51
|
Yamada Y, Sato F. Transcription Factors in Alkaloid Engineering. Biomolecules 2021; 11:1719. [PMID: 34827717 PMCID: PMC8615522 DOI: 10.3390/biom11111719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix-loop-helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
52
|
Conway SJ, Walcher-Chevillet CL, Salome Barbour K, Kramer EM. Brassinosteroids regulate petal spur length in Aquilegia by controlling cell elongation. ANNALS OF BOTANY 2021; 128:931-942. [PMID: 34508638 PMCID: PMC8577200 DOI: 10.1093/aob/mcab116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Aquilegia produce elongated, three-dimensional petal spurs that fill with nectar to attract pollinators. Previous studies have shown that the diversity of spur length across the Aquilegia genus is a key innovation that is tightly linked with its recent and rapid diversification into new ranges, and that evolution of increased spur lengths is achieved via anisotropic cell elongation. Previous work identified a brassinosteroid response transcription factor as being enriched in the early developing spur cup. Brassinosteroids are known to be important for cell elongation, suggesting that brassinosteroid-mediated response may be an important regulator of spur elongation and potentially a driver of spur length diversity in Aquilegia. In this study, we investigated the role of brassinosteroids in the development of the Aquilegia coerulea petal spur. METHODS We exogenously applied the biologically active brassinosteroid brassinolide to developing petal spurs to investigate spur growth under high hormone conditions. We used virus-induced gene silencing and gene expression experiments to understand the function of brassinosteroid-related transcription factors in A. coerulea petal spurs. KEY RESULTS We identified a total of three Aquilegia homologues of the BES1/BZR1 protein family and found that these genes are ubiquitously expressed in all floral tissues during development, yet, consistent with the previous RNAseq study, we found that two of these paralogues are enriched in early developing petals. Exogenously applied brassinosteroid increased petal spur length due to increased anisotropic cell elongation as well as cell division. We found that targeting of the AqBEH genes with virus-induced gene silencing resulted in shortened petals, a phenotype caused in part by a loss of cell anisotropy. CONCLUSIONS Collectively, our results support a role for brassinosteroids in anisotropic cell expansion in Aquilegia petal spurs and highlight the brassinosteroid pathway as a potential player in the diversification of petal spur length in Aquilegia.
Collapse
Affiliation(s)
- Stephanie J Conway
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| | - Cristina L Walcher-Chevillet
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
- 10x Genomics Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Kate Salome Barbour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
- Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| |
Collapse
|
53
|
Yang X, Gao S, Guo L, Wang B, Jia Y, Zhou J, Che Y, Jia P, Lin J, Xu T, Sun J, Ye K. Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway. Nat Commun 2021; 12:6030. [PMID: 34654815 PMCID: PMC8521590 DOI: 10.1038/s41467-021-26330-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
For millions of years, plants evolve plenty of structurally diverse secondary metabolites (SM) to support their sessile lifestyles through continuous biochemical pathway innovation. While new genes commonly drive the evolution of plant SM pathway, how a full biosynthetic pathway evolves remains poorly understood. The evolution of pathway involves recruiting new genes along the reaction cascade forwardly, backwardly, or in a patchwork manner. With three chromosome-scale Papaver genome assemblies, we here reveal whole-genome duplications (WGDs) apparently accelerate chromosomal rearrangements with a nonrandom distribution towards SM optimization. A burst of structural variants involving fusions, translocations and duplications within 7.7 million years have assembled nine genes into the benzylisoquinoline alkaloids gene cluster, following a punctuated patchwork model. Biosynthetic gene copies and their total expression matter to morphinan production. Our results demonstrate how new genes have been recruited from a WGD-induced repertoire of unregulated enzymes with promiscuous reactivities to innovate efficient metabolic pathways with spatiotemporal constraint.
Collapse
Affiliation(s)
- Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shenghan Gao
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Li Guo
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yizhuo Che
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Jia
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiadong Lin
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Tun Xu
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianyong Sun
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Ye
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China. .,Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China. .,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China. .,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China. .,Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
54
|
Pokhrel S, Huang K, Meyers BC. Conserved and non-conserved triggers of 24-nucleotide reproductive phasiRNAs in eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1332-1345. [PMID: 34160111 DOI: 10.1111/tpj.15382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Small RNAs play important roles in plant growth and development by modulating expression of genes and transposons. In many flowering plant species, male reproductive organs, the anthers, produce abundant phased small interfering RNAs (phasiRNAs). Two classes of reproductive phasiRNAs are generally known, mostly from monocots: (i) pre-meiotic 21-nucleotide (nt) phasiRNAs triggered by miR2118 and (ii) meiotic 24-nt phasiRNAs triggered by miR2275. Here, we describe conserved and non-conserved triggers of 24-nt phasiRNAs in several eudicots. We found that the abundant 24-nt phasiRNAs in the basal eudicot columbine (Aquilegia coerulea) are produced by the canonical trigger miR2275, as well as by other non-canonical triggers, miR482/2118 and miR14051. These triggering microRNAs (miRNAs) are localized in microspore mother cells and tapetal cells of meiotic and post-meiotic stage anthers. Furthermore, we identified a lineage-specific trigger (miR11308) of 24-nt phasiRNAs and an expanded number of 24-PHAS loci in wild strawberry (Fragaria vesca). We validated the presence of the miR2275-derived 24-nt phasiRNA pathway in rose (Rosa chinensis). Finally, we evaluated all eudicots that have been validated for the presence of 24-nt phasiRNAs as possible model systems in which to study the biogenesis and function of 24-nt phasiRNAs. We conclude that columbine (Aquilegia coerulea) would be a strong model because of its extensive number of 24-PHAS loci and its diversity of trigger miRNAs.
Collapse
Affiliation(s)
- Suresh Pokhrel
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Kun Huang
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| |
Collapse
|
55
|
Xue C, Geng FD, Li JJ, Zhang DQ, Gao F, Huang L, Zhang XH, Kang JQ, Zhang JQ, Ren Y. Divergence in the Aquilegia ecalcarata complex is correlated with geography and climate oscillations: Evidence from plastid genome data. Mol Ecol 2021; 30:5796-5813. [PMID: 34448283 DOI: 10.1111/mec.16151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
Quaternary climate oscillations and geographical heterogeneity play important roles in determining species and genetic diversity distribution patterns, but how these factors affect the migration and differentiation of East Asian plants species at the population level remains poorly understood. The Aquilegia ecalcarata complex, a group that originated in the Late Tertiary and is widely distributed throughout East Asia, displays high genetic variation that is suitable for studying elaborate phylogeographic patterns and demographic history related to the impact of Quaternary climate and geography. We used plastid genome data from 322 individuals in 60 populations of the A. ecalcarata complex to thoroughly explore the impact of Quaternary climate oscillations and geography on the phylogeographic patterns and demographic history of the A. ecalcarata complex through a series of phylogenetic, divergence time estimation, and demographic history analyses. The dry, cold climate and frequent climate oscillations that occurred during the early Pleistocene and the Mid-Pleistocene transition led to the differentiation of the A. ecalcarata complex, which was isolated in various areas. Geographically, the A. ecalcarata complex can be divided into Eastern and Western Clades and five subclades, which conform to the divergence of the East Asian flora. Our results clearly show the impact of Quaternary climate and geography on evolutionary history at the population level. These findings promote the understanding of the relationship between plant genetic differentiation and climate and geographical factors of East Asia at the population level.
Collapse
Affiliation(s)
- Cheng Xue
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Fang-Dong Geng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jiao-Jie Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Dan-Qing Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Fei Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Xiao-Hui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Ju-Qing Kang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jian-Qiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yi Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
56
|
Shen Y, Liang WJ, Shi YN, Kennelly EJ, Zhao DK. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat Prod Rep 2021; 37:763-796. [PMID: 32129397 DOI: 10.1039/d0np00002g] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 2009 to 2018. Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, are a diverse class of compounds having complex structural features with many stereocenters. The important pharmacological activities and structural complexity of the diterpenoid alkaloids have long interested scientists due to their medicinal uses, infamous toxicity, and unique biosynthesis. Since 2009, 373 diterpenoid alkaloids, assigned to 46 skeletons, have been isolated and identified from plants mostly in the Ranunculaceae family. The names, classes, molecular weight, molecular formula, NMR data, and plant sources of these diterpene alkaloids are collated here. This review will be a detailed update of the naturally occurring diterpene alkaloids reported from the plant kingdom from 2009-2018, providing an in-depth discussion of their diversity, biological activities, pharmacokinetics, toxicity, application, evolution, and biosynthesis.
Collapse
Affiliation(s)
- Yong Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China and Research & Development Center for Functional Products, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Wen-Juan Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, P. R. China
| | - Ya-Na Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, P. R. China and Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650000, P. R. China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, 10468, USA. and Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, 10016, USA
| | - Da-Ke Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, 650504, P. R. China. and Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, 650504, P. R. China and School of Life Science, Yunnan University, Kunming, 650504, P. R. China and Kunming Kangren Biotechnology Co., Ltd., Kunming, 650203, P. R. China
| |
Collapse
|
57
|
Pokhrel S, Huang K, Bélanger S, Zhan J, Caplan JL, Kramer EM, Meyers BC. Pre-meiotic 21-nucleotide reproductive phasiRNAs emerged in seed plants and diversified in flowering plants. Nat Commun 2021; 12:4941. [PMID: 34400639 PMCID: PMC8368212 DOI: 10.1038/s41467-021-25128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/24/2021] [Indexed: 02/07/2023] Open
Abstract
Plant small RNAs are important regulatory elements that fine-tune gene expression and maintain genome integrity by silencing transposons. Reproductive organs of monocots produce abundant phased, small interfering RNAs (phasiRNAs). The 21-nt reproductive phasiRNAs triggered by miR2118 are highly enriched in pre-meiotic anthers, and have been found in multiple eudicot species, in contrast with prior reports of monocot specificity. The 24-nt reproductive phasiRNAs are triggered by miR2275, and are highly enriched during meiosis in many angiosperms. Here, we report the widespread presence of the 21-nt reproductive phasiRNA pathway in eudicots including canonical and non-canonical microRNA (miRNA) triggers of this pathway. In eudicots, these 21-nt phasiRNAs are enriched in pre-meiotic stages, a spatiotemporal distribution consistent with that of monocots and suggesting a role in anther development. Although this pathway is apparently absent in well-studied eudicot families including the Brassicaceae, Solanaceae and Fabaceae, our work in eudicots supports an earlier singular finding in spruce, a gymnosperm, indicating that the pathway of 21-nt reproductive phasiRNAs emerged in seed plants and was lost in some lineages.
Collapse
Affiliation(s)
- Suresh Pokhrel
- grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, Saint Louis, MO USA ,grid.134936.a0000 0001 2162 3504Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO USA
| | - Kun Huang
- grid.33489.350000 0001 0454 4791Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE USA
| | - Sébastien Bélanger
- grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, Saint Louis, MO USA
| | - Junpeng Zhan
- grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, Saint Louis, MO USA ,grid.263817.9Department of Biology and Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong China
| | - Jeffrey L. Caplan
- grid.33489.350000 0001 0454 4791Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE USA
| | - Elena M. Kramer
- grid.38142.3c000000041936754XDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Blake C. Meyers
- grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, Saint Louis, MO USA ,grid.134936.a0000 0001 2162 3504Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO USA
| |
Collapse
|
58
|
Edwards MB, Choi GPT, Derieg NJ, Min Y, Diana AC, Hodges SA, Mahadevan L, Kramer EM, Ballerini ES. Genetic architecture of floral traits in bee- and hummingbird-pollinated sister species of Aquilegia (columbine). Evolution 2021; 75:2197-2216. [PMID: 34270789 DOI: 10.1111/evo.14313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023]
Abstract
Interactions with animal pollinators have helped shape the stunning diversity of flower morphologies across the angiosperms. A common evolutionary consequence of these interactions is that some flowers have converged on suites of traits, or pollination syndromes, that attract and reward specific pollinator groups. Determining the genetic basis of these floral pollination syndromes can help us understand the processes that contributed to the diversification of the angiosperms. Here, we characterize the genetic architecture of a bee-to-hummingbird pollination shift in Aquilegia (columbine) using QTL mapping of 17 floral traits encompassing color, nectar composition, and organ morphology. In this system, we find that the genetic architectures underlying differences in floral color are quite complex, and we identify several likely candidate genes involved in anthocyanin and carotenoid floral pigmentation. Most morphological and nectar traits also have complex genetic underpinnings; however, one of the key floral morphological phenotypes, nectar spur curvature, is shaped by a single locus of large effect.
Collapse
Affiliation(s)
- Molly B Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Gary P T Choi
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142
| | - Nathan J Derieg
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Angie C Diana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Scott A Hodges
- Department of Ecology, Evolutionary, and Marine Biology, University of California Santa Barbara, Santa Babara, California, 93106
| | - L Mahadevan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138.,School of Engineering & Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138.,Department of Physics, Harvard University, Cambridge, Massachusetts, 02138
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Evangeline S Ballerini
- Department of Ecology, Evolutionary, and Marine Biology, University of California Santa Barbara, Santa Babara, California, 93106.,Dept. of Biological Sciences, California State University Sacramento, Sacramento, California, 95819
| |
Collapse
|
59
|
Liu Y, Wang B, Shu S, Li Z, Song C, Liu D, Niu Y, Liu J, Zhang J, Liu H, Hu Z, Huang B, Liu X, Liu W, Jiang L, Alami MM, Zhou Y, Ma Y, He X, Yang Y, Zhang T, Hu H, Barker MS, Chen S, Wang X, Nie J. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun 2021; 12:3276. [PMID: 34078898 PMCID: PMC8172641 DOI: 10.1038/s41467-021-23611-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Chinese goldthread (Coptis chinensis Franch.), a member of the Ranunculales, represents an important early-diverging eudicot lineage with diverse medicinal applications. Here, we present a high-quality chromosome-scale genome assembly and annotation of C. chinensis. Phylogenetic and comparative genomic analyses reveal the phylogenetic placement of this species and identify a single round of ancient whole-genome duplication (WGD) shared by the Ranunculaceae. We characterize genes involved in the biosynthesis of protoberberine-type alkaloids in C. chinensis. In particular, local genomic tandem duplications contribute to member amplification of a Ranunculales clade-specific gene family of the cytochrome P450 (CYP) 719. The functional versatility of a key CYP719 gene that encodes the (S)-canadine synthase enzyme involved in the berberine biosynthesis pathway may play critical roles in the diversification of other berberine-related alkaloids in C. chinensis. Our study provides insights into the genomic landscape of early-diverging eudicots and provides a valuable model genome for genetic and applied studies of Ranunculales.
Collapse
Affiliation(s)
- Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Chi Song
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Di Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Niu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Jinxin Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Heping Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bisheng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiuyu Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Liping Jiang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Yuxin Zhou
- Hubei Institute for Drug Control, Wuhan, China
| | - Yutao Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangxiang He
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Yicheng Yang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Tianyuan Zhang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Hui Hu
- Jing Brand Chizhengtang Pharmaceutical Company Limited, Huangshi, China
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xuekui Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jing Nie
- Hubei Institute for Drug Control, Wuhan, China.
| |
Collapse
|
60
|
Chen DX, Pan Y, Wang Y, Cui YZ, Zhang YJ, Mo RY, Wu XL, Tan J, Zhang J, Guo LA, Zhao X, Jiang W, Sun TL, Hu XD, Li LY. The chromosome-level reference genome of Coptis chinensis provides insights into genomic evolution and berberine biosynthesis. HORTICULTURE RESEARCH 2021; 8:121. [PMID: 34059652 PMCID: PMC8166882 DOI: 10.1038/s41438-021-00559-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 05/21/2023]
Abstract
Coptis chinensis Franch, a perennial herb, is mainly distributed in southeastern China. The rhizome of C. chinensis has been used as a traditional medicine for more than 2000 years in China and many other Asian countries. The pharmacological activities of C. chinensis have been validated by research. Here, we present a de novo high-quality genome of C. chinensis with a chromosome-level genome of ~958.20 Mb, a contig N50 of 1.58 Mb, and a scaffold N50 of 4.53 Mb. We found that the relatively large genome size of C. chinensis was caused by the amplification of long terminal repeat (LTR) retrotransposons. In addition, a whole-genome duplication event in ancestral Ranunculales was discovered. Comparative genomic analysis revealed that the tyrosine decarboxylase (TYDC) and (S)-norcoclaurine synthase (NCS) genes were expanded and that the aspartate aminotransferase gene (ASP5) was positively selected in the berberine metabolic pathway. Expression level and HPLC analyses showed that the berberine content was highest in the roots of C. chinensis in the third and fourth years. The chromosome-level reference genome of C. chinensis provides important genomic data for molecular-assisted breeding and active ingredient biosynthesis.
Collapse
Affiliation(s)
- Da-Xia Chen
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Yan-Ze Cui
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Ying-Jun Zhang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Rang-Yu Mo
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Xiao-Li Wu
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Jian Zhang
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Lian-An Guo
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Xiao Zhao
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Tian-Lin Sun
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China
| | - Xiao-Di Hu
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North 13 Road, Chaoyang District, 100083, Beijing, China.
| | - Long-Yun Li
- Chongqing Academy of Chinese Materia Medica, 400065, Chongqing, China.
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, 400065, Chongqing, China.
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, 400065, Chongqing, China.
| |
Collapse
|
61
|
Rajewski A, Carter-House D, Stajich J, Litt A. Datura genome reveals duplications of psychoactive alkaloid biosynthetic genes and high mutation rate following tissue culture. BMC Genomics 2021; 22:201. [PMID: 33752605 PMCID: PMC7986286 DOI: 10.1186/s12864-021-07489-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Datura stramonium (Jimsonweed) is a medicinally and pharmaceutically important plant in the nightshade family (Solanaceae) known for its production of various toxic, hallucinogenic, and therapeutic tropane alkaloids. Recently, we published a tissue-culture based transformation protocol for D. stramonium that enables more thorough functional genomics studies of this plant. However, the tissue culture process can lead to undesirable phenotypic and genomic consequences independent of the transgene used. Here, we have assembled and annotated a draft genome of D. stramonium with a focus on tropane alkaloid biosynthetic genes. We then use mRNA sequencing and genome resequencing of transformants to characterize changes following tissue culture. RESULTS Our draft assembly conforms to the expected 2 gigabasepair haploid genome size of this plant and achieved a BUSCO score of 94.7% complete, single-copy genes. The repetitive content of the genome is 61%, with Gypsy-type retrotransposons accounting for half of this. Our gene annotation estimates the number of protein-coding genes at 52,149 and shows evidence of duplications in two key alkaloid biosynthetic genes, tropinone reductase I and hyoscyamine 6 β-hydroxylase. Following tissue culture, we detected only 186 differentially expressed genes, but were unable to correlate these changes in expression with either polymorphisms from resequencing or positional effects of transposons. CONCLUSIONS We have assembled, annotated, and characterized the first draft genome for this important model plant species. Using this resource, we show duplications of genes leading to the synthesis of the medicinally important alkaloid, scopolamine. Our results also demonstrate that following tissue culture, mutation rates of transformed plants are quite high (1.16 × 10- 3 mutations per site), but do not have a drastic impact on gene expression.
Collapse
Affiliation(s)
- Alex Rajewski
- Department of Botany and Plant Science, University of California, Riverside, California 92521 USA
| | - Derreck Carter-House
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521 USA
| | - Jason Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521 USA
| | - Amy Litt
- Department of Botany and Plant Science, University of California, Riverside, California 92521 USA
| |
Collapse
|
62
|
Zhang W, Wang H, Dong J, Zhang T, Xiao H. Comparative chloroplast genomes and phylogenetic analysis of Aquilegia. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11412. [PMID: 33854846 PMCID: PMC8027367 DOI: 10.1002/aps3.11412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 05/25/2023]
Abstract
PREMISE Aquilegia is an ideal taxon for studying the evolution of adaptive radiation. Current phylogenies of Aquilegia based on different molecular markers are inconsistent, and therefore a clear and accurate phylogeny remains uncertain. Analyzing the chloroplast genome, with its simple structure and low recombination rate, may help solve this problem. METHODS Next-generation sequencing data were generated or downloaded for Aquilegia species, enabling their chloroplast genomes to be assembled. The assemblies were used to estimate the genome characteristics and infer the phylogeny of Aquilegia. RESULTS In this study, chloroplast genome sequences were assembled for Aquilegia species distributed across Asia, North America, and Europe. Three of the genes analyzed (petG, rpl36, and atpB) were shown to be under positive selection and may be related to adaptation. The phylogenetic tree of Aquilegia showed that its member species formed two clades with high support, North American and European species, with the Asian species being paraphyletic; A. parviflora and A. amurensis clustered with the North American species, while the remaining Asian species were found in the European clade. In addition, A. oxysepala var. kansuensis should be considered as a separate species rather than a variety. DISCUSSION The complete chloroplast genomes of these Aquilegia species provide new insights into the reconstruction of the phylogeny of related species and contribute to the further study of this genus.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchun130024China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchun130024China
| | - Jianhua Dong
- Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchun130024China
| | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchun130024China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchun130024China
| |
Collapse
|
63
|
Giovannini A, Laura M, Nesi B, Savona M, Cardi T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. PLANT CELL REPORTS 2021; 40:461-478. [PMID: 33388891 PMCID: PMC7778708 DOI: 10.1007/s00299-020-02632-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 05/05/2023]
Abstract
We review the main genes underlying commercial traits in cut flower species and critically discuss the possibility to apply genome editing approaches to produce novel variation and phenotypes. Promoting flowering and flower longevity as well as creating novelty in flower structure, colour range and fragrances are major objectives of ornamental plant breeding. The novel genome editing techniques add new possibilities to study gene function and breed new varieties. The implementation of such techniques, however, relies on detailed information about structure and function of genomes and genes. Moreover, improved protocols for efficient delivery of editing reagents are required. Recent results of the application of genome editing techniques to elite ornamental crops are discussed in this review. Enabling technologies and genomic resources are reviewed in relation to the implementation of such approaches. Availability of the main gene sequences, underlying commercial traits and in vitro transformation protocols are provided for the world's best-selling cut flowers, namely rose, lily, chrysanthemum, lisianthus, tulip, gerbera, freesia, alstroemeria, carnation and hydrangea. Results obtained so far are described and their implications for the improvement of flowering, flower architecture, colour, scent and shelf-life are discussed.
Collapse
Affiliation(s)
- A. Giovannini
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - M. Laura
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - B. Nesi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via dei Fiori 8, 51017 Pescia, Italy
| | - M. Savona
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - T. Cardi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
64
|
Liu M, Sun W, Li C, Yu G, Li J, Wang Y, Wang X. A multilayered cross-species analysis of GRAS transcription factors uncovered their functional networks in plant adaptation to the environment. J Adv Res 2021; 29:191-205. [PMID: 33842016 PMCID: PMC8020295 DOI: 10.1016/j.jare.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction Environmental stress is both a major force of natural selection and a prime factor affecting crop qualities and yields. The impact of the GRAS [gibberellic acid-insensitive (GAI), repressor of GA1-3 mutant (RGA), and scarecrow (SCR)] family on plant development and the potential to resist environmental stress needs much emphasis. Objectives This study aims to investigate the evolution, expansion, and adaptive mechanisms of GRASs of important representative plants during polyploidization. Methods We explored the evolutionary characteristics of GRASs in 15 representative plant species by systematic biological analysis of the genome, transcriptome, metabolite, protein complex map and phenotype. Results The GRAS family was systematically identified from 15 representative plant species of scientific and agricultural importance. The detection of gene duplication types of GRASs in all species showed that the widespread expansion of GRASs in these species was mainly contributed by polyploidization events. Evolutionary analysis reveals that most species experience independent genome-wide duplication (WGD) events and that interspecies GRAS functions may be broadly conserved. Polyploidy-related Chenopodium quinoa GRASs (CqGRASs) and Arabidopsis thaliana GRASs (AtGRASs) formed robust networks with flavonoid pathways by crosstalk with auxin and photosynthetic pathways. Furthermore, Arabidopsis thaliana population transcriptomes and the 1000 Plants (OneKP) project confirmed that GRASs are components of flavonoid biosynthesis, which enables plants to adapt to the environment by promoting flavonoid accumulation. More importantly, the GRASs of important species that may potentially improve important agronomic traits were mapped through TAIR and RARGE-II publicly available phenotypic data. Determining protein interactions and target genes contributes to determining GRAS functions. Conclusion The results of this study suggest that polyploidy-related GRASs in multiple species may be a target for improving plant growth, development, and environmental adaptation.
Collapse
Affiliation(s)
- Moyang Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Wenjun Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Chaorui Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guolong Yu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yudong Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
65
|
Yamada Y, Hirakawa H, Hori K, Minakuchi Y, Toyoda A, Shitan N, Sato F. Comparative analysis using the draft genome sequence of California poppy (Eschscholzia californica) for exploring the candidate genes involved in benzylisoquinoline alkaloid biosynthesis. Biosci Biotechnol Biochem 2021; 85:851-859. [DOI: 10.1093/bbb/zbaa091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Genome characterization of California poppy (Eschscholzia californica cv. “Hitoezaki”), which produces pharmaceutically important benzylisoquinoline alkaloids (BIAs), was carried out using the draft genome sequence. The numbers of tRNA and rRNA genes were close to those of the other plant species tested, whereas the frequency of repetitive sequences was distinct from those species. Comparison of the predicted genes with those of Amborella trichopoda, Nelumbo nucifera, Solanum lycopersicum, and Arabidopsis thaliana, and analyses of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway indicated that the enzyme genes involved in BIA biosynthesis were highly enriched in the California poppy genome. Further comparative analysis using the genome information of Papaver somniferum and Aquilegia coerulea, both BIA-producing plants, revealed that many genes encoding BIA biosynthetic enzymes, transcription factors, transporters, and candidate proteins, possibly related to BIA biosynthesis, were specifically distributed in these plant species.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | | | - Kentaro Hori
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | - Nobukazu Shitan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
66
|
Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nat Commun 2021; 12:405. [PMID: 33452249 PMCID: PMC7810986 DOI: 10.1038/s41467-020-20508-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Plant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes' evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.
Collapse
|
67
|
Furumizu C, Sawa S. The RGF/GLV/CLEL Family of Short Peptides Evolved Through Lineage-Specific Losses and Diversification and Yet Conserves Its Signaling Role Between Vascular Plants and Bryophytes. FRONTIERS IN PLANT SCIENCE 2021; 12:703012. [PMID: 34354727 PMCID: PMC8329595 DOI: 10.3389/fpls.2021.703012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Short secreted plant peptides act as key signaling molecules and control a plethora of developmental and physiological processes. The ROOT GROWTH FACTOR (RGF)/GOLVEN (GLV)/CLE-Like (CLEL) family of peptides was discovered to be involved in root development in Arabidopsis thaliana. In contrast to active research efforts, which have been revealing receptors and downstream signaling components, little attention has been paid to evolutionary processes that shaped the RGF signaling system as we know it in angiosperms today. As a first step toward understanding how RGF signaling emerged and evolved, this study aimed to elucidate the phylogenetic distribution and functional conservation of RGF-like sequences. Using publicly available, genome and transcriptome data, RGF-like sequences were searched in 27 liverworts, 22 mosses, 8 hornworts, 23 lycophytes, 23 ferns, 38 gymnosperms, and 8 angiosperms. This led to the identification of more than four hundreds of RGF-like sequences in all major extant land plant lineages except for hornworts. Sequence comparisons within and between taxonomic groups identified lineage-specific characters. Notably, one of the two major RGF subgroups, represented by A. thaliana RGF6/GLV1/CLEL6, was found only in vascular plants. This subgroup, therefore, likely emerged in a common ancestor of vascular plants after its divergence from bryophytes. In bryophytes, our results infer independent losses of RGF-like sequences in mosses and hornworts. On the other hand, a single, highly similar RGF-like sequence is conserved in liverworts, including Marchantia polymorpha, a genetically tractable model species. When constitutively expressed, the M. polymorpha RGF-like sequence (MpRGF) affected plant development and growth both in A. thaliana and M. polymorpha. This suggests that MpRGF can exert known RGF-like effects and that MpRGF is under transcriptional control so that its potent activities are precisely controlled. These data suggest that RGFs are conserved as signaling molecules in both vascular plants and bryophytes and that lineage-specific diversification has increased sequence variations of RGFs. All together, our findings form a basis for further studies into RGF peptides and their receptors, which will contribute to our understandings of how peptide signaling pathways evolve.
Collapse
|
68
|
Arias T, Riaño‐Pachón DM, Di Stilio VS. Genomic and transcriptomic resources for candidate gene discovery in the Ranunculids. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11407. [PMID: 33552749 PMCID: PMC7845765 DOI: 10.1002/aps3.11407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Multiple transitions from insect to wind pollination are associated with polyploidy and unisexual flowers in Thalictrum (Ranunculaceae), yet the underlying genetics remains unknown. We generated a draft genome of Thalictrum thalictroides, a representative of a clade with ancestral floral traits (diploid, hermaphrodite, and insect pollinated) and a model for functional studies. Floral transcriptomes of T. thalictroides and of wind-pollinated, andromonoecious T. hernandezii are presented as a resource to facilitate candidate gene discovery in flowers with different sexual and pollination systems. METHODS A draft genome of T. thalictroides and two floral transcriptomes of T. thalictroides and T. hernandezii were obtained from HiSeq 2000 Illumina sequencing and de novo assembly. RESULTS The T. thalictroides de novo draft genome assembly consisted of 44,860 contigs (N50 = 12,761 bp, 243 Mbp total length) and contained 84.5% conserved embryophyte single-copy genes. Floral transcriptomes contained representatives of most eukaryotic core genes, and most of their genes formed orthogroups. DISCUSSION To validate the utility of these resources, potential candidate genes were identified for the different floral morphologies using stepwise data set comparisons. Single-copy gene analysis and simple sequence repeat markers were also generated as a resource for population-level and phylogenetic studies.
Collapse
Affiliation(s)
- Tatiana Arias
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
- Department of BiologyUniversity of Washington, SeattleWashington98195‐1800USA
- Present address:
Tecnológico de AntioquiaCalle 78B No. 72A220MedellínColombia
| | - Diego Mauricio Riaño‐Pachón
- Laboratory of Computational, Evolutionary and Systems BiologyCenter for Nuclear Energy in AgricultureUniversity of São PauloPiracicabaSão Paulo13416‐000Brazil
| | | |
Collapse
|
69
|
Kramer EM. My favourite flowering image: an Aquilegia flower. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:e1-e3. [PMID: 33382893 PMCID: PMC8611718 DOI: 10.1093/jxb/erz035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard
University, Cambridge, USA
| |
Collapse
|
70
|
Mayrose I, Lysak MA. The Evolution of Chromosome Numbers: Mechanistic Models and Experimental Approaches. Genome Biol Evol 2020; 13:5923296. [PMID: 33566095 PMCID: PMC7875004 DOI: 10.1093/gbe/evaa220] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosome numbers have been widely used to describe the most fundamental genomic attribute of an organism or a lineage. Although providing strong phylogenetic signal, chromosome numbers vary remarkably among eukaryotes at all levels of taxonomic resolution. Changes in chromosome numbers regularly serve as indication of major genomic events, most notably polyploidy and dysploidy. Here, we review recent advancements in our ability to make inferences regarding historical events that led to alterations in the number of chromosomes of a lineage. We first describe the mechanistic processes underlying changes in chromosome numbers, focusing on structural chromosomal rearrangements. Then, we focus on experimental procedures, encompassing comparative cytogenomics and genomics approaches, and on computational methodologies that are based on explicit models of chromosome-number evolution. Together, these tools offer valuable predictions regarding historical events that have changed chromosome numbers and genome structures, as well as their phylogenetic and temporal placements.
Collapse
Affiliation(s)
- Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
71
|
Ballerini ES, Min Y, Edwards MB, Kramer EM, Hodges SA. POPOVICH, encoding a C2H2 zinc-finger transcription factor, plays a central role in the development of a key innovation, floral nectar spurs, in Aquilegia. Proc Natl Acad Sci U S A 2020; 117:22552-22560. [PMID: 32848061 PMCID: PMC7486772 DOI: 10.1073/pnas.2006912117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolution of novel features, such as eyes or wings, that allow organisms to exploit their environment in new ways can lead to increased diversification rates. Therefore, understanding the genetic and developmental mechanisms involved in the origin of these key innovations has long been of interest to evolutionary biologists. In flowering plants, floral nectar spurs are a prime example of a key innovation, with the independent evolution of spurs associated with increased diversification rates in multiple angiosperm lineages due to their ability to promote reproductive isolation via pollinator specialization. As none of the traditional plant model taxa have nectar spurs, little is known about the genetic and developmental basis of this trait. Nectar spurs are a defining feature of the columbine genus Aquilegia (Ranunculaceae), a lineage that has experienced a relatively recent and rapid radiation. We use a combination of genetic mapping, gene expression analyses, and functional assays to identify a gene crucial for nectar spur development, POPOVICH (POP), which encodes a C2H2 zinc-finger transcription factor. POP plays a central role in regulating cell proliferation in the Aquilegia petal during the early phase (phase I) of spur development and also appears to be necessary for the subsequent development of nectaries. The identification of POP opens up numerous avenues for continued scientific exploration, including further elucidating of the genetic pathway of which it is a part, determining its role in the initial evolution of the Aquilegia nectar spur, and examining its potential role in the subsequent evolution of diverse spur morphologies across the genus.
Collapse
Affiliation(s)
- Evangeline S Ballerini
- Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, CA 93106;
| | - Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Molly B Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02318
| | - Scott A Hodges
- Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, CA 93106;
| |
Collapse
|
72
|
Jiang Y, Wang M, Zhang R, Xie J, Duan X, Shan H, Xu G, Kong H. Identification of the target genes of AqAPETALA3-3 (AqAP3-3) in Aquilegia coerulea (Ranunculaceae) helps understand the molecular bases of the conserved and nonconserved features of petals. THE NEW PHYTOLOGIST 2020; 227:1235-1248. [PMID: 32285943 DOI: 10.1111/nph.16601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Identification and comparison of the conserved and variable downstream genes of floral organ identity regulators are critical to understanding the mechanisms underlying the commonalities and peculiarities of floral organs. Yet, because of the lack of studies in nonmodel species, a general picture of the regulatory evolution between floral organ identity genes and their targets is still lacking. Here, by conducting extensive chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), electrophoretic mobility shift assay and bioinformatic analyses, we identify and predict the target genes of a petal identity gene, AqAPETALA3-3 (AqAP3-3), in Aquilegia coerulea (Ranunculaceae) and compare them with those of its counterpart in Arabidopsis thaliana, AP3. In total, 7049 direct target genes are identified for AqAP3-3, of which 2394 are highly confident and 1085 are shared with AP3. Gene Ontology enrichment analyses further indicate that conserved targets are largely involved in the formation of identity-related features, whereas nonconserved targets are mostly required for the formation of species-specific features. These results not only help understand the molecular bases of the conserved and nonconserved features of petals, but also pave the way to studying the regulatory evolution between floral organ identity genes and their targets.
Collapse
Affiliation(s)
- Yongchao Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meimei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinghe Xie
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guixia Xu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
73
|
Xie J, Zhao H, Li K, Zhang R, Jiang Y, Wang M, Guo X, Yu B, Kong H, Jiao Y, Xu G. A chromosome-scale reference genome of Aquilegia oxysepala var. kansuensis. HORTICULTURE RESEARCH 2020; 7:113. [PMID: 32637141 PMCID: PMC7326910 DOI: 10.1038/s41438-020-0328-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 05/21/2023]
Abstract
The genus Aquilegia (Ranunculaceae) has been cultivated as ornamental and medicinal plants for centuries. With petal spurs of strikingly diverse size and shape, Aquilegia has also been recognized as an excellent system for evolutionary studies. Pollinator-mediated selection for longer spurs is believed to have shaped the evolution of this genus, especially the North American taxa. Recently, however, an opposite evolutionary trend was reported in an Asian lineage, where multiple origins of mini- or even nonspurred morphs have occurred. Interesting as it is, the lack of genomic resources has limited our ability to decipher the molecular and evolutionary mechanisms underlying spur reduction in this special lineage. Using long-read sequencing (PacBio Sequel), in combination with optical maps (BioNano DLS) and Hi-C, we assembled a high-quality reference genome of A. oxysepala var. kansuensis, a sister species to the nonspurred taxon. The final assembly is approximately 293.2 Mb, 94.6% (277.4 Mb) of which has been anchored to 7 pseudochromosomes. A total of 25,571 protein-coding genes were predicted, with 97.2% being functionally annotated. When comparing this genome with that of A. coerulea, we detected a large rearrangement between Chr1 and Chr4, which might have caused the Chr4 of A. oxysepala var. kansuensis to partly deviate from the "decaying" path that was taken before the split of Aquilegia and Semiaquilegia. This high-quality reference genome is fundamental to further investigations on the development and evolution of petal spurs and provides a strong foundation for the breeding of new horticultural Aquilegia cultivars.
Collapse
Affiliation(s)
- Jinghe Xie
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haifeng Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Kunpeng Li
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Yongchao Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Meimei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuelian Guo
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Ben Yu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guixia Xu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
74
|
Moharana KC, Venancio TM. Polyploidization events shaped the transcription factor repertoires in legumes (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:726-741. [PMID: 32270526 DOI: 10.1111/tpj.14765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Transcription factors (TFs) are essential for plant growth and development. Several legumes (e.g. soybean) are rich sources of protein and oil and have great economic importance. Here we report a phylogenomic analysis of TF families in legumes and their potential association with important traits (e.g. nitrogen fixation). We used TF DNA-binding domains to systematically screen the genomes of 15 leguminous and five non-leguminous species. Transcription factor orthologous groups (OGs) were used to estimate OG sizes in ancestral nodes using a gene birth-death model, which allowed the identification of lineage-specific expansions. The OG analysis and rate of synonymous substitutions show that major TF expansions are strongly associated with whole-genome duplication (WGD) events in the legume (approximately 58 million years ago) and Glycine (approximately 13 million years ago) lineages, which account for a large fraction of the Phaseolus vulgaris and Glycine max TF repertoires. Of the 3407 G. max TFs, 1808 and 676 have homeologs within single syntenic regions in Phaseolus vulgaris and Vitis vinifera, respectively. We found a trend for TFs expanded in legumes to be preferentially transcribed in roots and nodules, supporting their recruitment early in the evolution of nodulation in the legume clade. Some families also showed count differences between G. max and the wild soybean Glycine soja, including genes located within important quantitative trait loci. Our findings strongly support the roles of two WGDs in shaping the TF repertoires in the legume and Glycine lineages, and these are probably related to important aspects of legume and soybean biology.
Collapse
Affiliation(s)
- Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
75
|
Singh S, Bhatt V, Kumar V, Kumawat S, Khatri P, Singla P, Shivaraj S, Nadaf A, Deshmukh R, Sharma TR, Sonah H. Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea. PLANTS 2020; 9:plants9060799. [PMID: 32604788 PMCID: PMC7355465 DOI: 10.3390/plants9060799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023]
Abstract
Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.
Collapse
Affiliation(s)
- Shweta Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra 411007, India; (V.B.); (A.N.)
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Pankaj Singla
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - S.M. Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Altaf Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra 411007, India; (V.B.); (A.N.)
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi 110001, India
- Correspondence: (T.R.S.); (H.S.); Tel.: +91-172-522-1181 (H.S.)
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Correspondence: (T.R.S.); (H.S.); Tel.: +91-172-522-1181 (H.S.)
| |
Collapse
|
76
|
Li Y, Winzer T, He Z, Graham IA. Over 100 Million Years of Enzyme Evolution Underpinning the Production of Morphine in the Papaveraceae Family of Flowering Plants. PLANT COMMUNICATIONS 2020; 1:100029. [PMID: 32685922 PMCID: PMC7357826 DOI: 10.1016/j.xplc.2020.100029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 05/06/2023]
Abstract
Phylogenomic analysis of whole genome sequences of five benzylisoquinoline alkaloid (BIA)-producing species from the Ranunculales and Proteales orders of flowering plants revealed the sequence and timing of evolutionary events leading to the diversification of these compounds. (S)-Reticuline is a pivotal intermediate in the synthesis of many BIAs and our analyses revealed parallel evolution between the two orders, which diverged ∼122 million years ago (MYA). Berberine is present in species across the entire Ranunculales, and we found co-evolution of genes essential for production of the protoberberine class. The benzophenanthridine class, which includes the antimicrobial compound sanguinarine, is specific to the Papaveraceae family of Ranunculales, and biosynthetic genes emerged after the split with the Ranunculaceae family ∼110 MYA but before the split of the three Papaveraceae species used in this study at ∼77 MYA. The phthalideisoquinoline noscapine and morphinan class of BIAs are exclusive to the opium poppy lineage. Ks estimation of paralogous pairs indicates that morphine biosynthesis evolved more recently than 18 MYA in the Papaver genus. In the preceding 100 million years gene duplication, neofunctionalization and recruitment of additional enzyme classes, combined with gene clustering, gene fusion, and gene amplification, resulted in emergence of medicinally valuable BIAs including morphine and noscapine.
Collapse
Affiliation(s)
- Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, UK
| | - Thilo Winzer
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, UK
| | - Zhesi He
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, UK
| | - Ian A. Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, UK
- Corresponding author
| |
Collapse
|
77
|
Choi JY, Lye ZN, Groen SC, Dai X, Rughani P, Zaaijer S, Harrington ED, Juul S, Purugganan MD. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biol 2020; 21:21. [PMID: 32019604 PMCID: PMC7001208 DOI: 10.1186/s13059-020-1938-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/17/2020] [Indexed: 01/23/2023] Open
Abstract
Background The circum-basmati group of cultivated Asian rice (Oryza sativa) contains many iconic varieties and is widespread in the Indian subcontinent. Despite its economic and cultural importance, a high-quality reference genome is currently lacking, and the group’s evolutionary history is not fully resolved. To address these gaps, we use long-read nanopore sequencing and assemble the genomes of two circum-basmati rice varieties. Results We generate two high-quality, chromosome-level reference genomes that represent the 12 chromosomes of Oryza. The assemblies show a contig N50 of 6.32 Mb and 10.53 Mb for Basmati 334 and Dom Sufid, respectively. Using our highly contiguous assemblies, we characterize structural variations segregating across circum-basmati genomes. We discover repeat expansions not observed in japonica—the rice group most closely related to circum-basmati—as well as the presence and absence variants of over 20 Mb, one of which is a circum-basmati-specific deletion of a gene regulating awn length. We further detect strong evidence of admixture between the circum-basmati and circum-aus groups. This gene flow has its greatest effect on chromosome 10, causing both structural variation and single-nucleotide polymorphism to deviate from genome-wide history. Lastly, population genomic analysis of 78 circum-basmati varieties shows three major geographically structured genetic groups: Bhutan/Nepal, India/Bangladesh/Myanmar, and Iran/Pakistan. Conclusion The availability of high-quality reference genomes allows functional and evolutionary genomic analyses providing genome-wide evidence for gene flow between circum-aus and circum-basmati, describes the nature of circum-basmati structural variation, and reveals the presence/absence variation in this important and iconic rice variety group.
Collapse
Affiliation(s)
- Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | - Zoe N Lye
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Simon C Groen
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | | | | | | | | | - Sissel Juul
- Oxford Nanopore Technologies, New York, NY, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA. .,Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
78
|
Huang H. The complete chloroplast genome of Aquilegia barnebyi, a basal eudicot species. Mitochondrial DNA B Resour 2020; 5:1060-1061. [PMID: 33366874 PMCID: PMC7748838 DOI: 10.1080/23802359.2020.1719919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aquilegia barnebyi, belonging to the genus Aquilegia (Ranunculaceae), is a member of basal eudicot species. In this study, we obtained the complete chloroplast (cp) genome of A. barnebyi. The genome size is 161,954 bp with a GC content of 38.98%. A total of 113 unique genes including 79 protein-coding genes, 30 tRNA genes, four rRNA genes were annotated. The large single-copy region and small single-copy region contains 91,250 bp and 17,359 bp, respectively. The inverted repeat regions are 26,671 bp in length. The phyologenetic analysis indicated that A. barnebyi had a close relationship with A. coerulea. And four species in genus Aquilegia formed a monophyletic group with high support value. The availability of A. barnebyi cp genomic resources will greatly helpful for taxonomy, phylogeny and conservation genetic studies of basal eudicot specie.
Collapse
Affiliation(s)
- Hui Huang
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| |
Collapse
|
79
|
Piñeiro Fernández L, Byers KJR.P, Cai J, Sedeek KEM, Kellenberger RT, Russo A, Qi W, Aquino Fournier C, Schlüter PM. A Phylogenomic Analysis of the Floral Transcriptomes of Sexually Deceptive and Rewarding European Orchids, Ophrys and Gymnadenia. FRONTIERS IN PLANT SCIENCE 2019; 10:1553. [PMID: 31850034 PMCID: PMC6895147 DOI: 10.3389/fpls.2019.01553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 05/30/2023]
Abstract
The orchids (Orchidaceae) constitute one of the largest and most diverse families of flowering plants. They have evolved a great variety of adaptations to achieve pollination by a diverse group of pollinators. Many orchids reward their pollinators, typically with nectar, but the family is also well-known for employing deceptive pollination strategies in which there is no reward for the pollinator, in the most extreme case by mimicking sexual signals of pollinators. In the European flora, two examples of these different pollination strategies are the sexually deceptive genus Ophrys and the rewarding genus Gymnadenia, which differ in their level of pollinator specialization; Ophrys is typically pollinated by pseudo-copulation of males of a single insect species, whilst Gymnadenia attracts a broad range of floral visitors. Here, we present and describe the annotated floral transcriptome of Ophrys iricolor, an Andrena-pollinated representative of the genus Ophrys that is widespread throughout the Aegean. Furthermore, we present additional floral transcriptomes of both sexually deceptive and rewarding orchids, specifically the deceptive Ophrys insectifera, Ophrys aymoninii, and an updated floral transcriptome of Ophrys sphegodes, as well as the floral transcriptomes of the rewarding orchids Gymnadenia conopsea, Gymnadenia densiflora, Gymnadenia odoratissima, and Gymnadenia rhellicani (syn. Nigritella rhellicani). Comparisons of these novel floral transcriptomes reveal few annotation differences between deceptive and rewarding orchids. Since together, these transcriptomes provide a representative sample of the genus-wide taxonomic diversity within Ophrys and Gymnadenia (Orchidoideae: Orchidinae), we employ a phylogenomic approach to address open questions of phylogenetic relationships within the genera. Specifically, this includes the controversial placement of O. insectifera within the Ophrys phylogeny and the placement of "Nigritella"-type morphologies within the phylogeny of Gymnadenia. Whereas in Gymnadenia, several conflicting topologies are supported by a similar number of gene trees, a majority of Ophrys gene topologies clearly supports a placement of O. insectifera as sister to a clade containing O. sphegodes.
Collapse
Affiliation(s)
- Laura Piñeiro Fernández
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Kelsey J. R .P. Byers
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jing Cai
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Khalid E. M. Sedeek
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - Roman T. Kellenberger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alessia Russo
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Centre Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
80
|
Aköz G, Nordborg M. The Aquilegia genome reveals a hybrid origin of core eudicots. Genome Biol 2019; 20:256. [PMID: 31779695 PMCID: PMC6883705 DOI: 10.1186/s13059-019-1888-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022] Open
Abstract
Background Whole-genome duplications (WGDs) have dominated the evolutionary history of plants. One consequence of WGD is a dramatic restructuring of the genome as it undergoes diploidization, a process under which deletions and rearrangements of various sizes scramble the genetic material, leading to a repacking of the genome and eventual return to diploidy. Here, we investigate the history of WGD in the columbine genus Aquilegia, a basal eudicot, and use it to illuminate the origins of the core eudicots. Results Within-genome synteny confirms that columbines are ancient tetraploids, and comparison with the grape genome reveals that this tetraploidy appears to be shared with the core eudicots. Thus, the ancient gamma hexaploidy found in all core eudicots must have involved a two-step process: first, tetraploidy in the ancestry of all eudicots, then hexaploidy in the ancestry of core eudicots. Furthermore, the precise pattern of synteny sharing suggests that the latter involved allopolyploidization and that core eudicots thus have a hybrid origin. Conclusions Novel analyses of synteny sharing together with the well-preserved structure of the columbine genome reveal that the gamma hexaploidy at the root of core eudicots is likely a result of hybridization between a tetraploid and a diploid species.
Collapse
Affiliation(s)
- Gökçe Aköz
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
81
|
Šimoníková D, Němečková A, Karafiátová M, Uwimana B, Swennen R, Doležel J, Hřibová E. Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana ( Musa Spp.). FRONTIERS IN PLANT SCIENCE 2019; 10:1503. [PMID: 31824534 DOI: 10.3389/fpls.2019.01503/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 05/24/2023]
Abstract
Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis "DH Pahang" to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Alžbeěta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Brigitte Uwimana
- Banana Breeding, International Institute of Tropical Agriculture, Kampala, Uganda
| | - Rony Swennen
- Bioversity International, Banana Genetic Resources, Heverlee, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
- Banana Breeding, International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
82
|
Sharma B, Meaders C, Wolfe D, Holappa L, Walcher-Chevillet C, Kramer EM. Homologs of LEAFY and UNUSUAL FLORAL ORGANS Promote the Transition From Inflorescence to Floral Meristem Identity in the Cymose Aquilegia coerulea. FRONTIERS IN PLANT SCIENCE 2019; 10:1218. [PMID: 31681357 PMCID: PMC6805967 DOI: 10.3389/fpls.2019.01218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Homologs of the transcription factor LEAFY (LFY) and the F-box family member UNUSUAL FLORAL ORGANS (UFO) have been found to promote floral meristem identity across diverse dicot model systems. The lower eudicot model Aquilegia produces cymose inflorescences that are independently evolved from the well-studied cymose models Petunia and tomato. We have previously characterized the expression pattern of the Aquilegia homolog AqLFY but in the current study, we add expression data on the two UFO homologs, AqUFO1 and 2, and conduct virus-induced gene silencing of all the loci. Down-regulation of AqLFY or AqUFO1 and 2 does not eliminate floral meristem identity but, instead, causes the transition from inflorescence to floral identity to become gradual rather than discrete. Inflorescences in down-regulated plants generate several nodes of bract/sepal chimeras and, once floral development does commence, flowers initiate several whorls of sepals before finally producing the wildtype floral whorls. In addition, silencing of AqUFO1/2 appears to specifically impact petal identity and/or the initiation of petal and stamen whorls. In general, however, there is no evidence for an essential role of AqLFY or AqUFO1/2 in transcriptional activation of the B or C gene homologs. These findings highlight differences between deeply divergent dicot lineages in the functional conservation of the floral meristem identity program.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Clara Meaders
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Damien Wolfe
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Lynn Holappa
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | | | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
83
|
Mandáková T, Zozomová-Lihová J, Kudoh H, Zhao Y, Lysak MA, Marhold K. The story of promiscuous crucifers: origin and genome evolution of an invasive species, Cardamine occulta (Brassicaceae), and its relatives. ANNALS OF BOTANY 2019; 124:209-220. [PMID: 30868165 PMCID: PMC6758578 DOI: 10.1093/aob/mcz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.
Collapse
Affiliation(s)
- Terezie Mandáková
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Judita Zozomová-Lihová
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano, Japan
| | - Yunpeng Zhao
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Centre for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, China
| | - Martin A Lysak
- Plant Cytogenomics research group, CEITEC – Central European Institute of Technology, and Faculty of Science, Masaryk University, Kamenice, Czech Republic
| | - Karol Marhold
- Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
84
|
Developmental and Molecular Changes Underlying the Vernalization-Induced Transition to Flowering in Aquilegia coerulea (James). Genes (Basel) 2019; 10:genes10100734. [PMID: 31546687 PMCID: PMC6826667 DOI: 10.3390/genes10100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023] Open
Abstract
Reproductive success in plants is dependent on many factors but the precise timing of flowering is certainly among the most crucial. Perennial plants often have a vernalization or over-wintering requirement in order to successfully flower in the spring. The shoot apical meristem undergoes drastic developmental and molecular changes as it transitions into inflorescence meristem (IM) identity, which then gives rise to floral meristems (FMs). In this study, we have examined the developmental and gene expression changes underlying the transition from the vegetative to reproductive phases in the basal eudicot Aquilegia coerulea, which has evolved a vernalization response independently relative to other established model systems. Results from both our histology and scanning electron studies demonstrate that developmental changes in the meristem occur gradually during the third and fourth weeks of vernalization. Based on RNAseq data and cluster analysis, several known flowering time loci, including AqFT and AqFL1, exhibit dramatic changes in expression during the fourth week. Further consideration of candidate gene homologs as well as unexpected loci of interest creates a framework in which we can begin to explore the genetic basis of the flowering time transition in Aquilegia.
Collapse
|
85
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s00425-00018-03033-00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 05/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
86
|
Ballerini ES, Kramer EM, Hodges SA. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development. BMC Genomics 2019; 20:668. [PMID: 31438840 PMCID: PMC6704642 DOI: 10.1186/s12864-019-6002-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Petal nectar spurs, which facilitate pollination through animal attraction and pollen placement, represent a key innovation promoting diversification in the genus Aquilegia (Ranunculaceae). Identifying the genetic components that contribute to the development of these three-dimensional structures will inform our understanding of the number and types of genetic changes that are involved in the evolution of novel traits. In a prior study, gene expression between two regions of developing petals, the laminar blade and the spur cup, was compared at two developmental stages in the horticultural variety A. coerulea 'Origami'. Several hundred genes were differentially expressed (DE) between the blade and spur at both developmental stages. In order to narrow in on a set of genes crucial to early spur formation, the current study uses RNA sequencing (RNAseq) to conduct comparative expression analyses of petals from five developmental stages between four Aquilegia species, three with morphologically variable nectar spurs, A. sibirica, A. formosa, and A. chrysantha, and one that lacks nectar spurs, A. ecalcarata. RESULTS Petal morphology differed increasingly between taxa across the developmental stages assessed, with petals from all four taxa being indistinguishable pre-spur formation at developmental stage 1 (DS1) and highly differentiated by developmental stage 5 (DS5). In all four taxa, genes involved in mitosis were down-regulated over the course of the assessed developmental stages, however, many genes involved in mitotic processes remained expressed at higher levels later in development in the spurred taxa. A total of 690 genes were identified that were consistently DE between the spurred taxa and A. ecalcarata at all five developmental stages. By comparing these genes with those identified as DE between spur and blade tissue in A. coerulea 'Origami', a set of only 35 genes was identified that shows consistent DE between petal samples containing spur tissue versus those without spur tissue. CONCLUSIONS The results of this study suggest that expression differences in very few loci are associated with the presence and absence of spurs. In general, it appears that the spurless petals of A. ecalcarata cease cell divisions and enter the cell differentiation phase at an earlier developmental time point than those that produce spurs. This much more tractable list of 35 candidates genes will greatly facilitate targeted functional studies to assess the genetic control and evolution of petal spurs in Aquilegia.
Collapse
Affiliation(s)
- Evangeline S. Ballerini
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA USA
- Current Address: Department of Biological Sciences, Sacramento State University, Sacramento, CA USA
| | - Elena M. Kramer
- Organismic and Evolutionary Biology Department, Harvard University, Cambridge, MA USA
| | - Scott A. Hodges
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA USA
| |
Collapse
|
87
|
Li MR, Wang HY, Ding N, Lu T, Huang YC, Xiao HX, Liu B, Li LF. Rapid Divergence Followed by Adaptation to Contrasting Ecological Niches of Two Closely Related Columbine Species Aquilegia japonica and A. oxysepala. Genome Biol Evol 2019; 11:919-930. [PMID: 30793209 PMCID: PMC6433176 DOI: 10.1093/gbe/evz038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Elucidating the mechanisms underlying the genetic divergence between closely related species is crucial to understanding the origin and evolution of biodiversity. The genus Aquilegia L. has undergone rapid adaptive radiation, generating about 70 well-recognized species that are specialized to distinct habitats and pollinators. In this study, to address the underlying evolutionary mechanisms that drive the genetic divergence, we analyzed the whole genomes of two ecologically isolated Aquilegia species, A. oxysepala and A. japonica as well as their putative hybrid. Our comparative genomic analyses reveal that while the two species diverged only recently and experienced recurrent gene flow, a high level of genetic divergence is observed in their nuclear genomes. In particular, candidate genomic regions that show signature of selection differ dramatically between the two species. Given that the splitting time of the two species is broadly matched with the decrease in effective population sizes, we propose that allopatric isolation together with natural selection have preceded the interspecific gene flow in the process of speciation. The observed high genetic divergence is likely an outcome of combined effects of natural selection, genetic drift and divergent sorting of ancestral polymorphisms. Our study provides a genome-wide view of how genetic divergence has evolved between closely related species.
Collapse
Affiliation(s)
- Ming-Rui Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua-Ying Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Ning Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Tianyuan Lu
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada
| | - Ye-Chao Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong-Xing Xiao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
88
|
Ko SS, Kanno A, Sánchez-Pérez R, Yeh HH, Hohe A, Mondragón-Palomino M. Editorial: From Functional Genomics to Biotechnology in Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:463. [PMID: 31057575 PMCID: PMC6477082 DOI: 10.3389/fpls.2019.00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Affiliation(s)
| | - Akira Kanno
- Graduate School of Life Sciences, Tohoku University, Aoba-Ku, Sendai, Japan
| | | | | | - Annette Hohe
- Faculty of Landscaping, Horticulture and Forestry, University of Applied Sciences Erfurt, Erfurt, Germany
| | | |
Collapse
|
89
|
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 2019; 27:153-165. [PMID: 30852707 DOI: 10.1007/s10577-019-09607-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/20/2023]
Abstract
Fluorescence in situ hybridization (FISH) was developed more than 30 years ago and has been the most paradigm-changing technique in cytogenetic research. FISH has been used to answer questions related to structure, mutation, and evolution of not only individual chromosomes but also entire genomes. FISH has served as an important tool for chromosome identification in many plant species. This review intends to summarize and discuss key technical development and applications of FISH in plants since 2006. The most significant recent advance of FISH is the development and application of probes based on synthetic oligonucleotides (oligos). Oligos specific to a repetitive DNA sequence, to a specific chromosomal region, or to an entire chromosome can be computationally identified, synthesized in parallel, and fluorescently labeled. Oligo probes designed from conserved DNA sequences from one species can be used among genetically related species, allowing comparative cytogenetic mapping of these species. The advances with synthetic oligo probes will significantly expand the applications of FISH especially in non-model plant species. Recent achievements and future applications of FISH and oligo-FISH are discussed.
Collapse
Affiliation(s)
- Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
90
|
Groh JS, Percy DM, Björk CR, Cronk QCB. On the origin of orphan hybrids between Aquilegia formosa and Aquilegia flavescens. AOB PLANTS 2019; 11:ply071. [PMID: 30687492 PMCID: PMC6341775 DOI: 10.1093/aobpla/ply071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/14/2018] [Indexed: 06/01/2023]
Abstract
We report the investigation of an Aquilegia flavescens × A. formosa population in British Columbia that is disjunct from its parents-the latter species is present locally but ecologically separated, while the former is entirely absent. To confirm hybridity, we used multivariate analysis of floral characters of field-sampled populations to ordinate phenotypes of putative hybrids in relation to those of the parental species. Microsatellite genotypes at 11 loci from 72 parental-type and putative hybrid individuals were analysed to assess evidence for admixture. Maternally inherited plastid sequences were analysed to infer the direction of hybridization and test hypotheses on the origin of the orphan hybrid population. Plants from the orphan hybrid population are on average intermediate between typical A. formosa and A. flavescens for most phenotypes examined and show evidence of genetic admixture. This population lies beyond the range of A. flavescens, but within the range of A. formosa. No pure A. flavescens individuals were observed in the vicinity, nor is this species known to occur within 200 km of the site. The hybrids share a plastid haplotype with local A. formosa populations. Alternative explanations for this pattern are evaluated. While we cannot rule out long-distance pollen dispersal followed by proliferation of hybrid genotypes, we consider the spread of an A. formosa plastid during genetic swamping of a historical A. flavescens population to be more parsimonious.
Collapse
Affiliation(s)
- Jeffrey S Groh
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis R Björk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
91
|
Li M, Zhang D, Gao Q, Luo Y, Zhang H, Ma B, Chen C, Whibley A, Zhang Y, Cao Y, Li Q, Guo H, Li J, Song Y, Zhang Y, Copsey L, Li Y, Li X, Qi M, Wang J, Chen Y, Wang D, Zhao J, Liu G, Wu B, Yu L, Xu C, Li J, Zhao S, Zhang Y, Hu S, Liang C, Yin Y, Coen E, Xue Y. Genome structure and evolution of Antirrhinum majus L. NATURE PLANTS 2019; 5:174-183. [PMID: 30692677 PMCID: PMC6784882 DOI: 10.1038/s41477-018-0349-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Wang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | - Lili Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China.
| | | | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
92
|
Li M, Zhang D, Gao Q, Luo Y, Zhang H, Ma B, Chen C, Whibley A, Zhang Y, Cao Y, Li Q, Guo H, Li J, Song Y, Zhang Y, Copsey L, Li Y, Li X, Qi M, Wang J, Chen Y, Wang D, Zhao J, Liu G, Wu B, Yu L, Xu C, Li J, Zhao S, Zhang Y, Hu S, Liang C, Yin Y, Coen E, Xue Y. Genome structure and evolution of Antirrhinum majus L. NATURE PLANTS 2019. [PMID: 30692677 DOI: 10.1038/s41477-018-0349-349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Snapdragon (Antirrhinum majus L.), a member of the Plantaginaceae family, is an important model for plant genetics and molecular studies on plant growth and development, transposon biology and self-incompatibility. Here we report a near-complete genome assembly of A. majus cultivar JI7 (A. majus cv.JI7) comprising 510 Megabases (Mb) of genomic sequence and containing 37,714 annotated protein-coding genes. Scaffolds covering 97.12% of the assembled genome were anchored on eight chromosomes. Comparative and evolutionary analyses revealed that a whole-genome duplication event occurred in the Plantaginaceae around 46-49 million years ago (Ma). We also uncovered the genetic architectures associated with complex traits such as flower asymmetry and self-incompatibility, identifying a unique duplication of TCP family genes dated to around 46-49 Ma and reconstructing a near-complete ψS-locus of roughly 2 Mb. The genome sequence obtained in this study not only provides a representative genome sequenced from the Plantaginaceae but also brings the popular plant model system of Antirrhinum into the genomic age.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghao Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yan Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ming Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Wang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | - Lili Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Songnian Hu
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China.
| | | | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering and National Center of Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
93
|
Xu CQ, Liu H, Zhou SS, Zhang DX, Zhao W, Wang S, Chen F, Sun YQ, Nie S, Jia KH, Jiao SQ, Zhang RG, Yun QZ, Guan W, Wang X, Gao Q, Bennetzen JL, Maghuly F, Porth I, Van de Peer Y, Wang XR, Ma Y, Mao JF. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production. Gigascience 2019; 8:giy164. [PMID: 30689848 PMCID: PMC6377399 DOI: 10.1093/gigascience/giy164] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Malania oleifera, a member of the Olacaceae family, is an IUCN red listed tree, endemic and restricted to the Karst region of southwest China. This tree's seed is valued for its high content of precious fatty acids (especially nervonic acid). However, studies on its genetic makeup and fatty acid biogenesis are severely hampered by a lack of molecular and genetic tools. FINDINGS We generated 51 Gb and 135 Gb of raw DNA sequences, using Pacific Biosciences (PacBio) single-molecule real-time and 10× Genomics sequencing, respectively. A final genome assembly, with a scaffold N50 size of 4.65 Mb and a total length of 1.51 Gb, was obtained by primary assembly based on PacBio long reads plus scaffolding with 10× Genomics reads. Identified repeats constituted ∼82% of the genome, and 24,064 protein-coding genes were predicted with high support. The genome has low heterozygosity and shows no evidence for recent whole genome duplication. Metabolic pathway genes relating to the accumulation of long-chain fatty acid were identified and studied in detail. CONCLUSIONS Here, we provide the first genome assembly and gene annotation for M. oleifera. The availability of these resources will be of great importance for conservation biology and for the functional genomics of nervonic acid biosynthesis.
Collapse
Affiliation(s)
- Chao-Qun Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shan-Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Dong-Xu Zhang
- College of Life Science, Datong University, Datong, Shanxi, 037009, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Sihai Wang
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization, State Forestry Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry, Kunming, Yunnan, 650201, China
| | - Fu Chen
- The Camellia Institute, Yunnan Academy of Forestry, Guangnan, Yunnan, 663300, China
| | - Yan-Qiang Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Kai-Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Si-Qian Jiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ren-Gang Zhang
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Quan-Zheng Yun
- Beijing Ori-Gene Science and Technology Co. Ltd, Beijing, 102206, China
| | - Wenbin Guan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xuewen Wang
- The Camellia Institute, Yunnan Academy of Forestry, Guangnan, Yunnan, 663300, China
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Qiong Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jeffrey L Bennetzen
- The Camellia Institute, Yunnan Academy of Forestry, Guangnan, Yunnan, 663300, China
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Fatemeh Maghuly
- Plant Biotechnology Unit (PBU), Dept. Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Ilga Porth
- Département des sciences du bois et de la forêt, 1030, Avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada
- Institute for System and Integrated Biology, Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada
- Centre d'Étude de la Forêt, 1030, Avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology Genetics, University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Xiao-Ru Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Department of Ecology and Environmental Science, UPSC, Umeå University, Umeå SE-901 87, Sweden
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, School of Nature Conservation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
94
|
Šimoníková D, Němečková A, Karafiátová M, Uwimana B, Swennen R, Doležel J, Hřibová E. Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana ( Musa Spp.). FRONTIERS IN PLANT SCIENCE 2019; 10:1503. [PMID: 31824534 PMCID: PMC6879668 DOI: 10.3389/fpls.2019.01503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 05/04/2023]
Abstract
Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis "DH Pahang" to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Alžbeěta Němečková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Brigitte Uwimana
- Banana Breeding, International Institute of Tropical Agriculture, Kampala, Uganda
| | - Rony Swennen
- Bioversity International, Banana Genetic Resources, Heverlee, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
- Banana Breeding, International Institute of Tropical Agriculture, Arusha, Tanzania
| | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Eva Hřibová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- *Correspondence: Eva Hřibová,
| |
Collapse
|
95
|
Filiault DL, Ballerini ES, Mandáková T, Aköz G, Derieg NJ, Schmutz J, Jenkins J, Grimwood J, Shu S, Hayes RD, Hellsten U, Barry K, Yan J, Mihaltcheva S, Karafiátová M, Nizhynska V, Kramer EM, Lysak MA, Hodges SA, Nordborg M. The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. eLife 2018; 7:e36426. [PMID: 30325307 PMCID: PMC6255393 DOI: 10.7554/elife.36426] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
The columbine genus Aquilegia is a classic example of an adaptive radiation, involving a wide variety of pollinators and habitats. Here we present the genome assembly of A. coerulea 'Goldsmith', complemented by high-coverage sequencing data from 10 wild species covering the world-wide distribution. Our analyses reveal extensive allele sharing among species and demonstrate that introgression and selection played a role in the Aquilegia radiation. We also present the remarkable discovery that the evolutionary history of an entire chromosome differs from that of the rest of the genome - a phenomenon that we do not fully understand, but which highlights the need to consider chromosomes in an evolutionary context.
Collapse
Affiliation(s)
- Danièle L Filiault
- Gregor Mendel Institute, Austrian Academy of SciencesVienna BioCenterViennaAustria
| | - Evangeline S Ballerini
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraUnited States
| | - Terezie Mandáková
- Central-European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Gökçe Aköz
- Gregor Mendel Institute, Austrian Academy of SciencesVienna BioCenterViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Nathan J Derieg
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraUnited States
| | - Jeremy Schmutz
- Department of EnergyJoint Genome InstituteWalnut CreekUnited States
- HudsonAlpha Institute of BiotechnologyAlabamaUnited States
| | - Jerry Jenkins
- Department of EnergyJoint Genome InstituteWalnut CreekUnited States
- HudsonAlpha Institute of BiotechnologyAlabamaUnited States
| | - Jane Grimwood
- Department of EnergyJoint Genome InstituteWalnut CreekUnited States
- HudsonAlpha Institute of BiotechnologyAlabamaUnited States
| | - Shengqiang Shu
- Department of EnergyJoint Genome InstituteWalnut CreekUnited States
| | - Richard D Hayes
- Department of EnergyJoint Genome InstituteWalnut CreekUnited States
| | - Uffe Hellsten
- Department of EnergyJoint Genome InstituteWalnut CreekUnited States
| | - Kerrie Barry
- Department of EnergyJoint Genome InstituteWalnut CreekUnited States
| | - Juying Yan
- Department of EnergyJoint Genome InstituteWalnut CreekUnited States
| | | | - Miroslava Karafiátová
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of SciencesVienna BioCenterViennaAustria
| | - Elena M Kramer
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
| | - Martin A Lysak
- Central-European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Scott A Hodges
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraUnited States
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of SciencesVienna BioCenterViennaAustria
| |
Collapse
|
96
|
Oh J, Shin Y, Ha IJ, Lee MY, Lee SG, Kang BC, Kyeong D, Kim D. Transcriptome Profiling of Two Ornamental and Medicinal Papaver Herbs. Int J Mol Sci 2018; 19:ijms19103192. [PMID: 30332811 PMCID: PMC6213990 DOI: 10.3390/ijms19103192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
The Papaver spp. (Papaver rhoeas (Corn poppy) and Papaver nudicaule (Iceland poppy)) genera are ornamental and medicinal plants that are used for the isolation of alkaloid drugs. In this study, we generated 700 Mb of transcriptome sequences with the PacBio platform. They were assembled into 120,926 contigs, and 1185 (82.2%) of the benchmarking universal single-copy orthologs (BUSCO) core genes were completely present in our assembled transcriptome. Furthermore, using 128 Gb of Illumina sequences, the transcript expression was assessed at three stages of Papaver plant development (30, 60, and 90 days), from which we identified 137 differentially expressed transcripts. Furthermore, three co-occurrence heat maps are generated from 51 different plant genomes along with the Papaver transcriptome, i.e., secondary metabolite biosynthesis, isoquinoline alkaloid biosynthesis (BIA) pathway, and cytochrome. Sixty-nine transcripts in the BIA pathway along with 22 different alkaloids (quantified with LC-QTOF-MS/MS) were mapped into the BIA KEGG map (map00950). Finally, we identified 39 full-length cytochrome transcripts and compared them with other genomes. Collectively, this transcriptome data, along with the expression and quantitative metabolite profiles, provides an initial recording of secondary metabolites and their expression related to Papaver plant development. Moreover, these profiles could help to further detail the functional characterization of the various secondary metabolite biosynthesis and Papaver plant development associated problems.
Collapse
Affiliation(s)
- Jaehyeon Oh
- Genomics Division, National Institute of Agricultural Science, RDA, 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si 54874, Jeollabuk-do, Korea.
| | - Younhee Shin
- Data Science Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea.
| | - Min Young Lee
- Korean Medicine Clinical Trial Center (K-CTC), Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea.
| | - Seok-Geun Lee
- Korean Medicine Clinical Trial Center (K-CTC), Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea.
- KHU-KIST Department of Converging Science & Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Byeong-Chul Kang
- Data Science Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Korea.
| | - Dongsoo Kyeong
- Data Science Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Korea.
| | - Dowan Kim
- Genomics Division, National Institute of Agricultural Science, RDA, 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si 54874, Jeollabuk-do, Korea.
| |
Collapse
|
97
|
Hu Y, Zhao R, Xu P, Jiao Y. The Genome of Opium Poppy Reveals Evolutionary History of Morphinan Pathway. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:460-462. [PMID: 30268932 PMCID: PMC6411899 DOI: 10.1016/j.gpb.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 10/31/2022]
Affiliation(s)
- Yiheng Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Peng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
98
|
He L, Braz GT, Torres GA, Jiang J. Chromosome painting in meiosis reveals pairing of specific chromosomes in polyploid Solanum species. Chromosoma 2018; 127:505-513. [PMID: 30242479 DOI: 10.1007/s00412-018-0682-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n = 4x = 48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66-78% of the meiotic cells at the pachytene stage. Solanum demissum (2n = 6x = 72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83-98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.
Collapse
Affiliation(s)
- Li He
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.,Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Guilherme T Braz
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.,Departmento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200, Brazil
| | - Giovana A Torres
- Departmento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200, Brazil
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|