51
|
San-Marina S, Prummer CM, Voss SG, Hunter DE, Madden BJ, Charlesworth MC, Ekbom DC, Janus JR. Chondrogenic Predifferentiation Inhibits Vascular Endothelial Growth Factor Angiogenic Effect in Pericranium-Derived Spheroids. Tissue Eng Part A 2020; 27:237-245. [PMID: 32640938 DOI: 10.1089/ten.tea.2020.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Craniofacial reconstruction of critical bone defects typically requires a bone graft. As graft availability may be restricted by disease or comorbidities, tissue engineering approaches are actively sought. The pericranium could provide new bone graft material. During development and repair, bone transitions through a chondrogenic phase. However, with tissue engineering, pluripotent cells can differentiate directly into bone cells. Does ability to recapitulate bone formation in vitro affect osteogenesis and vascularization of pericranium grafts? To answer this, we obtained tissue from nine patients with preplanned craniotomy surgery and studied three-dimensional osteogenesis and angiogenesis of pericranium-derived spheroids. First, we established growth and differentiation conditions on Matrigel. For each spheroid sample, we investigated (i) continuous osteogenic differentiation (COD) and (ii) osteogenic differentiation preceded by chondrogenesis (CD → OD). The effect of vascular endothelial growth factor (VEGF) was compared to VEGF supplemented with fibroblast growth factor, interleukin (IL)-1, IL-6, platelet-derived growth factor, and tumor necrosis factor-α, a growth factor mix (GFM) with possible synergistic effects. In this limited sample, we observed no age- or sex-related differences in cell expansion. Similarly, no statistically significant differences in osteogenic or angiogenic scores between COD or CD → OD spheroids were noted with regular media. In COD, however, VEGF statistically significantly increased angiogenesis compared to control media (p = 0.007). Also, in COD, both VEGF and VEGF + GFM increased osteogenesis (p = 0.047 and p = 0.038, respectively). By contrast, in CD → OD, neither VEGF nor VEGF + GFM yielded statistically significant angiogenesis or osteogenesis scores compared to control media. To understand these results, we characterized spheroid protein expression by nanoliquid chromatography coupled to tandem mass spectrometry. Nine angiogenic proteins were either uniquely expressed or upregulated in COD compared to CD → OD: (i) endothelial markers JUP, PTGIS, PTGS2, and TYMP, (ii) tissue remodeling factors CHI3L1 and MMP14, and (iii) metabolic pathways modulators ANGPTL4, ITGA5, and WNT5A. ANGPTL4, ITGA5, PTGIS, PTGS2, and WNT5A define a conserved angiogenic network and were >2-fold increased in VEGF compared to VEGF + GFM. Finally, we examined bone formation on printable poly-(propylene-fumarate) (PPF) scaffolds for individualized grafting. Under COD + VEGF conditions, PPF scaffolds loaded with pericranium-derived cells displayed hallmarks of spongiform-like bone formation. Thus, the human pericranium may be a potential repository for bone-generating cells with applications in craniofacial bone repair using tissue printing.
Collapse
Affiliation(s)
- Serban San-Marina
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Stephen G Voss
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Danielle E Hunter
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin J Madden
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dale C Ekbom
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey R Janus
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
52
|
Zhuang Z, John JV, Liao H, Luo J, Rubery P, Mesfin A, Boda SK, Xie J, Zhang X. Periosteum Mimetic Coating on Structural Bone Allografts via Electrospray Deposition Enhances Repair and Reconstruction of Segmental Defects. ACS Biomater Sci Eng 2020; 6:6241-6252. [PMID: 33449646 DOI: 10.1021/acsbiomaterials.0c00421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural bone allograft transplantation remains one of the common strategies for repair and reconstruction of large bone defects. Due to the loss of periosteum that covers the outer surface of the cortical bone, the healing and incorporation of allografts is extremely slow and limited. To enhance the biological performance of allografts, herein, we report a novel and simple approach for engineering a periosteum mimetic coating on the surface of structural bone allografts via polymer-mediated electrospray deposition. This approach enables the coating on allografts with precisely controlled composition and thickness. In addition, the periosteum mimetic coating can be tailored to achieve desired drug release profiles by making use of an appropriate biodegradable polymer or polymer blend. The efficacy study in a murine segmental femoral bone defect model demonstrates that the allograft coating composed of poly(lactic-co-glycolic acid) and bone morphogenetic protein-2 mimicking peptide significantly improves allograft healing as evidenced by decreased fibrotic tissue formation, increased periosteal bone formation, and enhanced osseointegration. Taken together, this study provides a platform technology for engineering a periosteum mimetic coating which can greatly promote bone allograft healing. This technology could eventually result in an off-the-shelf and multifunctional structural bone allograft for highly effective repair and reconstruction of large segmental bone defects. The technology can also be used to ameliorate the performance of other medical implants by modifying their surfaces.
Collapse
Affiliation(s)
- Zhou Zhuang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14621, United States
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Haofu Liao
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, New York 14627, United States
| | - Paul Rubery
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Addisu Mesfin
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska, Omaha, Nebraska 68198, United States
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| |
Collapse
|
53
|
Impact of scaffold granule size use in Masquelet technique on periosteal reaction: a study in rat femur critical size bone defect model. Eur J Trauma Emerg Surg 2020; 48:679-687. [PMID: 33025170 PMCID: PMC8825401 DOI: 10.1007/s00068-020-01516-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Purpose The Masquelet technique for the treatment of large bone defects is a two-stage procedure based on an induced membrane. Compared to mature periosteum, the induced membrane differs significantly. However, both play a crucial role in bone regeneration. As part of a histological and radiological post-evaluation of an earlier project, we analyzed the influence of the granule size of the bone void filler Herafill® on development of periosteum regrowth in a critical size defect. Methods We compared three different sizes of Herafill® granules (Heraeus Medical GmbH, Wehrheim) in vivo in a rat femoral critical size defect (10 mm) treated with the induced membrane technique. After 8 weeks healing time, femurs were harvested and taken for histological and radiological analysis. Results A significantly increased regrowth of periosteum into the defect was found when small granules were used. Large granules showed significantly increased occurrence of bone capping. Small granules lead to significant increase in callus formation in the vicinity to the membrane. Conclusion The size of Herafill® granules has significant impact on the development of periosteal-like structures around the defect using Masquelet’s induced membrane technique. Small granules show significantly increased regrowth of periosteum and improved bone formation adjacent to the induced membrane.
Collapse
|
54
|
Xia C, Ge Q, Fang L, Yu H, Zou Z, Zhang P, Lv S, Tong P, Xiao L, Chen D, Wang PE, Jin H. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1 + periosteal cells during fracture healing. Cell Prolif 2020; 53:e12904. [PMID: 32997394 PMCID: PMC7653269 DOI: 10.1111/cpr.12904] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Most bone fracture heals through enchondral bone formation that relies on the involvement of periosteal progenitor cells. However, the identity of periosteal progenitor cells and the regulatory mechanism of their proliferation and differentiation remain unclear. The aim of this study was to investigate whether Gli1-CreERT2 can identify a population of murine periosteal progenitor cells and the role of TGF-β signalling in periosteal progenitor cells on fracture healing. MATERIALS AND METHODS Double heterozygous Gli1-CreERT2 ;Rosa26-tdTomatoflox/wt mice were sacrificed at different time points for tracing the fate of Gli1+ cells in both intact and fracture bone. Gli1-CreERT2 -mediated Tgfbr2 knockout (Gli1-CreERT2 ;Tgfbr2flox/flox ) mice were subjected to fracture surgery. At 4, 7, 10, 14 and 21 days post-surgery, tibia samples were harvested for tissue analyses including μCT, histology, real-time PCR and immunofluorescence staining. RESULTS Through cell lineage-tracing experiments, we have revealed that Gli1-CreER T2 can be used to identify a subpopulation of periosteal progenitor cells in vivo that persistently reside in periosteum and contribute to osteochondral elements during fracture repair. During the healing process, TGF-β signalling is continually activated in the reparative Gli1+ periosteal cells. Conditional knockout of Tgfbr2 in these cells leads to a delayed and impaired enchondral bone formation, at least partially due to the reduced proliferation and chondrogenic and osteogenic differentiation of Gli1+ periosteal cells. CONCLUSIONS TGF-β signalling plays an essential role on fracture repair via regulating enchondral bone formation process of Gli1+ periosteal cells.
Collapse
Affiliation(s)
- Chenjie Xia
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Orthopedic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Qinwen Ge
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Fang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yu
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zou
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peng Zhang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaijie Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luwei Xiao
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping-Er Wang
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongting Jin
- Institute of Orthopadics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
55
|
Yang H, Sun L, Cai W, Gu J, Xu D, Deb A, Duan J. DDR2, a discoidin domain receptor, is a marker of periosteal osteoblast and osteoblast progenitors. J Bone Miner Metab 2020; 38:670-677. [PMID: 32415375 PMCID: PMC7581459 DOI: 10.1007/s00774-020-01108-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The periosteum has a bilayered structure that surrounds cortical bone. The outer layer is rich in connective tissue and fibroblasts, while the inner layer in contact with the cortical surface of the bone predominantly consists of osteoblasts and osteoblast progenitors. The identification of cell-specific surface markers of the bilayered structure of the periosteum is important for the purpose of tissue regeneration. MATERIALS AND METHODS We investigated the expression of the discoidin domain tyrosine kinase receptor DDR2, fibroblast specific protein-1 (FSP-1) and alkaline phosphatase (ALP) in the periosteum of cortical bone by immunohistochemistry. Osteogenic differentiation was compared between DDR2- and FSP-1-expressing cells flow-sorted from the periosteum. RESULTS We showed that DDR2 predominantly labeled osteogenic cells residing in the inner layer of the periosteum and that Pearson's coefficient of colocalization indicated a significant correlation with the expression of ALP. The mineralization of DDR2-expressing osteogenic cells isolated from the periosteum was significantly induced. In contrast, FSP-1 predominantly labeled the outer layer of periosteal fibroblasts, and Pearson's coefficient of colocalization indicated that FSP-1 was poorly correlated with the expression of DDR2 and ALP. FSP-1-expressing periosteal fibroblasts did not exhibit osteogenic differentiation for the induction of bone mineralization. CONCLUSION DDR2 is a novel potential cell surface marker for identifying and isolating osteoblasts and osteoblast progenitors within the periosteum that can be used for musculoskeletal regenerative therapies.
Collapse
Affiliation(s)
- Haili Yang
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Lei Sun
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Wenqian Cai
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Jingkai Gu
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Dacai Xu
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
- Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, 200031, China
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, Department of Molecular Cell and Developmental Biology, UCLA Cardiovascular Medicine Research Theme, Eli and Edythe Broad Institute of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, 675 Charles E Young Drive S, MRL 3609, Los Angeles, CA, 90095, USA.
| | - Jinzhu Duan
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
56
|
Owston HE, Moisley KM, Tronci G, Russell SJ, Giannoudis PV, Jones E. Induced Periosteum-Mimicking Membrane with Cell Barrier and Multipotential Stromal Cell (MSC) Homing Functionalities. Int J Mol Sci 2020; 21:E5233. [PMID: 32718036 PMCID: PMC7432450 DOI: 10.3390/ijms21155233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
The current management of critical size bone defects (CSBDs) remains challenging and requires multiple surgeries. To reduce the number of surgeries, wrapping a biodegradable fibrous membrane around the defect to contain the graft and carry biological stimulants for repair is highly desirable. Poly(ε-caprolactone) (PCL) can be utilised to realise nonwoven fibrous barrier-like structures through free surface electrospinning (FSE). Human periosteum and induced membrane (IM) samples informed the development of an FSE membrane to support platelet lysate (PL) absorption, multipotential stromal cells (MSC) growth, and the prevention of cell migration. Although thinner than IM, periosteum presented a more mature vascular system with a significantly larger blood vessel diameter. The electrospun membrane (PCL3%-E) exhibited randomly configured nanoscale fibres that were successfully customised to introduce pores of increased diameter, without compromising tensile properties. Additional to the PL absorption and release capabilities needed for MSC attraction and growth, PCL3%-E also provided a favourable surface for the proliferation and alignment of periosteum- and bone marrow derived-MSCs, whilst possessing a barrier function to cell migration. These results demonstrate the development of a promising biodegradable barrier membrane enabling PL release and MSC colonisation, two key functionalities needed for the in situ formation of a transitional periosteum-like structure, enabling movement towards single-surgery CSBD reconstruction.
Collapse
Affiliation(s)
- Heather E. Owston
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds LS2 9JT, UK; (G.T.); (S.J.R.)
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (K.M.M.); (P.V.G.); (E.J.)
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Katrina M. Moisley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (K.M.M.); (P.V.G.); (E.J.)
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Giuseppe Tronci
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds LS2 9JT, UK; (G.T.); (S.J.R.)
- School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Stephen J. Russell
- Clothworkers’ Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds LS2 9JT, UK; (G.T.); (S.J.R.)
| | - Peter V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (K.M.M.); (P.V.G.); (E.J.)
- Academic Department of Trauma & Orthopaedic Surgery, Leeds General Infirmary, Leeds LS2 9NS, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (K.M.M.); (P.V.G.); (E.J.)
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW Skeletal stem cells (SSCs) are considered to play important roles in bone development and repair. These cells have been historically defined by their in vitro potential for self-renewal and differentiation into "trilineage" cells; however, little is known about their in vivo identity. Here, we discuss recent progress on SSCs and how they potentially contribute to bone development and repair. RECENT FINDINGS Bone is composed of diverse tissues, which include cartilage and its perichondrium, cortical bone and its periosteum, and bone marrow and its trabecular bone and stromal compartment. We are now at the initial stage of understanding the precise identity of SSCs in each bone tissue. The emerging concept is that functionally dedicated SSCs are encased by their own unique cellular and extracellular matrix microenvironment, and locally support its own compartment. Diverse groups of SSCs are likely to work in concert to achieve development and repair of the highly functional skeletal organ.
Collapse
Affiliation(s)
- Yuki Matsushita
- University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
58
|
Sharieh F, Eby JM, Roper PM, Callaci JJ. Ethanol Inhibits Mesenchymal Stem Cell Osteochondral Lineage Differentiation Due in Part to an Activation of Forkhead Box Protein O-Specific Signaling. Alcohol Clin Exp Res 2020; 44:1204-1213. [PMID: 32304578 DOI: 10.1111/acer.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND During bone fracture repair, resident mesenchymal stem cells (MSCs) differentiate into chondrocytes, to form a cartilaginous fracture callus, and osteoblasts, to ossify the collagen matrix. Our laboratory previously reported that alcohol administration led to decreased cartilage formation within the fracture callus of rodents and this effect was mitigated by postfracture antioxidant treatment. Forkhead box protein O (FoxO) transcription factors are activated in response to intracellular reactive oxygen species (ROS), and alcohol has been shown to increase ROS. Activation of FoxOs has also been shown to inhibit canonical Wnt signaling, a necessary pathway for MSC differentiation. These findings have led to our hypothesis that alcohol exposure decreases osteochondrogenic differentiation of MSCs through the activation of FoxOs. METHODS Primary rat MSCs were treated with ethanol (EtOH) and assayed for FoxO expression, FoxO activation, and downstream target expression. Next, MSCs were differentiated toward osteogenic or chondrogenic lineages in the presence of 50 mM EtOH and alterations in osteochondral lineage marker expression were determined. Lastly, osteochondral differentiation experiments were repeated with FoxO1/3 knockdown or with FoxO1/3 inhibitor AS1842856 and osteochondral lineage marker expression was determined. RESULTS EtOH increased the expression of FoxO3a at mRNA and protein levels in primary cultured MSCs. This was accompanied by an increase in FoxO1 nuclear localization, FoxO1 activation, and downstream catalase expression. Moreover, EtOH exposure decreased expression of osteogenic and chondrogenic lineage markers. FoxO1/3 knockdown restored proosteogenic and prochondrogenic lineage marker expression in the presence of 50 mM EtOH. However, FoxO1/3 inhibitor only restored proosteogenic lineage marker expression. CONCLUSIONS These data show that EtOH has the ability to inhibit MSC differentiation, and this ability may rely, at least partially, on the activation of FoxO transcription factors.
Collapse
Affiliation(s)
- Farah Sharieh
- From the, Department of Orthopaedic Surgery and Rehabilitation, (FS, JME, PMR, JJC), Loyola University Medical Center, Maywood, Illinois.,Alcohol Research Program (ARP), (FS, JME, PMR, JJC), Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Jonathan M Eby
- From the, Department of Orthopaedic Surgery and Rehabilitation, (FS, JME, PMR, JJC), Loyola University Medical Center, Maywood, Illinois.,Alcohol Research Program (ARP), (FS, JME, PMR, JJC), Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Philip M Roper
- From the, Department of Orthopaedic Surgery and Rehabilitation, (FS, JME, PMR, JJC), Loyola University Medical Center, Maywood, Illinois.,Alcohol Research Program (ARP), (FS, JME, PMR, JJC), Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - John J Callaci
- From the, Department of Orthopaedic Surgery and Rehabilitation, (FS, JME, PMR, JJC), Loyola University Medical Center, Maywood, Illinois.,Alcohol Research Program (ARP), (FS, JME, PMR, JJC), Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| |
Collapse
|
59
|
Serowoky MA, Arata CE, Crump JG, Mariani FV. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development 2020; 147:147/5/dev179325. [PMID: 32161063 DOI: 10.1242/dev.179325] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal stem cells (SSCs) generate the progenitors needed for growth, maintenance and repair of the skeleton. Historically, SSCs have been defined as bone marrow-derived cells with inconsistent characteristics. However, recent in vivo tracking experiments have revealed the presence of SSCs not only within the bone marrow but also within the periosteum and growth plate reserve zone. These studies show that SSCs are highly heterogeneous with regard to lineage potential. It has also been revealed that, during digit tip regeneration and in some non-mammalian vertebrates, the dedifferentiation of osteoblasts may contribute to skeletal regeneration. Here, we examine how these research findings have furthered our understanding of the diversity and plasticity of SSCs that mediate skeletal maintenance and repair.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire E Arata
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
60
|
Batista JM, Nakagaki WR, Soares EA, Camilli JA. Effects of low-intensity pulsed ultrasound exposure on rats tibia periosteum. AN ACAD BRAS CIENC 2020; 92:e20180903. [PMID: 32074178 DOI: 10.1590/0001-3765202020180903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
The periosteum is a rich source of osteoprogenitor cells and periosteal grafts can be used as an alternative method to replace bone grafts. The low-intensity pulsed ultrasound (LIPUS) has often been used as a noninvasive method to stimulate osteogenesis and reduce the fracture healing time. The aim of this study was to evaluate the effects of the ultrasound exposure on the rat tibia periosteum. Group I (7 animals) received LIPUS therapy on the left tibia for 7 days and group II (7 animals) on the left tibia for 14 days. After euthanasia, the tibias were processed. Number of periosteal cells and vessels and thickness of the periosteum were analyzed. The number of periosteal cells was higher in stimulated periosteum compared to controls at 7 and 14 days, but the number of vessels and the thickness only were higher in the group stimulated at 14 days. Furthermore, the ultrasound treatment for 14 days was more effective than 7 days. The ultrasound stimulation of the periosteum prior to grafting procedure can be advantageous, since it increases periosteal activity, and LIPUS may be an alternative method for stimulating the periosteum when the use of periosteal grafts in bone repair is needed.
Collapse
Affiliation(s)
- Jaqueline Martins Batista
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP, Programa de Pós-Graduação em Biologia Celular e Estrutural, Avenida Bertrand Russel, s/n, 13083-865 Campinas, SP, Brazil
| | - Wilson Romero Nakagaki
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP, Programa de Pós-Graduação em Biologia Celular e Estrutural, Avenida Bertrand Russel, s/n, 13083-865 Campinas, SP, Brazil.,Programa de Mestrado em Ciências da Saúde, Universidade do Oeste Paulista/UNOESTE, Pró-Reitoria de Pesquisa e Pós-Graduação/Campus II, Rodovia Raposo Tavares, Km 572, Bairro do Limoeiro, 19067-175 Presidente Prudente, SP, Brazil
| | - Evelise Aline Soares
- Departamento de Anatomia, Universidade Federal de Alfenas/UNIFAL, Rua Gabriel Monteiro da Silva 700, 37130-001 Alfenas, MG, Brazil
| | - José Angelo Camilli
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP, Programa de Pós-Graduação em Biologia Celular e Estrutural, Avenida Bertrand Russel, s/n, 13083-865 Campinas, SP, Brazil
| |
Collapse
|
61
|
Putra VDL, Jalilian I, Campbell M, Poole K, Whan R, Tomasetig F, Tate MLK. Mapping the Mechanome-A Protocol for Simultaneous Live Imaging and Quantitative Analysis of Cell Mechanoadaptation and Ingression. Bio Protoc 2019; 9:e3439. [PMID: 33654934 DOI: 10.21769/bioprotoc.3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 11/02/2022] Open
Abstract
Mechanomics, the mechanics equivalent of genomics, is a burgeoning field studying mechanical modulation of stem cell behavior and lineage commitment. Analogous to mechanical testing of a living material as it adapts and evolves, mapping of the mechanome necessitates the development of new protocols to assess changes in structure and function in live stem cells as they adapt and differentiate. Previous techniques have relied on imaging of cellular structures in fixed cells and/or live cell imaging of single cells with separate studies of changes in mechanical and biological properties. Here we present two complementary protocols to study mechanobiology and mechanoadaptation of live stem cells in adherent and motile contexts. First, we developed and tested live imaging protocols for simultaneous visualization and tracking of actin and tubulin mechanoadaptation as well as shape and volume of cells and their nuclei in adherent model embryonic murine mesenchymal stem cells (C3H/10T1/2) and in a neuroblastoma cell line. Then we applied the protocol to enable quantitative study of primary human mesenchymal stem cells in a motile state, e.g., ingression in a three-dimensional, in vitro cell culture model. Together, these protocols enable study of emergent structural mechanoadaptation of the cell's own cytoskeletal machinery while tracking lineage commitment using phenotypic (quantitative morphology measures) and genotypic (e.g., reverse transcription Polymerase Chain Reaction, rtPCR) methods. These tools are expected to facilitate the mapping of the mechanome and incipient mechanistic understanding of stem cell mechanobiology, from the cellular to the tissue and organ length scales.
Collapse
Affiliation(s)
- Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Iman Jalilian
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Department of Cell Biology, Yale University, New Haven, USA
| | - Madeline Campbell
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Kate Poole
- Cellular Mechanotransduction Group, EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Renee Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
62
|
Ng JL, Putra VDL, Knothe Tate ML. In vitro biocompatibility and biomechanics study of novel, Microscopy Aided Designed and ManufacturEd (MADAME) materials emulating natural tissue weaves and their intrinsic gradients. J Mech Behav Biomed Mater 2019; 103:103536. [PMID: 32090942 DOI: 10.1016/j.jmbbm.2019.103536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/04/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
This study conducted biomechanical and biocompatibility tests of textiles and textile composites, created using recursive logic to emulate the properties of natural tissue weaves and their intrinsic mechanical stiffness gradients. Two sets of samples were created, first to test feasibility on textile samples designed as periosteum substitutes with elastane fibers mimicking periosteum's endogenous elastin and nylon fibers substituting for collagen, and then on composites comprising other combinations of suture materials before and after sterilization. In the first part, the bulk tensile mechanical stiffness of elastane-nylon textiles were tuned through respective fiber composition and orientation, i.e., aligned with and orthogonal to loading direction. Cell culture biocompatibility studies revealed no significant differences in proliferation rates of embryonic murine stem cells seeded on textiles compared to collagen membrane controls. Until the 15th day of culture, cells were rarely observed in direct contact with the elastane fibers, similar to previous observations with elastomeric sheets used in periosteum substitute implants. In the second part of the study textile samples were created from FDA-approved medical sutures comprising silk, expanded polytetrafluoroethylene, and polybutester. Biocompatibility and mechanical stiffness were assessed as a function of sterilization/disinfection mode (steam, ethylene oxide, and serial disinfection with ethanol). Cell proliferation rates did not differ significantly from controls, except for silk-suture containing textiles, which showed bacterial contamination and no viable cells after 15 days' culture for all sterilization methods. Sterilization had mixed (mostly not significant) effects on textile stiffness, except for the case of polybutester suture-based textiles that showed a significant increase in stiffness with ethylene oxide sterilization. In general, all textile combinations exhibited significantly higher stiffness than periosteum. Textiles comprising medical sutures of different stiffnesses arranged in engineered patterns offer a novel means to achieve mechanical gradients in medical device materials, emulating those of nature's own.
Collapse
Affiliation(s)
- Joanna L Ng
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, UNSW Sydney, Australia.
| |
Collapse
|
63
|
Colony Formation, Migratory, and Differentiation Characteristics of Multipotential Stromal Cells (MSCs) from "Clinically Accessible" Human Periosteum Compared to Donor-Matched Bone Marrow MSCs. Stem Cells Int 2019; 2019:6074245. [PMID: 31871468 PMCID: PMC6906873 DOI: 10.1155/2019/6074245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Periosteum is vital for fracture healing, as a highly vascular and multipotential stromal cell- (MSC-) rich tissue. During surgical bone reconstruction, small fragments of periosteum can be “clinically accessible,” yet periosteum is currently not ultilised, unlike autologous bone marrow (BM) aspirate. This study is aimed at comparing human periosteum and donor-matched iliac crest BM MSC content and characterising MSCs in terms of colony formation, growth kinetics, phenotype, cell migration patterns, and trilineage differentiation capacity. “Clinically accessible” periosteum had an intact outer fibrous layer, containing CD271+ candidate MSCs located perivasculary; the inner cambium was rarely present. Following enzymatic release of cells, periosteum formed significantly smaller fibroblastic colonies compared to BM (6.1 mm2 vs. 15.5 mm2, n = 4, P = 0.0006). Periosteal colonies were more homogenous in size (range 2-30 mm2 vs. 2-54 mm2) and on average 2500-fold more frequent (2.0% vs. 0.0008%, n = 10, P = 0.004) relative to total viable cells. When expanded in vitro, similar growth rates up to passage 0 (P0) were seen (1.8 population doublings (PDs) per day (periosteum), 1.6 PDs per day (BM)); however, subsequently BM MSCs proliferated significantly slower by P4 (4.3 PDs per day (periosteum) vs. 9.3 PDs per day (BM), n = 9, P = 0.02). In early culture, periosteum cells were less migratory at slower speeds than BM cells. Both MSC types exhibited MSC phenotype and trilineage differentiation capacity; however, periosteum MSCs showed significantly lower (2.7-fold) adipogenic potential based on Nile red : DAPI ratios with reduced expression of adipogenesis-related transcripts PPAR-γ. Altogether, these data revealed that “clinically accessible” periosteal samples represent a consistently rich source of highly proliferative MSCs compared to donor-matched BM, which importantly show similar osteochondral capacity and lower adipogenic potential. Live cell tracking allowed determination of unique morphological and migration characteristics of periosteal MSCs that can be used for the development of novel bone graft substitutes to be preferentially repopulated by these cells.
Collapse
|
64
|
Mantripragada VP, Piuzzi NS, Bova WA, Boehm C, Obuchowski NA, Lefebvre V, Midura RJ, Muschler GF. Donor-matched comparison of chondrogenic progenitors resident in human infrapatellar fat pad, synovium, and periosteum - implications for cartilage repair. Connect Tissue Res 2019; 60:597-610. [PMID: 31020864 DOI: 10.1080/03008207.2019.1611795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: There is a clinical need to better characterize tissue sources being used for stem cell therapies. This study focuses on comparison of cells and connective tissue progenitors (CTPs) derived from native human infrapatellar fatpad (IPFP), synovium (SYN), and periosteum (PERI). Materials and Methods: IPFP, SYN, PERI were harvested from twenty-eight patients undergoing arthroplasty. CTPs were quantitatively characterized using automated colony-forming-unit assay to compare total nucleated cell concentration-[Cell], cells/mg; prevalence-(PCTP), CTPs/million nucleated cells; CTP concentration-[CTP], CTPs/mg; proliferation and differentiation potential; and correlate outcomes with patient's age and gender. Results: [Cell] did not differ between IPFP, SYN, and PERI. PCTP was influenced by age and gender: patients >60 years, IPFP and SYN had higher PCTP than PERI (p < 0.001) and females had higher PCTP in IPFP (p < 0.001) and SYN (p = 0.001) than PERI. [CTP] was influenced by age: patients <50 years, SYN (p = 0.0165) and PERI (p < 0.001) had higher [CTP] than IPFP; patients between 60 and 69 years, SYN (p < 0.001) had higher [CTP] than PERI; patients >70 years, IPFP (p = 0.006) had higher [CTP] than PERI. In patients >60 years, proliferation potential of CTPs differed significantly (SYN>IPFP>PERI); however, differentiation potentials were comparable between all three tissue sources. Conclusion: SYN and IPFP may serve as a preferred tissue source for patients >60 years, and PERI along with SYN and IPFP may serve as a preferred tissue source for patients <60 years for cartilage repair. However, the heterogeneity among the CTPs in any given tissue source suggests performance-based selection might be useful to optimize cell-sourcing strategies to improve efficacy of cellular therapies for cartilage repair.
Collapse
Affiliation(s)
- V P Mantripragada
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA
| | - N S Piuzzi
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA.,Department of Orthopedic Surgery, Cleveland Clinic , Cleveland , OH , USA.,Department of Orthopaedic Surgery, Instituto Universitario del Hospital Italiano de Buenos Aires , Buenos Aires , Argentina
| | - W A Bova
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA
| | - C Boehm
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA
| | - N A Obuchowski
- Department of Quantitative Health Science, Cleveland Clinic , Cleveland , OH , USA
| | - V Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic , Cleveland , OH , USA
| | - R J Midura
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA
| | - G F Muschler
- Department of Biomedical Engineering, Lerner Research Institute , Cleveland , OH , USA.,Department of Orthopedic Surgery, Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
65
|
Gao B, Deng R, Chai Y, Chen H, Hu B, Wang X, Zhu S, Cao Y, Ni S, Wan M, Yang L, Luo Z, Cao X. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J Clin Invest 2019; 129:2578-2594. [PMID: 30946695 DOI: 10.1172/jci98857] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The periosteum, a thin tissue that covers almost the entire bone surface, accounts for more than 80% of human bone mass and is essential for bone regeneration. Its osteogenic and bone regenerative abilities are well studied, but much is unknown about the periosteum. In this study, we found that macrophage-lineage cells recruit periosteum-derived cells (PDCs) for cortical bone formation. Knockout of colony stimulating factor-1 eliminated macrophage-lineage cells and resulted in loss of PDCs with impaired periosteal bone formation. Moreover, macrophage-lineage TRAP+ cells induced transcriptional expression of periostin and recruitment of PDCs to the periosteal surface through secretion of platelet-derived growth factor-BB (PDGF-BB), where the recruited PDCs underwent osteoblast differentiation coupled with type H vessel formation. We also found that subsets of Nestin+ and LepR+ PDCs possess multipotent and self-renewal abilities and contribute to cortical bone formation. Nestin+ PDCs are found primarily during bone development, whereas LepR+ PDCs are essential for bone homeostasis in adult mice. Importantly, conditional knockout of Pdgfrβ (platelet-derived growth factor receptor beta) in LepR+ cells impaired periosteal bone formation and regeneration. These findings uncover the essential role of periosteal macrophage-lineage cells in regulating periosteum homeostasis and regeneration.
Collapse
Affiliation(s)
- Bo Gao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Chai
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Chen
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bo Hu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shouan Zhu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yong Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liu Yang
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuojing Luo
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
66
|
Engineered periosteum-bone biomimetic bone graft enhances posterolateral spine fusion in a rabbit model. Spine J 2019; 19:762-771. [PMID: 30266454 DOI: 10.1016/j.spinee.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Bone marrow derived mesenchymal stem cells (BMSCs) and periosteum-derived cells (PDCs) have shown great viability in terms of osteogenic potential and have been considered the major cellular source for skeletal tissue engineering. Using a PDCs-impregnated cell sheet to surround a BMSCs-impregnated tricalcium phosphate (TCP) scaffold might create a periosteum-bone biomimetic bone graft substitute to enhance spine fusion. PURPOSE The purpose of this study was to determine the feasibility of using this newly tissue-engineered biomimetic bone graft for posterolateral spine fusion. STUDY DESIGN/SETTING This study design was based on an animal model using adult male New Zealand White rabbits. METHODS New Zealand White rabbits underwent operation and were divided into three groups based on the experimental material implanted in the bilateral L4-L5 intertransverse space. Group 1 was BMSCs-free TCP wrapped in a PDCs-free cell sheet. Group 2 was BMSCs-loaded-TCP wrapped in a PDCs-free cell sheet. Group 3 was BMSCs-loaded-TCP wrapped in a PDCs-loaded cell sheet. After 12 weeks, six rabbits from each group were euthanized for computed tomography scanning, manual palpation, biomechanical testing, and histology. Each group had 12 radiographic fusion areas for analysis because the right and left intertransverse fusion areas were collected separately. RESULTS Radiographic union of 12 fusion areas for groups 1, 2, and 3 was 0, 3, and 9, respectively. Group 3 had significantly higher fusion success than groups 1 and 2 (p<.001). Solid fusion of six fusion segments in each group by manual palpation was 0, 1, and 5, accordingly. Group 3 had a higher successful solid fusion rate than groups 1 and 2 (p=.005). The average maximal torques at failure were 727±136 N mm, 627±91 N mm, and 882±195 N mm for groups 1, 2, and 3, accordingly. The maximal torque was significantly higher in group 3 than in group 2 (p=.028). Histological evaluation verified that new bone regeneration were greater in the group 3 samples. CONCLUSIONS The results indicated the potential of using a PDCs-impregnated cell sheet to surround the BMSCs-impregnated TCP scaffold for creating a periosteum-bone biomimetic bone graft substitute to enhance bone regeneration and posterolateral fusion success.
Collapse
|
67
|
Naujokat H, Lipp M, Açil Y, Wieker H, Birkenfeld F, Sengebusch A, Böhrnsen F, Wiltfang J. Bone tissue engineering in the greater omentum is enhanced by a periosteal transplant in a miniature pig model. Regen Med 2019; 14:127-138. [DOI: 10.2217/rme-2018-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: Reconstruction of bone defects with autologous grafts has certain disadvantages. The aim of this study is to introduce a new type of living bioreactor for engineering of bone flaps and to evaluate the effect of different barrier membranes. Materials & methods: Scaffolds loaded with bone morphogenetic proteins and bone marrow aspirate wrapped with either a collagen membrane or a periosteal flap were implanted in the greater omentum of miniature pigs. Results: Both histological and radiographic evaluation showed proven bone formation and increased density after 8 and 16 weeks, with an enhanced effect of the periosteal transplant. Conclusion: The greater omentum is a suitable bioreactor for bone tissue engineering. Endocultivation is both an innovative and promising approach in regenerative medicine.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Maximilian Lipp
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Henning Wieker
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Falk Birkenfeld
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Andre Sengebusch
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Florian Böhrnsen
- Department of Oral & Maxillofacial Surgery, University Hospital of Göttingen, Robert-Koch-Straße 40, 37099 Göttingen, Germany
| | - Jörg Wiltfang
- Department of Oral & Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
68
|
Duchamp de Lageneste O, Colnot C. Periostin in Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:49-61. [PMID: 31037624 DOI: 10.1007/978-981-13-6657-4_6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone regeneration is an efficient regenerative process depending on the recruitment and activation of skeletal stem cells that allow cartilage and bone formation leading to fracture consolidation. Periosteum, the tissue located at the outer surface of bone is now recognized as an essential player in the bone repair process and contains skeletal stem cells with high regenerative potential. The matrix composition of the periosteum defines its roles in bone growth, in cortical bone modeling and remodeling in response to mechanical strain, and in bone repair. Periostin is a key extracellular matrix component of the periosteum involved in periosteum functions. In this chapter, we summarize the current knowledge on the bone regeneration process, the role of the periosteum and skeletal stem cells, and Periostin functions in this context. The matricellular protein Periostin has several roles through all stages of bone repair: in the early days of repair during the initial activation of stem cells within periosteum, in the active phase of cartilage and bone deposition in the facture callus, and in the final phase of bone bridging and reconstitution of the stem cell pool within periosteum.
Collapse
Affiliation(s)
| | - Céline Colnot
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France.
| |
Collapse
|
69
|
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018; 180:143-162. [PMID: 30036727 PMCID: PMC6710094 DOI: 10.1016/j.biomaterials.2018.07.017] [Citation(s) in RCA: 544] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
Bone fractures are the most common traumatic injuries in humans. The repair of bone fractures is a regenerative process that recapitulates many of the biological events of embryonic skeletal development. Most of the time it leads to successful healing and the recovery of the damaged bone. Unfortunately, about 5-10% of fractures will lead to delayed healing or non-union, more so in the case of co-morbidities such as diabetes. In this article, we review the different strategies to heal bone defects using synthetic bone graft substitutes, biologically active substances and stem cells. The majority of currently available reviews focus on strategies that are still at the early stages of development and use mostly in vitro experiments with cell lines or stem cells. Here, we focus on what is already implemented in the clinics, what is currently in clinical trials, and what has been tested in animal models. Treatment approaches can be classified in three major categories: i) synthetic bone graft substitutes (BGS) whose architecture and surface can be optimized; ii) BGS combined with bioactive molecules such as growth factors, peptides or small molecules targeting bone precursor cells, bone formation and metabolism; iii) cell-based strategies with progenitor cells combined or not with active molecules that can be injected or seeded on BGS for improved delivery. We review the major types of adult stromal cells (bone marrow, adipose and periosteum derived) that have been used and compare their properties. Finally, we discuss the remaining challenges that need to be addressed to significantly improve the healing of bone defects.
Collapse
Affiliation(s)
- Antalya Ho-Shui-Ling
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Laurence E Rustom
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Amy Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61081, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium.
| | - Catherine Picart
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France.
| |
Collapse
|
70
|
Moore ER, Yang Y, Jacobs CR. Primary cilia are necessary for Prx1-expressing cells to contribute to postnatal skeletogenesis. J Cell Sci 2018; 131:jcs217828. [PMID: 30002136 PMCID: PMC6127732 DOI: 10.1242/jcs.217828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022] Open
Abstract
Although Prx1 (also known as PRRX1)-expressing cells and their primary cilia are critical for embryonic development, they have yet to be studied in the context of postnatal skeletogenesis owing to the lethality of mouse models. A tamoxifen-inducible Prx1 model has been developed, and we determined that expression directed by this promoter is highly restricted to the cambium layers in the periosteum and perichondrium after birth. To determine the postnatal role of these cambium layer osteochondroprogenitors (CLOPs) and their primary cilia, we developed models to track the fate of CLOPs (Prx1CreER-GFP;Rosa26tdTomato) and selectively disrupt their cilia (Prx1CreER-GFP;Ift88fl/fl). Our tracking studies revealed that CLOPs populate cortical and trabecular bone, the growth plate and secondary ossification centers during the normal program of postnatal skeletogenesis. Furthermore, animals lacking CLOP cilia exhibit stunted limb growth due to disruptions in endochondral and intramembranous ossification. Histological examination indicates that growth is stunted due to limited differentiation, proliferation and/or abnormal hypertrophic differentiation in the growth plate. Collectively, our results suggest that CLOPs are programmed to rapidly populate distant tissues and produce bone via a primary cilium-mediated mechanism in the postnatal skeleton.
Collapse
Affiliation(s)
- Emily R Moore
- Department of Biomedical Engineering, Columbia University, 500 W 120th St, New York, NY 10027, USA
| | - Yuchen Yang
- Department of Biomedical Engineering, Columbia University, 500 W 120th St, New York, NY 10027, USA
| | - Christopher R Jacobs
- Department of Biomedical Engineering, Columbia University, 500 W 120th St, New York, NY 10027, USA
| |
Collapse
|
71
|
Iordachescu A, Amin HD, Rankin SM, Williams RL, Yapp C, Bannerman A, Pacureanu A, Addison O, Hulley PA, Grover LM. An In Vitro Model for the Development of Mature Bone Containing an Osteocyte Network. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alexandra Iordachescu
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
- Botnar Research Centre (NDORMS); University of Oxford; Old Road Headington Oxford OX3 7LD UK
| | - Harsh D. Amin
- Inflammation, Development and Repair; National Heart & Lung Institute; Faculty of Medicine; Imperial College London; London SW7 2AZ UK
- Centre for Blast Injury Studies; Department of Bioengineering; Imperial College London; London SW7 2AZ UK
| | - Sara M. Rankin
- Inflammation, Development and Repair; National Heart & Lung Institute; Faculty of Medicine; Imperial College London; London SW7 2AZ UK
- Centre for Blast Injury Studies; Department of Bioengineering; Imperial College London; London SW7 2AZ UK
| | - Richard L. Williams
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Clarence Yapp
- Botnar Research Centre (NDORMS); University of Oxford; Old Road Headington Oxford OX3 7LD UK
- Department of Cell Biology; Harvard Medical School; 240 Longwood Ave Boston MA 02115 USA
| | - Alistair Bannerman
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Alexandra Pacureanu
- European Synchrotron Radiation Facility; Beamline Groups Unit; 71 avenue des Martyrs 38000 Grenoble France
| | - Owen Addison
- School of Dentistry; University of Birmingham; 5 Mill Pool Way Edgbaston Birmingham B5 7EG UK
| | - Philippa A. Hulley
- Botnar Research Centre (NDORMS); University of Oxford; Old Road Headington Oxford OX3 7LD UK
| | - Liam M. Grover
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
72
|
Prefabrication of a functional bone graft with a pedicled periosteal flap as an in vivo bioreactor. Sci Rep 2017; 7:18038. [PMID: 29269864 PMCID: PMC5740121 DOI: 10.1038/s41598-017-17452-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
The in vivo bioreactor principle, which focuses on using the body as a living bioreactor to cultivate stem cells, bioscaffolds, and growth factors and leveraging the body’s self-regenerative capacity to regenerate new tissue, has been considered a potential approach for bone defect reconstruction. The histological characteristics of the periosteum allow it to possess a remarkable capacity to induce bone growth and remodeling, making it suitable as an in vivo bioreactor strategy for bone graft prefabrication. The present study was designed to prefabricate vascularized bone grafts using pedicled periosteal flaps and decellularized bone matrix (DBM) scaffolds in a rabbit model. The muscular pouches created in the femoral muscle were acted as a control. Our histological results revealed that both the periosteal flap group and muscular pouch group induced bone tissue formation on the DBM surface at both 8 and 16 weeks postoperatively. However, micro-computed tomography (microCT) scanning, biomechanical, and histomorphometric findings indicated that bone grafts from the periosteal flap group showed larger bone mass, faster bone formation rates, higher vascular density, and stronger biomechanical properties than in the muscular pouch group. We suggest that using the pedicled periosteal flap as an in vivo bioreactor is a promising approach for functional bone graft prefabrication.
Collapse
|
73
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
74
|
Ribeiro S, Radvar E, Shi Y, Borges J, Pirraco RP, Leonor IB, Mano JF, Reis RL, Mata Á, Azevedo HS. Nanostructured interfacial self-assembled peptide-polymer membranes for enhanced mineralization and cell adhesion. NANOSCALE 2017; 9:13670-13682. [PMID: 28876352 DOI: 10.1039/c7nr03410e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Soft interfacial materials, such as self-assembled polymer membranes, are gaining increasing interest as biomaterials since they can provide selective barriers and/or controlled affinity interactions important to regulate cellular processes. Herein, we report the design and fabrication of multiscale structured membranes integrating selective molecular functionalities for potential applications in bone regeneration. The membranes were obtained by interfacial self-assembly of miscible aqueous solutions of hyaluronan and multi-domain peptides (MDPs) incorporating distinct biochemical motifs, including mineralizing (EE), integrin-binding (RGDS) and osteogenic (YGFGG) peptide sequences. Circular dichroism and Fourier transform infrared spectroscopy analyses of the MDPs revealed a predominant β-sheet conformation, while transmission electron microscopy (TEM) showed the formation of fibre-like nanostructures with different lengths. Scanning electron microscopy (SEM) of the membranes showed an anisotropic structure and surfaces with different nanotopographies, reflecting the morphological differences observed under TEM. All the membranes were able to promote the deposition of a calcium-phosphate mineral on their surface when incubated in a mineralizing solution. The ability of the MDPs, coated on coverslips or presented within the membranes, to support cell adhesion was investigated using primary adult periosteum-derived cells (PDCs) under serum-free conditions. Cells on the membranes lacking RGDS remained round, while in the presence of RGDS they appear to be more elongated and anchored to the membrane. These observations were confirmed by SEM analysis that showed cells attached to the membrane and exhibiting an extended morphology with close interactions with the membrane surface. We anticipate that these molecularly designed interfacial membranes can both provide relevant biochemical signals and structural biomimetic components for stem cell growth and differentiation and ultimately promote bone regeneration.
Collapse
Affiliation(s)
- Sofia Ribeiro
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Lo Sicco C, Tasso R. Harnessing Endogenous Cellular Mechanisms for Bone Repair. Front Bioeng Biotechnol 2017; 5:52. [PMID: 28929099 PMCID: PMC5591576 DOI: 10.3389/fbioe.2017.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022] Open
Abstract
Although autologous tissue transplantation represents a valid approach for bone repair, it has encountered crucial barriers in therapeutic translation, not least the invasive process necessary for stem cell isolation. In recent years, the scientific community has made significant strides for identifying new treatment options, and great emphasis has been placed on the tight interaction between skeletal and immune system in modulating the outcome of bone repair. Within the context of specific injury environmental cues, the cross talk among inflammatory cells and tissue resident and/or circulating progenitor cells is crucial to finely coordinate repair and remodeling processes. The appropriate modulation of the inflammatory response can now be considered a new trend in the field of regenerative medicine, as it raises the attracting possibility to enhance endogenous progenitor cell functions, finally leading to tissue repair. Therefore, new treatment options have been developed considering the wide spectrum of bone–inflammation interplay, considering in particular the cell intrinsic cues responsible for the modulation of the injured environment. In this review, we will provide a panoramic overview focusing on novel findings developed to uphold endogenous bone repair.
Collapse
Affiliation(s)
- Claudia Lo Sicco
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Tasso
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia, Genoa, Italy
| |
Collapse
|
76
|
Wang Q, Xu J, Jin H, Zheng W, Zhang X, Huang Y, Qian Z. Artificial periosteum in bone defect repair—A review. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
77
|
Hu C, Gong T, Lin W, Yuan Q, Man Y. Immediate implant placement into posterior sockets with or without buccal bone dehiscence defects: A retrospective cohort study. J Dent 2017; 65:95-100. [PMID: 28739320 DOI: 10.1016/j.jdent.2017.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/28/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To evaluate bone reconstruction and soft tissue reactions at immediate implants placed into intact sockets and those with buccal bone dehiscence defects. METHODS Fifty-nine internal connection implants from four different manufacturers were immediately placed in intact sockets(non-dehiscence group, n=40), and in alveoli with buccal bone dehiscence defects: 1) Group 1(n= N10), the defect depth measured 3-5 mm from the gingival margin. 2) Group 2(n=9), the depth ranged from 5mm to 7mm. The surrounding bony voids were grafted with deproteinized bovine bone mineral (DBBM) particles. Cone beam computed tomography(CBCT) was performed immediately after surgery (T1), and at 6 months later(T2). Radiographs were taken at prosthesis placement and one year postloading(T3). Soft tissue parameters were measured at baseline (T0), prosthesis placement and T3. RESULTS No implants were lost during the observation period. For the dehiscence groups, the buccal bone plates were radiographically reconstructed to comparable horizontal and vertical bone volumes compared with the non-dehiscence group. Marginal bone loss occurred between the time of final restoration and 1-year postloading was not statistically different(P=0.732) between groups. Soft tissue parameters did not reveal inferior results for the dehiscence groups. CONCLUSIONS Within the limitations of this study, flapless implant placement into compromised sockets in combination with DBBM grafting may be a viable technique to reconstitute the defected buccal bone plates due to space maintenance and primary socket closure provided by healing abutments and bone grafts. CLINICAL SIGNIFICANCE Immediate implants and DBBM grafting without using membranes may be indicated for sockets with buccal bone defects.
Collapse
Affiliation(s)
- Chen Hu
- State Key Laboratory of Oral Diseases and Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ting Gong
- State Key Laboratory of Oral Diseases and Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases and Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases and Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
78
|
Fu F, Zhang K. [Research progress of the role of periosteum in distraction osteogenesis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:876-879. [PMID: 29798535 DOI: 10.7507/1002-1892.201701073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress of the role of periosteum in distraction osteogenesis. Methods The related domestic and foreign literature about the role of periosteum in distraction osteogenesis in recent years was extensively reviewed, summarized, and the mechanism and influencing factors of periosteum during traction and osteogenesis were analyzed. Results The periosteum is rich in all kinds of cells (mesenchymal stem cells, osteoblasts, etc.), microvessel and various growth factors, which are necessary for the formation of new bone. It can promote the formation of new bone in the process of traction osteogenesis significantly. Conclusion The periosteum plays an important role in the progress of distraction osteogenesis.
Collapse
Affiliation(s)
- Fangang Fu
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou Shandong, 256600, P.R.China
| | - Kai Zhang
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou Shandong, 256600,
| |
Collapse
|
79
|
Abstract
Bone healing involves complex biological pathways and interactions among various cell types and microenvironments. Among them, the monocyte–macrophage–osteoclast lineage and the mesenchymal stem cell–osteoblast lineage are critical, in addition to an initial inflammatory microenvironment. These cellular interactions induce the necessary inflammatory milieu and provide the cells for bone regeneration and immune modulation. Increasing age is accompanied with a rise in the basal state of inflammation, potentially impairing osteogenesis. The translational potential of this article: Translational research has shown multiple interactions between inflammation, ageing, and bone regeneration. This review presents recent, relevant considerations regarding the effects of inflammation and ageing on bone healing.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Corresponding author. Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Edwards Building R116, Stanford, CA 94305, USA.Department of Orthopaedic SurgeryStanford University300 Pasteur DriveEdwards Building R116StanfordCA94305USA
| | | | | | | |
Collapse
|
80
|
Romero R, Travers JK, Asbury E, Pennybaker A, Chubb L, Rose R, Ehrhart NP, Kipper MJ. Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect. J Biomed Mater Res A 2016; 105:900-911. [PMID: 27874253 DOI: 10.1002/jbm.a.35965] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022]
Abstract
Critical-sized long bone defects suffer from complications including impaired healing and non-union due to substandard healing and integration of devitalized bone allograft. Removal of the periosteum contributes to the limited healing of bone allografts. Restoring a periosteum on bone allografts may provide improved allograft healing and integration. This article reports a polysaccharide-based tissue engineered periosteum that delivers basic fibroblast growth factor (FGF-2), transforming growth factor-β1 (TGF-β1), and adipose-derived mesenchymal stem cells (ASCs) to a critical-sized mouse femur defect. The tissue engineered periosteum was evaluated for improving bone allograft healing and incorporation by locally delivering FGF-2, TGF-β1, and supporting ASCs transplantation. ASCs were successfully delivered and longitudinally tracked at the defect site for at least 7 days post operation with delivered FGF-2 and TGF-β1 showing a mitogenic effect on the ASCs. At 6 weeks post implantation, data showed a non-significant increase in normalized bone callus volume. However, union ratio analysis showed a significant inhibition in allograft incorporation, confirmed by histological analysis, due to loosening of the nanofiber coating from the allograft surface. Ultimately, this investigation shows our tissue engineered periosteum can deliver FGF-2, TGF-β1, and ASCs to a mouse critical-sized femur defect and further optimization may yield improved bone allograft healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 900-911, 2017.
Collapse
Affiliation(s)
- Raimundo Romero
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - John K Travers
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Emilie Asbury
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Attie Pennybaker
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Laura Chubb
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Ruth Rose
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Nicole P Ehrhart
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523.,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, 80523
| | - Matt J Kipper
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| |
Collapse
|
81
|
Fellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Front Genet 2016; 7:213. [PMID: 28066501 PMCID: PMC5167763 DOI: 10.3389/fgene.2016.00213] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023] Open
Abstract
Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple "one size fits all," but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue.
Collapse
Affiliation(s)
| | - Csaba Matta
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Roza Zakany
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Ilyas M. Khan
- Centre for NanoHealth, Swansea University Medical SchoolSwansea, UK
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical CentreNottingham, UK
- King Fahd Medical Research Center, King AbdulAziz UniversityJeddah, Saudi Arabia
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
82
|
Knothe Tate ML, Yu NYC, Jalilian I, Pereira AF, Knothe UR. Periosteum mechanobiology and mechanistic insights for regenerative medicine. BONEKEY REPORTS 2016; 5:857. [PMID: 27974968 PMCID: PMC5129676 DOI: 10.1038/bonekey.2016.70] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/30/2022]
Abstract
Periosteum is a smart mechanobiological material that serves as a habitat and delivery vehicle for stem cells as well as biological factors that modulate tissue genesis and healing. Periosteum's remarkable regenerative capacity has been harnessed clinically for over two hundred years. Scientific studies over the past decade have begun to decipher the mechanobiology of periosteum, which has a significant role in its regenerative capacity. This integrative review outlines recent mechanobiological insights that are key to modulating and translating periosteum and its resident stem cells in a regenerative medicine context.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Y C Yu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Iman Jalilian
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - André F Pereira
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ulf R Knothe
- TissuTex Pty. Ltd., Wentworth Falls, NSW, Australia
| |
Collapse
|
83
|
Ransom RC, Hunter DJ, Hyman S, Singh G, Ransom SC, Shen EZ, Perez KC, Gillette M, Li J, Liu B, Brunski JB, Helms JA. Axin2-expressing cells execute regeneration after skeletal injury. Sci Rep 2016; 6:36524. [PMID: 27853243 PMCID: PMC5113299 DOI: 10.1038/srep36524] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023] Open
Abstract
The mammalian skeleton performs a diverse range of vital functions, requiring mechanisms of regeneration that restore functional skeletal cell populations after injury. We hypothesized that the Wnt pathway specifies distinct functional subsets of skeletal cell types, and that lineage tracing of Wnt-responding cells (WRCs) using the Axin2 gene in mice identifies a population of long-lived skeletal cells on the periosteum of long bone. Ablation of these WRCs disrupts healing after injury, and three-dimensional finite element modeling of the regenerate delineates their essential role in functional bone regeneration. These progenitor cells in the periosteum are activated upon injury and give rise to both cartilage and bone. Indeed, our findings suggest that WRCs may serve as a therapeutic target in the setting of impaired skeletal regeneration.
Collapse
Affiliation(s)
- R C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - D J Hunter
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - S Hyman
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - G Singh
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - S C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - E Z Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - K C Perez
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - M Gillette
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - J Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - B Liu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - J B Brunski
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| | - J A Helms
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5148, USA
| |
Collapse
|
84
|
Thompson ML, Chartier SR, Mitchell SA, Mantyh PW. Preventing painful age-related bone fractures: Anti-sclerostin therapy builds cortical bone and increases the proliferation of osteogenic cells in the periosteum of the geriatric mouse femur. Mol Pain 2016; 12:12/0/1744806916677147. [PMID: 27837171 PMCID: PMC5117249 DOI: 10.1177/1744806916677147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022] Open
Abstract
Age-related bone fractures are usually painful and have highly negative effects on a geriatric patient’s functional status, quality of life, and survival. Currently, there are few analgesic therapies that fully control bone fracture pain in the elderly without significant unwanted side effects. However, another way of controlling age-related fracture pain would be to preemptively administer an osteo-anabolic agent to geriatric patients with high risk of fracture, so as to build new cortical bone and prevent the fracture from occurring. A major question, however, is whether an osteo-anabolic agent can stimulate the proliferation of osteogenic cells and build significant amounts of new cortical bone in light of the decreased number and responsiveness of osteogenic cells in aging bone. To explore this question, geriatric and young mice, 20 and 4 months old, respectively, received either vehicle or a monoclonal antibody that sequesters sclerostin (anti-sclerostin) for 28 days. From days 21 to 28, animals also received sustained administration of the thymidine analog, bromodeoxyuridine (BrdU), which labels the DNA of dividing cells. Animals were then euthanized at day 28 and the femurs were examined for cortical bone formation, bone mineral density, and newly borne BrdU+ cells in the periosteum which is a tissue that is pivotally involved in the formation of new cortical bone. In both the geriatric and young mice, anti-sclerostin induced a significant increase in the thickness of the cortical bone, bone mineral density, and the proliferation of newly borne BrdU+ cells in the periosteum. These results suggest that even in geriatric animals, anti-sclerostin therapy can build new cortical bone and increase the proliferation of osteogenic cells and thus reduce the likelihood of painful age-related bone fractures.
Collapse
Affiliation(s)
| | | | | | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA .,Department of Pharmacology (Cancer Center), University of Arizona, Tucson, AZ, USA
| |
Collapse
|
85
|
Knothe Tate ML, Gunning PW, Sansalone V. Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate. BIOARCHITECTURE 2016; 6:85-103. [PMID: 27739911 DOI: 10.1080/19490992.2016.1229729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stem cell "mechanomics" refers to the effect of mechanical cues on stem cell and matrix biology, where cell shape and fate are intrinsic manifestations of form and function. Before specialization, the stem cell itself serves as a sensor and actuator; its structure emerges from its local mechanical milieu as the cell adapts over time. Coupling of novel spatiotemporal imaging and computational methods allows for linking of the energy of adaptation to the structure, biology and mechanical function of the cell. Cutting edge imaging methods enable probing of mechanisms by which stem cells' emergent anisotropic architecture and fate commitment occurs. A novel cell-scale model provides a mechanistic framework to describe stem cell growth and remodeling through mechanical feedback; making use of a generalized virtual power principle, the model accounts for the rate of doing work or the rate of using energy to effect the work. This coupled approach provides a basis to elucidate mechanisms underlying the stem cell's innate capacity to adapt to mechanical stimuli as well as the role of mechanoadaptation in lineage commitment. An understanding of stem cell mechanoadaptation is key to deciphering lineage commitment, during prenatal development, postnatal wound healing, and engineering of tissues.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- a Graduate School of Biomedical Engineering , University of New South Wales , Sydney , Australia
| | - Peter W Gunning
- b School of Medical Sciences, University of New South Wales , Sydney , Australia
| | - Vittorio Sansalone
- c Université Paris-Est Créteil (UPEC), Laboratoire Modélisation et Simulation Multi Echelle , MSME UMR 8208 CNRS, France
| |
Collapse
|
86
|
Liu F, Chen K, Hou L, Li K, Wang D, Zhang B, Wang X. Determining the critical size of a rabbit rib segmental bone defect model. Regen Biomater 2016; 3:323-328. [PMID: 27699063 PMCID: PMC5043152 DOI: 10.1093/rb/rbw028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
In order to establish and standardize the rabbit rib segmental bone defect model, it is of vital importance to determine rabbit rib critical size defect (CSD). According to the general time needed for spontaneous long-bone regeneration, three-month observation period was set to determine the CSD. The rabbit rib segmental bone defects with different sizes from 1 to 5 cm with or without periosteum were performed in the eighth rib of 4-month-old male New Zealand rabbits and underwent X-ray examinations at the 4th, 8th and 12th weeks postoperatively. The gross and histological examinations at postoperative week 12 were evaluated, which showed that the critical sizes in the rabbit rib models with and without periosteum were 5 and 2 cm, respectively. This study provides prerequisite data for establishing rabbit rib CSD model and evaluating bone materials using this model.
Collapse
Affiliation(s)
- Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, P. R. China;; Tsinghua University, Beijing 100084, P. R. China
| | - Kun Chen
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, P. R. China
| | - Lei Hou
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, P. R. China
| | - Keyi Li
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, P. R. China
| | - Dawei Wang
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, P. R. China
| | - Bin Zhang
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, P. R. China
| | - Xiumei Wang
- Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
87
|
Huang RL, Kobayashi E, Liu K, Li Q. Bone Graft Prefabrication Following the In Vivo Bioreactor Principle. EBioMedicine 2016; 12:43-54. [PMID: 27693103 PMCID: PMC5078640 DOI: 10.1016/j.ebiom.2016.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/11/2016] [Accepted: 09/16/2016] [Indexed: 01/31/2023] Open
Abstract
Large bone defect treatment represents a great challenge due to the difficulty of functional and esthetic reconstruction. Tissue-engineered bone grafts created by in vitro manipulation of bioscaffolds, seed cells, and growth factors have been considered potential treatments for bone defect reconstruction. However, a significant gap remains between experimental successes and clinical translation. An emerging strategy for bridging this gap is using the in vivo bioreactor principle and flap prefabrication techniques. This principle focuses on using the body as a bioreactor to cultivate the traditional triad (bioscaffolds, seed cells, and growth factors) and leveraging the body's self-regenerative capacity to regenerate new tissue. Additionally, flap prefabrication techniques allow the regenerated bone grafts to be transferred as prefabricated bone flaps for bone defect reconstruction. Such a strategy has been used successfully for reconstructing critical-sized bone defects in animal models and humans. Here, we highlight this concept and provide some perspective on how to translate current knowledge into clinical practice. The in vivo bioreactor principle and flap prefabrication technique is a promising strategy for bone defect reconstruction. The in vivo bioreactor principle focuses on using the body’s self-regenerative capacity to regenerate new tissue. This strategy has been successfully used to reconstruct critical-sized bone defects in humans.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
88
|
Han S, Proctor AR, Vella JB, Benoit DSW, Choe R. Non-invasive diffuse correlation tomography reveals spatial and temporal blood flow differences in murine bone grafting approaches. BIOMEDICAL OPTICS EXPRESS 2016; 7:3262-3279. [PMID: 27699097 PMCID: PMC5030009 DOI: 10.1364/boe.7.003262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/30/2016] [Accepted: 07/31/2016] [Indexed: 05/16/2023]
Abstract
Longitudinal blood flow during murine bone graft healing was monitored non-invasively using diffuse correlation tomography. The system utilized spatially dense data from a scanning set-up, non-linear reconstruction, and micro-CT anatomical information. Weekly in vivo measurements were performed. Blood flow changes in autografts, which heal successfully, were localized to graft regions and consistent across mice. Poor healing allografts showed heterogeneous blood flow elevation and high inter-subject variabilities. Allografts with tissue-engineered periosteum showed responses intermediate to both autografts and allografts, consistent with healing observed. These findings suggest that spatiotemporal blood flow changes can be utilized to differentiate the degree of bone graft healing.
Collapse
Affiliation(s)
- Songfeng Han
- Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| | - Ashley R. Proctor
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Joseph B. Vella
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
89
|
Lindsay R, Krege JH, Marin F, Jin L, Stepan JJ. Teriparatide for osteoporosis: importance of the full course. Osteoporos Int 2016; 27:2395-410. [PMID: 26902094 PMCID: PMC4947115 DOI: 10.1007/s00198-016-3534-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/09/2016] [Indexed: 11/01/2022]
Abstract
Teriparatide (TPTD) is the only currently available therapeutic agent that increases the formation of new bone tissue and can provide some remediation of the architectural defects in the osteoporotic skeleton. The use of teriparatide clinically is limited to 24 months. We review clinical findings during daily teriparatide treatment over time. Teriparatide appears to increase bone formation more than bone resorption as determined biochemically and histologically. Teriparatide exerts its positive effects on bone formation in two distinct fashions. The first is direct stimulation of bone formation that occurs within active remodeling sites (remodeling-based bone formation) and on surfaces of bone previously inactive (modeling-based bone formation). The second is an increase in the initiation of new remodeling sites. Both processes contribute to the final increase in bone density observed by non-invasive tools such as DXA. Remodeling is the repair process by which skeletal tissue is maintained in a young healthy state, and when stimulated by TPTD is associated with a positive bone balance within each remodeling cavity. It seems likely therefore that this component will contribute to the anti-fracture efficacy of TPTD. Teriparatide reduces the risk of fracture, and this effect appears to increase with longer duration of therapy. The use of novel treatment regimens, including shorter courses, should be held in abeyance until controlled clinical trials are completed to define the relative fracture benefits of such approaches in comparison to the 24-month daily use of the agent. Summary In patients with osteoporosis at high risk for fracture, the full continuous 24-month course with teriparatide results in improved skeletal health and outcomes than shorter time periods.
Collapse
Affiliation(s)
- R Lindsay
- Helen Hayes Hospital, West Haverstraw, NY, USA
| | - J H Krege
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| | - F Marin
- Lilly Research Centre, Eli Lilly and Company, Windlesham, Surrey, UK
| | - L Jin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - J J Stepan
- Institute of Rheumatology, Faculty of Medicine 1, Charles University, Prague, Czech Republic
| |
Collapse
|
90
|
Yu NY, O'Brien CA, Slapetova I, Whan RM, Knothe Tate ML. Live Tissue Imaging to Elucidate Mechanical Modulation of Stem Cell Niche Quiescence. Stem Cells Transl Med 2016; 6:285-292. [PMID: 28170186 PMCID: PMC5442759 DOI: 10.5966/sctm.2015-0306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
The periosteum, a composite cellular connective tissue, bounds all nonarticular bone surfaces. Like Velcro, collagenous Sharpey's fibers anchor the periosteum in a prestressed state to the underlying bone. The periosteum provides a niche for mesenchymal stem cells. Periosteal lifting, as well as injury, causes cells residing in the periosteum (PDCs) to change from an immobile, quiescent state to a mobile, active state. The physical cues that activate PDCs to home to and heal injured areas remain a conundrum. An understanding of these cues is key to unlocking periosteum's remarkable regenerative power. We hypothesized that changes in periosteum's baseline stress state modulate the quiescence of its stem cell niche. We report, for the first time, a three-dimensional, high-resolution live tissue imaging protocol to observe and characterize ovine PDCs and their niche before and after release of the tissue's endogenous prestress. Loss of prestress results in abrupt shrinkage of the periosteal tissue. At the microscopic scale, loss of prestress results in significantly increased crimping of collagen of periosteum's fibrous layer and a threefold increase in the number of rounded nuclei in the cambium layer. Given the body of published data describing the relationships between stem cell and nucleus shape, structure and function, these observations are consistent with a role for mechanics in the modulation of periosteal niche quiescence. The quantitative characterization of periosteum as a stem cell niche represents a critical step for clinical translation of the periosteum and periosteum substitute-based implants for tissue defect healing. Stem Cells Translational Medicine 2017;6:285-292.
Collapse
Affiliation(s)
- Nicole Y.C. Yu
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| | - Connor A. O'Brien
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| | - Iveta Slapetova
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Renee M. Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa L. Knothe Tate
- Graduate School of Biomedical Engineering University of New South Wales, Sydney, Australia
| |
Collapse
|
91
|
Moore SR, Heu C, Yu NYC, Whan RM, Knothe UR, Milz S, Knothe Tate ML. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant. Stem Cells Transl Med 2016; 5:1739-1749. [PMID: 27465072 DOI: 10.5966/sctm.2016-0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/13/2016] [Indexed: 01/22/2023] Open
Abstract
: An abundance of surgical studies during the past 2 centuries provide empirical evidence of periosteum's regenerative power for reconstructing tissues as diverse as trachea and bone. This study aimed to develop quantitative, efficacy-based measures, thereby providing translational guidelines for the use of periosteum to harness the body's own healing potential and generate target tissues. The current study quantitatively and qualitatively demonstrated tissue generation modulated by a periosteum substitute membrane that replicates the structural constituents of native periosteum (elastin, collagen, progenitor cells) and its barrier, extracellular, and cellular properties. It shows the potentiation of the periosteum's regenerative capacity through the progenitor cells that inhabit the tissue, biological factors intrinsic to the extracellular matrix of periosteum, and mechanobiological factors related to implant design and implementation. In contrast to the direct intramembranous bone generated in defects surrounded by patent periosteum in situ, tissue generation in bone defects bounded by the periosteum substitute implant occurred primarily via endochondral mechanisms whereby cartilage was first generated and then converted to bone. In addition, in defects treated with the periosteum substitute, tissue generation was highest along the major centroidal axis, which is most resistant to prevailing bending loads. Taken together, these data indicate the possibility of designing modular periosteum substitute implants that can be tuned for vectorial and spatiotemporal delivery of biological agents and facilitation of target tissue genesis for diverse surgical scenarios and regenerative medicine approaches. It also underscores the potential to develop physical therapy protocols to maximize tissue genesis via the implant's mechanoactive properties. SIGNIFICANCE In the past 2 centuries, the periosteum, a niche for stem cells and super-smart biological material, has been used empirically in surgery to repair tissues as diverse as trachea and bone. In the past 25 years, the number of articles indexed in PubMed for the keywords "periosteum and tissue engineering" and "periosteum and regenerative medicine" has burgeoned. Yet the biggest limitation to the prescriptive use of periosteum is lack of easy access, giving impetus to the development of periosteum substitutes. Recent studies have opened up the possibility to bank periosteal tissues (e.g., from the femoral neck during routine resection for implantation of hip replacements). This study used an interdisciplinary, quantitative approach to assess tissue genesis in modular periosteum substitute implants, with the aim to provide translational strategies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Shannon R Moore
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Céline Heu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicole Y C Yu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Ulf R Knothe
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stefan Milz
- Anatomische Anstalt, Ludwig Maximilians University of Munich, Munich, Germany
| | - Melissa L Knothe Tate
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
92
|
Dicarlo M, Bianchi N, Ferretti C, Orciani M, Di Primio R, Mattioli-Belmonte M. Evidence Supporting a Paracrine Effect of IGF-1/VEGF on Human Mesenchymal Stromal Cell Commitment. Cells Tissues Organs 2016; 201:333-41. [PMID: 27179123 DOI: 10.1159/000445346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
Healing of skeletal defects is strictly dependent on osteogenesis and efficient vascularization of engineered scaffolds. Insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) are both involved in these processes. The in vitro administration of IGF-1 in association with VEGF is able to modulate the osteoblastic or endothelial commitment of mesenchymal stromal cells (MSCs) of different origins (e.g. periosteum and skin). In the present study, in order to deepen a possible paracrine effect of IGF-1 and VEGF on periosteum-derived progenitor cells (PDPCs) and skin-derived MSCs (S-MSCs), a Transwell coculture approach was used. We explored the genes involved in endothelial and osteoblastic differentiation, those modulating mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3'-kinase (PI3K)-AKT signaling pathways as well as genes implicated in stemness (i.e. Sox2, Oct4, and Nanog). Periosteal cells, which are typically committed toward osteoblastogenesis, are driven in the direction of endothelial gene expression when influenced by S-MSCs. The latter, once influenced by PDPCs, lose their endothelial commitment and increase the expression of osteoblast-associated genes. PI3K/AKT and MAPK signaling pathways seem to be markedly involved in this behavior. Our results evidence that paracrine signals between MSCs may differently modulate their commitment in a bone microenvironment, opening stimulating viewpoints for skeletal tissue engineering strategies coupling angiogenesis and osteogenesis processes.
Collapse
Affiliation(s)
- Manuela Dicarlo
- Department of Clinical and Molecular Sciences, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
93
|
Puvaneswary S, Raghavendran HB, Talebian S, Murali MR, A Mahmod S, Singh S, Kamarul T. Incorporation of Fucoidan in β-Tricalcium phosphate-Chitosan scaffold prompts the differentiation of human bone marrow stromal cells into osteogenic lineage. Sci Rep 2016; 6:24202. [PMID: 27068453 PMCID: PMC4828646 DOI: 10.1038/srep24202] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
In our previous study, we reported the fabrication and characterization of a novel tricalcium phosphate-fucoidan-chitosan (TCP-Fu-Ch) biocomposite scaffold. However, the previous report did not show whether the biocomposite scaffold can exhibit osteogenic differentiation of human bone marrow stromal cells in osteogenic media and normal media supplemented with platelet-derived growth factor (PDGF-BB). On day 15, the release of osteocalcin, was significant in the TCP-Fu-Ch scaffold, when compared with that in the TCP-Ch scaffold, and the level of release was approximately 8 and 6 ng/ml in osteogenic and normal media supplemented with PDGF-BB, respectively. Scanning electron microscopy of the TCP-Fu-Ch scaffold demonstrated mineralization and apatite layer formation on day 14, while the addition of PDGF-BB also improved the osteogenic differentiation of the scaffold. An array of gene expression analysis demonstrated that TCP-Fu-Ch scaffold cultured in osteogenic and normal media supplemented with PDGF-BB showed significant improvement in the expression of collagen 1, Runt-related transcription factor 2, osteonectin, bone gamma-carboxyglutamate protein, alkaline phosphatase, and PPA2, but a decline in the expression of integrin. Altogether, the present study demonstrated that fucoidan-incorporated TCP-Ch scaffold could be used in the differentiation of bone marrow stromal cells and can be a potential candidate for the treatment of bone-related ailments through tissue engineering technology.
Collapse
Affiliation(s)
- Subramaniam Puvaneswary
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, NOCERAL, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hanumantharao Balaji Raghavendran
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, NOCERAL, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sepehr Talebian
- Department of Mechanical engineering, Engineering Faculty, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Malliga Raman Murali
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, NOCERAL, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suhaeb A Mahmod
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, NOCERAL, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Simmrat Singh
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, NOCERAL, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), Department of Orthopaedic Surgery, NOCERAL, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
94
|
Differentiation potential of SHEDs using biomimetic periosteum containing dexamethasone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:1036-45. [DOI: 10.1016/j.msec.2015.09.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/10/2015] [Accepted: 09/20/2015] [Indexed: 11/20/2022]
|
95
|
Anchoring structure of the calvarial periosteum revealed by focused ion beam/scanning electron microscope tomography. Sci Rep 2015; 5:17511. [PMID: 26627533 PMCID: PMC4667224 DOI: 10.1038/srep17511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022] Open
Abstract
An important consideration in regeneration therapy is the fact that the tissue surrounding an organ supports its function. Understanding the structure of the periosteum can contribute to more effective bone regeneration therapy. As a cellular source, the periosteum also assists bone growth and fracture healing; this further necessitates its direct contact with the bone. However, its anchoring strength appears to be inexplicably stronger than expected. In this study, we used focused ion beam/scanning electron microscope tomography to investigate ultrathin serial sections as well as the three dimensional ultrastructure of the periosteum to clarify the architecture of its anchoring strength, as such assessments are challenging using conventional methods. We discovered perforating fibres that arise from the bone surface at 30 degree angles. Additionally, the fibres across the osteoblast layer were frequently interconnected to form a net-like structure. Fibroblast processes were observed extending into the perforating fibres; their morphologies were distinct from those of typical fibroblasts. Thus, our study revealed novel ultrastructures of the periosteum that support anchorage and serve as a cellular source as well as a mechanical stress transmitter.
Collapse
|
96
|
Han S, Hoffman MD, Proctor AR, Vella JB, Mannoh EA, Barber NE, Kim HJ, Jung KW, Benoit DSW, Choe R. Non-Invasive Monitoring of Temporal and Spatial Blood Flow during Bone Graft Healing Using Diffuse Correlation Spectroscopy. PLoS One 2015; 10:e0143891. [PMID: 26625352 PMCID: PMC4666601 DOI: 10.1371/journal.pone.0143891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/10/2015] [Indexed: 01/15/2023] Open
Abstract
Vascular infiltration and associated alterations in microvascular blood flow are critical for complete bone graft healing. Therefore, real-time, longitudinal measurement of blood flow has the potential to successfully predict graft healing outcomes. Herein, we non-invasively measure longitudinal blood flow changes in bone autografts and allografts using diffuse correlation spectroscopy in a murine femoral segmental defect model. Blood flow was measured at several positions proximal and distal to the graft site before implantation and every week post-implantation for a total of 9 weeks (autograft n = 7 and allograft n = 10). Measurements of the ipsilateral leg with the graft were compared with those of the intact contralateral control leg. Both autografts and allografts exhibited an initial increase in blood flow followed by a gradual return to baseline levels. Blood flow elevation lasted up to 2 weeks in autografts, but this duration varied from 2 to 6 weeks in allografts depending on the spatial location of the measurement. Intact contralateral control leg blood flow remained at baseline levels throughout the 9 weeks in the autograft group; however, in the allograft group, blood flow followed a similar trend to the graft leg. Blood flow difference between the graft and contralateral legs (ΔrBF), a parameter defined to estimate graft-specific changes, was elevated at 1–2 weeks for the autograft group, and at 2–4 weeks for the allograft group at the proximal and the central locations. However, distal to the graft, the allograft group exhibited significantly greater ΔrBF than the autograft group at 3 weeks post-surgery (p < 0.05). These spatial and temporal differences in blood flow supports established trends of delayed healing in allografts versus autografts.
Collapse
Affiliation(s)
- Songfeng Han
- Institute of Optics, University of Rochester, Rochester, New York, United States of America
| | - Michael D. Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ashley R. Proctor
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Joseph B. Vella
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Emmanuel A. Mannoh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Nathaniel E. Barber
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Hyun Jin Kim
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Ki Won Jung
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Chemical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Electrical and Computer Engineering, University of Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
97
|
Mattioli-Belmonte M, De Maria C, Vitale-Brovarone C, Baino F, Dicarlo M, Vozzi G. Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. J Tissue Eng Regen Med 2015; 11:1986-1997. [PMID: 26510714 DOI: 10.1002/term.2095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/16/2015] [Accepted: 09/14/2015] [Indexed: 11/07/2022]
Abstract
The aim of this work was the fabrication and characterization of bioactive glass-poly(lactic-co-glycolic acid) (PLGA) composite scaffolds mimicking the topological features of cancellous bone. Porous multilayer PLGA-CEL2 composite scaffolds were innovatively produced by a pressure-activated microsyringe (PAM) method, a CAD/CAM processing technique originally developed at the University of Pisa. In order to select the optimal formulations to be extruded by PAM, CEL2-PLGA composite films (CEL2 is an experimental bioactive SiO2 -P2 O5 -CaO-MgO-Na2 O-K2 O glass developed at Politecnico di Torino) were produced and mechanically tested. The elastic modulus of the films increased from 30 to > 400 MPa, increasing the CEL2 amount (10-50 wt%) in the composite. The mixture containing 20 wt% CEL2 was used to fabricate 2D and 3D bone-like scaffolds composed by layers with different topologies (square, hexagonal and octagonal pores). It was observed that the increase of complexity of 2D topological structures led to an increment of the elastic modulus from 3 to 9 MPa in the composite porous monolayer. The elastic modulus of 3D multilayer scaffolds was intermediate (about 6.5 MPa) between the values of the monolayers with square and octagonal pores (corresponding to the lowest and highest complexity, respectively). MG63 osteoblast-like cells and periosteal-derived precursor cells (PDPCs) were used to assess the biocompatibility of the 3D bone-like scaffolds. A significant increase in cell proliferation between 48 h and 7 days of culture was observed for both cell phenotypes. Moreover, qRT-PCR analysis evidenced an induction of early genes of osteogenesis in PDPCs. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - C De Maria
- Research Centre 'E. Piaggio', University of Pisa, Italy
| | - C Vitale-Brovarone
- Institute of Materials Physics and Engineering, Politecnico di Torino, Italy
| | - F Baino
- Institute of Materials Physics and Engineering, Politecnico di Torino, Italy
| | - M Dicarlo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - G Vozzi
- Research Centre 'E. Piaggio', University of Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Italy
| |
Collapse
|
98
|
Qu H, Guo W, Yang R, Li D, Tang S, Yang Y, Dong S, Zang J. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone. World J Surg Oncol 2015; 13:282. [PMID: 26399398 PMCID: PMC4581416 DOI: 10.1186/s12957-015-0694-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reconstruction of an intercalary bone defect after a tumor resection of a long bone remains a challenge to orthopedic surgeons. Though several methods have been adopted to enhance the union of long segmental allografts or retrieved segmental autografts to the host bones, still more progresses are required to achieve a better union rate. Several methods have been adopted to devitalize tumor bone for recycling usage, and the results varied. We describe our experiences of using devitalized tumor-bearing bones for the repairing of segmental defects after tumor resection. METHODS Twenty-seven eligible patients treated from February 2004 to May 2012 were included. The segmental tumor bone (mean length, 14 cm) was resected, and then devitalized in 20% sterile saline at 65 °C for 30 min after the tumor tissue was removed. The devitalized bone was implanted back into the defect by using nails or plates. RESULTS Complete healing of 50 osteotomy ends was achieved at a median time of 11 months (interquartile range (IQR) 9-13 months). Major complications included bone nonunion in four bone junctions (7.4%), devitalized bone fracture in one patient (3.7%), deep infection in three patients (11.1%), and fixation failure in two patients (7.4%). The bone union rates at 1 and 2 years were 74.1 and 92.6%, respectively. The average functional score according to the Musculoskeletal Tumor Society (MSTS) 93 scoring system was 93 % (IQR 80-96.7%). CONCLUSIONS Incubation in 20% sterile saline at 65 °C for 30 min is an effective method of devitalization of tumor-bearing bone. The retrieved bone graft may provide as a less expensive alternative for limb salvage. The structural bone and the preserved osteoinductivity of protein may improve bone union.
Collapse
Affiliation(s)
- Huayi Qu
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Xizhimen Nan 11#, Xicheng District, Beijing, 100044, China.
| | - Wei Guo
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Xizhimen Nan 11#, Xicheng District, Beijing, 100044, China.
| | - Rongli Yang
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Xizhimen Nan 11#, Xicheng District, Beijing, 100044, China.
| | - Dasen Li
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Xizhimen Nan 11#, Xicheng District, Beijing, 100044, China.
| | - Shun Tang
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Xizhimen Nan 11#, Xicheng District, Beijing, 100044, China.
| | - Yi Yang
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Xizhimen Nan 11#, Xicheng District, Beijing, 100044, China.
| | - Sen Dong
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Xizhimen Nan 11#, Xicheng District, Beijing, 100044, China.
| | - Jie Zang
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Xizhimen Nan 11#, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
99
|
Wang X, Wei F, Luo F, Huang K, Xie Z. Induction of granulation tissue for the secretion of growth factors and the promotion of bone defect repair. J Orthop Surg Res 2015; 10:147. [PMID: 26381122 PMCID: PMC4574139 DOI: 10.1186/s13018-015-0287-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Background The use of the Masquelet technique in the repair of large bone defects has gained increased acceptance in recent years. The core of this technique is the induction of granulation tissue membrane formation and the implantation of an autologous cancellous bone to reconstruct bone defects in the membrane. In this study, we purpose to explore the structure of induced membrane and the content of growth factors as well to compare between the structure and the effects on osteogenesis of induced membranes and the periosteum in animal models. Methods Bilateral radial bone defects were generated in 32 healthy adult rabbits. The defects were implanted with bone cement. The induced membranes and periosteum were removed after 2, 4, 6, and 8 weeks. Thereafter, hematoxylin-eosin staining (HE) and an enzyme-linked immunosorbent assay (ELISA) were performed to detect vascular endothelial growth factor (VEGF), angiotensin II (ANG-II), bone morphogenetic protein 2 (BMP2), fibroblast growth factor 2 (FGF2), and prostaglandin E2 (PGE2). Proteins isolated from total cell lysates were cultured with mesenchymal stem cells to test the cell proliferation and alkaline phosphatase activity using epimysium as a control. Results The induced membrane and periosteum exhibited similar structures and growth factor levels after 4 and 6 weeks. The highest concentration of BMP-2 and VEGF in the induced membranes occurred in week 6, and FGF-2 and ANG-II concentrations peaked in week 4. The thickness and vascular density of induced membranes gradually decreased with time. Conclusion Induced membrane matured between the 4th and the 6th week and secreted growth factors to promote osteogenesis. The matured induced membrane and periosteum had similar structures and abilities to promote the osteogenesis of mesenchymal stem cells. However, the induced membrane was thicker than the periosteum.
Collapse
Affiliation(s)
- Xiaohua Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, The People's Republic of China
| | - Fuda Wei
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, The People's Republic of China
| | - Fei Luo
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, The People's Republic of China
| | - Ke Huang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, The People's Republic of China
| | - Zhao Xie
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, The People's Republic of China.
| |
Collapse
|
100
|
Decoupling the role of stiffness from other hydroxyapatite signalling cues in periosteal derived stem cell differentiation. Sci Rep 2015; 5:10778. [PMID: 26035412 PMCID: PMC4451686 DOI: 10.1038/srep10778] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/05/2015] [Indexed: 12/15/2022] Open
Abstract
Bone extracellular matrix (ECM) is a natural composite made of collagen and mineral hydroxyapatite (HA). Dynamic cell-ECM interactions play a critical role in regulating cell differentiation and function. Understanding the principal ECM cues promoting osteogenic differentiation would be pivotal for both bone tissue engineering and regenerative medicine. Altering the mineral content generally modifies the stiffness as well as other physicochemical cues provided by composite materials, complicating the “cause-effect” analysis of resultant cell behaviour. To isolate the contribution of mechanical cues from other HA-derived signals, we developed and characterised composite HA/gelatin scaffolds with different mineral contents along with a set of stiffness-matched HA-free gelatin scaffolds. Samples were seeded with human periosteal derived progenitor cells (PDPCs) and cultured over 7 days, analysing their resultant morphology and gene expression. Our results show that both stiffness and HA contribute to directing PDPC osteogenic differentiation, highlighting the role of stiffness in triggering the expression of osteogenic genes and of HA in accelerating the process, particularly at high concentrations.
Collapse
|