51
|
Hadebe MT, Malgwi SA, Okpeku M. Revolutionizing Malaria Vector Control: The Importance of Accurate Species Identification through Enhanced Molecular Capacity. Microorganisms 2023; 12:82. [PMID: 38257909 PMCID: PMC10818655 DOI: 10.3390/microorganisms12010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Many factors, such as the resistance to pesticides and a lack of knowledge of the morphology and molecular structure of malaria vectors, have made it more challenging to eradicate malaria in numerous malaria-endemic areas of the globe. The primary goal of this review is to discuss malaria vector control methods and the significance of identifying species in vector control initiatives. This was accomplished by reviewing methods of molecular identification of malaria vectors and genetic marker classification in relation to their use for species identification. Due to its specificity and consistency, molecular identification is preferred over morphological identification of malaria vectors. Enhanced molecular capacity for species identification will improve mosquito characterization, leading to accurate control strategies/treatment targeting specific mosquito species, and thus will contribute to malaria eradication. It is crucial for disease epidemiology and surveillance to accurately identify the Plasmodium spp. that are causing malaria in patients. The capacity for disease surveillance will be significantly increased by the development of more accurate, precise, automated, and high-throughput diagnostic techniques. In conclusion, although morphological identification is quick and achievable at a reduced cost, molecular identification is preferred for specificity and sensitivity. To achieve the targeted malaria elimination goal, proper identification of vectors using accurate techniques for effective control measures should be prioritized.
Collapse
Affiliation(s)
| | | | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| |
Collapse
|
52
|
Nkemngo FN, Raissa LW, Nguete DN, Ndo C, Fru-Cho J, Njiokou F, Wanji S, Wondji CS. Geographical emergence of sulfadoxine-pyrimethamine drug resistance-associated P. falciparum and P. malariae alleles in co-existing Anopheles mosquito and asymptomatic human populations across Cameroon. Antimicrob Agents Chemother 2023; 67:e0058823. [PMID: 37947766 PMCID: PMC10720508 DOI: 10.1128/aac.00588-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
Malaria molecular surveillance remains critical in detecting and tracking emerging parasite resistance to anti-malarial drugs. The current study employed molecular techniques to determine Plasmodium species prevalence and characterize the genetic diversity of Plasmodium falciparum and Plasmodium malariae molecular markers of sulfadoxine-pyrimethamine resistance in humans and wild Anopheles mosquito populations in Cameroon. Anopheles mosquito collections and parasitological survey were conducted in villages to determine Plasmodium species infection, and genomic phenotyping of anti-folate resistance was accomplished by sequencing the dihydrofolate-reductase (dhfr) and dihydropteroate-synthase (dhps) genes of naturally circulating P. falciparum and P. malariae isolates. The malaria prevalence in Elende was 73.5% with the 5-15 years age group harboring significant P. falciparum (27%) and P. falciparum + P. malariae (19%) infections. The polymorphism breadth of the pyrimethamine-associated Pfdhfr marker revealed a near fixation (94%) of the triple-mutant -A16I51R59N108I164. The Pfdhps backbone mediating sulfadoxine resistance reveals a high frequency of the V431A436G437K540A581A613 alleles (20.8%). Similarly, the Pmdhfr N50K55L57R58S59S114F168I170 haplotype (78.4%) was predominantly detected in the asexual blood stage. In contrast, the Pmdhps- S436A437occured at 37.2% frequency. The combined quadruple N50K55L57R58S59S114F168I170_ S436G437K540A581A613 (31.9%) was the major circulating haplotype with similar frequency in humans and mosquitoes. This study highlights the increasing frequency of the P. malariae parasite mostly common in asymptomatic individuals with apparent P. falciparum infection. Interventions directed at reducing malaria transmission such as the scaling-up of SP are favoring the emergence and spread of multiple drug-resistant alleles between the human and mosquito host systems.
Collapse
Affiliation(s)
- Francis N. Nkemngo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Lymen W. Raissa
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Daniel N. Nguete
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Cyrille Ndo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Jerome Fru-Cho
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment, Buea, Cameroon
- Centre for Infection Biology and Translational Research, Forzi Institute, Buea, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment, Buea, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
53
|
Mshani IH, Siria DJ, Mwanga EP, Sow BB, Sanou R, Opiyo M, Sikulu-Lord MT, Ferguson HM, Diabate A, Wynne K, González-Jiménez M, Baldini F, Babayan SA, Okumu F. Key considerations, target product profiles, and research gaps in the application of infrared spectroscopy and artificial intelligence for malaria surveillance and diagnosis. Malar J 2023; 22:346. [PMID: 37950315 PMCID: PMC10638832 DOI: 10.1186/s12936-023-04780-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Studies on the applications of infrared (IR) spectroscopy and machine learning (ML) in public health have increased greatly in recent years. These technologies show enormous potential for measuring key parameters of malaria, a disease that still causes about 250 million cases and 620,000 deaths, annually. Multiple studies have demonstrated that the combination of IR spectroscopy and machine learning (ML) can yield accurate predictions of epidemiologically relevant parameters of malaria in both laboratory and field surveys. Proven applications now include determining the age, species, and blood-feeding histories of mosquito vectors as well as detecting malaria parasite infections in both humans and mosquitoes. As the World Health Organization encourages malaria-endemic countries to improve their surveillance-response strategies, it is crucial to consider whether IR and ML techniques are likely to meet the relevant feasibility and cost-effectiveness requirements-and how best they can be deployed. This paper reviews current applications of IR spectroscopy and ML approaches for investigating malaria indicators in both field surveys and laboratory settings, and identifies key research gaps relevant to these applications. Additionally, the article suggests initial target product profiles (TPPs) that should be considered when developing or testing these technologies for use in low-income settings.
Collapse
Affiliation(s)
- Issa H Mshani
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Doreen J Siria
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Emmanuel P Mwanga
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Bazoumana Bd Sow
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Roger Sanou
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Mercy Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Malaria Elimination Initiative (MEI), Institute for Global Health Sciences, University of California, San Francisco, USA
| | - Maggy T Sikulu-Lord
- Faculty of Science, School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Heather M Ferguson
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Abdoulaye Diabate
- Department of Medical Biology and Public Health, Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Klaas Wynne
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mario González-Jiménez
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Simon A Babayan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Fredros Okumu
- Ifakara Health Institute, Environmental Health, and Ecological Sciences Department, Morogoro, United Republic of Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- School of Life Sciences and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania.
- School of Public Health, The University of the Witwatersrand, Park Town, South Africa.
| |
Collapse
|
54
|
Katusi GC, Hermy MRG, Makayula SM, Ignell R, Mnyone LL, Hill SR, Govella NJ. Effect of non-human hosts on the human biting rate of primary and secondary malaria vectors in Tanzania. Malar J 2023; 22:340. [PMID: 37940967 PMCID: PMC10631174 DOI: 10.1186/s12936-023-04778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Malaria vectors vary in feeding preference depending on their innate behaviour, host availability and abundance. Host preference and human biting rate in malaria vectors are key factors in establishing zooprophylaxis and zoopotentiation. This study aimed at assessing the impact of non-human hosts in close proximity to humans on the human biting rate of primary and secondary malaria vectors, with varying host preferences. METHODS The effect of the presence of non-human hosts in close proximity to the human host on the mean catches per person per night, as a proxy for mosquito biting rate, was measured using mosquito-electrocuting traps (METs), in Sagamaganga, Kilombero Valley, Tanzania. Two experiments were designed: (1) a human versus a calf, each enclosed in a MET, and (2) a human surrounded by three calves versus a human alone, with each human volunteer enclosed individually in a MET spaced 10 m apart. Each experiment was conducted on alternate days and lasted for 36 nights per experiment. During each experiment, the positions of hosts were exchanged daily (except the human in experiment 2). All anopheline mosquitoes caught were assayed for Plasmodium sporozoites using enzyme-linked immunosorbent assay. RESULTS A total of 20,574 mosquitoes were captured and identified during the study, of which 3608 were anophelines (84.4% primary and 15.6% secondary malaria vectors) and 17,146 were culicines. In experiment 1, the primary malaria vector, Anopheles arabiensis, along with Culex spp. demonstrated a preference for cattle, while the primary vectors, Anopheles funestus, preferred humans. In experiment 2, both primary vectors, An. arabiensis and An. funestus, as well as the secondary vector Anopheles rivolurum, demonstrated behaviours amenable to zooprophylaxis, whereas Culex spp. increased their attraction to humans in the presence of nearby cattle. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS The findings of this study provide support for the zooprophylaxis model for malaria vectors present in the Kilombero Valley, and for the zoopotentiation model, as it pertains to the Culex spp. in the region. However, the factors regulating zooprophylaxis and zoopotentiation are complex, with different species-dependent mechanisms regulating these behaviours, that need to be considered when designing integrated vector management programmes.
Collapse
Affiliation(s)
- Godfrey C Katusi
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Marie R G Hermy
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden
| | - Samwely M Makayula
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden
| | - Ladslaus L Mnyone
- Institute of Pest Management, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| | - Sharon R Hill
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden.
| | - Nicodem J Govella
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
55
|
Muleba M, Mbata KJ, Stevenson JC, Norris DE. Spatial-temporal vector abundance and malaria transmission dynamics in Nchelenge and Lake Mweru islands, a region with a high burden of malaria in northern Zambia. Malar J 2023; 22:327. [PMID: 37899457 PMCID: PMC10613358 DOI: 10.1186/s12936-023-04746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/08/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Over a decade of vector control by indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) distribution on the mainland, and only LLINs on islands had a minimal impact on disease burden in Nchelenge district, northern Zambia. Anopheles funestus and Anopheles gambiae are vectors known only from the mainland. Understanding vector bionomics in the district is necessary for planning and targeting effective vector control. This study aimed to provide information on abundance, seasonality, and Plasmodium falciparum sporozoite infectivity of malaria vectors in Nchelenge, including islands. METHODS Mosquitoes were collected in 192 CDC indoor light traps set in 56 households between January 2015 and January 2016. Morphological and molecular species identifications and P. falciparum circumsporoites by ELISA were performed. Mosquito counts and relative abundances from the islands and mainland were compared, and household factors associated with vector counts were determined. RESULTS A total of 5888 anophelines were collected during the study. Of these, 5,704 were female Anopheles funestus sensu lato (s.l.) and 248 female An. gambiae s.l. The highest proportion of An. funestus (n = 4090) was from Chisenga Island and An. gambiae (n = 174) was from Kilwa Island. The highest estimated counts per trap for An. funestus s.l. were from Chisenga island, (89.9, p < 0.001) and from the dry season (78.6, p < 001). For An. gambiae the highest counts per trap were from Kilwa island (3.1, p < 0.001) and the rainy season (2.5, p = 0.007). The highest estimated annual entomological inoculation rate was from Chisenga Island with 91.62 ib/p/y followed by Kilwa Island with 29.77 ib/p/yr, and then Mainland with 19.97 ib/p/yr. CONCLUSIONS There was varied species abundance and malaria transmission risk across sites and seasons. The risk of malaria transmission was perennial and higher on the islands. The minimal impact of vector control efforts on the mainland was evident, but limited overall. Vector control intervention coverage with effective tools needs to be extended to the islands to effectively control malaria transmission in Nchelenge district.
Collapse
Affiliation(s)
| | - Keith J Mbata
- Biological Sciences Department, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | | | - Douglas E Norris
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205 MD, USA
| |
Collapse
|
56
|
Natchema S Fonkou B, Tchouakui M, Menze BD, Mugenzi LMJ, Fofie D, Nguiffo-Nguete D, Nkengazong L, Tombi J, Wondji CS. Entomological longitudinal surveys in two contrasted eco-climatic settings in Cameroon reveal a high malaria transmission from Anopheles funestus associated with GSTe2 metabolic resistance. BMC Infect Dis 2023; 23:738. [PMID: 37891470 PMCID: PMC10612181 DOI: 10.1186/s12879-023-08698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The impact of metabolic resistance to insecticides on malaria transmission remains poorly characterised notably through application of entomological parameters. The lack of resistance markers has been one of the limiting factors preventing a robust assessment of such impact. To this end, the present study sought to investigate how the L119F-Gste2 metabolic gene influences entomological parameters underpinning mosquitos' propensity to transmit Plasmodium spp. METHODS Longitudinal studies were carried out in Mibellon and Elende, two different eco-climatic settings in Cameroon and mosquitoes were collected using Human Landing Catch (HLC), Centre for Disease Control Light Trap (CDC-LT) and Pyrethrum Spray Catch (PSC) technics. Plasmodium sporozoite parasites were detected by TaqMan and Nested PCR, and blood meal origin by ELISA. The allele-specific PCR (AS-PCR) method was used to genotype the L119F-GSTe2 marker and association with malaria transmission was established by comparing key transmission parameters such as the Entomological Inoculation Rate (EIR) between individuals with different L119F-GSTe2 genotypes. RESULTS An. funestus s.l was the predominant malaria vector collected during the entomological survey in both sites (86.6% and 96.4% in Elende and Mibellon, respectively) followed by An. gambiae s.l (7.5% and 2.4%, respectively). Sporozoite infection rates were very high in both collection sites (8.7% and 11% in Elende and Mibellon, respectively). An. funestus s.s exhibited a very high entomological inoculation rate (EIR) (66 ib/h/month and 792 ib/h/year) and was responsible for 98.6% of all malaria transmission events occurring in both sites. The Human Blood Index was also high in both locations (HBI = 94%). An. funestus s.s. mosquitoes with both 119 F/F (RR) and L119F (RS) genotypes had a significantly higher transmission intensity than their susceptible L/L119 (SS) counterparts (IRR = 2.2, 95%CI (1.1-5.2), p = 0.03; IRR = 2.5, 95% CI (1.2-5.8), p = 0.01 respectively). CONCLUSION This study highlights the major role that An. funestus s.s plays in malaria transmission in Cameroon with an aggravation from GSTe2-based metabolic resistance.
Collapse
Affiliation(s)
- Brice Natchema S Fonkou
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon.
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon.
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Benjamin D Menze
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Leon M J Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Derrick Fofie
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Daniel Nguiffo-Nguete
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Lucia Nkengazong
- Institute of Medical Research and Medicinal Plants Studies, (IMPM, P.O.Box 13033), Yaoundé, Cameroon
| | - Jeannette Tombi
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
57
|
Kampango A, Smith TA, Abílio AP, Machoe EA, Matusse JF, Pinto J, McCall PJ. The Shockwè trap: a human-baited exposure-free device for surveillance and behaviour studies of anthropophilic vectors. Wellcome Open Res 2023; 8:455. [PMID: 38644931 PMCID: PMC11031644 DOI: 10.12688/wellcomeopenres.19963.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 04/23/2024] Open
Abstract
Background: The human biting rate (MBR) and entomological inoculation rate (EIR) are common parameters routinely used to measure the risk of malaria transmission. Both parameters can be estimated using human landing catches (HLC). Although it is considered the gold-standard, HLC puts collectors at higher risk of infection with mosquito-transmitted pathogens. Methods: A novel exposure-free host-seeking mosquito electrocution trap, the Shockwè trap (SHK), was developed and its efficiency for monitoring mosquito community composition and abundance was compared with human landing catches (HLC) as the gold-standard. Field experiments were performed in Massavasse village, southern Mozambique. Simultaneous indoor and outdoor collections of nocturnal host-seeking mosquitoes were carried out using the SHK and HLC methods. The relative sampling efficiency of SHK was estimated as the ratio of the numbers of mosquitoes caught in SHK compared HLC. Proportionality and density-dependence between SHK and HLC catches were estimated by mean of Bayesian regression approaches. Results: A total of 69,758 and 27,359 host-seeking mosquitoes comprising nineteen species and four genera, were collected by HLC and SHK respectively. In general, SHK and HLC sampled similar numbers of mosquito species, with the exceptions of the least common species Aedes sudanensis, Ae. subargenteus, and Coquillettidia versicolor that were caught only by HLC. The relative sampling efficiency and proportionality between SHK and matched HLC catches varied greatly between species and collection site. However, all mosquitoes collected by SHK were unfed, confirming the Shockwè trap design's performance and reliability as a successful mosquito exposure free sampling approach. Conclusions: Results demonstrate that SHK is a safe and reliable human-exposure free device for monitoring the occurrence of a wide range of mosquito, including major malaria and arboviruses vector species. However, improvements are needed to increase its sampling efficiency for less abundant mosquito species.
Collapse
Affiliation(s)
- Ayubo Kampango
- Vectors Study Unit, Instituto Nacional de Saúde, Maputo Province, Vila de Marracuene, Mozambique
| | - Thomas A. Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Ana Paula Abílio
- Vectors Study Unit, Instituto Nacional de Saúde, Maputo Province, Vila de Marracuene, Mozambique
| | - Elias Alberto Machoe
- Vectors Study Unit, Instituto Nacional de Saúde, Maputo Province, Vila de Marracuene, Mozambique
| | - Júlio Francisco Matusse
- Vectors Study Unit, Instituto Nacional de Saúde, Maputo Province, Vila de Marracuene, Mozambique
| | - João Pinto
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Lisbon, Portugal
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
58
|
Ntabaliba W, Vavassori L, Stica C, Makungwa N, Odufuwa OG, Swai JK, Lekundayo R, Moore S. Life expectancy of Anopheles funestus is double that of Anopheles arabiensis in southeast Tanzania based on mark-release-recapture method. Sci Rep 2023; 13:15775. [PMID: 37737323 PMCID: PMC10516982 DOI: 10.1038/s41598-023-42761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Anopheles arabiensis and Anopheles funestus sensu stricto mosquitoes are major East African malaria vectors. Understanding their dispersal and population structure is critical for developing effective malaria control tools. Three mark-release-recapture (MRR) experiments were conducted for 51 nights to assess daily survival and flight range of An. arabiensis and An. funestus mosquitoes in south-eastern, Tanzania. Mosquitoes were marked with a fluorescent dye as they emerged from breeding sites via a self-marking device. Mosquitoes were collected indoors and outdoors using human landing catches (HLC) and Centers for Disease Control and Prevention light traps (CDC-LT). In total, 4210 An. arabiensis and An. funestus were collected with 316 (7.5%) marked and recaptured (MR). Daily mean MR was 6.8, standard deviation (SD ± 7.6) for An. arabiensis and 8.9 (SD ± 8.3) for An. funestus. Probability of daily survival was 0.76 for An. arabiensis and 0.86 for An. funestus translating into average life expectancy of 3.6 days for An. arabiensis and 6.5 days for An. funestus. Dispersal distance was 654 m for An. arabiensis and 510 m for An. funestus. An. funestus life expectancy was substantially longer than that of An. arabiensis. The MRR method described here could be routinely utilized when evaluating the impact of new vector control tools on mosquito survival.
Collapse
Affiliation(s)
- Watson Ntabaliba
- Vector Control Product Testing Unit (VCPTU), Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.
| | - Laura Vavassori
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Caleb Stica
- Queensland University of Technology, Brisbane, Australia
| | - Noel Makungwa
- Vector Control Product Testing Unit (VCPTU), Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit (VCPTU), Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- MRC International Statistics and Epidemiology Group, Faculty of Epidemiology and Population Health London School of Hygiene and Tropical Medicine, London, UK
| | - Johnson Kyeba Swai
- Vector Control Product Testing Unit (VCPTU), Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Ruth Lekundayo
- Vector Control Product Testing Unit (VCPTU), Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Moore
- Vector Control Product Testing Unit (VCPTU), Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Nelson Mandela African Institute of Science and Technology, Tengeru, Arusha, Tanzania
| |
Collapse
|
59
|
Nguiffo-Nguete D, Mugenzi LMJ, Manzambi EZ, Tchouakui M, Wondji M, Tekoh T, Watsenga F, Agossa F, Wondji CS. Evidence of intensification of pyrethroid resistance in the major malaria vectors in Kinshasa, Democratic Republic of Congo. Sci Rep 2023; 13:14711. [PMID: 37679465 PMCID: PMC10484898 DOI: 10.1038/s41598-023-41952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Assessing patterns and evolution of insecticide resistance in malaria vectors is a prerequisite to design suitable control strategies. Here, we characterised resistance profile in Anopheles gambiae and Anopheles funestus in Kinshasa and assess the level of aggravation by comparing to previous 2015 estimates. Both species collected in July 2021 were highly resistant to pyrethroids at 1×, 5× and 10× concentrations (mortality < 90%) and remain fully susceptible to bendiocarb and pirimiphos methyl. Compared to 2015, Partial recovery of susceptibility was observed in A. gambiae after PBO synergist assays for both permethrin and α-cypermethrin and total recovery of susceptibility was observed for deltamethrin in 2021. In addition, the efficacy of most bednets decreased significantly in 2021. Genotyping of resistance markers revealed a near fixation of the L1014-Kdr mutation (98.3%) in A. gambiae in 2021. The frequency of the 119F-GSTe2 resistant significantly increased between 2015 and 2021 (19.6% vs 33.3%; P = 0.02) in A. funestus. Transcriptomic analysis also revealed a significant increased expression (P < 0.001) of key cytochrome P450s in A. funestus notably CYP6P9a. The escalation of pyrethroid resistance observed in Anopheles populations from Kinshasa coupled with increased frequency/expression level of resistance genes highlights an urgent need to implement tools to improve malaria vector control.
Collapse
Affiliation(s)
- Daniel Nguiffo-Nguete
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
| | - Emile Zola Manzambi
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
| | - Murielle Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L35QA, UK
| | - Theofelix Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Francis Watsenga
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Fiacre Agossa
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 135091, Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L35QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
60
|
Swai JK, Soto AC, Ntabaliba WS, Kibondo UA, Ngonyani HA, Mseka AP, Ortiz A, Chura MR, Mascari TM, Moore SJ. Efficacy of the spatial repellent product Mosquito Shield™ against wild pyrethroid-resistant Anopheles arabiensis in south-eastern Tanzania. Malar J 2023; 22:249. [PMID: 37649032 PMCID: PMC10466708 DOI: 10.1186/s12936-023-04674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Spatial repellents that create airborne concentrations of an active ingredient (AI) within a space offer a scalable solution to further reduce transmission of malaria, by disrupting mosquito behaviours in ways that ultimately lead to reduced human-vector contact. Passive emanator spatial repellents can protect multiple people within the treated space and can last for multiple weeks without the need for daily user touchpoints, making them less intrusive interventions. They may be particularly advantageous in certain use cases where implementation of core tools may be constrained, such as in humanitarian emergencies and among mobile at-risk populations. The purpose of this study was to assess the efficacy of Mosquito Shield™ deployed in experimental huts against wild, free-flying, pyrethroid-resistant Anopheles arabiensis mosquitoes in Tanzania over 1 month. METHODS The efficacy of Mosquito Shield™ transfluthrin spatial repellent in reducing mosquito lands and blood-feeding was evaluated using 24 huts: sixteen huts were allocated to Human Landing Catch (HLC) collections and eight huts to estimating blood-feeding. In both experiments, half of the huts received no intervention (control) while the remaining received the intervention randomly allocated to huts and remained fixed for the study duration. Outcomes measured were mosquito landings, blood-fed, resting and dead mosquitoes. Data were analysed by multilevel mixed effects regression with appropriate dispersion and link function accounting for volunteer, hut and day. RESULTS Landing inhibition was estimated to be 70% (57-78%) [IRR 0.30 (95% CI 0.22-0.43); p < 0.0001] and blood-feeding inhibition was estimated to be 69% (56-79%) [IRR 0.31 (95% CI 0.21-0.44; p < 0.0001] There was no difference in the protective efficacy estimates of landing and blood-feeding inhibition [IRR 0.98 (95% CI 0.53-1.82; p = 0.958]. CONCLUSIONS This study demonstrated that Mosquito Shield™ was efficacious against a wild pyrethroid-resistant strain of An. arabiensis mosquitoes in Tanzania for up to 1 month and could be used as a complementary or stand-alone tool where gaps in protection offered by core malaria vector control tools exist. HLC is a suitable technique for estimating bite reductions conferred by spatial repellents especially where direct blood-feeding measurements are not practical or are ethically limited.
Collapse
Affiliation(s)
- Johnson Kyeba Swai
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Department of Epidemiology and Public, Health Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Alina Celest Soto
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Department of Epidemiology and Public, Health Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Watson Samuel Ntabaliba
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hassan Ahamad Ngonyani
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Antony Pius Mseka
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | | | | | - Sarah Jane Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Department of Epidemiology and Public, Health Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, Tengeru, Arusha, United Republic of Tanzania
| |
Collapse
|
61
|
Woyessa D, Morou E, Wipf N, Dada N, Mavridis K, Vontas J, Yewhalaw D. Species composition, infection rate and detection of resistant alleles in Anopheles funestus (Diptera: Culicidae) from Lare, a malaria hotspot district of Ethiopia. Malar J 2023; 22:233. [PMID: 37573300 PMCID: PMC10422748 DOI: 10.1186/s12936-023-04667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Anopheles funestus, which is considered as secondary vector of malaria in Ethiopia, is known to have several morphologically indistinguishable (sibling) species. Accurate identification of sibling species is crucial to understand their biology, behaviour and vector competence. In this study, molecular identification was conducted on the Ethiopian An. funestus populations. Moreover, insecticide resistance mechanism markers were detected, including ace N485I, kdr L1014F, L1014S, and CYP6P9a TaqMan qPCR was used to detect the infective stage of the parasite from field collected adult female An. funestus populations. METHODS Adult female mosquito collection was conducted from Lare, Gambella Regional State of Ethiopia between June 2018 to July 2020 using CDC light traps and HLC. Sub-samples of the morphologically identified An. funestus mosquitoes were molecularly identified using species-specific PCR, and the possible presence of insecticide resistance alleles was investigated using TaqMan qPCR (N485I-Ace-1), PCR-Sanger sequencing (L1014F-kdr), and PCR-RFLP (CYP6P9a resistance allele). Following head/thorax dissection, the TaqMan qPCR assay was used to investigate the presence of the infective stage Plasmodium parasite species. RESULTS A total of 1086 adult female An. funestus mosquitoes were collected during the study period. All sub-samples (N = 20) that were morphologically identified as An. funestus sensu lato (s.l.) were identified as An. funestus sensu stricto (s.s.) using species- specific PCR assay. The PCR-RFLP assay that detects the CYP6P9a resistance allele that confers pyrethroid resistance in An. funestus was applied in N = 30 randomly selected An. funestus s.l. SPECIMENS None of the specimens showed a digestion pattern consistent with the presence of the CYP6P9a resistance allele in contrast to what was observed in the positive control. Consequently, all samples were characterized as wild type. The qPCR TaqMan assay that detects the N485I acetylcholinesterase-1 mutation conferring resistance to organophosphates/carbamates in An. funestus was used in (N = 144) samples. All samples were characterized as wild type. The kdr L1014F and L1014S mutations in the VGSC gene that confer resistance to pyrethroids and DDT were analysed with direct Sanger sequencing after PCR and clean-up of the PCR products were also characterized as wild type. None of the samples (N = 169) were found positive for Plasmodium (P. falciparum/ovale/malariae/vivax) detection. CONCLUSION All An. funestus s.l. samples from Lare were molecularly identified as An. funestus s.s. No CYP6P9, N485I acetylcholinesterase 1, kdr L1014F or L1014S mutations were detected in the An. funestus samples. None of the An. funestus samples were positive for Plasmodium. Although the current study did not detect any insecticide resistant mechanism, it provides a reference for future vector monitoring programmes. Regular monitoring of resistance mechanisms covering wider geographical areas of Ethiopia where this vector is distributed is important for improving the efficacy of vector control programs.
Collapse
Affiliation(s)
- Delelegn Woyessa
- Department of Biology, College of Natural Sciences, Jimma University, P. O. Box 378, Jimma, Ethiopia.
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.
- Tropical and Infectious Diseases Research Centre (TIDRC), P.O. Box 378, Jimma, Ethiopia.
| | - Evangelia Morou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Nadja Wipf
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Nsa Dada
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, USA
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Centre (TIDRC), P.O. Box 378, Jimma, Ethiopia
| |
Collapse
|
62
|
Odero JO, Nambunga IH, Wangrawa DW, Badolo A, Weetman D, Koekemoer LL, Ferguson HM, Okumu FO, Baldini F. Advances in the genetic characterization of the malaria vector, Anopheles funestus, and implications for improved surveillance and control. Malar J 2023; 22:230. [PMID: 37553665 PMCID: PMC10410966 DOI: 10.1186/s12936-023-04662-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Anopheles mosquitoes present a major public health challenge in sub-Saharan Africa; notably, as vectors of malaria that kill over half a million people annually. In parts of the east and southern Africa region, one species in the Funestus group, Anopheles funestus, has established itself as an exceptionally dominant vector in some areas, it is responsible for more than 90% of all malaria transmission events. However, compared to other malaria vectors, the species is far less studied, partly due to difficulties in laboratory colonization and the unresolved aspects of its taxonomy and systematics. Control of An. funestus is also increasingly difficult because it has developed widespread resistance to public health insecticides. Fortunately, recent advances in molecular techniques are enabling greater insights into species identity, gene flow patterns, population structure, and the spread of resistance in mosquitoes. These advances and their potential applications are reviewed with a focus on four research themes relevant to the biology and control of An. funestus in Africa, namely: (i) the taxonomic characterization of different vector species within the Funestus group and their role in malaria transmission; (ii) insecticide resistance profile; (iii) population genetic diversity and gene flow, and (iv) applications of genetic technologies for surveillance and control. The research gaps and opportunities identified in this review will provide a basis for improving the surveillance and control of An. funestus and malaria transmission in Africa.
Collapse
Affiliation(s)
- Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph ZEBRO, Ouagadougou, Burkina Faso
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph ZEBRO, Ouagadougou, Burkina Faso
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic Parasitic Diseases, Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Heather M Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Francesco Baldini
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
63
|
Lynd A, Gonahasa S, Staedke SG, Oruni A, Maiteki-Sebuguzi C, Hancock P, Knight E, Dorsey G, Opigo J, Yeka A, Katureebe A, Kyohere M, Hemingway J, Kamya MR, McDermott D, Lucas ER, Donnelly MJ. LLIN Evaluation in Uganda Project (LLINEUP) - Plasmodium infection prevalence and genotypic markers of insecticide resistance in Anopheles vectors from 48 districts of Uganda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.31.23293323. [PMID: 37577716 PMCID: PMC10418296 DOI: 10.1101/2023.07.31.23293323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background In 2017-2019, we conducted a large-scale, cluster-randomised trial (LLINEUP) to evaluate long-lasting insecticidal nets (LLINs) treated with a pyrethroid insecticide plus the synergist piperonyl butoxide (PBO LLINs), as compared to conventional, pyrethroid-only LLINs across 104 health sub-districts (HSDs) in Uganda. In LLINEUP, and similar trials in Tanzania, PBO LLINs were found to provide greater protection against malaria than conventional LLINs, reducing parasitaemia and vector density. In the LLINEUP trial, cross-sectional entomological surveys were carried out at baseline and then every 6 months for two years. In each survey, ten households per HSD were randomly selected for indoor household entomological collections. Results Overall, 5395 female Anopheles mosquitoes were collected from 5046 households. The proportion of mosquitoes infected with Plasmodium falciparum did not change significantly over time, while infection with non-falciparum malaria decreased in An. gambiae s.s, but not An. funestus. The frequency of genetic markers associated with pyrethroid resistance increased significantly over time, but the rate of change was not different between the two LLIN types. The knock-down resistance (kdr) mutation Vgsc-995S declined over time as Vgsc-995F, the alternative resistance mutation at this codon, increased. Vgsc-995F appears to be spreading into Uganda. Conclusions Distribution of LLINs in Uganda was associated with reductions in parasite prevalence and vector density, but the proportion of infective mosquitoes remained stable, suggesting that the potential for transmission persisted. The increased frequency of markers of pyrethroid resistance indicates that LLIN distribution favoured the evolution of resistance within local vectors and highlights the potential benefits of resistance management strategies.Trial registration:: This study is registered with ISRCTN, ISRCTN17516395. Registered 14 February 2017, http://www.isrctn.com/ISRCTN17516395.
Collapse
Affiliation(s)
- Amy Lynd
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Samuel Gonahasa
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Sarah G Staedke
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Ambrose Oruni
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | - Erin Knight
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Grant Dorsey
- University of California, San Francisco, San Francisco, CA 94110 USA
| | | | - Adoke Yeka
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Agaba Katureebe
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Mary Kyohere
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Moses R Kamya
- Makerere University College of Health Sciences
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Daniel McDermott
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Eric R Lucas
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
64
|
Messenger LA, Matowo NS, Cross CL, Jumanne M, Portwood NM, Martin J, Lukole E, Mallya E, Mosha JF, Kaaya R, Moshi O, Pelloquin B, Fullerton K, Manjurano A, Mosha FW, Walker T, Rowland M, Kulkarni MA, Protopopoff N. Effects of next-generation, dual-active-ingredient, long-lasting insecticidal net deployment on insecticide resistance in malaria vectors in Tanzania: an analysis of a 3-year, cluster-randomised controlled trial. Lancet Planet Health 2023; 7:e673-e683. [PMID: 37558348 DOI: 10.1016/s2542-5196(23)00137-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Insecticide resistance among malaria-vector species is a pervasive problem that might jeopardise global disease-control efforts. Novel vector-control tools with different modes of action, including long-lasting insecticidal nets (LLINs) incorporating new active ingredients, are urgently needed to delay the evolution and spread of insecticide resistance. We aimed to measure phenotypic and genotypic insecticide-resistance profiles among wild Anopheles collected over 3 years to assess the longitudinal effects of dual-active-ingredient LLINs on insecticide resistance. METHODS For this analysis, data nested in a 3-year, four parallel-arm, superiority cluster-randomised controlled trial (cRCT) in Tanzania, collected from 84 clusters (39 307 households) formed of 72 villages in the Misungwi district, were used to measure insecticide-resistance profiles among female Anopheles mosquitoes via insecticide-resistance bioassays and quantitative RT-PCR of metabolic-resistance genes. Wild, blood-fed, indoor-resting mosquitoes were collected annually during the rainy seasons from house walls in clusters from all four trial groups. Mosquitoes were morphologically identified as An gambiae sensu lato (SL) or An funestus SL before separate bioassay testing. The primary outcomes were lethal-dose values for α-cypermethrin, permethrin, and piperonyl butoxide pre-exposure plus permethrin-resistance intensity bioassays, mortality 72 h after insecticidal exposure for chlorfenapyr bioassays, fertility reduction 72 h after insecticidal exposure for pyriproxyfen bioassays, and fold change in metabolic-enzyme expression relative to an insecticide-susceptible laboratory strain. All primary outcomes were measured in An funestus SL 1 year, 2 years, and 3 years after LLIN distribution. Primary outcomes were also assessed in An gambiae SL if enough mosquitoes were collected. The cRCT is registered with ClinicalTrials.gov (NCT03554616). FINDINGS Between May 24, 2019, and Oct 25, 2021, 47 224 female Anopheles were collected for resistance monitoring. In the pyrethroid (PY)-LLIN group, there were significant increases in α-cypermethrin-resistance intensity (year 1 LD50=9·52 vs year 2 76·20, p<0·0001) and permethrin-resistance intensity (year 1 13·27 vs year 2 35·83, p=0·0019) in An funestus SL. In the pyriproxyfen PY-LLIN group, there was similar increase in α-cypermethrin-resistance intensity (year 1 0·71 vs year 2 81·56, p<0·0001) and permethrin-resistance intensity (year 1 5·68 vs year 2 50·14, p<0·0001). In the piperonyl butoxide PY-LLIN group, α-cypermethrin-resistance intensity (year 1 33·26 vs year 3 70·22, p=0·0071) and permethrin-resistance intensity (year 1 47·09 vs year 3 2635·29, p<0·0001) also increased over time. In the chlorfenapyr PY-LLIN group, there were no effects on α-cypermethrin-resistance intensity (year 1 0·42 vs year 3 0·99, p=0·54) or permethrin-resistance intensity (data were not estimable due to nearly 100% mortality). There were also minimal reductions in chlorfenapyr susceptibility. However, in the chlorfenapyr PY-LLIN group, a significant decline in piperonyl-butoxide synergy was seen by year 3 (year 1 0·02 vs year 3 0·26, p=0·020). Highly over-expressed detoxification enzymes showed dynamic patterns of selection throughout the trial. INTERPRETATION Our phenotypic data supports trial epidemiological findings; chlorfenapyr PY-LLINs provided superior protection from malaria across multiple transmission seasons, with few effects on insecticide-resistance selection. Rapid pyrethroid-resistance intensification in the piperonyl butoxide PY-LLIN group and pre-existing tolerance of pyriproxyfen in vector populations might explain the poorer performance of these two interventions regarding malaria outcomes. Further work is required to elucidate the potential mechanisms driving cross-resistance between pyrethroids and novel active ingredients to better inform the design of pre-emptive resistance-management strategies. FUNDING UK Department for International Development; UK Medical Research Council; Wellcome Trust; UK Department of Health and Social Care; UK Foreign, Commonwealth and Development Office; and The Bill and Melinda Gates Foundation via the Innovative Vector Control Consortium.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, USA; Parasitology and Vector Biology Laboratory, School of Public Health, University of Nevada, Las Vegas, NV, USA.
| | - Nancy S Matowo
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Chad L Cross
- Parasitology and Vector Biology Laboratory, School of Public Health, University of Nevada, Las Vegas, NV, USA; Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Mohamed Jumanne
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Natalie M Portwood
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; Parasitology Unit, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Jackline Martin
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Eliud Lukole
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Elizabeth Mallya
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Jacklin F Mosha
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Robert Kaaya
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Oliva Moshi
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Bethanie Pelloquin
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Katherine Fullerton
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Alphaxard Manjurano
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Franklin W Mosha
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; School of Life Sciences, University of Warwick, Coventry, UK
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
65
|
Assa A, Eligo N, Massebo F. Anopheles mosquito diversity, entomological indicators of malaria transmission and challenges of morphological identification in southwestern Ethiopia. Trop Med Health 2023; 51:38. [PMID: 37452392 PMCID: PMC10347854 DOI: 10.1186/s41182-023-00529-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND A number of Anopheles species play either a primary or secondary role in malaria transmission. This necessitates understanding the species composition, bionomics, and behaviors of malaria mosquitoes in a particular geographic area, which is relevant to design and implement tailored intervention tools. This study aimed to assess the species composition, sporozoite infection rate, and blood meal origins of malaria mosquitoes in two malaria-endemic villages of Boreda district in Gamo Zone, southwest Ethiopia. METHODS Thirty houses, 20 for Center for Disease Control and Prevention (CDC) light traps and 10 for Pyrethrum Spray Catches (PSC) were randomly selected for bimonthly mosquito collection from October 2019 to February 2020. An enzyme-linked immunosorbent assay (ELISA) was carried out to detect the blood meal origins and circumsporozoite proteins (CSPs). The entomological inoculation rate (EIR) was calculated by multiplying the sporozoite and human biting rates from PSCs. Anopheles gambiae complex and An. funestus group samples were further identified to species by the polymerase chain reaction (PCR). Anopheles species with some morphological similarity with An. gambiae complex or An. funestus group were tested using the primers of the two species complexes. RESULTS A total of 14 Anopheles species were documented, of which An. demeilloni was found to be the dominant species. An. arabiensis was found to be positive for P. falciparum CSP with the overall CSP rate of 0.53% (1/190: 95% CI 0.01-2.9). The overall estimated P. falciparum EIR of An. arabiensis from PSC was 1.5 infectious bites/person/5 months. Of the 145 freshly fed Anopheles mosquitoes tested for blood meal sources, 57.9% (84/145) had bovine blood meal, 15.2% (22/145) had human blood meal origin alone, and 16.5% (24/145) had a mixed blood meal origin of human and bovine. Anopheles demeilloni were more likely to feed on blood meals of bovine origin (102/126 = 80.9%), while An. arabiensis were more likely to have blood meals of human origin. Eleven samples (2.6%; 11/420) were morphologically categorized as An. demeilloni, but it has been identified as An. leesoni (the only An. funestus group identified in the area) by PCR, though it requires additional verification by sequencing, because different species genes may have amplified for these species specific primers. Similarly, a small number of An. arabiensis were morphologically identified as An. salbaii, An. maculipalpis and An. fuscivenosus. CONCLUSIONS AND RECOMMENDATIONS In spite of the wide variety of Anopheles mosquito species, An. arabiensis dominates indoor malaria transmission, necessitating additional interventions targeting this species. In addition, increasing entomological knowledge may make morphological identification less difficult.
Collapse
Affiliation(s)
- Adilo Assa
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Nigatu Eligo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
66
|
Lukubwe O, Mwema T, Joseph R, Maliti D, Iitula I, Katokele S, Uusiku P, Walusimbi D, Ogoma SB, Gueye CS, Vajda E, Tatarsky A, Thomsen E, Tambo M, Mumbengegwi D, Lobo NF. Baseline characterization of entomological drivers of malaria transmission in Namibia: a targeted operational entomological surveillance strategy. Parasit Vectors 2023; 16:220. [PMID: 37408058 DOI: 10.1186/s13071-023-05822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Namibia's focus on the elimination of malaria requires an evidence-based strategy directed at understanding and targeting the entomological drivers of malaria transmission. In 2018 and 2019, the Namibia National Vector-borne Diseases Control Program (NVDCP) implemented baseline entomological surveillance based on a question-based approach outlined in the Entomological Surveillance Planning Tool (ESPT). In the present study, we report on the findings of the ESPT-based NVDCP on baseline vector species composition and bionomic traits in malaria endemic regions in northern Namibia, which has the aim of generating an evidence base for programmatic decision-making. METHODS Nine representative sentinel sites were included in the 2018 entomological surveillance program (Kunene, Omusati, Oshana, Ohangwena, Oshikoto, Otjozondjupa, Kavango West, Kavango East and Zambezi); the number was reduced to four sites in 2019 due to limited funding (Ohangwena, Kavango West, Kavango East, and Zambezi). In the 2018 baseline collections, multiple sampling methods (human landing catches, pyrethroid spray catches, U.S. Centers for Disease Control and Prevention light traps [CDC-LTs], resting boxes [RBs] and larval sampling) were utilized to evaluate indoor/outdoor human biting rates, resting behaviors and insecticide resistance (IR). CDC-LTs and RBs were not used in 2019 due to low and non-representative sampling efficacies. RESULTS Overall, molecular evidence demonstrated the presence of three primary mosquito vectors, namely Anopheles arabiensis, rediscovered Anopheles gambiae sensu stricto and Anopheles funestus sensu stricto, alongside Anopheles squamosus and members of the Anopheles coustani complex. Vectors were found to bite throughout the night (1800 hours 0600 hours) both indoors and outdoors, with An. arabiensis having the highest biting rates outdoors. Low numbers of indoor resting Anopheles point to possible low indoor residual spraying (IRS) efficacy-with An. arabiensis found to be the major vector species resting indoors. The IR tests demonstrated varying country-wide resistance levels to the insecticide deltamethrin, with the resistance levels confirmed to have increased in 2019, evidence that impacts national programmatic decision-making. Vectors demonstrated susceptibility to the insecticides dichlorodiphenyltrichloroethane, bendiocarb and Actellic 300CS in 2018, with mosquitoes from only one site (Kavango West) demonstrating possible resistance to DDT. Targeted and question-based entomological surveillance enabled a rapid and focused evidence base to be built, showing where and when humans were being bitten and providing entomological data on long-lasting insecticidal nets, IRS efficacy and insecticide resistance, which the Ministry of Health and Social Services-Namibia can use to further build a monitoring and evaluation framework for understanding the drivers of transmission. CONCLUSION Identification and characterization of species-specific bionomic traits allows for an understanding of where and when vector human contact may occur as well as the potential impact of interventions. Low indoor resting rates as well as the presence of insecticide resistance (and the increase in its frequency) point to the need for mosquito-behavior-directed and appropriate interventions as well as the requirement for a resistance mitigation strategy. The ESPT-based question- and minimal essential indicator-based operational research strategy provides programs with directed and focused data for facilitating decision-making while requiring limited funding and capacity.
Collapse
Affiliation(s)
- Ophilia Lukubwe
- University of Science and Technology, Health and Applied Sciences, Windhoek, Namibia.
| | - Tabeth Mwema
- Multidisciplinary Research Center, University of Namibia, Windhoek, Namibia
| | - Rosalia Joseph
- Multidisciplinary Research Center, University of Namibia, Windhoek, Namibia
| | - Deodatus Maliti
- National Vector Borne Disease Control Program, Ministry of Health and Social Services, Windhoek, Namibia
| | - Iitula Iitula
- National Vector Borne Disease Control Program, Ministry of Health and Social Services, Windhoek, Namibia
| | - Stark Katokele
- National Vector Borne Disease Control Program, Ministry of Health and Social Services, Windhoek, Namibia
| | - Petrina Uusiku
- National Vector Borne Disease Control Program, Ministry of Health and Social Services, Windhoek, Namibia
| | | | - Sheila B Ogoma
- Clinton Health Access Initiative, Boston, Massachusetts, USA
| | - Cara Smith Gueye
- Malaria Elimination Initiative, UCSF Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Elodie Vajda
- Malaria Elimination Initiative, UCSF Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative, UCSF Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Edward Thomsen
- Malaria Elimination Initiative, UCSF Institute for Global Health Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Munya Tambo
- National Vector Borne Disease Control Program, Ministry of Health and Social Services, Windhoek, Namibia
| | - Davis Mumbengegwi
- National Vector Borne Disease Control Program, Ministry of Health and Social Services, Windhoek, Namibia
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
67
|
Abong'o B, Stanton MC, Donnelly MJ, Ochomo E, Ter Kuile FO, Samuels AM, Kariuki S, Musula G, Oxborough R, Munga S, Torr SJ, Gimnig JE. Evaluation of community-based vector surveillance system for routine entomological monitoring under low malaria vector densities and high bed net coverage in western Kenya. Malar J 2023; 22:203. [PMID: 37400805 DOI: 10.1186/s12936-023-04629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Entomological surveillance is traditionally conducted by supervised teams of trained technicians. However, it is expensive and limiting in the number of sites visited. Surveillance through community-based collectors (CBC) may be more cost-effective and sustainable for longitudinal entomological monitoring. This study evaluated the efficiency of CBCs in monitoring mosquito densities compared to quality-assured sampling conducted by experienced entomology technicians. METHODS Entomological surveillance employing CBCs was conducted in eighteen clusters of villages in western Kenya using indoor and outdoor CDC light traps and indoor Prokopack aspiration. Sixty houses in each cluster were enrolled and sampled once every month. Collected mosquitoes were initially identified to the genus level by CBCs, preserved in 70% ethanol and transferred to the laboratory every 2 weeks. Parallel, collections by experienced entomology field technicians were conducted monthly by indoor and outdoor CDC light traps and indoor Prokopack aspiration and served as a quality assurance of the CBCs. RESULTS Per collection, the CBCs collected 80% fewer Anopheles gambiae sensu lato (s.l.) [RR = 0.2; (95% CI 0.14-0.27)] and Anopheles coustani [RR = 0.2; (95% CI 0.06-0.53)] and 90% fewer Anopheles funestus [RR = 0.1; (95% CI 0.08-0.19)] by CDC light traps compared to the quality assured (QA) entomology teams. Significant positive correlations were however observed between the monthly collections by CBCs and QA teams for both An. gambiae and An. funestus. In paired identifications of pooled mosquitoes, the CBCs identified 4.3 times more Anopheles compared to experienced technicians. The cost per person-night was lower in the community-based sampling at $9.1 compared to $89.3 by QA per collection effort. CONCLUSION Unsupervised community-based mosquito surveillance collected substantially fewer mosquitoes per trap-night compared to quality-assured collection by experienced field teams, while consistently overestimating the number of Anopheles mosquitoes during identification. However, the numbers collected were significantly correlated between the CBCs and the QA teams suggesting that trends observed by CBCs and QA teams were similar. Further studies are needed to evaluate whether adopting low-cost, devolved supervision with spot checks, coupled with remedial training of the CBCs, can improve community-based collections to be considered a cost-effective alternative to surveillance conducted by experienced entomological technicians.
Collapse
Affiliation(s)
- Bernard Abong'o
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578, 40100, Kisumu, Kenya.
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Michelle C Stanton
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578, 40100, Kisumu, Kenya
| | - Feiko O Ter Kuile
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Aaron M Samuels
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Kisumu, Kenya
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Simon Kariuki
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578, 40100, Kisumu, Kenya
| | - George Musula
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578, 40100, Kisumu, Kenya
| | - Richard Oxborough
- PMI VectorLink Project, Abt Associates Inc, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, PO Box 1578, 40100, Kisumu, Kenya
| | - Steve J Torr
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - John E Gimnig
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| |
Collapse
|
68
|
Charlwood JD, Smith TA, Kampango A, Tomas EVE, Chitnis N. Time series analysis of survival and oviposition cycle duration of Anopheles funestus (Giles) in Mozambique. PeerJ 2023; 11:e15230. [PMID: 37273537 PMCID: PMC10234278 DOI: 10.7717/peerj.15230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 06/06/2023] Open
Abstract
Background Survival and gonotrophic cycle duration are important determinants of the vectorial capacity of malaria vectors but there are a limited number of approaches to estimate these quantities from field data. Time-series of observations of mosquitoes at different stages in the life-cycle are under-used. Methods Anopheles funestus mosquitoes were caught using various methods over a 7.6-year period in Furvela, Mozambique. Survival and oviposition cycle duration were estimated using (i) an existing time-series approach for analysing dissections of mosquitoes caught in light-traps, extended to allow for variability in the duration of the cycle; (ii) an established approach for estimating cycle duration from resting collection data; (iii) a novel time-series approach fitted to numbers and categories of mosquitoes caught in exit-traps. Results Data were available from 7,396, 6,041 and 1,527 trap-nights for exit-traps, light-traps and resting collections respectively. Estimates of cycle duration varied considerably between the different methods. The estimated proportion of female mosquitoes surviving each day of 0.740 (95% credible interval [0.650-0.815]) derived from light-trap data was much lower than the estimated daily survival of male mosquitoes from the model fitted to exit-trap data (0.881, 95% credible interval [0.747-0.987]). There was no tendency for the oviposition cycle to become shorter at higher temperature while the odds of survival of females through the cycle was estimated to be multiplied by 1.021 for every degree of mean weekly temperature increase (95% credible interval [0.991-1.051]). There was negligible temperature dependence and little inter-annual variation in male survival. Discussion The time-series approach fitted to the exit-traps suggests that male An. funestus have higher survival than do females, and that male survival was temperature independent and unaffected by the introduction of long-lasting insecticidal nets (LLINs). The patterns of temperature dependence in females are at variance with results of laboratory studies. Time series approaches have the advantage for estimating survival that they do not depend on representative sampling of mosquitoes over the whole year. However, the estimates of oviposition cycle duration were associated with considerable uncertainty, which appears to be due to variability between insects in the duration of the resting period, and the estimates based on exit-trap data are sensitive to assumptions about relative trapping efficiencies.
Collapse
Affiliation(s)
- Jacques D. Charlwood
- DBL Centre for Health Research and Development, Department for Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
- Mozambican-Danish Rural Malaria Initiative (MOZDAN), Morrumbene, Inhambane Province, Mozambique
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Lisbon, Portugal
| | - Thomas A. Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Ayubo Kampango
- Mozambican-Danish Rural Malaria Initiative (MOZDAN), Morrumbene, Inhambane Province, Mozambique
- Sector de Estudo de Vectores, Instituto Nacional de Saúde, Vila de Marracuene, Província de Maputo, Mozambique
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Erzelia V. E. Tomas
- Mozambican-Danish Rural Malaria Initiative (MOZDAN), Morrumbene, Inhambane Province, Mozambique
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
69
|
Kampango A, Pinto J, Abílio AP, Machoe E, Matusse J, McCall PJ. Characterisation of human exposure to nocturnal biting by malaria and arbovirus vectors in a rural community in Chókwè district, southern Mozambique. Wellcome Open Res 2023; 8:193. [PMID: 37484481 PMCID: PMC10357080 DOI: 10.12688/wellcomeopenres.19278.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Understanding the magnitude of human exposure to mosquito biting is fundamental to reduce pathogen transmission. Here we report on a study quantifying the levels of mosquitoes attacking humans throughout the night in a rural area of Southern Mozambique. Methods: Surveys were carried out in Massavasse village, southern Mozambique. The abundance and composition of host-seeking mosquito communities at night were assessed by human-landing catches (HLC) at one-hour intervals. Periods when people were located predominantly outdoors or indoors were used to estimate the amount of residents' exposure to mosquito bites in either location, to explore the potential impact a bed net could have had in reducing biting by each vector species. Results: A total of 69,758 host-seeking female mosquitoes comprising 23 species in four genera were collected. The exposure to biting by virtually all vector species was consistently high outdoors, typically at early evening and morning, with exception of An. gambiae s.l which was likely of biting a person with nearly same intensity indoors and outdoors throughout the night. Bed nets use could have reduced biting by An. gambiae s.l (dominated by An. arabiensis), Ma. africana, Ma. uniformis, Cx. pipiens, Cx. antennatus, and Cx. poicilipes by 53%, 47%, 46%, 38%, 31%, and 28% respectively, compared to non-users. Conversely, a bed net user would have had little protection against An. pharoensis, An. ziemanni, An. tenebrosus, and Cx. tritaeniorhynchus biting exposures. Conclusions: This study showed that Massavasse residents were exposed to high levels of outdoor biting by malaria and arbovirus vectors that abound in the village. The findings help to identify entomological drivers of persistent malaria transmission in Mozambique and identify a wide range of arbovirus vectors nocturnally active in rural areas, many with outbreak potential. The study highlights the need for a surveillance system for monitoring arboviral diseases vectors in Mozambique.
Collapse
Affiliation(s)
- Ayubo Kampango
- Sector de Estudo de Vectores, Instituto Nacional de Saúde (INS), Maputo, Villa de Marracuene EN1, Plot 3943, Mozambique
- Department of Zoology and Entomology, University of Pretoria, Pretoria, Hatfield, 0028, South Africa
| | - João Pinto
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine (IHMT), Lisbon, Rua da Junqueira, 100 1349-008, Portugal
| | - Ana Paula Abílio
- Sector de Estudo de Vectores, Instituto Nacional de Saúde (INS), Maputo, Villa de Marracuene EN1, Plot 3943, Mozambique
| | - Elias Machoe
- Sector de Estudo de Vectores, Instituto Nacional de Saúde (INS), Maputo, Villa de Marracuene EN1, Plot 3943, Mozambique
| | - Júlio Matusse
- Sector de Estudo de Vectores, Instituto Nacional de Saúde (INS), Maputo, Villa de Marracuene EN1, Plot 3943, Mozambique
| | - Philip J. McCall
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, Pembroke Place, L3 5QA, UK
| |
Collapse
|
70
|
Assatse T, Tchouakui M, Mugenzi L, Menze B, Nguiffo-Nguete D, Tchapga W, Kekeunou S, Wondji CS. Anopheles funestus Populations across Africa Are Broadly Susceptible to Neonicotinoids but with Signals of Possible Cross-Resistance from the GSTe2 Gene. Trop Med Infect Dis 2023; 8:tropicalmed8050244. [PMID: 37235292 DOI: 10.3390/tropicalmed8050244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Evaluating the susceptibility of malaria vectors to the new WHO-recommended products is a key step before large-scale deployment. We mapped the susceptibility profile of Anopheles funestus to neonicotinoids across Africa and established the diagnostic doses of acetamiprid and imidacloprid with acetone + MERO as solvent. Indoor resting An. funestus were collected in 2021 in Cameroon, Malawi, Ghana and Uganda. Susceptibility to clothianidin, imidacloprid and acetamiprid was evaluated using CDC bottle assays and offsprings of the field-caught adults. The L119F-GSTe2 marker was genotyped to assess the potential cross-resistance between clothianidin and this DDT/pyrethroid-resistant marker. Mosquitoes were susceptible to the three neonicotinoids diluted in acetone + MERO, whereas low mortality was noticed with ethanol or acetone alone. The doses of 6 µg/mL and 4 µg/mL were established as diagnostic concentrations of imidacloprid and acetamiprid, respectively, with acetone + MERO. Pre-exposure to synergists significantly restored the susceptibility to clothianidin. A positive correlation was observed between L119F-GSTe2 mutation and clothianidin resistance with the homozygote resistant mosquitoes being more able to survive than heterozygote or susceptible. This study revealed that An. funestus populations across Africa are susceptible to neonicotinoids, and as such, this insecticide class could be effectively implemented to control this species using IRS. However, potential cross-resistance conferred by GSTe2 calls for regular resistance monitoring in the field.
Collapse
Affiliation(s)
- Tatiane Assatse
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13501, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 812, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13501, Cameroon
| | - Leon Mugenzi
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13501, Cameroon
| | - Benjamin Menze
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13501, Cameroon
| | | | - Williams Tchapga
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13501, Cameroon
| | - Sevilor Kekeunou
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 812, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13501, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- International Institute of Tropical Agriculture (IITA), Yaoundé P.O. Box 2008, Cameroon
| |
Collapse
|
71
|
Fondjo E, Toto JC, Tchouakui M, Eyisap WE, Patchoke S, Menze B, Njeambosay B, Zeukeug F, Ngomdjum RT, Mandeng E, Elanga-Ndille E, Kopya E, Binyang JA, Ndo C, Tene-Fossog B, Tedjou A, Nchoutpouen E, Tchouine F, Achu D, Ambrose K, Hedje J, Kouambeng C, Carlson J, Zohdy S, Chabi J. High vector diversity and malaria transmission dynamics in five sentinel sites in Cameroon. Malar J 2023; 22:123. [PMID: 37055836 PMCID: PMC10100606 DOI: 10.1186/s12936-023-04552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Malaria remains one of the main causes of morbidity and mortality in Cameroon. To inform vector control intervention decision making, malaria vector surveillance was conducted monthly from October 2018 to September 2020 in five selected sentinel sites (Gounougou and Simatou in the North, and Bonabéri, Mangoum and Nyabessang in the South). METHODS Human landing catches (HLCs), U.S. Centers for Disease Control and Prevention (CDC) light traps, and pyrethrum spray catches (PSCs) were used to assess vector density, species composition, human biting rate (HBR), endophagic index, indoor resting density (IRD), parity, sporozoite infection rates, entomological inoculation rate (EIR), and Anopheles vectorial capacity. RESULTS A total of 139,322 Anopheles mosquitoes from 18 species (or 21 including identified sub-species) were collected across all sites. Out of the 18 species, 12 were malaria vectors including Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l.., Anopheles nili, Anopheles moucheti, Anopheles paludis, Anopheles demeilloni, Anopheles. pharoensis, Anopheles ziemanni, Anopheles multicinctus, Anopheles tenebrosus, Anopheles rufipes, and Anopheles marshallii. Anopheles gambiae s.l. remains the major malaria vector (71% of the total Anopheles) collected, though An. moucheti and An. paludis had the highest sporozoite rates in Nyabessang. The mean indoor HBR of Anopheles ranged from 11.0 bites/human/night (b/h/n) in Bonabéri to 104.0 b/h/n in Simatou, while outdoors, it varied from 24.2 b/h/n in Mangoum to 98.7 b/h/n in Simatou. Anopheles gambiae s.l. and An. moucheti were actively biting until at least 8:00 a.m. The mean Anopheles IRD was 17.1 females/room, and the parity rate was 68.9%. The mean EIRs for each site were 55.4 infective bites/human/month (ib/h/m) in Gounougou, 99.0 ib/h/m in Simatou, 51.2 ib/h/m in Mangoum, 24.4 ib/h/m in Nyabessang, and 18.1 ib/h/m in Bonabéri. Anopheles gambiae s.l. was confirmed as the main malaria vector with the highest vectorial capacity in all sites based on sporozoite rate, except in Nyabessang. CONCLUSION These findings highlight the high malaria transmission occurring in Cameroon and will support the National Malaria Control Program to design evidence-based malaria vector control strategies, and deployment of effective and integrated vector control interventions to reduce malaria transmission and burden in Cameroon, where several Anopheles species could potentially maintain year-round transmission.
Collapse
Affiliation(s)
- Etienne Fondjo
- U.S. President's Malaria Initiative (PMI) VectorLink Project, Abt Associates, Yaoundé, Cameroon
| | - Jean-Claude Toto
- Central African Organization for Endemic Disease Control (OCEAC), Yaoundé, Cameroon
| | | | - Wolfgang Ekoko Eyisap
- Central African Organization for Endemic Disease Control (OCEAC), Yaoundé, Cameroon
- University of Bamenda, Bamenda, Cameroon
| | - Salomon Patchoke
- The Biotechnology Center (BTC), University of Yaoundé 1, Yaoundé, Cameroon
| | - Benjamin Menze
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Boris Njeambosay
- The Biotechnology Center (BTC), University of Yaoundé 1, Yaoundé, Cameroon
| | - Francis Zeukeug
- The Biotechnology Center (BTC), University of Yaoundé 1, Yaoundé, Cameroon
| | | | - Elysée Mandeng
- Central African Organization for Endemic Disease Control (OCEAC), Yaoundé, Cameroon
| | | | - Edmond Kopya
- Central African Organization for Endemic Disease Control (OCEAC), Yaoundé, Cameroon
| | | | - Cyrille Ndo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Billy Tene-Fossog
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Armel Tedjou
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Elysée Nchoutpouen
- Central African Organization for Endemic Disease Control (OCEAC), Yaoundé, Cameroon
| | - Frederic Tchouine
- U.S. President's Malaria Initiative (PMI) VectorLink Project, Abt Associates, Yaoundé, Cameroon
| | - Dorothy Achu
- National Malaria Control Programme, Yaoundé, Cameroon
| | - Kelley Ambrose
- U.S. President's Malaria Initiative VectorLink Project, Abt Associates, Rockville, MD, USA
| | - Judith Hedje
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention (CDC), Yaoundé, Cameroon
| | - Celestin Kouambeng
- U.S. President's Malaria Initiative U.S. Agency for International Development (USAID), Yaoundé, Cameroon
| | - Jenny Carlson
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | - Sarah Zohdy
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Joseph Chabi
- U.S. President's Malaria Initiative VectorLink Project, Abt Associates, Rockville, MD, USA.
| |
Collapse
|
72
|
Karisa J, Ominde K, Tuwei M, Bartilol B, Ondieki Z, Musani H, Wanjiku C, Mwikali K, Babu L, Rono M, Eminov M, Mbogo C, Bejon P, Mwangangi J, Laroche M, Maia M. Utility of MALDI-TOF MS for determination of species identity and blood meal sources of primary malaria vectors on the Kenyan coast. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18982.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background: Protein analysis using matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) represents a promising tool for entomological surveillance. In this study we tested the discriminative power of this tool for measuring species and blood meal source of main Afrotropical malaria vectors on the Kenyan coast. Methods: Mosquito collections were conducted along the coastal region of Kenya. MALDI-TOF MS spectra were obtained from each individual mosquito’s cephalothorax as well as the abdomens of blood-engorged mosquitoes. The same mosquitoes were also processed using gold standard tests: polymerase chain reaction (PCR) for species identification and enzyme linked immunosorbent assay (ELISA) for blood meal source identification. Results: Of the 2,332 mosquitoes subjected to MALDI-TOF MS, 85% (1,971/2,332) were considered for database creation and validation. There was an overall accuracy of 97.5% in the identification of members of the An. gambiae (An. gambiae, 100%; An. arabiensis, 91.9%; An. merus, 97.5%; and An. quadriannulatus, 90.2%) and An. funestus (An. funestus, 94.2%; An. rivulorum, 99.4%; and An. leesoni, 94.1%) complexes. Furthermore, MALDI-TOF MS also provided accurate (94.5% accuracy) identification of blood host sources across all mosquito species. Conclusions: This study provides further evidence of the discriminative power of MALDI-TOF MS to identify sibling species and blood meal source of Afrotropical malaria vectors, further supporting its utility in entomological surveillance. The low cost per sample (<0.2USD) and high throughput nature of the method represents a cost-effective alternative to molecular methods and could enable programs to increase the number of samples analysed and therefore improve the data generated from surveillance activities.
Collapse
|
73
|
Das S, Máquina M, Phillips K, Cuamba N, Marrenjo D, Saúte F, Paaijmans KP, Huijben S. Fine-scale spatial distribution of deltamethrin resistance and population structure of Anopheles funestus and Anopheles arabiensis populations in Southern Mozambique. Malar J 2023; 22:94. [PMID: 36915131 PMCID: PMC10010967 DOI: 10.1186/s12936-023-04522-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Insecticide resistance in malaria vectors can be spatially highly heterogeneous, yet population structure analyses frequently find relatively high levels of gene flow among mosquito populations. Few studies have contemporaneously assessed phenotypic, genotypic and population structure analysis on mosquito populations and none at fine geographical scales. In this study, genetic diversity, population structure, and insecticide resistance profiles of Anopheles funestus and Anopheles arabiensis were examined across mosquito populations from and within neighbouring villages. METHODS Mosquitoes were collected from 11 towns in southern Mozambique, as well as from different neighbourhoods within the town of Palmeira, during the peak malaria transmission season in 2016. CDC bottle bioassay and PCR assays were performed with Anopheles mosquitoes at each site to determine phenotypic and molecular insecticide resistance profiles, respectively. Microsatellite analysis was conducted on a subsample of mosquitoes to estimate genetic diversity and population structure. RESULTS Phenotypic insecticide resistance to deltamethrin was observed in An. funestus sensu stricto (s.s.) throughout the area, though a high level of mortality variation was seen. However, 98% of An. funestus s.s. were CYP6P9a homozygous resistant. An. arabiensis was phenotypically susceptible to deltamethrin and 99% were kdr homozygous susceptible. Both Anopheles species exhibited high allelic richness and heterozygosity. Significant deviations from Hardy-Weinberg equilibrium were observed, and high linkage disequilibrium was seen for An. funestus s.s., supporting population subdivision. However, the FST values were low for both anophelines (- 0.00457 to 0.04213), Nm values were high (9.4-71.8 migrants per generation), AMOVA results showed almost 100% genetic variation among and within individuals, and Structure analysis showed no clustering of An. funestus s.s. and An. arabiensis populations. These results suggest high gene flow among mosquito populations. CONCLUSION Despite a relatively high level of phenotypic variation in the An. funestus population, molecular analysis shows the population is admixed. These data indicate that CYP6P9a resistance markers do not capture all phenotypic variation in the area, but also that resistance genes of high impact are likely to easily spread in the area. Conversely, other strategies, such as transgenic mosquito release programmes will likely not face challenges in this locality.
Collapse
Affiliation(s)
- Smita Das
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- PATH, Seattle, WA, USA
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Keeley Phillips
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Dulcisaria Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- ISGlobal, Barcelona, Spain
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
74
|
Debrah I, Ochwedo KO, Otambo WO, Machani MG, Magomere EO, Onyango SA, Zhong D, Amoah LE, Githeko AK, Afrane YA, Yan G. Genetic Diversity and Population Structure of Anopheles funestus in Western Kenya Based on Mitochondrial DNA Marker COII. INSECTS 2023; 14:273. [PMID: 36975958 PMCID: PMC10052146 DOI: 10.3390/insects14030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The mitochondrial marker, COII, was employed to assess the genetic structure and diversity of Anopheles funestus, a very important malaria vector in Africa that adapt and colonize different ecological niches in western Kenya. Mosquitoes were collected using mechanical aspirators in four areas (Bungoma, Port Victoria, Kombewa, and Migori) in western Kenya. Following morphological identification, PCR was used to confirm the species. The COII gene was amplified, sequenced, and analyzed to determine genetic diversity and population structure. A total of 126 (Port Victoria-38, Migori-38, Bungoma-22, and Kombewa-28) sequences of COII were used for population genetic analysis. Anopheles funestus had a high haplotype diversity (Hd = 0.97 to 0.98) but low nucleotide diversity (Π = 0.004 to 0.005). The neutrality test revealed negative Tajima's D and Fs values indicating an excess of low-frequency variation. This could be attributed to either population expansion or negative selection pressure across all the populations. No genetic or structural differentiation (Fst = -0.01) and a high level of gene flow (Gamma St, Nm = 17.99 to 35.22) were observed among the populations. Population expansion suggests the high adaptability of this species to various ecological requirements, hence sustaining its vectorial capacity and malaria transmission.
Collapse
Affiliation(s)
- Isaiah Debrah
- West Africa Centre for Cell Biology of Infectious Pathogen (WACCBIP), University of Ghana, Accra P.O. Box LG 54, Ghana
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay P.O. Box 199-40300, Kenya
| | - Kevin O. Ochwedo
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay P.O. Box 199-40300, Kenya
| | - Wilfred O. Otambo
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay P.O. Box 199-40300, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu P.O. Box 20778-00202, Kenya
| | - Edwin O. Magomere
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay P.O. Box 199-40300, Kenya
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre of Excellence for Malaria Research, Homabay P.O. Box 199-40300, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Linda E. Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu P.O. Box 20778-00202, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra P.O. Box 4236, Ghana
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
75
|
Eshetu T, Eligo N, Massebo F. Cattle feeding tendency of Anopheles mosquitoes and their infection rates in Aradum village, North Wollo, Ethiopia: an implication for animal-based malaria control strategies. Malar J 2023; 22:81. [PMID: 36882806 PMCID: PMC9990195 DOI: 10.1186/s12936-023-04516-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/25/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Surveillance of indoor and outdoor resting malaria vector populations is crucial to monitor possible changes in vector resting and feeding behaviours. This study was conducted to assess the resting behaviour, blood meal sources and circumsporozoite (CSP) rates of Anopheles mosquito in Aradum village, Northern Ethiopia. METHODS Mosquito collection was conducted from September 2019 to February 2020 using clay pots (indoor and outdoor), pit shelter and pyrethrum spray catches (PSC). The species of Anopheles gambiae complex and Anopheles funestus group were identified using polymerase chain reaction (PCR). Enzyme-linked immunosorbent assay (ELISA) was done to determine CSP and blood meal sources of malaria vectors. RESULTS A total of 775 female Anopheles mosquitoes were collected using the clay pot, PSC and pit shelter. Seven Anopheles mosquito species were identified morphologically, of which Anopheles demeilloni (593; 76.5%) was the dominant species followed by An. funestus group (73; 9.4%). Seventy-three An. funestus group screened by PCR, 91.8% (67/73) were identified as Anopheles leesoni and only 2.7% (2/73) were found to be Anopheles parensis. The molecular speciation of 71 An. gambiae complex confirmed 91.5% (65/71) of Anopheles arabiensis. The majority of Anopheles mosquitoes were collected from outdoor pit shelter (42.2%) followed by outdoor clay pots. The majority of the blood meal of An. demeilloni (57.5%; 161/280), An. funestus sensu lato 10 (43.5%) and An. gambiae (33.3%; 14/42) originated from bovine. None of the 364 Anopheles mosquitoes tested for Plasmodium falciparum and Plasmodium vivax sporozoite infections were positive. CONCLUSION Since the Anopheles mosquitoes in the area prefer to bite cattle, it may be best to target them with an animal-based intervention. Clay pots could be an alternative tool for outdoor monitoring of malaria vectors in areas where pit shelter construction is not possible.
Collapse
Affiliation(s)
- Tsegaye Eshetu
- Department of Biology, College of Natural Sciences, Arba Minch, Ethiopia
| | - Nigatu Eligo
- Department of Biology, College of Natural Sciences, Arba Minch, Ethiopia
| | - Fekadu Massebo
- Department of Biology, College of Natural Sciences, Arba Minch, Ethiopia.
| |
Collapse
|
76
|
Chanda J, Wagman J, Chanda B, Kaniki T, Ng’andu M, Muyabe R, Mwenya M, Sakala J, Miller J, Mwaanga G, Simubali L, Mburu MM, Simulundu E, Mungo A, Fraser K, Mwandigha L, Ashton R, Yukich J, Harris AF, Burkot TR, Orange E, Littrell M, Entwistle J. Feeding rates of malaria vectors from a prototype attractive sugar bait station in Western Province, Zambia: results of an entomological validation study. Malar J 2023; 22:70. [PMID: 36855105 PMCID: PMC9974387 DOI: 10.1186/s12936-023-04491-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Attractive targeted sugar bait (ATSB) stations are a promising new approach to malaria vector control that could compliment current tools by exploiting the natural sugar feeding behaviors of mosquitoes. Recent proof of concept work with a prototype ATSB® Sarabi Bait Station (Westham Co., Hod-Hasharon, Israel) has demonstrated high feeding rates and significant reductions in vector density, human biting rate, and overall entomological inoculation rate for Anopheles gambiae sensu lato (s.l.) in the tropical savannah of western Mali. The study reported here was conducted in the more temperate, rainier region of Western Province, Zambia and was designed to confirm the primary vector species in region and to estimate corresponding rates of feeding from prototype attractive sugar bait (ASB) Sarabi Bait Stations. METHODS The product evaluated was the Sarabi v1.1.1 ASB station, which did not include insecticide but did include 0.8% uranine as a dye allowing for the detection, using UV fluorescence light microscopy, of mosquitoes that have acquired a sugar meal from the ASB. A two-phase, crossover study design was conducted in 10 village-based clusters in Western Province, Zambia. One study arm initially received 2 ASB stations per eligible structure while the other initially received 3. Primary mosquito sampling occurred via indoor and outdoor CDC Miniature UV Light Trap collection from March 01 through April 09, 2021 (Phase 1) and from April 19 to May 28, 2021 (Phase 2). RESULTS The dominant vector in the study area is Anopheles funestus s.l., which was the most abundant species group collected (31% of all Anophelines; 45,038/144,5550), had the highest sporozoite rate (3.16%; 66 positives out of 2,090 tested), and accounted for 94.3% (66/70) of all sporozoite positive specimens. Of those An. funestus specimens further identified to species, 97.2% (2,090/2,150) were An. funestus sensu stricto (s.s.). Anopheles gambiae s.l. (96.8% of which were Anopheles arabiensis) is a likely secondary vector and Anopheles squamosus may play a minor role in transmission. Overall, 21.6% (9,218/42,587) of An. funestus specimens and 10.4% (201/1,940) of An. gambiae specimens collected were positive for uranine, translating into an estimated daily feeding rate of 8.9% [7.7-9.9%] for An. funestus (inter-cluster range of 5.5% to 12.7%) and 3.9% [3.3-4.7%] for An. gambiae (inter-cluster range of 1.0-5.2%). Feeding rates were no different among mosquitoes collected indoors or outdoors, or among mosquitoes from clusters with 2 or 3 ASBs per eligible structure. Similarly, there were no correlations observed between feeding rates and the average number of ASB stations per hectare or with weekly rainfall amounts. CONCLUSIONS Anopheles funestus and An. gambiae vector populations in Western Province, Zambia readily fed from the prototype Sarabi v1.1.1 ASB sugar bait station. Observed feeding rates are in line with those thought to be required for ATSB stations to achieve reductions in malaria transmission when used in combination with conventional control methods (IRS or LLIN). These results supported the decision to implement a large-scale, epidemiological cluster randomized controlled trial of ATSB in Zambia, deploying 2 ATSB stations per eligible structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jimmy Sakala
- PATH, Lusaka, Zambia ,Present Address: Jhpeigo, Lusaka, Zambia
| | | | | | | | | | | | | | - Keith Fraser
- grid.7445.20000 0001 2113 8111Imperial College London, London, UK
| | - Lazaro Mwandigha
- grid.7445.20000 0001 2113 8111Imperial College London, London, UK ,grid.4991.50000 0004 1936 8948Present Address: University of Oxford, Oxford, UK
| | - Ruth Ashton
- grid.265219.b0000 0001 2217 8588School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Joshua Yukich
- grid.265219.b0000 0001 2217 8588School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | | | - Thomas R. Burkot
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Erica Orange
- grid.415269.d0000 0000 8940 7771PATH, Seattle, USA
| | - Megan Littrell
- grid.416809.20000 0004 0423 0663PATH, Washington, DC USA
| | | |
Collapse
|
77
|
Salomé G, Riddin M, Braack L. Species Composition, Seasonal Abundance, and Biting Behavior of Malaria Vectors in Rural Conhane Village, Southern Mozambique. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3597. [PMID: 36834293 PMCID: PMC9966379 DOI: 10.3390/ijerph20043597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Malaria vector surveillance provides important data to inform the effective planning of vector control interventions at a local level. The aim of this study was to determine the species diversity and abundance, biting activity, and Plasmodium infectivity of Anopheles mosquitoes from a rural village in southern Mozambique. Human landing catches were performed monthly between December 2020 and August 2021. All collected Anopheles were identified to the species level and tested for the presence of malaria parasites. Eight Anopheles species were identified among the 1802 collected anophelines. Anopheles gambiae sensu lato (s.l.) were the most abundant (51.9%) and were represented by Anopheles quadriannulatus and Anopheles arabiensis. Anopheles funestus s.l. represented 4.5%. The biting activity of An. arabiensis was more pronounced early in the evening and outdoors, whereas that of An. funestus sensu stricto (s.s.) was more intense late in the night, with no significant differences in location. One An. funestus s.s. and one An. arabiensis, both collected outdoors, were infected with Plasmodium falciparum. The overall entomologic inoculation rate was estimated at 0.015 infective bites per person per night. The significant outdoor and early evening biting activity of An. arabiensis and An. funestus found in this village may negatively impact the effectiveness of current vector control interventions. Additional vector control tools that can target these mosquitoes are needed.
Collapse
Affiliation(s)
- Graça Salomé
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Department of Physiological Sciences, Faculty of Medicine, Eduardo Mondlane University, 702 Salvador Allende Ave., Maputo P.O. Box 257, Mozambique
| | - Megan Riddin
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Malaria Consortium, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavithi Rd, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
78
|
Tchouakui M, Assatse T, Tazokong HR, Oruni A, Menze BD, Nguiffo-Nguete D, Mugenzi LMJ, Kayondo J, Watsenga F, Mzilahowa T, Osae M, Wondji CS. Detection of a reduced susceptibility to chlorfenapyr in the malaria vector Anopheles gambiae contrasts with full susceptibility in Anopheles funestus across Africa. Sci Rep 2023; 13:2363. [PMID: 36759650 PMCID: PMC9911381 DOI: 10.1038/s41598-023-29605-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
| | - Tatiane Assatse
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Hervé R Tazokong
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Ambrose Oruni
- Entomology Department, Uganda Virus Research Institute (UVRI), P.O.Box 49, Entebbe, Uganda
| | - Benjamin D Menze
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Daniel Nguiffo-Nguete
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Leon M J Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Jonathan Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), P.O.Box 49, Entebbe, Uganda
| | - Francis Watsenga
- Institut National de Recherche Biomédicale, P.O Box 1197, Kinshasa, Democratic Republic of Congo
| | - Themba Mzilahowa
- Entomology Department, Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), P.O Box 265, Blantyre, Malawi
| | - Michael Osae
- Radiation Entomology and Pest Management Centre, Ghana Atomic Energy Commission, Legon, PO Box LG80, Accra, Ghana
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
79
|
Meza FC, Muyaga LL, Limwagu AJ, Lwetoijera DW. The ability of Anopheles funestus and A. arabiensis to penetrate LLINs and its effect on their mortality. Wellcome Open Res 2023; 7:265. [PMID: 36974127 PMCID: PMC10039320 DOI: 10.12688/wellcomeopenres.18242.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Background: Variation in mosquito body size and the ability to penetrate long-lasting insecticide-treated nets (LLINs) remains unknown. This study evaluated the ability of Anopheles funestus and A. arabiensis to penetrate commercially available treated and untreated bednets and how this behaviour affects mosquito mortality. Methods: Three types of LLINs; DawaPlus 2.0, PermaNet 2.0, Olyset 2.0, and untreated (Safi Net) were tested inside a semi-field system. One hundred 3–5-day-old female A. funestus and A. arabiensis were released in a chamber with a sleeping adult volunteer under a treated or untreated bednet. Mosquitoes that penetrated inside the nets were collected every two hours using a mouth aspirator. Live mosquitoes were put in paper cups, fed on glucose ad libitum and their mortality rate was monitored for 48 h. Results: The ability of A. funestus to penetrate treated and untreated bednets was significantly higher than for A. arabiensis for all three LLIN net types (P<0.001). For both species the penetration rate was higher for untreated bednets than treated ones except for the Olyset net. Regardless of the assessed mosquito species, all the mosquitoes that penetrated the net, successfully blood-fed on the sleeping volunteer. Compared to A. arabiensis, significant mortality was recorded for A. funestus that were caught inside Olyset nets within 48 hrs of monitoring (P<0.001). Conclusions: These findings demonstrate the ability of A. funestus and A. arabiensis mosquitoes to penetrate the human-occupied treated and untreated bednets. Despite this ability, mosquitoes that penetrated the bednet succumbed to death within two days.
Collapse
Affiliation(s)
- Felician Clement Meza
- Environmental Health and Ecological Sciences, Ifakara Health Institute, DAR ES SALAAM, N/A, 14112, Tanzania
| | - Letus L Muyaga
- Environmental Health and Ecological Sciences, Ifakara Health Institute, DAR ES SALAAM, N/A, 14112, Tanzania
| | - Alex Julius Limwagu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, DAR ES SALAAM, N/A, 14112, Tanzania
| | - Dickson Wilson Lwetoijera
- Environmental Health and Ecological Sciences, Ifakara Health Institute, DAR ES SALAAM, N/A, 14112, Tanzania
- Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
80
|
Mmbando AS, Mponzi WP, Ngowo HS, Kifungo K, Kasubiri R, Njalambaha RM, Gavana T, Eiras AE, Batista EPA, Finda MF, Sangoro OP, Okumu FO. Small-scale field evaluation of transfluthrin-treated eave ribbons and sandals for the control of malaria vectors in rural Tanzania. Malar J 2023; 22:43. [PMID: 36739391 PMCID: PMC9898903 DOI: 10.1186/s12936-023-04476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early-evening and outdoor-biting mosquitoes may compromise the effectiveness of frontline malaria interventions, notably insecticide-treated nets (ITNs). This study aimed to evaluate the efficacy of low-cost insecticide-treated eave ribbons and sandals as supplementary interventions against indoor-biting and outdoor-biting mosquitoes in south-eastern Tanzania, where ITNs are already widely used. METHODS This study was conducted in three villages, with 72 households participating (24 households per village). The households were divided into four study arms and assigned: transfluthrin-treated sandals (TS), transfluthrin-treated eave ribbons (TER), a combination of TER and TS, or experimental controls. Each arm had 18 households, and all households received new ITNs. Mosquitoes were collected using double net traps (to assess outdoor biting), CDC light traps (to assess indoor biting), and Prokopack aspirators (to assess indoor resting). Protection provided by the interventions was evaluated by comparing mosquito densities between the treatment and control arms. Additional tests were done in experimental huts to assess the mortality of wild mosquitoes exposed to the treatments or controls. RESULTS TERs reduced indoor-biting, indoor-resting and outdoor-biting Anopheles arabiensis by 60%, 73% and 41%, respectively, while TS reduced the densities by 18%, 40% and 42%, respectively. When used together, TER & TS reduced indoor-biting, indoor-resting and outdoor-biting An. arabiensis by 53%, 67% and 57%, respectively. Protection against Anopheles funestus ranged from 42 to 69% with TER and from 57 to 74% with TER & TS combined. Mortality of field-collected mosquitoes exposed to TER, TS or both interventions was 56-78% for An. arabiensis and 47-74% for An. funestus. CONCLUSION Transfluthrin-treated eave ribbons and sandals or their combination can offer significant household-level protection against malaria vectors. Their efficacy is magnified by the transfluthrin-induced mortality, which was observed despite the prevailing pyrethroid resistance in the study area. These results suggest that TER and TS could be useful supplementary tools against residual malaria transmission in areas where ITN coverage is high but additional protection is needed against early-evening and outdoor-biting mosquitoes. Further research is needed to validate the performance of these tools in different settings, and assess their long-term effectiveness and feasibility for malaria control.
Collapse
Affiliation(s)
- Arnold S Mmbando
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
| | - Winifrida P Mponzi
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Khamis Kifungo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Robert Kasubiri
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Rukiyah M Njalambaha
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Tegemeo Gavana
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Alvaro E Eiras
- Laboratory of Technological Innovation of Vector Control, Department of Parasitology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Elis P A Batista
- Laboratory of Technological Innovation of Vector Control, Department of Parasitology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marceline F Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa
| | - Onyango P Sangoro
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- Human Health Theme, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi City, Kenya
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
81
|
Nguiffo-Nguete D, Nongley Nkemngo F, Ndo C, Agbor JP, Boussougou-Sambe ST, Salako Djogbénou L, Ntoumi F, Adegnika AA, Borrmann S, Wondji CS. Plasmodium malariae contributes to high levels of malaria transmission in a forest-savannah transition area in Cameroon. Parasit Vectors 2023; 16:31. [PMID: 36698132 PMCID: PMC9875470 DOI: 10.1186/s13071-022-05635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Malaria control efforts are highly skewed towards Plasmodium falciparum while overlooking other Plasmodium species such as P. malariae. A better understanding of the role of Plasmodium species other than P. falciparum is needed to strengthen malaria elimination initiatives. The aim of the present study was to elucidate the contribution of P. malariae to malaria transmission in Cameroon. METHODS The study was conducted in the Ngatti Health District, a forest-savannah transition area in the Adamawa Region, Cameroon. A total of 497 individuals aged from 1 to 85 years were diagnosed with malaria in November 2020 using a rapid diagnostic test (RDT) and microscopy. Adult mosquitoes were collected between September 2019 and March 2020 by indoor aspiration and identified morphologically and molecularly. The infection status of Plasmodium spp. was also determined by quantitative PCR, and dried blood spots were collected from 156 participants with the aim to detect different Plasmodium species by nested PCR. RESULTS The overall Plasmodium prevalence was 50.3%, 51.8% and 64.7%, as detected by microscopy, the RDT and PCR, respectively. Based on the PCR results, P. falciparum was the most prevalent species (43%); followed by co-infections P. falciparum/P. malariae (17%), P. falciparum/P. ovale (1.3%), P. falciparum/P. ovale/P. malariae (1.3%); and then by P. malariae mono-infection (2.5%). The same trend was observed using microscopy, with 35% of participants infected with P. falciparum, 11% co-infected with P. falciparum/P. malariae and 4% infected with P. malariae. The prevalence and parasite density of malaria infection varied significantly with age group (P < 0.05), with the highest prevalence rate observed in children aged 6-10 years (P = 0.0001) while the density of Plasmodium infection increased significantly in children aged < 5 years compared to the other age groups (P = 10-3). Among the 757 Anopheles mosquitoes collected, 737 (97.35%) were An. funestus sensu stricto, 15 (1.9%) were An. gambiae and 5 (0.6%) were An. hancocki. The Plasmodium species recorded at the head/thorax level were P. falciparum and P. malariae, with a sporozoite infection rate of 8.4%; the highest sporozoite infection rate was recorded at Mibellon village (13.6%). CONCLUSION The results of this study reveal the significant contribution of P. malariae, in addition to P. falciparum, to the high malaria transmission rate in this region. These findings highlight the need to deploy initiatives to also tackle this Plasmodium species to eliminate malaria in the region.
Collapse
Affiliation(s)
| | - Francis Nongley Nkemngo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Cyrille Ndo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Jean-Pierre Agbor
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Stravensky T. Boussougou-Sambe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut Für Tropenmedizin, Eberhard Karls Universität, Tübingen, Germany
| | - Luc Salako Djogbénou
- Institut Régional de Santé Publique, Ouidah, Bénin
- University of Abomey-Calavi, Ouidah, Bénin
| | - Francine Ntoumi
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
| | - Ayôla A. Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut Für Tropenmedizin, Eberhard Karls Universität, Tübingen, Germany
- Fondation Pour La Recherche Scientifique (FORS), Cotonou, Benin
- German Center for Infection Research, Tübingen, Germany
| | - Steffen Borrmann
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut Für Tropenmedizin, Eberhard Karls Universität, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- International Institute of Tropical Agriculture (IITA), Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
82
|
Katusi GC, Makayula SM, Govella NJ, Mnyone LL, Hill SR, Ignell R. Distance from human dwellings differentially affects the efficacy of a synthetic cattle urine odour lure to trap malaria vectors. Malar J 2023; 22:8. [PMID: 36609275 PMCID: PMC9824932 DOI: 10.1186/s12936-022-04437-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cost-effective outdoor-based devices for surveillance and control of outdoor mosquito vector populations can substantially improve their efficacy when baited with synthetic human and animal odours. This study aimed at assessing the dose-dependent efficacy of a previously developed synthetic cattle urine odour to lure malaria vectors, and other mosquito species, to traps placed at different distances from human dwellings outdoors. METHODS The efficacy of the cattle urine odour lure was assessed through a 5 × 5 Latin square design, using two sets of 5 Suna traps placed at either 1.5 m or 5 m from an adjacent human dwelling, in the rural village of Sagamaganga, Tanzania. Each trap was deployed with one of four doses of the synthetic cattle urine odour blend or a solvent control (heptane). Traps were rotated daily so that each dose and control visited each position twice over a period of 20 experimental nights. The relative attractiveness of each treatment dose and control was compared using a generalized linear mixed model for each species caught. RESULTS A total of 1568 mosquitoes were caught, of which 783 were anophelines and 785 were culicines. Of the anophelines, 41.6 and 58.3% were primary and secondary vector species, respectively. Unfed and fed females of the primary vector, Anopheles arabiensis, were caught dose-dependently, close to human dwellings (1.5 m), whereas unfed, fed and gravid secondary vector Anopheles pharoensis females were caught dose-dependently, but at a farther distance from the dwellings (5 m). Females of Culex spp. were caught dose-dependently in similar numbers irrespective of the distance from human dwellings. CONCLUSIONS This study further clarifies the factors to be considered for the implementation of outdoor trapping using the synthetic cattle urine lure to target exophilic and exophagic malaria vectors, for which efficient surveillance and control tools are currently lacking. The findings resulting from this study make significant progress in providing the needed information to overcome the regulatory obstacles to make this tool available for integrated vector management programs, including registration, as well as evaluation and regulation by the World Health Organization.
Collapse
Affiliation(s)
- Godfrey C Katusi
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, 53, Ifakara, Morogoro, Tanzania
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, 3019, Morogoro, Tanzania
| | - Samwely M Makayula
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, 53, Ifakara, Morogoro, Tanzania
| | - Nicodem J Govella
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, 53, Ifakara, Morogoro, Tanzania
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Ladslaus L Mnyone
- Institute of Pest Management, Sokoine University of Agriculture, 3110, Morogoro, Tanzania
| | - Sharon R Hill
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 190, 234 22, Lomma, Sweden
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 190, 234 22, Lomma, Sweden.
| |
Collapse
|
83
|
Tokponnon TF, Ossè R, Padonou GG, Affoukou CD, Sidick A, Sewade W, Fassinou A, Koukpo CZ, Akinro B, Messenger LA, Okê M, Tchévoédé A, Ogouyemi-Hounto A, Gazard DK, Akogbeto M. Entomological Characteristics of Malaria Transmission across Benin: An Essential Element for Improved Deployment of Vector Control Interventions. INSECTS 2023; 14:52. [PMID: 36661980 PMCID: PMC9864170 DOI: 10.3390/insects14010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Entomological surveillance in Benin has historically been limited to zones where indoor residual spraying was performed or where long-standing sentinel surveillance sites existed. However, there are significant country-wide gaps in entomological knowledge. The National Malaria Control Program (NMCP) assessed population dynamics of Anopheles vectors and malaria transmission in each of Benin’s 12 departments to create an entomological risk profile. Two communes per department (24/77 communes) were chosen to reflect diverse geographies, ecologies and malaria prevalence. Two villages per commune were selected from which four households (HH) per village were used for human landing catches (HLCs). In each HH, an indoor and outdoor HLC occurred between 7 p.m. and 7 a.m. on two consecutive nights between July−September 2017. Captured Anopheles were identified, and ovaries were dissected to determine parous rate. Heads and thoraces were tested for Plasmodium falciparum sporozoites by ELISA. The Entomological Inoculation Rate (EIR) was calculated as the product of mosquito bite rate and sporozoite index. Bite rates from An. gambiae s.l., the primary vector species complex, differed considerably between communes; average sporozoite infection index was 3.5%. The EIR ranged from 0.02 infectious bites (ib) per human per night in the departments of Ouémé and Plateau to 1.66 ib/human/night in Collines. Based on transmission risk scales, Avrankou, Sakété and Nikki are areas of low transmission (0 < EIR < 3 ib/human/year), Adjarra, Adja Ouèrè, Zè, Toffo, Bopa, Pehunco, Pèrèrè and Kandi are of medium transmission (3 < EIR < 30 ib/human/year), and the other remaining districts are high transmission (EIR > 30 ib/human/year). The heterogeneous and diverse nature of malaria transmission in Benin was not readily apparent when only assessing entomological surveillance from sentinel sites. Prospectively, the NMCP will use study results to stratify and deploy targeted vector control interventions in districts with high EIRs to better protect populations most at-risk.
Collapse
Affiliation(s)
- Tatchémè Filémon Tokponnon
- Ministère de la Santé, Cotonou 08 BP 882, Benin
- Cotonou Entomological Research Center, Cotonou 06 BP 2604, Benin
- Centre Béninois de la Recherche Scientifique et de l’Innovation (CBRSI), Agbondjèdo, Étoile Rouge, Cotonou 03 BP 1665, Benin
- Ecole Polytechnique d’Abomey-Calavi, Université d’Abomey-Calavi, Cotonou 01 BP 2009, Benin
| | - Razaki Ossè
- Cotonou Entomological Research Center, Cotonou 06 BP 2604, Benin
| | | | | | - Aboubakar Sidick
- Cotonou Entomological Research Center, Cotonou 06 BP 2604, Benin
| | - Wilfried Sewade
- Cotonou Entomological Research Center, Cotonou 06 BP 2604, Benin
| | - Arsène Fassinou
- Cotonou Entomological Research Center, Cotonou 06 BP 2604, Benin
| | - Côme Z. Koukpo
- Cotonou Entomological Research Center, Cotonou 06 BP 2604, Benin
| | - Bruno Akinro
- Cotonou Entomological Research Center, Cotonou 06 BP 2604, Benin
| | - Louisa A. Messenger
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Mariam Okê
- Ministère de la Santé, Cotonou 08 BP 882, Benin
| | | | - Aurore Ogouyemi-Hounto
- National Malaria Control Program, Cotonou 01 BP 882, Benin
- Parasitology-Mycologie Research Unit, Faculté des Sciences de la Santé, University of Abomey-Calavi, Cotonou 01 BP 188, Benin
| | - Dorothée Kinde Gazard
- Parasitology-Mycologie Research Unit, Faculté des Sciences de la Santé, University of Abomey-Calavi, Cotonou 01 BP 188, Benin
| | - Martin Akogbeto
- Cotonou Entomological Research Center, Cotonou 06 BP 2604, Benin
| |
Collapse
|
84
|
Katusi GC, Hermy MRG, Makayula SM, Ignell R, Govella NJ, Hill SR, Mnyone LL. Seasonal variation in abundance and blood meal sources of primary and secondary malaria vectors within Kilombero Valley, Southern Tanzania. Parasit Vectors 2022; 15:479. [PMID: 36539892 PMCID: PMC9768911 DOI: 10.1186/s13071-022-05586-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Existing control tools have significantly reduced malaria over the past two decades. However, progress has been stalled due to increased resistance in primary vectors and the increasing role of secondary vectors. This study aimed to investigate the impact of seasonal change on primary and secondary vector abundance and host preference. Understanding the impact of seasonal dynamics of primary and secondary vectors on disease transmission will inform effective strategies for vector management and control. METHODS Vector abundance was measured through longitudinal collection of mosquitoes, conducted monthly during the wet and dry seasons, in Sagamaganga, a village in the Kilombero Valley, Tanzania. Mosquitoes were collected indoors using CDC light traps and backpack aspirators, and outdoors using resting buckets baited with cattle urine. In addition, a direct measure of host preference was taken monthly using human- and cattle-baited mosquito electrocuting traps. A host census was conducted to provide an indirect measure of host preference together with monthly blood meal source analysis. All collected mosquitoes were assayed for Plasmodium sporozoites. RESULTS A total of 2828 anophelines were collected, of which 78.5% and 21.4%, were primary and secondary vectors, respectively. The abundance of the primary vectors, Anopheles arabiensis and Anopheles funestus, and of the secondary vectors varied seasonally. Indirect measures of host preference indicated that all vectors varied blood meal choice seasonally, with the direct measure confirming this for An. arabiensis. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS At the study location, the abundance of both primary and secondary vectors changed seasonally. Indirect and direct measures of host preference demonstrated that An. arabiensis varied from being zoophilic to being more opportunistic during the wet and dry seasons. A similar trend was observed for the other vectors.
Collapse
Affiliation(s)
- Godfrey C. Katusi
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania ,grid.11887.370000 0000 9428 8105Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Marie R. G. Hermy
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Samwely M. Makayula
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania
| | - Rickard Ignell
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Nicodem J. Govella
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania ,grid.451346.10000 0004 0468 1595School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Sharon R. Hill
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Ladslaus L. Mnyone
- grid.11887.370000 0000 9428 8105Pest Management Centre, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| |
Collapse
|
85
|
Abong’o B, Gimnig JE, Omoke D, Ochomo E, Walker ED. Screening eaves of houses reduces indoor mosquito density in rural, western Kenya. Malar J 2022; 21:377. [PMID: 36494664 PMCID: PMC9733111 DOI: 10.1186/s12936-022-04397-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the scale-up of insecticide-treated nets and indoor residual spraying, the bulk of malaria transmission in western Kenya still occurs indoors, late at night. House improvement is a potential long-term solution to further reduce malaria transmission in the region. METHODS The impact of eave screening on mosquito densities was evaluated in two rural villages in western Kenya. One-hundred-and-twenty pairs of structurally similar, neighbouring houses were used in the study. In each pair, one house was randomly selected to receive eave screening at the beginning of the study while the other remained unscreened until the end of the sampling period. Mosquito sampling was performed monthly by motorized aspiration method for 4 months. The collected mosquitoes were analysed for species identification. RESULTS Compared to unscreened houses, significantly fewer female Anopheles funestus (RR = 0.40, 95% CI 0.29-0.55), Anopheles gambiae Complex (RR = 0.46, 95% CI 0.34-0.62) and Culex species (RR = 0.53, 95% CI 0.45-0.61) were collected in screened houses. No significant differences in the densities of the mosquitoes were detected in outdoor collections. Significantly fewer Anopheles funestus were collected indoors from houses with painted walls (RR = 0.05, 95% CI 0.01-0.38) while cooking in the house was associated with significantly lower numbers of Anopheles gambiae Complex indoors (RR = 0.60, 95% CI 0.45-0.79). Nearly all house owners (99.6%) wanted their houses permanently screened, including 97.7% that indicated a willingness to use their own resources. However, 99.2% required training on house screening. The cost of screening a single house was estimated at KES6,162.38 (US$61.62). CONCLUSION Simple house modification by eave screening has the potential to reduce the indoor occurrence of both Anopheles and Culex mosquito species. Community acceptance was very high although education and mobilization may be needed for community uptake of house modification for vector control. Intersectoral collaboration and favourable government policies on housing are important links towards the adoption of house improvements for malaria control.
Collapse
Affiliation(s)
- Bernard Abong’o
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - John E. Gimnig
- grid.416738.f0000 0001 2163 0069Centers for Disease Control and Prevention, Division of Parasitic Diseases, Atlanta, GA 30341 USA
| | - Diana Omoke
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Eric Ochomo
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Edward D. Walker
- grid.17088.360000 0001 2150 1785Michigan State University, 6169 Biomedical Physical Sciences Building, East Lansing, MI 48824 USA
| |
Collapse
|
86
|
Kading RC, Borland EM, Mossel EC, Nakayiki T, Nalikka B, Ledermann JP, Crabtree MB, Panella NA, Nyakarahuka L, Gilbert AT, Kerbis-Peterhans JC, Towner JS, Amman BR, Sealy TK, Miller BR, Lutwama JJ, Kityo RM, Powers AM. Exposure of Egyptian Rousette Bats ( Rousettus aegyptiacus) and a Little Free-Tailed Bat ( Chaerephon pumilus) to Alphaviruses in Uganda. Diseases 2022; 10:diseases10040121. [PMID: 36547207 PMCID: PMC9777265 DOI: 10.3390/diseases10040121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The reservoir for zoonotic o'nyong-nyong virus (ONNV) has remained unknown since this virus was first recognized in Uganda in 1959. Building on existing evidence for mosquito blood-feeding on various frugivorous bat species in Uganda, and seroprevalence for arboviruses among bats in Uganda, we sought to assess if serum samples collected from bats in Uganda demonstrated evidence of exposure to ONNV or the closely related zoonotic chikungunya virus (CHIKV). In total, 652 serum samples collected from six bat species were tested by plaque reduction neutralization test (PRNT) for neutralizing antibodies against ONNV and CHIKV. Forty out of 303 (13.2%) Egyptian rousettes from Maramagambo Forest and 1/13 (8%) little free-tailed bats from Banga Nakiwogo, Entebbe contained neutralizing antibodies against ONNV. In addition, 2/303 (0.7%) of these Egyptian rousettes contained neutralizing antibodies to CHIKV, and 8/303 (2.6%) contained neutralizing antibodies that were nonspecifically reactive to alphaviruses. These data support the interepidemic circulation of ONNV and CHIKV in Uganda, although Egyptian rousette bats are unlikely to serve as reservoirs for these viruses given the inconsistent occurrence of antibody-positive bats.
Collapse
Affiliation(s)
- Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
- Correspondence: ; Tel.: +1-970-491-7833
| | - Erin M. Borland
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Eric C. Mossel
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Teddy Nakayiki
- Department of Arbovirology, Emerging, and Re-Emerging Infections, Uganda Virus Research Institute, Entebbe, Uganda
| | - Betty Nalikka
- Department of Zoology, Entomology, and Fisheries Science, Makerere University, Kampala, Uganda
| | - Jeremy P. Ledermann
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Mary B. Crabtree
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Nicholas A. Panella
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Luke Nyakarahuka
- Department of Arbovirology, Emerging, and Re-Emerging Infections, Uganda Virus Research Institute, Entebbe, Uganda
| | - Amy T. Gilbert
- Animal Plant Health Inspection Service, National Wildlife Research Center, United States Department of Agriculture, Fort Collins, CO 80521, USA
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens, United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Julian C. Kerbis-Peterhans
- Negaunee Integrative Research Center, Field Museum of Natural History, College of Arts & Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Jonathan S. Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens, United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Brian R. Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens, United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Tara K. Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens, United States Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Barry R. Miller
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging, and Re-Emerging Infections, Uganda Virus Research Institute, Entebbe, Uganda
| | - Robert M. Kityo
- Department of Zoology, Entomology, and Fisheries Science, Makerere University, Kampala, Uganda
| | - Ann M. Powers
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
87
|
Pinda PG, Msaky DS, Muyaga LL, Mshani IH, Njalambaha RM, Kihonda J, Bwanaly H, Ngowo HS, Kaindoa EW, Koekemoer LL, Okumu FO. Relationships between biological age, distance from aquatic habitats and pyrethroid resistance status of Anopheles funestus mosquitoes in south-eastern Tanzania. Malar J 2022; 21:365. [PMID: 36461058 PMCID: PMC9719249 DOI: 10.1186/s12936-022-04389-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Malaria transmission can be highly heterogeneous between and within localities, and is influenced by factors such as survival and biting frequencies of Anopheles mosquitoes. This study investigated the relationships between the biological age, distance from aquatic habitats and pyrethroid resistance status of Anopheles funestus mosquitoes, which currently dominate malaria transmission in south-east Tanzania. The study also examined how such relationships may influence malaria transmission and control. METHODS Female An. funestus were collected in houses located 50-100 m, 150-200 m or over 200 m from the nearest known aquatic habitats. The mosquitoes were exposed to 1×, 5× and 10× the diagnostic doses of deltamethrin or permethrin, or to the synergist, piperonyl butoxide (PBO) followed by the pyrethroids, then monitored for 24 h-mortality. Ovaries of exposed and non-exposed mosquitoes were dissected to assess parity as a proxy for biological age. Adults emerging from larval collections in the same villages were tested against the same insecticides at 3-5, 8-11 or 17-20 days old. FINDINGS Mosquitoes collected nearest to the aquatic habitats (50-100 m) had the lowest mortalities compared to other distances, with a maximum of 51% mortality at 10× permethrin. For the age-synchronized mosquitoes collected as larvae, the insecticide-induced mortality assessed at both the diagnostic and multiplicative doses (1×, 5× and 10×) increased with mosquito age. The highest mortalities at 1× doses were observed among the oldest mosquitoes (17-20 days). At 10× doses, mortalities were 99% (permethrin) and 76% (deltamethrin) among 8-11 day-olds compared to 80% (permethrin) and 58% (deltamethrin) among 3-5 day-olds. Pre-exposure to PBO increased the potency of both pyrethroids. The proportion of parous females was highest among mosquitoes collected farthest from the habitats. CONCLUSION In this specific setting, older An. funestus and those collected farthest from the aquatic habitats (near the centre of the village) were more susceptible to pyrethroids than the younger ones and those caught nearest to the habitats. These findings suggest that pyrethroid-based interventions may remain at least moderately effective despite widespread pyrethroid-resistance, by killing the older, less-resistant and potentially-infective mosquitoes. Further studies should investigate how and whether these observations could be exploited to optimize malaria control in different settings.
Collapse
Affiliation(s)
- Polius G Pinda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.
| | - Dickson S Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Letus L Muyaga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Issa H Mshani
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Rukiyah M Njalambaha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Japhet Kihonda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Hamis Bwanaly
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
- School of Life Sciences and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, Centre for Emerging Zoonotic and Parasitic Diseases, University of the Witwatersrand, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.
- School of Life Sciences and Biotechnology, Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania.
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
88
|
Bartilol B, Omuoyo D, Karisa J, Ominde K, Mbogo C, Mwangangi J, Maia M, Rono MK. Vectorial capacity and TEP1 genotypes of Anopheles gambiae sensu lato mosquitoes on the Kenyan coast. Parasit Vectors 2022; 15:448. [PMID: 36457004 PMCID: PMC9713959 DOI: 10.1186/s13071-022-05491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Malaria remains one of the most important infectious diseases in sub-Saharan Africa, responsible for approximately 228 million cases and 602,000 deaths in 2020. In this region, malaria transmission is driven mainly by mosquitoes of the Anopheles gambiae and, more recently, Anopheles funestus complex. The gains made in malaria control are threatened by insecticide resistance and behavioural plasticity among these vectors. This, therefore, calls for the development of alternative approaches such as malaria transmission-blocking vaccines or gene drive systems. The thioester-containing protein 1 (TEP1) gene, which mediates the killing of Plasmodium falciparum in the mosquito midgut, has recently been identified as a promising target for gene drive systems. Here we investigated the frequency and distribution of TEP1 alleles in wild-caught malaria vectors on the Kenyan coast. METHODS Mosquitoes were collected using CDC light traps both indoors and outdoors from 20 houses in Garithe village, along the Kenyan coast. The mosquitoes were dissected, and the different parts were used to determine their species, blood meal source, and sporozoite status. The data were analysed and visualised using the R (v 4.0.1) and STATA (v 17.0). RESULTS A total of 18,802 mosquitoes were collected, consisting of 77.8% (n = 14,631) Culex spp., 21.4% (n = 4026) An. gambiae sensu lato, 0.4% (n = 67) An. funestus, and 0.4% (n = 78) other Anopheles (An. coustani, An. pharoensis, and An. pretoriensis). Mosquitoes collected were predominantly exophilic, with the outdoor catches being higher across all the species: Culex spp. 93% (IRR = 11.6, 95% Cl [5.9-22.9] P < 0.001), An. gambiae s.l. 92% (IRR = 7.2, 95% Cl [3.6-14.5]; P < 0.001), An. funestus 91% (IRR = 10.3, 95% Cl [3.3-32.3]; P < 0.001). A subset of randomly selected An. gambiae s.l. (n = 518) was identified by polymerase chain reaction (PCR), among which 77.2% were An. merus, 22% were An. arabiensis, and the rest were not identified. We were also keen on identifying and describing the TEP1 genotypes of these mosquitoes, especially the *R3/R3 allele that was identified recently in the study area. We identified the following genotypes among An. merus: *R2/R2, *R3/R3, *R3/S2, *S1/S1, and *S2/S2. Among An. arabiensis, we identified *R2/R2, *S1/S1, and *S2/S2. Tests on haplotype diversity showed that the most diverse allele was TEP1*S1, followed by TEP1*R2. Tajima's D values were positive for TEP1*S1, indicating that there is a balancing selection, negative for TEP1*R2, indicating there is a recent selective sweep, and as for TEP1*R3, there was no evidence of selection. Phylogenetic analysis showed two distinct clades: refractory and susceptible alleles. CONCLUSIONS We find that the malaria vectors An. gambiae s.l. and An. funestus are predominantly exophilic. TEP1 genotyping for An. merus revealed five allelic combinations, namely *R2/R2, *R3/R3, *R3/S2, *S1/S1 and *S2/S2, while in An. arabiensis we only identified three allelic combinations: *R2/R2, *S1/S1, and *S2/S2. The TEP1*R3 allele was restricted to only An. merus among these sympatric mosquito species, and we find that there is no evidence of recombination or selection in this allele.
Collapse
Affiliation(s)
- Brian Bartilol
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.449370.d0000 0004 1780 4347Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Donwilliams Omuoyo
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Jonathan Karisa
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kelly Ominde
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Charles Mbogo
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Joseph Mwangangi
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Marta Maia
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus Roosevelt Drive, Oxford, OX3 7FZ UK
| | - Martin Kibet Rono
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya ,grid.449370.d0000 0004 1780 4347Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| |
Collapse
|
89
|
Mwema T, Lukubwe O, Joseph R, Maliti D, Iitula I, Katokele S, Uusiku P, Walusimbi D, Ogoma SB, Tambo M, Gueye CS, Williams YA, Vajda E, Tatarsky A, Eiseb SJ, Mumbengegwi DR, Lobo NF. Human and vector behaviors determine exposure to Anopheles in Namibia. Parasit Vectors 2022; 15:436. [PMID: 36397152 PMCID: PMC9673320 DOI: 10.1186/s13071-022-05563-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Background Although the Republic of Namibia has significantly reduced malaria transmission, regular outbreaks and persistent transmission impede progress towards elimination. Towards an understanding of the protective efficacy, as well as gaps in protection, associated with long-lasting insecticidal nets (LLINs), human and Anopheles behaviors were evaluated in parallel in three malaria endemic regions, Kavango East, Ohangwena and Zambezi, using the Entomological Surveillance Planning Tool to answer the question: where and when are humans being exposed to bites of Anopheles mosquitoes? Methods Surveillance activities were conducted during the malaria transmission season in March 2018 for eight consecutive nights. Four sentinel structures per site were selected, and human landing catches and human behavior observations were consented to for a total of 32 collection nights per site. The selected structures were representative of local constructions (with respect to building materials and size) and were at least 100 m from each other. For each house where human landing catches were undertaken, a two-person team collected mosquitoes from 1800 to 0600 hours. Results Surveillance revealed the presence of the primary vectors Anopheles arabiensis, Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus s.s., along with secondary vectors (Anopheles coustani sensu lato and Anopheles squamosus), with both indoor and outdoor biting behaviors based on the site. Site-specific human behaviors considerably increased human exposure to vector biting. The interaction between local human behaviors (spatial and temporal presence alongside LLIN use) and vector behaviors (spatial and temporal host seeking), and also species composition, dictated where and when exposure to infectious bites occurred, and showed that exposure was primarily indoors in Kavango East (78.6%) and outdoors in Ohangwena (66.7%) and Zambezi (81.4%). Human behavior-adjusted exposure was significantly different from raw vector biting rate. Conclusions Increased LLIN use may significantly increase protection and reduce exposure to malaria, but may not be enough to eliminate the disease, as gaps in protection will remain both indoors (when people are awake and not using LLINs) and outdoors. Alternative interventions are required to address these exposure gaps. Focused and question-based operational entomological surveillance together with human behavioral observations may considerably improve our understanding of transmission dynamics as well as intervention efficacy and gaps in protection. Graphical Abstract ![]()
Collapse
|
90
|
Karisa J, Ominde K, Muriu S, Munyao V, Mwikali K, Babu L, Ondieki Z, Bartilol B, Tuwei M, Wanjiku C, Maia M, Midega J, Rono M, Peshu N, Mbogo C, Mwangangi JM. Malaria vector bionomics in Taita-Taveta County, coastal Kenya. Parasit Vectors 2022; 15:430. [DOI: 10.1186/s13071-022-05527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Estimation of the composition and densities of mosquito species populations is crucial for monitoring the epidemiology of mosquito-borne diseases and provide information on local vectors to public health officials and policy-makers. The aim of this study was to evaluate malaria vector bionomics in ecologically distinct sites in Taita-Taveta County, Kenya.
Methods
Adult mosquitoes were collected using backpack aspirators and paired indoor/outdoor CDC light traps in 10 randomly selected households in six villages with distinct ecologies over a study period of 3 years. All Anopheles mosquitoes were morphotyped, and sibling species of Anopheles gambiae sensu lato (An. gambiae s.l.) were identified and separated by PCR analysis of extracted ribosomal DNA. All female anophelines were tested for sporozoite infectivity, with engorged females screened for blood-meal sources using the enzyme-linked immunosorbent assay technique. A subsample of those testing positive and those testing negative for Plasmodium in the ELISA were subjected to PCR assay.
Results
A total of eight different Anopheles species were collected both indoors and outdoors. Anopheles gambiae s.l. (82.6%, n = 5252) was the predominant species sensu lato, followed by Anopheles coustani sensu lato (An. coustani s.l.; (10.5%, n = 666) and Anopheles funestus sensu lato (An. funestus s.l.; 5.6%, n = 357). A subset of 683 mosquito samples representing An. gambiae s.l. (n = 580, approx. 11.0%) and An. funestus s.l. (n = 103, approx. 28.9%) were identified by molecular diagnostic assays into sibling species. The An. gambiae s.l. complex was composed of Anopheles arabiensis (62.5%, n = 363/580), An. gambiae sensu stricto (An. gambiae s.s.; 0.7%, n = 4/580), Anopheles merus (0.7%, n = 4/580) and Anopheles quadriannulatus (0.2%, n = 1/580), with the remaining samples (35.5%, n = 206/580) unamplified. Anopheles funestus s.l. was composed of An. rivulorum (14.6%, n = 15/103) and An. leesoni (11.6%, n = 12/103); the remaining samples were unamplified (73.8%, n = 76/103). A total of 981 samples were subjected to PCR analysis for malaria parasite detection; of these 16 (1.6%) were confirmed to be positive for Plasmodium falciparum. The overall human blood index was 0.13 (32/238).
Conclusions
Anopheles gambiae, An. funestus and An. coustani are key malaria vectors in the Taveta region of Kenya, showing concurrent indoor and outdoor transmission. All of the vectors tested showed a higher propensity for bovine and goat blood than for human blood.
Graphical Abstract
Collapse
|
91
|
Ondeto BM, Wang X, Atieli H, Zhong D, Zhou G, Lee MC, Orondo PW, Ochwedo KO, Omondi CJ, Muriu SM, Odongo DO, Ochanda H, Kazura J, Githeko AK, Yan G. A prospective cohort study of Plasmodium falciparum malaria in three sites of Western Kenya. Parasit Vectors 2022; 15:416. [PMID: 36352453 PMCID: PMC9647947 DOI: 10.1186/s13071-022-05503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Malaria in western Kenya is currently characterized by sustained high Plasmodial transmission and infection resurgence, despite positive responses in some areas following intensified malaria control interventions since 2006. This study aimed to evaluate long-term changes in malaria transmission profiles and to assess patterns of asymptomatic malaria infections in school children aged 5-15 years at three sites in western Kenya with heterogeneous malaria transmission and simultaneous malaria control interventions. METHODS The study was conducted from 2018 to 2019 and is based on data taken every third year from 2005 to 2014 during a longitudinal parasitological and mosquito adult surveillance and malaria control programme that was initiated in 2002 in the villages of Kombewa, Iguhu, and Marani. Plasmodium spp. infections were determined using microscopy. Mosquito samples were identified to species and host blood meal source and sporozoite infections were assayed using polymerase chain reaction. RESULTS Plasmodium falciparum was the only malaria parasite evaluated during this study (2018-2019). Asymptomatic malaria parasite prevalence in school children decreased in all sites from 2005 to 2008. However, since 2011, parasite prevalence has resurged by > 40% in Kombewa and Marani. Malaria vector densities showed similar reductions from 2005 to 2008 in all sites, rose steadily until 2014, and decreased again. Overall, Kombewa had a higher risk of infection compared to Iguhu (χ2 = 552.52, df = 1, P < 0.0001) and Marani (χ2 = 1127.99, df = 1, P < 0.0001). There was a significant difference in probability of non-infection during malaria episodes (log-rank test, χ2 = 617.59, df = 2, P < 0.0001) in the study sites, with Kombewa having the least median time of non-infection during malaria episodes. Gender bias toward males in infection was observed (χ2 = 27.17, df = 1, P < 0.0001). The annual entomological inoculation rates were 5.12, 3.65, and 0.50 infective bites/person/year at Kombewa, Iguhu, and Marani, respectively, during 2018 to 2019. CONCLUSIONS Malaria prevalence in western Kenya remains high and has resurged in some sites despite continuous intervention efforts. Targeting malaria interventions to those with asymptomatic infections who serve as human reservoirs might decrease malaria transmission and prevent resurgences. Longitudinal monitoring enables detection of changes in parasitological and entomological profiles and provides core baseline data for the evaluation of vector interventions and guidance for future planning of malaria control.
Collapse
Affiliation(s)
- Benyl M. Ondeto
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya ,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya
| | - Xiaoming Wang
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Harrysone Atieli
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya
| | - Daibin Zhong
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Guofa Zhou
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Ming-Chieh Lee
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Pauline Winnie Orondo
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya ,grid.411943.a0000 0000 9146 7108Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200 Kenya
| | - Kevin O. Ochwedo
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya ,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya
| | - Collince J. Omondi
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya ,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya
| | - Simon M. Muriu
- grid.449370.d0000 0004 1780 4347Department of Biological Sciences, Pwani University, Kilifi, 80108 Kenya
| | - David O. Odongo
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya
| | - Horace Ochanda
- grid.10604.330000 0001 2019 0495Department of Biology, University of Nairobi, Nairobi, 00100 Kenya
| | - James Kazura
- grid.67105.350000 0001 2164 3847Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Andrew K. Githeko
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300 Kenya ,grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, 40100 Kenya
| | - Guiyun Yan
- grid.266093.80000 0001 0668 7243Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
92
|
Mugenzi LMJ, Akosah-Brempong G, Tchouakui M, Menze BD, Tekoh TA, Tchoupo M, Nkemngo FN, Wondji MJ, Nwaefuna EK, Osae M, Wondji CS. Escalating pyrethroid resistance in two major malaria vectors Anopheles funestus and Anopheles gambiae (s.l.) in Atatam, Southern Ghana. BMC Infect Dis 2022; 22:799. [PMID: 36284278 PMCID: PMC9597992 DOI: 10.1186/s12879-022-07795-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aggravation of insecticide resistance in malaria vectors is threatening the efforts to control malaria by reducing the efficacy of insecticide-based interventions hence needs to be closely monitored. This study investigated the intensity of insecticide resistance of two major malaria vectors An. funestus sensu stricto (s.s.) and An. gambiae sensu lato (s.l.) collected in southern Ghana and assessed the bio-efficacy of several long-lasting insecticidal nets (LLINs) against these mosquito populations. METHODS The insecticide susceptibility profiles of Anopheles funestus s.s. and Anopheles gambiae s.l. populations from Obuasi region (Atatam), southern Ghana were characterized and the bio-efficacy of some LLINs was assessed to determine the impact of insecticide resistance on the effectiveness of these tools. Furthermore, molecular markers associated with insecticide resistance in both species were characterized in the F0 and F1 populations using PCR and qPCR methods. RESULTS Anopheles funestus s.s. was the predominant species and was resistant to pyrethroids, organochlorine and carbamate insecticides, but fully susceptible to organophosphates. An. gambiae s.l. was resistant to all four insecticide classes. High intensity of resistance to 5 × and 10 × the discriminating concentration (DC) of pyrethroids was observed in both species inducing a considerable loss of efficacy of long-lasting insecticidal nets (LLINs). Temporal expression analysis revealed a massive 12-fold increase in expression of the CYP6P4a cytochrome P450 gene in An. funestus s.s., initially from a fold change of 41 (2014) to 500 (2021). For both species, the expression of candidate genes did not vary according to discriminating doses. An. gambiae s.l. exhibited high frequencies of target-site resistance including Vgsc-1014F (90%) and Ace-1 (50%) while these mutations were absent in An. funestus s.s. CONCLUSIONS The multiple and high intensity of resistance observed in both malaria vectors highlights the need to implement resistance management strategies and the introduction of new insecticide chemistries.
Collapse
Affiliation(s)
- Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
| | - Gabriel Akosah-Brempong
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Accra, Ghana
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Benjamin D Menze
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Theofelix A Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Francis N Nkemngo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ekene K Nwaefuna
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Michael Osae
- Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Accra, Ghana
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
93
|
Meza FC, Muyaga LL, Limwagu AJ, Lwetoijera DW. The ability of Anopheles funestus and A. arabiensis to penetrate LLINs and its effect on their mortality. Wellcome Open Res 2022; 7:265. [PMID: 36974127 PMCID: PMC10039320 DOI: 10.12688/wellcomeopenres.18242.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Variation in mosquito body size and the ability to penetrate long-lasting insecticide-treated nets (LLINs) remains unknown. This study evaluated the ability of Anopheles funestus and A. arabiensis to penetrate commercially available treated and untreated bednets and how this behaviour affects mosquito mortality. Methods: Three types of LLINs; DawaPlus 2.0, PermaNet 2.0, Olyset 2.0, and untreated (Safi Net) were tested inside a semi-field system. One hundred 3–5-day-old female A. funestus and A. arabiensis were released in a chamber with a sleeping adult volunteer under a treated or untreated bednet. Mosquitoes that penetrated inside the nets were collected every two hours using a mouth aspirator. Live mosquitoes were put in paper cups, fed on glucose ad libitum and their mortality rate was monitored for 48 h. Results: The ability of A. funestus to penetrate treated and untreated bednets was significantly higher than for A. arabiensis for all three LLIN net types (P<0.001). For both species the penetration rate was higher for untreated bednets than treated ones except for the Olyset net. Of all mosquitoes that penetrated the net, regardless of the species, >90% successfully blood-fed on the sleeping volunteer. Compared to A. arabiensis, significant mortality was recorded for A. funestus that were caught inside Olyset nets within 48 hrs of monitoring (P<0.001). Conclusions: These findings demonstrate the ability of A. funestus and A. arabiensis mosquitoes to penetrate the human-occupied treated and untreated bednets. Despite this ability, mosquitoes that penetrated the bednet succumbed to death within two days.
Collapse
Affiliation(s)
- Felician Clement Meza
- Environmental Health and Ecological Sciences, Ifakara Health Institute, DAR ES SALAAM, N/A, 14112, Tanzania
| | - Letus L Muyaga
- Environmental Health and Ecological Sciences, Ifakara Health Institute, DAR ES SALAAM, N/A, 14112, Tanzania
| | - Alex Julius Limwagu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, DAR ES SALAAM, N/A, 14112, Tanzania
| | - Dickson Wilson Lwetoijera
- Environmental Health and Ecological Sciences, Ifakara Health Institute, DAR ES SALAAM, N/A, 14112, Tanzania
- Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
94
|
Fernández Montoya L, Máquina M, Martí-Soler H, Sherrard-Smith E, Alafo C, Opiyo M, Comiche K, Galatas B, Huijben S, Koekemoer LL, Oliver SV, Maartens F, Marrenjo D, Cuamba N, Aide P, Saúte F, Paaijmans KP. The realized efficacy of indoor residual spraying campaigns falls quickly below the recommended WHO threshold when coverage, pace of spraying and residual efficacy on different wall types are considered. PLoS One 2022; 17:e0272655. [PMID: 36190958 PMCID: PMC9529131 DOI: 10.1371/journal.pone.0272655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Indoor residual spraying (IRS) has been and remains an important malaria control intervention in southern Mozambique, South Africa and Eswatini. A better understanding of the effectiveness of IRS campaigns is critical to guide future elimination efforts. We analyze the three IRS campaigns conducted during a malaria elimination demonstration project in southern Mozambique, the "Magude project", and propose a new method to calculate the efficacy of IRS campaigns adjusting for IRS coverage, pace of house spraying and IRS residual efficacy on different wall types. Anopheles funestus sensu lato (s.l.) and An. gambiae s.l. were susceptible to pirimiphos-methyl and DDT. Anopheles funestus s.l. was resistant to pyrethroids, with 24h post-exposure mortality being lower for An. funestus sensu stricto (s.s.) than for An. parensis (collected indoors). The percentage of structures sprayed was above 90% and percentage of people covered above 86% in all three IRS campaigns. The percentage of households sprayed was above 83% in 2015 and 2016, but not assessed in 2017. Mosquito mortality 24h post-exposure stayed above 80% for 196 days after the 2016 IRS campaign and 222 days after the 2017 campaign and was 1.5 months longer on mud walls than on cement walls. This was extended by up to two months when 120h post-exposure mortality was considered. The district-level realized IRS efficacy was 113 days after the 2016 campaign. While the coverage of IRS campaigns in Magude were high, IRS protection did not remain optimal for the entire high malaria transmissions season. The use of a longer-lasting IRS product could have further supported the interruption of malaria transmission in the district. To better estimate the protection afforded by IRS campaigns, National Malaria Control Programs and partners are encouraged to adjust the calculation of IRS efficacy for IRS coverage, pace of house spraying during the campaign and IRS efficacy on different wall types combined with wall type distribution in the sprayed area.
Collapse
Affiliation(s)
- Lucia Fernández Montoya
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Mercy Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Silvie Huijben
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | | | | | - Nelson Cuamba
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Krijn P. Paaijmans
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
95
|
Otambo WO, Onyango PO, Wang C, Olumeh J, Ondeto BM, Lee MC, Atieli H, Githeko AK, Kazura J, Zhong D, Zhou G, Githure J, Ouma C, Yan G. Influence of landscape heterogeneity on entomological and parasitological indices of malaria in Kisumu, Western Kenya. Parasit Vectors 2022; 15:340. [PMID: 36167549 PMCID: PMC9516797 DOI: 10.1186/s13071-022-05447-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Identification and characterization of larval habitats, documentation of Anopheles spp. composition and abundance, and Plasmodium spp. infection burden are critical components of integrated vector management. The present study aimed to investigate the effect of landscape heterogeneity on entomological and parasitological indices of malaria in western Kenya. Methods A cross-sectional entomological and parasitological survey was conducted along an altitudinal transect in three eco-epidemiological zones: lakeshore along the lakeside, hillside, and highland plateau during the wet and dry seasons in 2020 in Kisumu County, Kenya. Larval habitats for Anopheles mosquitoes were identified and characterized. Adult mosquitoes were sampled using pyrethrum spray catches (PSC). Finger prick blood samples were taken from residents and examined for malaria parasites by real-time PCR (RT-PCR). Results Increased risk of Plasmodium falciparum infection was associated with residency in the lakeshore zone, school-age children, rainy season, and no ITNs (χ2 = 41.201, df = 9, P < 0.0001). Similarly, lakeshore zone and the rainy season significantly increased Anopheles spp. abundance. However, house structures such as wall type and whether the eave spaces were closed or open, as well as the use of ITNs, did not affect Anopheles spp. densities in the homes (χ2 = 38.695, df = 7, P < 0.0001). Anopheles funestus (41.8%) and An. arabiensis (29.1%) were the most abundant vectors in all zones. Sporozoite prevalence was 5.6% and 3.2% in the two species respectively. The lakeshore zone had the highest sporozoite prevalence (4.4%, 7/160) and inoculation rates (135.2 infective bites/person/year). High larval densities were significantly associated with lakeshore zone and hillside zones, animal hoof prints and tire truck larval habitats, wetland and pasture land, and the wet season. The larval habitat types differed significantly across the landscape zones and seasonality (χ2 = 1453.044, df = 298, P < 0.0001). Conclusion The empirical evidence on the impact of landscape heterogeneity and seasonality on vector densities, parasite transmission, and Plasmodium infections in humans emphasizes the importance of tailoring specific adaptive environmental management interventions to specific landscape attributes to have a significant impact on transmission reduction. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05447-9.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- Department of Zoology, Maseno University, Kisumu, Kenya. .,International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya.
| | | | - Chloe Wang
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Julius Olumeh
- School of Natural and Environmental Science, Newcastle University, Newcastle, UK
| | - Benyl M Ondeto
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya.,Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James Kazura
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Centre for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daibin Zhong
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
96
|
Fernandez Montoya L, Alafo C, Martí-Soler H, Máquina M, Comiche K, Cuamba I, Munguambe K, Cator L, Aide P, Galatas B, Cuamba N, Marrenjo D, Saúte F, Paaijmans KP. Overlaying human and mosquito behavioral data to estimate residual exposure to host-seeking mosquitoes and the protection of bednets in a malaria elimination setting where indoor residual spraying and nets were deployed together. PLoS One 2022; 17:e0270882. [PMID: 36107865 PMCID: PMC9477321 DOI: 10.1371/journal.pone.0270882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Characterizing persistent malaria transmission that occurs after the combined deployment of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) is critical to guide malaria control and elimination efforts. This requires a detailed understanding of both human and vector behaviors at the same temporal and spatial scale. Cross-sectional human behavior evaluations and mosquito collections were performed in parallel in Magude district, Mozambique. Net use and the exact time when participant moved into each of five environments (outdoor, indoor before bed, indoor in bed, indoor after getting up, and outdoor after getting up) were recorded for individuals from three different age groups and both sexes during a dry and a rainy season. Malaria mosquitoes were collected with CDC light traps in combination with collection bottle rotators. The percentage of residual exposure to host-seeking vectors that occurred in each environment was calculated for five local malaria vectors with different biting behaviors, and the actual (at observed levels of LLIN use) and potential (i.e. if all residents had used an LLIN) personal protection conferred by LLINs was estimated. Anopheles arabiensis was responsible for more than 74% of residents' residual exposure to host-seeking vectors during the Magude project. The other four vector species (An. funestus s.s., An. parensis, An. squamosus and An. merus) were responsible for less than 10% each. The personal protection conferred by LLINs prevented only 39.2% of the exposure to host-seeking vectors that survived the implementation of both IRS and LLINs, and it differed significantly across seasons, vector species and age groups. At the observed levels of bednet use, 12.5% of all residual exposure to host-seeking vectors occurred outdoor during the evening, 21.9% indoor before going to bed, almost two thirds (64%) while people were in bed, 1.4% indoors after getting up and 0.2% outdoor after leaving the house. Almost a third of the residual exposure to host-seeking vectors (32.4%) occurred during the low transmission season. The residual bites of An. funestus s.s. and An. parensis outdoors and indoor before bedtime, of An. arabiensis indoors when people are in bed, and of An. squamosus both indoors and outdoors, are likely to have sustained malaria transmission throughout the Magude project. By increasing LLIN use, an additional 24.1% of exposure to the remaining hosts-seeking vectors could have been prevented. Since An. arabiensis, the most abundant vector, feeds primarily while people are in bed, increasing net use and net feeding inhibition (through e.g. community awareness activities and the selection of more effective LLINs) could significantly reduce the exposure to remaining host-seeking mosquitoes. Nonetheless, supplementary interventions aiming to reduce human-vector contact outdoors and/or indoors before people go to bed (e.g. through larval source management, window and eave screening, eave tubes, and spatial repellents) will be needed to reduce residual exposure to the outdoor and early biting An. funestus s.s. and An. parensis.
Collapse
Affiliation(s)
- Lucia Fernandez Montoya
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- Goodbye Malaria, Tchau Tchau Malaria Foundation, Chibungo, Mozambique
| | | | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Inocencia Cuamba
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Khatia Munguambe
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | | | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Beatriz Galatas
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Dulcisaria Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Krijn P. Paaijmans
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
97
|
Fernández Montoya L, Martí-Soler H, Máquina M, Comiche K, Cuamba I, Alafo C, Koekemoer LL, Sherrard-Smith E, Bassat Q, Galatas B, Aide P, Cuamba N, Jotamo D, Saúte F, Paaijmans KP. The mosquito vectors that sustained malaria transmission during the Magude project despite the combined deployment of indoor residual spraying, insecticide-treated nets and mass-drug administration. PLoS One 2022; 17:e0271427. [PMID: 36084031 PMCID: PMC9462736 DOI: 10.1371/journal.pone.0271427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
The "Magude project" aimed but failed to interrupt local malaria transmission in Magude district, southern Mozambique, by using a comprehensive package of interventions, including indoor residual spraying (IRS), pyrethroid-only long-lasting insecticide treated nets (LLINs) and mass-drug administration (MDA). Here we present detailed information on the vector species that sustained malaria transmission, their association with malaria incidence and behaviors, and their amenability to the implemented control interventions. Mosquitoes were collected monthly between May 2015 and October 2017 in six sentinel sites in Magude district, using CDC light traps both indoors and outdoors. Anopheles arabiensis was the main vector during the project, while An. funestus s.s., An. merus, An. parensis and An. squamosus likely played a secondary role. The latter two species have never previously been found positive for Plasmodium falciparum in southern Mozambique. The intervention package successfully reduced vector sporozoite rates in all species throughout the project. IRS was effective in controlling An. funestus s.s. and An. parensis, which virtually disappeared after its first implementation, but less effective at controlling An. arabiensis. Despite suboptimal use, LLINs likely provided significant protection against An. arabiensis and An. merus that sought their host largely indoors when people where in bed. Adding IRS on top of LLINs and MDA likely added value to the control of malaria vectors during the Magude project. Future malaria elimination attempts in the area could benefit from i) increasing the use of LLINs, ii) using longer-lasting IRS products to counteract the increase in vector densities observed towards the end of the high transmission season, and iii) a higher coverage with MDA to reduce the likelihood of human infection. However, additional interventions targeting vectors that survive IRS and LLINs by biting outdoors or indoors before people go to bed, will be likely needed to achieve local malaria elimination.
Collapse
Affiliation(s)
- Lucía Fernández Montoya
- ISGlobal, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | | | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Inocencia Cuamba
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Lizette L. Koekemoer
- Faculty of Health Sciences, WITS Research Institute for Malaria, University of the Witswatersrand and the Natitonal Institute for Communicable Diseases, Johannesburg, South Africa
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Quique Bassat
- ISGlobal, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- ICREA, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Beatriz Galatas
- ISGlobal, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Dulcisaria Jotamo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
| | - Krijn P. Paaijmans
- ISGlobal, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Mozambique
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
98
|
Menze BD, Tchouakui M, Mugenzi LMJ, Tchapga W, Tchoupo M, Wondji MJ, Chiumia M, Mzilahowa T, Wondji CS. Marked aggravation of pyrethroid resistance in major malaria vectors in Malawi between 2014 and 2021 is partly linked with increased expression of P450 alleles. BMC Infect Dis 2022; 22:660. [PMID: 35907831 PMCID: PMC9338535 DOI: 10.1186/s12879-022-07596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased intensity of pyrethroid resistance is threatening the effectiveness of insecticide-based interventions to control malaria in Africa. Assessing the extent of this aggravation and its impact on the efficacy of these tools is vital to ensure the continued control of major vectors. Here we took advantage of 2009 and 2014 data from Malawi to establish the extent of the resistance escalation in 2021 and assessed its impact on various bed nets performance. METHODS Indoor blood-fed and wild female Anopheles (An) mosquitoes were collected with an electric aspirator in Chikwawa. Cocktail and SINE PCR were used to identify sibling species belonging to An. funestus group and An. gambiae complex. The susceptibility profile to the four classes of insecticides was assessed using the WHO tubes bioassays. Data were saved in an Excel file. Analysis was done using Vassarstats and figures by Graph Pad. RESULTS In this study, a high level of resistance was observed with pyrethroids (permethrin, deltamethrin and alpha-cypermethrin with mortality rate at 5x discriminating concentration (DC) < 50% and Mortality rate at 10x DC < 70%). A high level of resistance was also observed to carbamate (bendiocarb) with mortality rate at 5x DC < 25%). Aggravation of resistance was also noticed between 2009 and 2021. For pyrethroids, the mortality rate for permethrin reduced from 47.2% in 2009 to 13% in 2014 and 6.7% in 2021. For deltamethrin, the mortality rate reduced from 42.3% in 2009 to 1.75% in 2014 and 5.2% in 2021. For Bendiocarb, the mortality rate reduced from 60% in 2009 to 30.1% in 2014 and 12.2% in 2021. The high resistance observed is consistent with a drastic loss of pyrethroid-only bed nets efficacy although Piperonyl butoxide (PBO)-based nets remain effective. The resistance pattern observed was linked with high up-regulation of the P450 genes CYP6P9a, CYP6P9b and CYP6M7 in An. funestus s.s. mosquitoes surviving exposure to deltamethrin at 1x, 5x and 10x DC. A significant association was observed between the 6.5 kb structural variant and resistance escalation with homozygote resistant (SV+/SV+) more likely to survive exposure to 5x and 10x (OR = 4.1; P < 0.001) deltamethrin than heterozygotes. However, a significant proportion of mosquitoes survived the synergist assays with PBO suggesting that other mechanisms than P450s are present. CONCLUSIONS This resistance aggravation in An. funestus s.s. Malawian population highlights an urgent need to deploy novel control tools not relying on pyrethroids to improve the effectiveness of vector control.
Collapse
Affiliation(s)
- Benjamin D. Menze
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Leon M. J. Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Williams Tchapga
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Micareme Tchoupo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Murielle J. Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Martin Chiumia
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Themba Mzilahowa
- Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Charles S. Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
99
|
Alafo C, Martí-Soler H, Máquina M, Malheia A, Aswat AS, Koekemoer LL, Colborn J, Lobo NF, Tatarsky A, Williams YA, Marrenjo D, Cuamba N, Rabinovich R, Alonso P, Aide P, Saúte F, Paaijmans KP. To spray or target mosquitoes another way: focused entomological intelligence guides the implementation of indoor residual spraying in southern Mozambique. Malar J 2022; 21:215. [PMID: 35820899 PMCID: PMC9275269 DOI: 10.1186/s12936-022-04233-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To eliminate malaria in southern Mozambique, the National Malaria Control Programme and its partners are scaling up indoor residual spraying (IRS) activities in two provinces, Gaza and Inhambane. An entomological surveillance planning tool (ESPT) was used to answer the programmatic question of whether IRS would be effective in target geographies, given limited information on local vector bionomics. METHODS Entomological intelligence was collected in six sentinel sites at the end of the rainy season (April-May 2018) and the beginning of the dry season (June-July 2018). The primary objective was to provide an 'entomological snapshot' by collecting question-based, timely and high-quality data within one single week in each location. Host-seeking behaviour (both indoors and outdoors) was monitored by human-baited tent traps. Indoor resting behaviour was quantified by pyrethrum spray catches and window exit traps. RESULTS Five different species or species groups were identified: Anopheles funestus sensu lato (s.l.) (66.0%), Anopheles gambiae s.l. (14.0%), Anopheles pharoensis (1.4%), Anopheles tenebrosus (14.1%) and Anopheles ziemanni (4.5%). Anopheles funestus sensu stricto (s.s.) was the major vector among its sibling species, and 1.9% were positive for Plasmodium falciparum infections. Anopheles arabiensis was the most abundant vector species within the An. gambiae complex, but none tested positive for P. falciparum infections. Some An. tenebrosus were positive for P. falciparum (1.3%). When evaluating behaviours that impact IRS efficacy, i.e. endophily, the known primary vector An. funestus s.s., was found to rest indoors-demonstrating at least part of its population will be impacted by the intervention if insecticides are selected to which this vector is susceptible. However, other vector species, including An. gambiae s.l., An. tenebrosus, An. pharoensis and An. ziemanni, showed exophilic and exophagic behaviours in several of the districts surveilled. CONCLUSION The targeted approach to entomological surveillance was successful in collecting question-based entomological intelligence to inform decision-making about the use of IRS in specific districts. Endophilic An. funestus s.s. was documented as being the most prevalent and primary malaria vector suggesting that IRS can reduce malaria transmission, but the presence of other vector species both indoors and outdoors suggests that alternative vector control interventions that target these gaps in protection may increase the impact of vector control in southern Mozambique.
Collapse
Affiliation(s)
- Celso Alafo
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | | | - Mara Máquina
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Arlindo Malheia
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Ayesha S Aswat
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, & National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, & National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yasmin A Williams
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Dulcisária Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc, Maputo, Mozambique
| | - Regina Rabinovich
- ISGlobal, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pedro Alonso
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
| | - Pedro Aide
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Krijn P Paaijmans
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique.
- ISGlobal, Barcelona, Spain.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
100
|
Sedda L, McCann RS, Kabaghe AN, Gowelo S, Mburu MM, Tizifa TA, Chipeta MG, van den Berg H, Takken W, van Vugt M, Phiri KS, Cain R, Tangena JAA, Jones CM. Hotspots and super-spreaders: Modelling fine-scale malaria parasite transmission using mosquito flight behaviour. PLoS Pathog 2022; 18:e1010622. [PMID: 35793345 PMCID: PMC9292116 DOI: 10.1371/journal.ppat.1010622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/18/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Malaria hotspots have been the focus of public health managers for several years due to the potential elimination gains that can be obtained from targeting them. The identification of hotspots must be accompanied by the description of the overall network of stable and unstable hotspots of malaria, especially in medium and low transmission settings where malaria elimination is targeted. Targeting hotspots with malaria control interventions has, so far, not produced expected benefits. In this work we have employed a mechanistic-stochastic algorithm to identify clusters of super-spreader houses and their related stable hotspots by accounting for mosquito flight capabilities and the spatial configuration of malaria infections at the house level. Our results show that the number of super-spreading houses and hotspots is dependent on the spatial configuration of the villages. In addition, super-spreaders are also associated to house characteristics such as livestock and family composition. We found that most of the transmission is associated with winds between 6pm and 10pm although later hours are also important. Mixed mosquito flight (downwind and upwind both with random components) were the most likely movements causing the spread of malaria in two out of the three study areas. Finally, our algorithm (named MALSWOTS) provided an estimate of the speed of malaria infection progression from house to house which was around 200-400 meters per day, a figure coherent with mark-release-recapture studies of Anopheles dispersion. Cross validation using an out-of-sample procedure showed accurate identification of hotspots. Our findings provide a significant contribution towards the identification and development of optimal tools for efficient and effective spatio-temporal targeted malaria interventions over potential hotspot areas.
Collapse
Affiliation(s)
- Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, United Kingdom
| | - Robert S. McCann
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alinune N. Kabaghe
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Steven Gowelo
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- MAC Communicable Diseases Action Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Monicah M. Mburu
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Tinashe A. Tizifa
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Center for Tropical Medicine and Travel Medicine, University of Amsterdam, The Netherlands
| | - Michael G. Chipeta
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Michèle van Vugt
- Center for Tropical Medicine and Travel Medicine, University of Amsterdam, The Netherlands
| | - Kamija S. Phiri
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Russell Cain
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, United Kingdom
| | - Julie-Anne A. Tangena
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christopher M. Jones
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|