abrogate astrocytosis, indicating it can occur independently from neuronal injury and behavioral impairment. To characterize further the neuroprotective effect of CCR5 deficiency we performed a genome-wide gene expression analysis of brains from HIVgp120tg mice expressing or lacking CCR5 and nontransgenic controls. A comparison with a human brain microarray study reveals that brains of HIVgp120tg mice and HIV patients with neurocognitive impairment share numerous differentially regulated genes. Furthermore, brains of CCR5 wild-type and CCR5KO gp120tg mice express markers of an innate immune response. One of the most significantly upregulated factors is the acute phase protein lipocalin-2 (LCN2). Using cerebrocortical cell cultures, we find that LCN2 is neurotoxic in a CCR5-dependent fashion, whereas inhibition of CCR5 alone is not sufficient to abrogate neurotoxicity of a CXCR4-using gp120. However, the combination of pharmacologic CCR5 blockade and LCN2 protects neurons from toxicity of a CXCR4-using gp120, thus recapitulating the finding in CCR5-deficient gp120tg mouse brain. Our study provides evidence for an indirect pathologic role of CCR5 and a novel protective effect of LCN2 in combination with inhibition of CCR5 in HIV-associated brain injury.
Collapse
Affiliation(s)
- Ricky Maung
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Melanie M Hoefer
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Ana B Sanchez
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Natalia E Sejbuk
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Kathryn E Medders
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Maya K Desai
- Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Irene C Catalan
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Cari C Dowling
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Cyrus M de Rozieres
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Gwenn A Garden
- Department of Neurology, University of Washington, Seattle, WA 98195
| | - Rossella Russo
- Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; Department of Pharmacobiology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Amanda J Roberts
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037
| | - Roy Williams
- Bioinformatics Shared Resource, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; and
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
91
|
Nam Y, Kim JH, Seo M, Kim JH, Jin M, Jeon S, Seo JW, Lee WH, Bing SJ, Jee Y, Lee WK, Park DH, Kook H, Suk K. Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues. J Biol Chem 2014; 289:16773-89. [PMID: 24808182 DOI: 10.1074/jbc.m113.542282] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipocalin-2 (LCN2) plays an important role in cellular processes as diverse as cell growth, migration/invasion, differentiation, and death/survival. Furthermore, recent studies indicate that LCN2 expression and secretion by glial cells are induced by inflammatory stimuli in the central nervous system. The present study was undertaken to examine the regulation of LCN2 expression in experimental autoimmune encephalomyelitis (EAE) and to determine the role of LCN2 in the disease process. LCN2 expression was found to be strongly increased in spinal cord and secondary lymphoid tissues after EAE induction. In spinal cords astrocytes and microglia were the major cell types expressing LCN2 and its receptor 24p3R, respectively, whereas in spleens, LCN2 and 24p3R were highly expressed in neutrophils and dendritic cells, respectively. Furthermore, disease severity, inflammatory infiltration, demyelination, glial activation, the expression of inflammatory mediators, and the proliferation of MOG-specific T cells were significantly attenuated in Lcn2-deficient mice as compared with wild-type animals. Myelin oligodendrocyte glycoprotein-specific T cells in culture exhibited an increased expression of Il17a, Ifng, Rorc, and Tbet after treatment with recombinant LCN2 protein. Moreover, LCN2-treated glial cells expressed higher levels of proinflammatory cytokines, chemokines, and MMP-9. Adoptive transfer and recombinant LCN2 protein injection experiments suggested that LCN2 expression in spinal cord and peripheral immune organs contributes to EAE development. Taken together, these results imply LCN2 is a critical mediator of autoimmune inflammation and disease development in EAE and suggest that LCN2 be regarded a potential therapeutic target in multiple sclerosis.
Collapse
Affiliation(s)
- Youngpyo Nam
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jong-Heon Kim
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Minchul Seo
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jae-Hong Kim
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Myungwon Jin
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Sangmin Jeon
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jung-wan Seo
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Won-Ha Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - So Jin Bing
- College of Veterinary Medicine and Applied Radiological Institute, Jeju National University, Jeju 690-756, Korea
| | - Youngheun Jee
- College of Veterinary Medicine and Applied Radiological Institute, Jeju National University, Jeju 690-756, Korea
| | - Won Kee Lee
- Center of Biostatistics, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Dong Ho Park
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu 700-422, Korea, and
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Korea
| | - Kyoungho Suk
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea,
| |
Collapse
|
92
|
The pivotal role played by lipocalin-2 in chronic inflammatory pain. Exp Neurol 2014; 254:41-53. [PMID: 24440229 DOI: 10.1016/j.expneurol.2014.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/30/2022]
|
93
|
Huang C, Huang B, Bi F, Yan LH, Tong J, Huang J, Xia XG, Zhou H. Profiling the genes affected by pathogenic TDP-43 in astrocytes. J Neurochem 2014; 129:932-9. [PMID: 24447103 DOI: 10.1111/jnc.12660] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 12/19/2013] [Accepted: 01/14/2014] [Indexed: 12/12/2022]
Abstract
Mutation in TAR DNA binding protein 43 (TDP-43) is a causative factor of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurodegeneration may not require the presence of pathogenic TDP-43 in all types of relevant cells. Rather, expression of pathogenic TDP-43 in neurons or astrocytes alone is sufficient to cause cell-autonomous or non-cell-autonomous neuron death in transgenic rats. How pathogenic TDP-43 in astrocytes causes non-cell-autonomous neuron death, however, is not clear. Here, we examined the effect of pathogenic TDP-43 on gene expression in astrocytes. Microarray assay revealed that pathogenic TDP-43 in astrocytes preferentially altered expression of the genes encoding secretory proteins. Whereas neurotrophic genes were down-regulated, neurotoxic genes were up-regulated. Representative genes Lcn2 and chitinase-3-like protein 1 were markedly up-regulated in astrocytes from primary culture and intact transgenic rats. Furthermore, synthetic chitinase-3-like protein 1 induced neuron death in a dose-dependent manner. Our results suggest that TDP-43 pathogenesis is associated with the simultaneous induction of multiple neurotoxic genes in astrocytes, which may synergistically produce adverse effects on neuronal survival and contribute to non-cell-autonomous neuron death. Restricted expression of pathogenic TDP-43 in astrocytes causes non-cell-autonomous motor neuron death in transgenic rats. As revealed by microarray assay, pathogenic TDP-43 in astrocytes preferentially altered expression of the genes encoding secretory proteins. Whereas neurotrophic genes were down-regulated, neurotoxic genes were up-regulated. Therefore, TDP-43 pathogenesis is associated with simultaneous induction of neurotoxic genes and repression of neurotrophic genes in astrocytes.
Collapse
Affiliation(s)
- Cao Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Graphene-based immunoassay for human lipocalin-2. Anal Biochem 2014; 446:96-101. [DOI: 10.1016/j.ab.2013.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/09/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
|
95
|
Liao CJ, Li PT, Lee YC, Li SH, Chu ST. Lipocalin 2 induces the epithelial–mesenchymal transition in stressed endometrial epithelial cells: possible correlation with endometriosis development in a mouse model. Reproduction 2014; 147:179-87. [DOI: 10.1530/rep-13-0236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipocalin 2 (LCN2) is an induced stressor that promotes the epithelial–mesenchymal transition (EMT). We previously demonstrated that the development of endometriosis in mice correlates with the secretion of LCN2 in the uterus. Here, we sought to clarify the relationship between LCN2 and EMT in endometrial epithelial cells and to determine whether LCN2 plays a role in endometriosis. Antibodies that functionally inhibit LCN2 slowed the growth of ectopic endometrial tissue in a mouse model of endometriosis, suggesting that LCN2 promotes the formation of endometriotic lesions. Using nutrient deprivation as a stressor, LCN2 expression was induced in cultured primary endometrial epithelial cells. As LCN2 levels increased, the cells transitioned from a round to a spindle-like morphology and dispersed. Immunochemical analyses revealed decreased levels of cytokeratin and increased levels of fibronectin in these endometrial cells, adhesive changes that correlate with induction of cell migration and invasion.Lcn2knockdown also indicated that LCN2 promotes EMT and migration of endometrial epithelial cells. Our results suggest that stressful cellular microenvironments cause uterine tissues to secrete LCN2 and that this results in EMT of endometrial epithelial cells, which may correlate with the development of ectopic endometriosis. These findings shed light on the role of LCN2 in the pathology of endometrial disorders.
Collapse
|
96
|
Jha MK, Suk K. Glia-based biomarkers and their functional role in the CNS. Expert Rev Proteomics 2014; 10:43-63. [DOI: 10.1586/epr.12.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
97
|
Jha MK, Jeon S, Jin M, Lee WH, Suk K. Acute Phase Protein Lipocalin-2 Is Associated with Formalin-induced Nociception and Pathological Pain. Immune Netw 2013; 13:289-94. [PMID: 24385948 PMCID: PMC3875788 DOI: 10.4110/in.2013.13.6.289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022] Open
Abstract
Lipocalin-2 (LCN2) is an acute-phase protein induced by injury, infection, or other inflammatory stimuli. LCN2 binds small hydrophobic ligands and interacts with cell surface receptor to regulate diverse cellular processes. The role of LCN2 as a chemokine inducer in the central nervous system (CNS) has been previously reported. Based on the previous participation of LCN2 in neuroinflammation, we investigated the role of LCN2 in formalin-induced nociception and pathological pain. Formalin-induced nociceptive behaviors (licking/biting) and spinal microglial activation were significantly reduced in the second or late phase of the formalin test in Lcn2 knockout mice. Likewise, antibody-mediated neutralization of spinal LCN2 attenuated the mechanical hypersensitivity induced by peripheral nerve injury in mice. Taken together, our results suggest that LCN2 can be therapeutically targeted, presumably for both prevention and reversal of acute inflammatory pain as well as pathological pain.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Sangmin Jeon
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Myungwon Jin
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Won-Ha Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 700-422, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| |
Collapse
|
98
|
The bacteriostatic protein lipocalin 2 is induced in the central nervous system of mice with west Nile virus encephalitis. J Virol 2013; 88:679-89. [PMID: 24173226 DOI: 10.1128/jvi.02094-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lipocalin 2 (Lcn2) is a bacteriostatic factor produced during the innate immune response to bacterial infection. Whether Lcn2 has a function in viral infection is unknown. We investigated the regulation and function of Lcn2 in the central nervous system (CNS) of mice during West Nile virus (WNV) encephalitis. Lcn2 mRNA and protein were induced in the brain by day 5, and this induction increased further by day 7 postinfection but was delayed compared with the induction of the toll-like receptor 3 (TLR3) gene, retinoic acid-inducible gene 1 (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) gene. The Lcn2 mRNA and protein were both found at high levels in the choroid plexus, vascular endothelium, macrophage/microglia, and astrocytes. However, some neuronal subsets contained Lcn2 protein but no detectable mRNA. In Lcn2 knockout (KO) mice, with the exception of CXC motif chemokine 5 (CXCL5), which was significantly more downregulated than in wild-type (WT) mice, expression levels of a number of other host response genes were similar in the two genotypes. The brain from Lcn2 and WT mice with WNV encephalitis contained similar numbers of infiltrating macrophages, granulocytes, and T cells. Lcn2 KO and WT mice had no significant difference in tissue viral loads or survival after infection with different doses of WNV. We conclude that Lcn2 gene expression is induced to high levels in a time-dependent fashion in a variety of cells and regions of the CNS of mice with WNV encephalitis. The function of Lcn2 in the host response to WNV infection remains largely unknown, but our data indicate that it is dispensable as an antiviral or immunoregulatory factor in WNV encephalitis.
Collapse
|
99
|
Jha MK, Kim JH, Suk K. Proteome of brain glia: the molecular basis of diverse glial phenotypes. Proteomics 2013; 14:378-98. [PMID: 24124134 DOI: 10.1002/pmic.201300236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
Several different types of nonneuronal glial cells with diverse phenotypes are present in the CNS, and all have distinct indispensible functions. Although glial cells primarily provide neurons with metabolic and structural support in the healthy brain, they may switch phenotype from a "resting" to a "reactive" state in response to pathological insults. Furthermore, this reactive gliosis is an invariant feature of the pathogeneses of CNS maladies. The glial proteome serves as a signature of glial phenotype, and not only executes physiological functions, but also acts as a molecular mediator of the reactive glial phenotype. The glial proteome is also involved in intra- and intercellular communications as exemplified by glia-glia and neuron-glia interactions. The utilization of authoritative proteomic tools and the bioinformatic analyses have helped to profile the brain glial proteome and explore the molecular mechanisms of diverse glial phenotypes. Furthermore, technologic innovations have equipped the field of "glioproteomics" with refined tools for studies of the expression, interaction, and function of glial proteins in the healthy and in the diseased CNS. Glioproteomics is expected to contribute to the elucidation of the molecular mechanisms of CNS pathophysiology and to the discovery of biomarkers and theragnostic targets in CNS disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | |
Collapse
|
100
|
Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, Lee MG, Jang IS, Lee WH, Suk K. Phenotypic Polarization of Activated Astrocytes: The Critical Role of Lipocalin-2 in the Classical Inflammatory Activation of Astrocytes. THE JOURNAL OF IMMUNOLOGY 2013; 191:5204-19. [DOI: 10.4049/jimmunol.1301637] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|