51
|
Naghizadeh M, Miura K, Addo Ofori E, Long C, Sagara I, Tiono AB, Plieskatt J, Theisen M. Magnitude and durability of ProC6C-AlOH/Matrix-M tm vaccine-induced malaria transmission-blocking antibodies in Burkinabe adults from a Phase 1 randomized trial. Hum Vaccin Immunother 2025; 21:2488075. [PMID: 40208198 PMCID: PMC11988263 DOI: 10.1080/21645515.2025.2488075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025] Open
Abstract
ProC6C is a multi-stage malaria vaccine designed to disrupt parasite transmission and prevent infection by incorporating three parasite proteins (Pfs230-Pro, Pfs48/45-6C, and CSP) in a single vaccine antigen. The Phase 1 clinical trial (PACTR202201848463189) conducted in Burkina Faso, showed ProC6C-AlOH/Matrix-M was safe, well tolerated, immunogenic and generated a functional antibody response to all three constituent antigens at the primary output (D70). As magnitude and durability are central to an efficacious malaria vaccine, analysis was expanded past the initial endpoint, to determine transmission-blocking antibodies (anti-Pfs230 and anti-Pfs48/45-6C) present through D180. Analysis of transmission-reducing activity (TRA) showed 7/20 samples remained biologically active at D180. To identify immune biomarkers for high levels of TRA, the Pfs48/45-6C IgG concentration (calculated relative to the transmission-blocking mAb TB31F) was compared among TRA positive and negative individuals. The magnitude of anti-Pfs48/45-6C IgG had an excellent predictive accuracy (area under the receiver operating curve [ROC AUC] >0.8) with a threshold of 8.7 μg/ml for significant TRA. Additionally, there was significant correlation of TRA and anti-Pfs48/45 epitope I IgG concentration but not significant correlation for anti-Pfs230-Pro IgG, suggesting that vaccine-induced anti-Pfs48/45-6C IgG is the main predictor of TRA. This finding was corroborated by the observation that complement had no effect on TRA in the standard membrane feeding assay (SMFA). Collectively, these efforts confirm the transmission-blocking attributes of ProC6C and suggest that an alternative dosing regimen be evaluated in future clinical trials to improve longevity of functional transmission-reducing antibodies.
Collapse
Affiliation(s)
- Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut (SSI), Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
52
|
Chriqui LE, Cavin S, Perentes JY. Dual implication of endothelial adhesion molecules in tumor progression and cancer immunity. Cell Adh Migr 2025; 19:2472308. [PMID: 40071851 PMCID: PMC11913389 DOI: 10.1080/19336918.2025.2472308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/16/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025] Open
Abstract
Adhesion molecules are proteins expressed at the surface of various cell types. Their main contribution to immunity is to allow the infiltration of immune cells in an inflamed site. In cancer, adhesion molecules have been shown to promote tumor dissemination favoring the development of metastasis. While adhesion molecule inhibition approaches were unsuccessful for cancer control, their importance for the generation of an immune response alone or in combination with immunotherapies has gained interest over the past years. Currently, the balance of adhesion molecules for tumor promotion/inhibition is unclear. Here we review the role of selectins, intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) from the perspective of the dual contribution of adhesion molecules in tumor progression and immunity.
Collapse
Affiliation(s)
- Louis-Emmanuel Chriqui
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Sabrina Cavin
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Jean Yannis Perentes
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| |
Collapse
|
53
|
Zhou HY, Wang X, Li Y, Wang D, Zhou XZ, Xiao N, Li GX, Li G. Dynamic development of microglia and macrophages after spinal cord injury. Neural Regen Res 2025; 20:3606-3619. [PMID: 39101644 PMCID: PMC11974661 DOI: 10.4103/nrr.nrr-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 08/06/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00029/figure1/v/2025-01-31T122243Z/r/image-tiff Secondary injury following spinal cord injury is primarily characterized by a complex inflammatory response, with resident microglia and infiltrating macrophages playing pivotal roles. While previous studies have grouped these two cell types together based on similarities in structure and function, an increasing number of studies have demonstrated that microglia and macrophages exhibit differences in structure and function and have different effects on disease processes. In this study, we used single-cell RNA sequencing and spatial transcriptomics to identify the distinct evolutionary paths of microglia and macrophages following spinal cord injury. Our results showed that microglia were activated to a pro-inflammatory phenotype immediately after spinal cord injury, gradually transforming to an anti-inflammatory steady state phenotype as the disease progressed. Regarding macrophages, our findings highlighted abundant communication with other cells, including fibroblasts and neurons. Both pro-inflammatory and neuroprotective effects of macrophages were also identified; the pro-inflammatory effect may be related to integrin β2 ( Itgb2 ) and the neuroprotective effect may be related to the oncostatin M pathway. These findings were validated by in vivo experiments. This research underscores differences in the cellular dynamics of microglia and macrophages following spinal cord injury, and may offer new perspectives on inflammatory mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Hu-Yao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xia Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Yi Li
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Duan Wang
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xuan-Zi Zhou
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Nong Xiao
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Guo-Xing Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
54
|
Tanigawa K, Redmond WL. Current landscape and future prospects of interleukin-2 receptor (IL-2R) agonists in cancer immunotherapy. Oncoimmunology 2025; 14:2452654. [PMID: 39812092 PMCID: PMC11740684 DOI: 10.1080/2162402x.2025.2452654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8+ T cells and NK cells and can generate durable responses in a subset of patients. Moreover, HD IL-2 may have potential efficacy in patients whose disease has progressed following ICB and plays a vital role in expanding tumor-infiltrating lymphocyte (TIL) in TIL therapy. Despite its potential, the use of HD IL-2 is limited by severe toxicities such as hypotension and vascular leak syndrome. Additionally, only a few patients achieve a good outcome after HD IL-2 therapy. To address these challenges, numerous next-generation IL-2 receptor (IL-2 R) agonists have been developed to exhibit treatment effects while minimizing adverse events. This review will explore IL-2 biology, the clinical application of HD IL-2 therapy, and the development of novel IL-2 R agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Kengo Tanigawa
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - William L. Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| |
Collapse
|
55
|
Zhang R, Tang Y, Feng X, Lu X, Zhao M, Jin J, Ji X, He H, Zhao L. Targeted modulation of intestinal barrier and mucosal immune-related microbiota attenuates IgA nephropathy progression. Gut Microbes 2025; 17:2458184. [PMID: 39875350 PMCID: PMC11776482 DOI: 10.1080/19490976.2025.2458184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/01/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN. Furthermore, this study examined the effects of chitooligosaccharides (COS) and COS formulation (COSF) with microbiota-targeting function on enhancing intestinal barrier and renal functions. These results revealed that IgAN led to a reduction in α-diversity and structural alterations in the gut microbiota, characterized by an increase in Shigella sonnei, Streptococcus danieliae, Desulfovibrio fairfieldensis, and a decrease in Bifidobacterium pseudolongum and Clostridium leptum. There was also an imbalance in intestinal B-cell immunity and a decrease in the level of tight junction proteins (ZO-1 and Occludin). Intestinal barrier and mucosal immune-related microbiota (Clostridium leptum, unclassified Lachnospiraceae NK4Al36 group, unclassified Clostridia vadinBB60 group, unclassified Oscillospiraceae, and unclassified Roseburia) were enriched through targeted modulation with COS/COSF, enhancing intestinal ZO-1 expression and reducing APRIL/BAFF overexpression, thereby reducing renal damage in IgAN. In conclusion, this study clarified the kidney-gut crosstalk between gut microbiota and IgAN, providing scientific evidence for developing microbiota-targeted food interventions to improve IgAN outcomes.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiangru Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoxuan Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| |
Collapse
|
56
|
Imani S, Jabbarzadeh Kaboli P, Babaeizad A, Maghsoudloo M. Neoantigen mRNA vaccines and A 2A receptor antagonism: A strategy to enhance T cell immunity. Hum Vaccin Immunother 2025; 21:2458936. [PMID: 39882781 PMCID: PMC11784654 DOI: 10.1080/21645515.2025.2458936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Although neo-antigen mRNA vaccines are promising for personalized cancer therapy, their effectiveness is often limited by the immunosuppressive tumor microenvironment (TME). The adenosine A2A receptor (A2AR) inhibits dendritic cell (DC) function and weakens antitumor T cell responses through hypoxia-driven mechanisms within the TME. This review explores a novel strategy combining neo-antigen mRNA vaccines with A2AR antagonists (A2ARi). By targeting A2AR, this approach reduces TME-induced immunosuppression, enhances DC activation, and improves neo-antigen presentation. The review also discusses lipid nanoparticles (LNPs) to co-deliver A2ARi and mRNA vaccines, optimizing their effectiveness. The integration of neo-antigen mRNA-LNPs with A2ARi modulation offers a promising strategy to overcome immunosuppression, stimulate DC activation, and achieve precise anti-tumor responses with minimal off-target effects. This synergy represents significant progress in cancer immunotherapy, advancing the potential for personalized neoantigen therapies.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | | | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
57
|
Huang X, Chen L, He J, Tang J, Mou Z. Long non-coding RNA in IgA nephropathy: a comprehensive review. Ren Fail 2025; 47:2495836. [PMID: 40329456 DOI: 10.1080/0886022x.2025.2495836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Immunoglobulin A nephropathy (IgAN) stands as the most prevalent primary glomerulonephritis globally, almost half of patients progress to end-stage kidney disease (ESKD). However, the precise pathogenesis of IgAN remains elusive. Long non-coding RNAs (lncRNAs), non-protein-coding transcripts that regulate gene expression, have been found to exhibit distinct expression patterns in various disease states. Comprehensive bioinformatic analyses from IgAN patients have uncovered differential expression of lncRNAs such as HOTAIR, H19, and MALAT1. Furthermore, a single nucleotide polymorphism in MIR31HG has been linked to IgAN susceptibility and correlated with clinical markers like urinary red blood cells and hemoglobin levels. Lnc-TSI and lnc-CHAF1B-3, specifically expressed in the kidneys of IgAN patients, exhibit associations with renal fibrosis indices and the degree of kidney function deterioration, influencing the progression of renal fibrosis through distinct signaling pathways. Additionally, renal intercellular adhesion molecule 1 (ICAM-1) related long noncoding RNA (ICR) levels positively correlate with IgAN severity and contribute to renal fibrosis, whereas serum H19 serves as an independent protective factor against IgAN. Notably, experiments have validated the involvement of PTTG3P, lnc-CHAF1B-3, and CRNDE in the pathogenesis of IgAN. Nevertheless, data on the roles of lncRNAs in IgAN pathogenesis and their potential as biomarkers remain limited, and effective therapeutic options for IgAN are similarly rare. Therefore, there is an urgent need to bridge this knowledge gap. This article presents a review of current literature on lncRNAs related to IgAN, aiming to consolidate existing findings and identify future research avenues.
Collapse
Affiliation(s)
- Xiaoxuan Huang
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lan Chen
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinxuan He
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianhui Tang
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhixiang Mou
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
58
|
Merz LM, Winter K, Richter S, Kallendrusch S, Horn A, Grunewald S, Klöting N, Krause K, Kiess W, Le Duc D, Garten A. Effects of alpelisib treatment on murine Pten-deficient lipomas. Adipocyte 2025; 14:2468275. [PMID: 39962643 PMCID: PMC11844927 DOI: 10.1080/21623945.2025.2468275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.
Collapse
Affiliation(s)
- Lea M. Merz
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Clinical Research and Systems Medicine, Health and Medical University Potsdam, Potsdam, Germany
| | - Andreas Horn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sonja Grunewald
- Department for Dermatology, Venereology and Allergology, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
59
|
Deng Z, Mei S, Ouyang Z, Wang R, Wang L, Zou B, Dai J, Mao K, Li Q, Guo Q, Yi C, Meng F, Xie M, Zhang X, Wang R, Deng T, Wang Z, Li X, Wang Q, Liu B, Tian X. Dysregulation of gut microbiota stimulates NETs-driven HCC intrahepatic metastasis: therapeutic implications of healthy faecal microbiota transplantation. Gut Microbes 2025; 17:2476561. [PMID: 40099491 PMCID: PMC11925110 DOI: 10.1080/19490976.2025.2476561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/04/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
The stringent regulation of intrahepatic metastases is essential for improving survival outcomes in patients with hepatocellular carcinoma (HCC). This study investigated the impact of gut microbiota on intrahepatic metastasis of HCC and evaluated the therapeutic potential of healthy fecal microbiota transplantation (FMT). Dysregulation of the gut microbiota, characterized by a significant reduction in the abundance of beneficial bacteria, such as Anaerotruncus colihominis and Dysosmobacter welbionis, was observed in patients with intrahepatic metastatic HCC. A human flora-associated (HFA) intrahepatic metastatic HCC mouse model was successfully established through consecutive 4 weeks of human-mouse FMT. Dysregulation of gut microbiota promoted intrahepatic metastasis in the mouse model, primarily by enhancing neutrophil-mediated inflammatory responses and lead to excessive formation of neutrophil extracellular traps (NETs). Consequently, it promoted tumor vascular growth and tissue necrosis, resulting in intrahepatic metastasis of HCC. Notably, FMT from healthy donors mitigated these pathological processes. This study elucidated the role and mechanism of dysregulated gut microbiota in promoting intrahepatic metastasis of HCC. Healthy FMT emerges as a promising novel therapeutic strategy for preventing and treating intrahepatic metastasis of HCC.
Collapse
Affiliation(s)
- Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Si Mei
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention &Treatment, Changsha, Hunan, China
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhaoguang Ouyang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Ruoyu Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lihuai Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bo Zou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingjing Dai
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kexin Mao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qian Li
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qianqian Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fanying Meng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mingxia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xue Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rongrong Wang
- Hunan Province Integrated Traditional Chinese and Western Medicine Hospital, Changsha, Hunan, China
| | - Tianhao Deng
- Hunan Province Integrated Traditional Chinese and Western Medicine Hospital, Changsha, Hunan, China
| | - Zhenyu Wang
- JCY Biotech Ltd., Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, China
| | - Qing Wang
- Shanghai OE Biotech Co. Ltd, Shanghai, China
| | - Bin Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention &Treatment, Changsha, Hunan, China
| |
Collapse
|
60
|
Zhang Y, Pan C, Wang S, Zhou Y, Chen J, Yu X, Peng R, Zhang N, Yang H. Distinctive function of Tetraspanins: Implication in viral infections. Virulence 2025; 16:2474188. [PMID: 40053412 PMCID: PMC11901453 DOI: 10.1080/21505594.2025.2474188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Harboring four transmembrane domains in their structural hallmark, Tetraspanins (Tspans) are a family of glycoproteins with pivotal functions in a variety of biological and cellular processes. Through interacting laterally with each other or specific membrane proteins, Tspans organize tetraspanin-enriched microdomains (TEMs), modulating cellular signaling, adhesion, fusion, and proliferation. An abundance of evidence has identified the multiple functions in the progression of cancer as well as the underlying molecular mechanisms. Recently, plenty of studies have focused on the utilities of Tspans by pathogens for infection, especially the infection of viruses. The expression of Tspans correlates with the phase of viral infection, the type of virus, and targeted therapies. In particular, perturbations of Tspans in host cells can affect viral attachment, intracellular trafficking, translation, virus assembly, and release. In this review, we summarize and provide a historical overview of the discovery and characterization of various kinds of virus infection and highlight their diversity and complexity, along with the virus life cycle. Furthermore, we examined the current understanding of how various Tspans are involved in the regulatory mechanisms underlying viral infection. This review aims to offer a comprehensive understanding of the targeting of Tspans for therapeutic intervention in infections caused by diverse pathogens.
Collapse
Affiliation(s)
- Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chengwei Pan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiawei Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaoyu Yu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruining Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
61
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. Targeting γc family cytokines with biologics: current status and future prospects. MAbs 2025; 17:2468312. [PMID: 39967341 PMCID: PMC11845063 DOI: 10.1080/19420862.2025.2468312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Over the recent decades the market potential of biologics has substantially expanded, and many of the top-selling drugs worldwide are now monoclonal antibodies or antibody-like molecules. The common gamma chain (γc) cytokines, Interleukin (IL-)2, IL-4, IL-7, IL-9, IL-15, and IL-21, play pivotal roles in regulating immune responses, from innate to adaptive immunity. Dysregulation of cell signaling by these cytokines is strongly associated with a range of immunological disorders, which includes cancer as well as autoimmune and inflammatory diseases. Given the essential role of γc cytokines in maintaining immune homeostasis, the development of therapeutic interventions targeting these molecules poses unique challenges. Here, we provide an overview of current biologics targeting either single or multiple γc cytokines or their respective receptor subunits across a spectrum of diseases, primarily focusing on antibodies, antibody-like constructs, and antibody-cytokine fusions. We summarize therapeutic biologics currently in clinical trials, highlighting how they may offer advantages over existing therapies and standard of care, and discuss recent advances in this field. Finally, we explore future directions and the potential of novel therapeutic intervention strategies targeting this cytokine family.
Collapse
Affiliation(s)
- Fabian Bick
- Argenx BV, Zwijnaarde, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J. Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
62
|
Zhang M, Ma J, Edwards R, Li M. The dynamics of CD4+ T cell proliferation and regulation. JOURNAL OF BIOLOGICAL DYNAMICS 2025; 19:2458867. [PMID: 39881560 DOI: 10.1080/17513758.2025.2458867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
We use mathematical modeling to study the proliferation dynamics of CD4+ T cells within an immune response. This proliferation is driven by the autocrine reaction of helper T cells and interleukin-2 (IL-2), and regulated by natural regulatory T cells (nTregs). Previous studies suggested that a fratricidal mechanism is necessary to eliminate helper T cells post-infection. Contrary to this, our mathematical analysis establishes that the depletion of these cells is due to two pivotal factors: the saturation in the proliferation rate of helper CD4+ T cells at high IL-2 concentrations, and the activation rate of nTregs outpacing their death rate. This yields an excitable process, such that the proliferation starts once the helper T cell population passes a threshold. Additionally, we find that when the proliferation of nTregs lags behind their mortality, induced regulatory T cells (iTregs) are crucial to curbing the proliferation of helper CD4+ T cells.
Collapse
Affiliation(s)
- Mingran Zhang
- College of Information Science and Technology, Donghua University, Shanghai, People's Republic of China
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Roderick Edwards
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Meili Li
- School of Mathematics and Statistics, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
63
|
Firth IJ, Sim MA, Fitzgerald BG, Moore AE, Pittao CR, Gianetto-Hill C, Hess S, Sweeney AR, Allen-Vercoe E, Sorbara MT. Urease in acetogenic Lachnospiraceae drives urea carbon salvage in SCFA pools. Gut Microbes 2025; 17:2492376. [PMID: 40231625 PMCID: PMC12001548 DOI: 10.1080/19490976.2025.2492376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/03/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
The gut microbiota produces short-chain fatty acids (SCFA) and acidifies the proximal colon which inhibits enteric pathogens. However, for many microbiota constituents, how they themselves resist these stresses is unknown. The anaerobic Lachnospiraceae family, which includes the acetogenic genus Blautia, produce SCFA, are genomically diverse, and vary in their capacity to acidify culture media. Here, we investigated how Lachnospiraceae tolerate pH stress and found that subunits of urease were associated with acidification in a random forest model. Urease cleaves urea into ammonia and carbon dioxide, however the role of urease in the physiology of Lachnospiraceae is unknown. We demonstrate that urease-encoding Blautia show urea-dependent changes in SCFA production, acidification, growth, and, strikingly, urease encoding Blautia directly incorporate the carbon from urea into SCFAs. In contrast, ureolytic Klebsiella pneumoniae or Proteus mirabilis do not show the same urea-dependency or carbon salvage. In agreement, the combination of urease and acetogenesis functions is rare in gut taxa. We find that Lachnospiraceae urease and acetogenesis genes can be co-expressed in healthy individuals and colonization of mice with a ureolytic Blautia reduces urea availability in colon contents demonstrating Blautia urease activity in vivo. In human and mouse microbial communities, the acetogenic recycling of urea carbon into acetate by Blautia leads to the incorporation of urea carbon into butyrate indicating carbon salvage into broader metabolite pools. Altogether, this shows that urea plays a central role in the physiology of health-associated Lachnospiraceae which use urea in a distinct manner that is different from that of ureolytic pathogens.
Collapse
Affiliation(s)
- Isaac J. Firth
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Marissa A.R. Sim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | | | - Ailish E. Moore
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Christian R. Pittao
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Connor Gianetto-Hill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Samantha Hess
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Autumn R. Sweeney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Matthew T. Sorbara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
64
|
Luo L, Huang J, Fu C, Hu Y, Chen J, Jiang L, Zeng Q. The efficacy of combined phototherapy with topical therapy in vitiligo: a network meta-analysis. J DERMATOL TREAT 2025; 36:2483808. [PMID: 40197106 DOI: 10.1080/09546634.2025.2483808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND The comparative effects of phototherapy and topical therapy in patients with vitiligo remain unclear. A network meta-analysis (NMA) was conducted to assess which combination therapy was more beneficial for patients with vitiligo. METHODS This study analyzed phototherapy, including narrowband ultraviolet B (NB-UVB) and 308-nm excimer laser/light (EL) combined with topical therapies. Randomized controlled trials were sourced from PubMed, Embase, and Cochrane Library. Data analysis was based on a random-effects model, and surface under the cumulative ranking (SUCRA) curves employed to assess the efficacy of the interventions. RESULTS This NMA included 27 trials, with a total of 2417 lesions (patches). According to the results of the SUCRA, for achieving ≥50% repigmentation, the top three combination therapies were phototherapy combined with antioxidants (SUCRA 87.7), corticosteroids (SUCRA 69.6), and calcineurin inhibitors (SUCRA 52.5), while for ≥75% repigmentation, the leading therapies were phototherapy combined with antioxidants (SUCRA 89.0), calcineurin inhibitors (SUCRA 70.3), and fractional CO2 laser (SUCRA 63.6). CONCLUSIONS This meta-analysis suggests that combining phototherapy with topical antioxidants, corticosteroids, or calcineurin inhibitors may offer superior outcomes for vitiligo patients. This study provides a reference for clinicians to develop personalized treatment plans for patients with vitiligo.
Collapse
Affiliation(s)
- Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yibo Hu
- Clinical Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
65
|
Budzinski L, Kang GU, Riedel R, Sempert T, Lietz L, Maier R, Büttner J, Bochow B, Tordai MT, Shah A, Abbas A, Momtaz T, Krause JL, Kempkens R, Lehman K, Heinz GA, Benken AE, Bartsch S, Necke K, Hoffmann U, Mashreghi MF, Biesen R, Kallinich T, Alexander T, Jessen B, Weidinger C, Siegmund B, Radbruch A, Schirbel A, Moser B, Chang HD. Single-cell microbiota phenotyping reveals distinct disease and therapy-associated signatures in Crohn's disease. Gut Microbes 2025; 17:2452250. [PMID: 39815413 PMCID: PMC11740678 DOI: 10.1080/19490976.2025.2452250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
IgA-coated fractions of the intestinal microbiota of Crohn's disease (CD) patients have been shown to contain taxa that hallmark the compositional dysbiosis in CD microbiomes. However, the correlation between other cellular properties of intestinal bacteria and disease has not been explored further, especially for features that are not directly driven by the host immune-system, e.g. the expression of surface sugars by bacteria. By sorting and sequencing IgA-coated and lectin-stained fractions from CD patients microbiota and healthy controls, we found that lectin-stained bacteria were distinct from IgA-coated bacteria, but still displayed specific differences between CD and healthy controls. To exploit the discriminatory potential of both, immunoglobulin coated bacteria and the altered surface sugar expression of bacteria in CD, we developed a multiplexed single cell-based analysis approach for intestinal microbiota. By multi-parameter microbiota flow cytometry (mMFC) we characterized the intestinal microbiota of 55 CD patients and 44 healthy controls for 11-parameters in total, comprising host-immunoglobulin coating and the presence of distinct surface sugar moieties. The data were analyzed by machine-learning to assess disease-specific marker patterns in the microbiota phenotype. mMFC captured detailed characteristics of CD microbiota and identified patterns to classify CD patients. In addition, we identified phenotypic signatures in the CD microbiota which not only reflected remission after 6 weeks of anti-TNF treatment, but were also able to predict remission before the start of an adalimumab treatment course in a pilot study. We here present the proof-of-concept demonstrating that multi-parameter single-cell bacterial phenotyping by mMFC could be a novel tool with high translational potential to expand current microbiome investigations by phenotyping of bacteria to identify disease- and therapy-associated cellular alterations and to reveal novel target properties of bacteria for functional assays and therapeutic approaches.
Collapse
Affiliation(s)
- Lisa Budzinski
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Gi-Ung Kang
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - René Riedel
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Bioinformatics and Computational Biology, Department of Cardiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Toni Sempert
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Leonie Lietz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - René Maier
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Janine Büttner
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Bochow
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcell T. Tordai
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aayushi Shah
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Amro Abbas
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Tanisha Momtaz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Jannike L. Krause
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Robin Kempkens
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Katrin Lehman
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Gitta A. Heinz
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Anne E. Benken
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefanie Bartsch
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kathleen Necke
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Hoffmann
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tilmann Kallinich
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Alexander
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department of Rheumatology, Campus Charité Mitte, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bosse Jessen
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program
| | - Andreas Radbruch
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
| | - Anja Schirbel
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin Moser
- Department of Hepatology and Gastroenterology, Campus Charité Mitte, Charité, Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DRK Kliniken Berlin, Clinic for internal medicine – Gastroenterology, Haematology and Oncology, Nephrology, Centre for chronic gastrointestinal inflammations, Berlin, Germany
| | - Hyun-Dong Chang
- German Rheumatology Research Centre Berlin – A Leibniz Institute, Berlin, Germany
- Department for Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
66
|
Li M, Li D, Wang HY, Zhang W, Zhuo Z, Guo H, Liu J, Zhuo Y, Tang J, He J, Miao L. Leptin decreases Th17/Treg ratio to facilitate neuroblastoma via inhibiting long-chain fatty acid catabolism in tumor cells. Oncoimmunology 2025; 14:2460281. [PMID: 39902867 PMCID: PMC11796542 DOI: 10.1080/2162402x.2025.2460281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
The exploration of therapeutic targets in neuroblastoma (NB), which needs more attempts, can benefit patients with high-risk NB. Based on metabolomic and transcriptomic data in mediastinal NB tissues, we found that the content of long-chain acylcarnitine (LCAC) was increased and positively associated with leptin expression in advanced NB. Leptin over-expression forced naïve CD4+ T cells to differentiate into Treg cells instead of Th17 cells, which benefited from NB cell proliferation, migration, and drug resistance. Mechanically, leptin in NB cells blunted the activity of carnitine palmitoyltransferase 2 (CPT2), the key enzyme for LCAC catabolism, by inhibiting sirtuin 3-mediated CPT2 deacetylation, which depresses oxidative phosphorylation (OXPHOS) for energy supply and increases lactic acid (LA) production from glycolysis to modulate CD4+ T cell differentiation. These findings highlight that excess leptin contributes to lipid metabolism dysfunction in NB cells and subsequently misdirects CD4+ T cell differentiation in tumor micro-environment (TME), indicating that targeting leptin could be a therapeutic strategy for retarding NB progression.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, Guangdong, China
| | - Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
67
|
Antonio J, Brown AF, Candow DG, Chilibeck PD, Ellery SJ, Forbes SC, Gualano B, Jagim AR, Kerksick C, Kreider RB, Ostojic SM, Rawson ES, Roberts MD, Roschel H, Smith-Ryan AE, Stout JR, Tarnopolsky MA, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Part II. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2025; 22:2441760. [PMID: 39720835 DOI: 10.1080/15502783.2024.2441760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/07/2024] [Indexed: 12/26/2024] Open
Abstract
Creatine monohydrate supplementation (CrM) is a safe and effective intervention for improving certain aspects of sport, exercise performance, and health across the lifespan. Despite its evidence-based pedigree, several questions and misconceptions about CrM remain. To initially address some of these concerns, our group published a narrative review in 2021 discussing the scientific evidence as to whether CrM leads to water retention and fat accumulation, is a steroid, causes hair loss, dehydration or muscle cramping, adversely affects renal and liver function, and if CrM is safe and/or effective for children, adolescents, biological females, and older adults. As a follow-up, the purpose of this paper is to evaluate additional questions and misconceptions about CrM. These include but are not limited to: 1. Can CrM provide muscle benefits without exercise? 2. Does the timing of CrM really matter? 3. Does the addition of other compounds with CrM enhance its effectiveness? 4. Does CrM and caffeine oppose each other? 5. Does CrM increase the rates of muscle protein synthesis or breakdown? 6. Is CrM an anti-inflammatory intervention? 7. Can CrM increase recovery following injury, surgery, and/or immobilization? 8. Does CrM cause cancer? 9. Will CrM increase urine production? 10. Does CrM influence blood pressure? 11. Is CrM safe to consume during pregnancy? 12. Does CrM enhance performance in adolescents? 13. Does CrM adversely affect male fertility? 14. Does the brain require a higher dose of CrM than skeletal muscle? 15. Can CrM attenuate symptoms of sleep deprivation? 16. Will CrM reduce the severity of and/or improve recovery from traumatic brain injury? Similar to our 2021 paper, an international team of creatine research experts was formed to perform a narrative review of the literature regarding CrM to formulate evidence-based responses to the aforementioned misconceptions involving CrM.
Collapse
Affiliation(s)
- Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Ann F Brown
- University of Idaho, College of Education, Health and Human Sciences, Moscow, ID, USA
| | - Darren G Candow
- University of Regina, Department of Health and Human Performance, Regina, Canada
| | | | - Stacey J Ellery
- Monash University, The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Victoria, Australia
| | - Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, Canada
| | - Bruno Gualano
- Universidade de Sao Paulo, Applied Physiology and Nutrition Research Group -School of Physical Education and Sport and Faculdade de Medicina FMUSP, Sao Paulo, Brazil
- Mayo Clinic Health System, Sports Medicine Department, La Crosse, WI, USA
| | - Andrew R Jagim
- Lindenwood University, College of Science, Technology, and Health, St. Louis, MO, USA
| | - Chad Kerksick
- Texas A&M University, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Richard B Kreider
- University of Agder, Department of Nutrition and Public Health, Kristiansand, Norway
| | - Sergej M Ostojic
- Messiah University, Department of Health, Nutrition, and Exercise Science, Mechanicsburg, PA, USA
| | - Eric S Rawson
- Auburn University, School of Kinesiology, Auburn, AL, USA
| | - Michael D Roberts
- Universidade de Sao Paulo, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, São Paulo, Brazil
| | - Hamilton Roschel
- Universidade de Sao Paulo, Applied Physiology and Nutrition Research Group -School of Physical Education and Sport and Faculdade de Medicina FMUSP, Sao Paulo, Brazil
- Mayo Clinic Health System, Sports Medicine Department, La Crosse, WI, USA
| | - Abbie E Smith-Ryan
- University of North Carolina, Department of Exercise and Sport Science, Chapel Hill, NC, USA
| | - Jeffrey R Stout
- University of Central Florida, School of Kinesiology and Rehabilitation Sciences, Orlando, FL, USA
| | - Mark A Tarnopolsky
- McMasterChildren's Hospital, Department of Pediatrics, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
68
|
Wiecken M, Machiraju D, Chakraborty S, Mayr EM, Lenoir B, Eurich R, Richter J, Pfarr N, Halama N, Hassel JC. The immune checkpoint LAG-3 is expressed by melanoma cells and correlates with clinical progression of the melanoma. Oncoimmunology 2025; 14:2430066. [PMID: 39716918 DOI: 10.1080/2162402x.2024.2430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Immune checkpoint blockers have substantially improved prognosis of melanoma patients, nevertheless, resistance remains a significant problem. Here, intrinsic and extrinsic factors in the tumor microenvironment are discussed, including the expression of alternative immune checkpoints such as lymphocyte activation gene 3 (LAG-3) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3). While most studies focus on immune cell expression of these proteins, we investigated their melanoma cell intrinsic expression by immunohistochemistry in melanoma metastases of 60 patients treated with anti-programmed cell death protein 1 (PD-1) and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) therapy, and correlated it with the expression of potential ligands, RNA sequencing data and clinical outcome. LAG-3 and TIM-3 were commonly expressed in melanoma cells. In the stage IV cohort, expression of LAG-3 was associated with M1 stage (p < 0.001) and previous exposure to immune checkpoint inhibitors (p = 0.029). Moreover, in the anti-PD-1 monotherapy treatment group patients with high LAG-3 expression by tumor cells tended to have a shorter progression-free survival (p = 0.088), whereas high expression of TIM-3 was associated with a significantly longer overall survival (p = 0.007). In conclusion, we provide a systematic analysis of melanoma cell intrinsic LAG-3 and TIM-3 expression, highlighting potential implications of their expression on patient survival.
Collapse
Affiliation(s)
- Melanie Wiecken
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Devayani Machiraju
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Shounak Chakraborty
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Eva-Maria Mayr
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Bénédicte Lenoir
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit "Applied Tumor Immunity"(TME unit), Heidelberg, Germany
| | - Rosa Eurich
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit "Applied Tumor Immunity"(TME unit), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Translational Immunotherapy, Heidelberg, Germany
| | - Jasmin Richter
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Niels Halama
- German Cancer Research Center (DKFZ) Heidelberg, Division of Translational Immunotherapy, Heidelberg, Germany
- Department of Medical Oncology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
69
|
Di Stefano J, Di Marco F, Cicalini I, FitzGerald U, Pieragostino D, Verhoye M, Ponsaerts P, Van Breedam E. Generation, interrogation, and future applications of microglia-containing brain organoids. Neural Regen Res 2025; 20:3448-3460. [PMID: 39665813 PMCID: PMC11974650 DOI: 10.4103/nrr.nrr-d-24-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Brain organoids encompass a large collection of in vitro stem cell-derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function. First, this review provides a brief introduction to the current state-of-the-art for neuro-ectoderm brain organoid development, emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models. However, despite their usefulness for developmental studies, a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin. As such, current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component. In this review, we will specifically focus on the development of immune-competent brain organoids. By summarizing the different approaches applied to incorporate microglia, it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation, but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brain-like environment. Therefore, our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids, with an outlook on how these findings could better understand neuronal network development or restoration, as well as the influence of physical stress on microglia-containing brain organoids. Finally, we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade, their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.
Collapse
Affiliation(s)
- Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Una FitzGerald
- CÚRAM, Center for Research in Medical Devices, Biomedical Engineering, University of Galway, Ireland
- Galway Neuroscience Center, University of Galway, Ireland
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
70
|
Barrios Steed D, Koundakjian D, Harris AD, Rosato AE, Konstantinidis KT, Woodworth MH. Leveraging strain competition to address antimicrobial resistance with microbiota therapies. Gut Microbes 2025; 17:2488046. [PMID: 40195644 PMCID: PMC11988218 DOI: 10.1080/19490976.2025.2488046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/28/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
The enteric microbiota is an established reservoir for multidrug-resistant organisms that present urgent clinical and public health threats. Observational data and small interventional studies suggest that microbiome interventions, such as fecal microbiota products and characterized live biotherapeutic bacterial strains, could be an effective antibiotic-sparing prevention approach to address these threats. However, bacterial colonization is a complex ecological phenomenon that remains understudied in the context of the human gut. Antibiotic resistance is one among many adaptative strategies that impact long-term colonization. Here we review and synthesize evidence of how bacterial competition and differential fitness in the context of the gut present opportunities to improve mechanistic understanding of colonization resistance, therapeutic development, patient care, and ultimately public health.
Collapse
Affiliation(s)
- Danielle Barrios Steed
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Anthony D. Harris
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Healthcare Computing, University of Maryland, Baltimore, MD, USA
| | - Adriana E Rosato
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | - Michael H Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
71
|
Chen P, Rehman MU, He Y, Li A, Jian F, Zhang L, Huang S. Exploring the interplay between Eimeria spp. infection and the host: understanding the dynamics of gut barrier function. Vet Q 2025; 45:1-22. [PMID: 39831548 PMCID: PMC11749151 DOI: 10.1080/01652176.2025.2452169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/23/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Coccidiosis is a global disease caused by protozoans, typically including Eimeria spp., which pose a significant threat to the normal growth and development of young animals. Coccidiosis affects mainly the gut, where parasite proliferation occurs. The intestinal barrier, which consists of chemical, mechanical, biological, and immune defences, plays a crucial role in protecting the host against pathogens, xenobiotics, and toxins present in the gastrointestinal tract. When animals ingest sporulated Eimeria spp. oocysts, these parasites primarily reproduce in the intestinal tract, causing damage to the structure and function of the intestine. This disruption of intestinal homeostasis adversely affects animal health. Numerous studies have also revealed that Eimeria-infected animals experience slower bone growth rates, inferior meat quality, reduced egg production and quality, as well as impaired growth and development. Therefore, the purpose of this review is to examine the underlying mechanisms through which Eimeria spp. regulate intestinal damage and disturb the balance of the internal environment. Specifically, this review will focus on their effects on the structural basis of the host intestine's chemical, mechanical, biological and immune barriers. This understanding is crucial for the development of effective drugs to prevent the invasion of Eimeria spp. into the intestine, which is of paramount importance for maintaining host health.
Collapse
Affiliation(s)
- Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department Balochistan, Quetta, Pakistan
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
72
|
Abdeljaoued S, Doussot A, Kroemer M, Laloy E, Pallandre JR, El Kaddissi A, Spehner L, Ben Khelil M, Bouard A, Mougey V, Chartral U, Vienot A, Viot J, Lakkis Z, Monnien F, Loyon R, Borg C. Liver metastases of colorectal cancer contain different subsets of tissue-resident memory CD8 T cells correlated with a distinct risk of relapse following surgery. Oncoimmunology 2025; 14:2455176. [PMID: 39844661 PMCID: PMC11760230 DOI: 10.1080/2162402x.2025.2455176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Tissue-resident memory (TRM) T cells have emerged as key players in cancer immunosurveillance, and their presence has been linked to a favorable clinical outcome in solid cancer patients. Liver metastases exhibit a highly immunosuppressive tumor microenvironment, however, the role and clinical impact of TRM cell infiltration in colorectal cancer remain elusive. The expression of several tissue residency and activation biomarkers has been investigated on tumor-infiltrating lymphocytes isolated from 26 patients' colorectal cancer liver metastases (CRC liver metastases) and compared to 16 peripheral blood samples of patients with CRC liver metastases. Cytokine production was also evaluated in in vitro-activated TRM and non-TRM cells. The prognostic value of TRM cells was also assessed in a well-defined cohort of CRC liver metastases. Here we identified two subsets of TRM cells expressing CD103 and/or CD69 showing significantly higher expression of tissue residency and activation biomarkers. CD103+CD69+ TRM cells subset showed almost exclusive expression of tumor reactivity biomarkers PD-1 and CD39. Supporting this observation, CD103+CD69+ TRM cells showed a more oligoclonal TCR repertoire. Both TRM subsets presented higher cytotoxic and functional capacity compared to non-TRM cells. Our study shows that only the presence of CD103+CD69+ TRM cells is associated with longer recurrence-free survival of colorectal cancer patients with liver metastases. Taken together, our work demonstrates the existence of a phenotypic heterogeneity of TRM cells in colorectal cancer liver metastases. In this study, we identified a population of CD103+CD69+ TRM cells exhibiting the characteristics of tumor reactivity and correlated with better patients' prognosis, with potential implications in optimal therapeutic strategies determination.
Collapse
Affiliation(s)
- Syrine Abdeljaoued
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
| | - Alexandre Doussot
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Marie Kroemer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Emilien Laloy
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | | | - Antoine El Kaddissi
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Laurie Spehner
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
| | - Myriam Ben Khelil
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Adeline Bouard
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- ITAC platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Virginie Mougey
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- ITAC platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Ugo Chartral
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Angélique Vienot
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Julien Viot
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Zaher Lakkis
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Franck Monnien
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Department of Pathology, University Hospital of Besançon, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Christophe Borg
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
73
|
Valenti M, Ibba L, Di Giulio S, Gargiulo L, Malagoli P, Balato A, Carrera CG, Dapavo P, Di Brizzi EV, Dini V, Gaiani F, Loconsole F, Marzano AV, Megna M, Michelucci A, Potestio L, Ribero S, Costanzo A, Narcisi A. Safety of interleukin inhibitors in patients with plaque psoriasis and history of neoplasms: a multicenter retrospective study - IL PSO (Italian landscape psoriasis). J DERMATOL TREAT 2025; 36:2456532. [PMID: 39870384 DOI: 10.1080/09546634.2025.2456532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
Background: Interleukin (IL) inhibitors are increasingly used in the management of moderate-to-severe plaque psoriasis. However, their use in patients with a history of cancer is debated. Objective: We conducted a multicenter retrospective study across nine Italian Dermatology Units to assess the real-world effectiveness and safety of IL inhibitors (IL-23, IL-17, IL-12/23) in 136 oncological patients with moderate-to-severe plaque psoriasis. In particular, we evaluated 116 patients who developed the neoplasm before starting the biologic with a mean time from diagnosis of neoplasia to the first biologic dose of 8.31 years. We also assessed 20 patients who received a diagnosis of neoplasm during treatment with IL inhibitors after a mean time of 2.41 years from the start of the biologic with a cumulative incidence of 3.06 per 1000 individuals. Results: Three patients experienced neoplasm recurrence during treatment with IL inhibitors, which led to the discontinuation of these drugs. In our study, biologics have demonstrated safety and effectiveness as treatment options for patients with both a history of neoplasm and those with concurrent tumors. However, further investigation is needed, particularly through larger and longer multicenter studies.
Collapse
Affiliation(s)
- Mario Valenti
- Dermatology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luciano Ibba
- Dermatology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sara Di Giulio
- Dermatology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luigi Gargiulo
- Dermatology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Piergiorgio Malagoli
- Department of Dermatology, Dermatology Unit, Azienda Ospedaliera San Donato Milanese, Milan, Italy
| | - Anna Balato
- Dermatology Unit, University of Campania L. Vanvitelli, Naples, Italy
| | - Carlo G Carrera
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Dapavo
- Department of Biomedical Science and Human Oncology, Second Dermatologic Clinic, University of Turin, Turin, Italy
| | | | - Valentina Dini
- Dermatology Unit, Department of Clinical and Experimental Medicine, Ospedale Santa Chiara, Pisa, Italy
| | - Francesca Gaiani
- Department of Dermatology, Dermatology Unit, Azienda Ospedaliera San Donato Milanese, Milan, Italy
| | | | - Angelo V Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Matteo Megna
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessandra Michelucci
- Dermatology Unit, Department of Clinical and Experimental Medicine, Ospedale Santa Chiara, Pisa, Italy
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Simone Ribero
- Department of Biomedical Science and Human Oncology, Second Dermatologic Clinic, University of Turin, Turin, Italy
| | - Antonio Costanzo
- Dermatology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | |
Collapse
|
74
|
Tanbuda C, Sulaiman M, Yong Pau Lin P, Rusdi NA, Sathiya Seelan J, Yeaw NS, Hasnidah Saikim F, Rajagopal M, Pang Tze Ping N, Garcia MM, Villegas J, Jeffri S, Nissapatorn V, Butler MS, Wiart C. Medicinal plants of Sabah (North Borneo): lest we forget. PHARMACEUTICAL BIOLOGY 2025; 63:288-332. [PMID: 40314322 PMCID: PMC12051592 DOI: 10.1080/13880209.2025.2487557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Abstract
CONTEXT The discovery of plants and bioactive compounds with the potential to become botanical or pharmaceutical drugs remains a cornerstone of drug innovation. Many of these valuable molecules originate from traditional botanical pharmacopeias, repositories of centuries-old knowledge that are often underappreciated in modern research. OBJECTIVE This review highlights the medicinal plants identified in Sabah from 1922 to 2024, analyzing their taxonomical distribution, uses, utilization among ethnic groups, and their potential for clinical uses. METHODS The data for this review were gathered from Google Scholar, PubMed, ScienceDirect, Web of Science, PubMed, the Internet Archive, and Google Books. A keyword combination of "Medicinal" and "Plants" and "Sabah" yielded 21,700 results. Each result was examined, and articles that did not contain information relevant to the topic or came from non-peer-reviewed journals were excluded. Each of the remaining 87 selected articles was critically reviewed to extract pertinent information. RESULTS A review of the available data indicates that 696 plant species are used in Sabah, including 412 angiosperms. These plants are primarily utilized to treat diseases or symptoms related to infections, digestive issues, injuries, and pains. Notably, 156 species employed by local Sabahan Dusunic, Murutic, and Kelabit ethnic groups remain unstudied in terms of their phytochemical and pharmacological properties, highlighting their potential for further investigation. CONCLUSION Sabah's medicinal plants offer tremendous potential for discovering natural products of therapeutic value.
Collapse
Affiliation(s)
- Carynn Tanbuda
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pauline Yong Pau Lin
- Unit for Ethnography Research and Development, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Ng Shean Yeaw
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Fiffy Hasnidah Saikim
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Nicholas Pang Tze Ping
- Faculty of Medicine, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Melanie Martos Garcia
- College of Health Sciences, Mapua Malayan College Mindanao, Matina, Davao, Philippines
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Davao Oriental, Philippines
| | | | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
75
|
Tingting L, Zhang P, Yang L, Li R, Wang R. The effects of topical antimicrobial-corticosteroid combination therapy in comparison to topical steroids alone on the skin microbiome of patients with atopic dermatitis. J DERMATOL TREAT 2025; 36:2470379. [PMID: 39993425 DOI: 10.1080/09546634.2025.2470379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE This study aims to analyze the different therapeutic responses between topical antimicrobial-corticosteroid combination and topical corticosteroids alone on improving the skin microbiome and skin barrier of patients with atopic dermatitis (AD). METHODS Forty patients with mild-to-moderate AD were randomly assigned to receive two kinds of treatment. Skin swabs were collected from the lesional sites and nearby nonlesional sites at baseline, after topical medication treatment and 2 weeks post-treatment, and were analyzed by DNA sequencing of the fungal internal transcribed spacer (ITS)1-5 rDNA gene and the V3V4 region of the bacterial 16S rRNA gene. RESULTS According to our research analysis, both topical steroids alone and combination treatment of steroids and antimicrobials effectively improved the severity of AD and repaired skin barrier. AD lesions were characterized by a decreased sebum level, lower abundance of Cutibacterium and a higher abundance of Staphylococcus. A combined topical treatment with an antimicrobial and steroid showed better responses in increasing skin sebum level and restoring the skin bacterial microbiome, whereas topical steroid alone did not improve skin dysbiosis. CONCLUSION A combined therapy with antimicrobial and steroid helps to recover the skin microbiome. Further studies are necessary to explore the therapeutic effects of treatments aiming at balancing the microbiome.
Collapse
Affiliation(s)
- Li Tingting
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Peixin Zhang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Li Yang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Ruojun Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| |
Collapse
|
76
|
Li C, Yu J, Issa R, Wang L, Ning M, Yin S, Li J, Wu C, Chen Y. CoronaVac-induced antibodies that facilitate Fc-mediated neutrophil phagocytosis track with COVID-19 disease resolution. Emerg Microbes Infect 2025; 14:2434567. [PMID: 39584817 PMCID: PMC11731273 DOI: 10.1080/22221751.2024.2434567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants raise concerns about decreased vaccine efficacy, vaccines continue to confer robust protection in humans, implying that immunity beyond neutralization contributes to vaccine efficacy. In addition to neutralization, antibodies can mediate various Fc-dependent effector functions, including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP) and antibody-dependent cellular cytotoxicity (ADCC). However, the specific role of each Fc-mediated effector function in contributing to COVID-19 disease attenuation in human remains unclear. To fully define the potential immune correlates of Fc-mediated effector functions, we comprehensively analysed the above Fc-mediated effector functions in two study cohorts. In the CoronaVac vaccinee cohort, individuals without breakthrough infection exhibited higher levels of ADCP and ADNP activities with a greater degree of cross-reactivity compared to those who had breakthrough infection. A predictive model was established incorporating ADNP activity and IgG titre, achieving an area under the curve (AUC) of 0.837. In the COVID-19 patient cohort, BA.5-specific ADCP and ADNP responses were significantly reduced in COVID-19 patients with fatal outcomes compared to milder outcomes. The prognostic model incorporating WT, BA.5, and XBB.1.5 spike-specific ADNP demonstrated effective predictive ability, achieving an AUC of 0.890. Meanwhile, transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients in the acute phases of infection highlighted remarkably upregulation of neutrophil activity and phagocytic function, further reinforcing the essential role of ADNP. Collectively, our findings underscored Fc-mediated effector activities, especially neutrophil phagocytosis, as significant antibody biomarkers for the risk of SARS-CoV-2 breakthrough infection and COVID-19 prognosis.
Collapse
Affiliation(s)
- Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| | - Jie Yu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Rahma Issa
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Department of Pharmacy, Ismailia Teaching Oncology Hospital (GOTHI), Ismailia, Egypt
| | - Lili Wang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Nanjing, People’s Republic of China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People’s Republic of China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
77
|
Geng P, Zhao N, Zhou Y, Harris RS, Ge Y. Faecalibacterium prausnitzii regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice. Gut Microbes 2025; 17:2455503. [PMID: 39841201 DOI: 10.1080/19490976.2025.2455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. Faecalibacterium prausnitzii is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct F. prausnitzii strains might lead to functional differences in the gut microbiome. Here, we isolated and characterized a novel F. prausnitzii strain (UT1) that belongs to the most prevalent but underappreciated phylogenetic clade in the global human population. Genome analysis showed that this butyrate-producing isolate carries multiple putative mobile genetic elements, a clade-specific defense system, and a range of carbohydrate catabolic enzymes. Multiomic approaches were used to profile the impact of UT1 on the gut microbiome and associated metabolic activity of C57BL/6 mice at homeostasis. Both 16S rRNA and metagenomic sequencing demonstrated that oral administration of UT1 resulted in profound microbial compositional changes including a significant enrichment of Lactobacillus, Bifidobacterium, and Turicibacter. Functional profiling of the fecal metagenomes revealed a markedly higher abundance of carbohydrate-active enzymes (CAZymes) in UT1-gavaged mice. Accordingly, UT1-conditioned microbiota possessed the elevated capability of utilizing starch in vitro and exhibited a lower availability of microbiota-accessible carbohydrates in the gut. Further analysis uncovered a functional network wherein UT1 reduced the abundance of mucin-degrading CAZymes and microbes, which correlated with a concomitant reduction of fecal mucin glycans. Collectively, our results reveal a crucial role of UT1 in facilitating the carbohydrate metabolism of the gut microbiome and expand our understanding of the genetic and phenotypic diversity of F. prausnitzii.
Collapse
Affiliation(s)
- Peiling Geng
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ni Zhao
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
78
|
Craig-Meyer D, Hollenbaugh JA, Morgado S, McGee K, Perkins E, Yarzabek B, Lapinski P, Rowse A, Cooper C, Fortunato M, Cocco M, Cadwallader K, Munday J. Immunophenotypical characterization of immune checkpoint receptor expression in cynomolgus monkeys and human healthy volunteers in resting and in T-cell stimulatory conditions in vitro. J Immunotoxicol 2025; 22:2462106. [PMID: 39945090 DOI: 10.1080/1547691x.2025.2462106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 04/12/2025] Open
Abstract
Immunotherapeutics targeting immune checkpoint receptors or their ligands (i.e., immune checkpoint inhibitors), have been groundbreaking in the field of oncology, radically changing the approach to treatment and improving the clinical outcomes of an ever-expanding list of solid tumors and hematological malignancies. However, immune checkpoint inhibitors (ICI) are not devoid of side effects, collectively regarded as immune-related adverse events (irAE); they are not easily uncovered in preclinical immunotoxicological investigations and are often due to the very low expression of their targets in immunologically-unchallenged non-clinical species. We have characterized expression of a broad range of immune checkpoint receptors in peripheral blood mononuclear cell (PBMC) subpopulations from cynomolgus monkeys and healthy human volunteers, under resting and T-cell stimulatory conditions by multicolor flow cytometry to inform appropriate species selection for modeling potential irAE in immunotherapeutic preclinical research. Focusing on the response of the main lymphocyte populations to interleukin (IL)-2 alone, or in combination with anti-CD3 and anti-CD28 antibodies, checkpoints with shared similarities and key differences between the two species were identified. The results of this first study provide a database for the expression and response to stimulation for immune checkpoint receptors and can help guide future model selection in the design of preclinical studies involving immunotherapeutics directed against these targets.
Collapse
Affiliation(s)
| | | | - Sara Morgado
- Labcorp Early Development Laboratories Limited, Huntingdon, UK
| | - Karen McGee
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - Ethan Perkins
- Labcorp Early Development Laboratories Limited, Harrogate, UK
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, UK
| | | | | | - Amber Rowse
- Labcorp Early Development Laboratories Inc, Ann Arbor, MI
| | - Chris Cooper
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - Mara Fortunato
- Labcorp Early Development Laboratories Limited, Huntingdon, UK
| | - Mario Cocco
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | | | - James Munday
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| |
Collapse
|
79
|
Tan L, Mo Z, Gan W, Gao Z, Zhu J, Wu Z. The remodeling of B-cell subsets was correlated with the clearance of hepatitis B antigen during pegylated IFN α-2a therapy in CHB patients. Ann Med 2025; 57:2463569. [PMID: 39957563 PMCID: PMC11834791 DOI: 10.1080/07853890.2025.2463569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/19/2024] [Accepted: 06/01/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND B-cell may participate in the cellular immune process of hepatitis B antigen clearance. However, the function and specific mechanism of B-cell during interferon-pegylated interferon α-2a (Peg-IFN-α) treatment in chronic hepatitis B (CHB) patients have not yet been described. METHODS A total of 150 CHB patients enrolled in this study, who received 48 weeks of Peg-IFN α treatment. The differentiation clusters CD19, CD24, CD27, CD38, CD40, and CD80 of B cell surface markers in CHB patients were detected by flow cytometry. Spearman correlation and Logistic regression analysis were performed for the analysis. RESULTS The clearance rate of HBsAg increased significantly with the duration of Peg-IFN-α treatment, reaching 32.2% by 48 weeks. During the Peg-IFN-α therapy, the frequency of B-cell and its subsets increased significantly. However, we did not observe any significant difference in the frequency of the B-cell and its subsets in patients with or without HBsAg clearance after 48 weeks Peg-IFN-α treatment. The change in HBsAg value was negatively related to the change in plasmablasts (CD19+CD38+) level before and after 48 weeks treatment (r = -0.326, p = 0.006). Moreover, the results showed that HBsAg <288.70 IU/mL at baseline and HBsAg <58.05 IU/mL at 12 weeks were strong predictors of HBsAg clearance in patients with 48 weeks Peg-IFN-α treatment. CONCLUSION The remodeling of B cell subsets, especially plasmablasts (CD19+CD38+), during Peg-IFN-α treatment was closed associated with the clearance of hepatitis B antigen.
Collapse
Affiliation(s)
- Lei Tan
- Department of Medical Ultrasonic, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Topical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Weiqiang Gan
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Topical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Topical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jianyun Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Topical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zeqian Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Topical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
80
|
Jimenez-Sanchez M, Celiberto LS, Yang H, Sham HP, Vallance BA. The gut-skin axis: a bi-directional, microbiota-driven relationship with therapeutic potential. Gut Microbes 2025; 17:2473524. [PMID: 40050613 PMCID: PMC11901370 DOI: 10.1080/19490976.2025.2473524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
This review explores the emerging term "gut-skin axis" (GSA), describing the bidirectional signaling that occurs between the skin and the gastrointestinal tract under both homeostatic and disease conditions. Central to GSA communication are the gut and skin microbiota, the microbial communities that colonize these barrier surfaces. By influencing diverse host pathways, including innate immune, vitamin D receptor, and Aryl hydrocarbon receptor signaling, a balanced microbiota contributes to both tissue homeostasis and host defense. In contrast, microbiota imbalance, or dysbiosis at one site, can lead to local barrier dysfunction, resulting in the activation of signaling pathways that can disrupt tissue homeostasis at the other site, potentially leading to inflammatory skin conditions such as atopic dermatitis and psoriasis, or gut diseases like Inflammatory Bowel Disease. To date, most research on the GSA has examined the impact of the gut microbiota and diet on skin health, but recent studies show that exposing the skin to ultraviolet B-light can beneficially modulate both the gut microbiome and intestinal health. Thus, despite the traditional focus of clinicians and researchers on these organ systems as distinct, the GSA offers new opportunities to better understand the pathogenesis of cutaneous and gastrointestinal diseases and promote health at both sites.
Collapse
Affiliation(s)
- Maira Jimenez-Sanchez
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Larissa S. Celiberto
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Hyungjun Yang
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Ho Pan Sham
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
81
|
Wang L, Chen SY, Li JL, Dai J, Qin DY, He RQ, Chen G. Anti-inflammatory effects of immunotherapy in clinical treatment and its potential mechanism in alleviating sleeping disorders: A systematic bibliometric study. Hum Vaccin Immunother 2025; 21:2475601. [PMID: 40097368 PMCID: PMC11917172 DOI: 10.1080/21645515.2025.2475601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025] Open
Abstract
Sleeping disorders negatively affect cancer patient management, quality of life, and recovery. Immunotherapy, a rising cancer treatment, shows potential to improve sleep quality by reducing inflammation. This study analyzed 255 publications (2000-2024) from the Web of Science Core Collection using bibliometric methods. The US and China dominate research output, with The Mayo Clinic as a key contributor. Core topics are "immunotherapy," "quality of life," and "antibodies." Emerging keywords like "cancer," "encephalitis," and "depression" highlight a shift toward clinical psychology in treating tumors and rare diseases. It is noteworthy that with the rapid expansion of immunotherapy in cancer treatment, clinical trials have shown that it can improve sleep quality in cancer patients by reducing inflammation. As its application in cancer treatment expands, immunotherapy's potential for treating sleep disorders is promising. Future development is expected to improve sleep quality and address clinical issues, offering broad prospects for patient outcomes.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Si-Yan Chen
- Day Chemotherapy Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jun-Li Li
- Day Chemotherapy Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jian Dai
- Department of Clinical Psychology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
82
|
Fuchs S, Fiedler MK, Heiduk N, Wanisch A, Mibus C, Singh D, Debowski AW, Marshall BJ, Vieth M, Josenhans C, Suerbaum S, Sieber SA, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonization. Gut Microbes 2025; 17:2488048. [PMID: 40205659 PMCID: PMC11988274 DOI: 10.1080/19490976.2025.2488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Michaela K. Fiedler
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Heiduk
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cora Mibus
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Aleksandra W. Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
83
|
Ren X, Zhao L, Hao Y, Huang X, Lv G, Zhou X. Copper-instigated modulatory cell mortality mechanisms and progress in kidney diseases. Ren Fail 2025; 47:2431142. [PMID: 39805816 PMCID: PMC11734396 DOI: 10.1080/0886022x.2024.2431142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper. In addition, we discuss the mechanism by which copper induces various programmed cell deaths. Finally, this review examines copper's involvement in prevalent kidney diseases such as acute kidney injury and chronic kidney disease. The findings indicate that the use of copper chelators or plant extracts can mitigate kidney damage by reducing copper accumulation, offering novel insights into the pathogenesis and treatment strategies for kidney diseases.
Collapse
Affiliation(s)
- Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu Huang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guangna Lv
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
84
|
Dong H, Wang X, Zheng Y, Li J, Liu Z, Wang A, Shen Y, Wu D, Cui H. Mapping the rapid growth of multi-omics in tumor immunotherapy: Bibliometric evidence of technology convergence and paradigm shifts. Hum Vaccin Immunother 2025; 21:2493539. [PMID: 40275437 PMCID: PMC12026087 DOI: 10.1080/21645515.2025.2493539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
This study aims to fill the knowledge gap in systematically mapping the evolution of omics-driven tumor immunotherapy research through a bibliometric lens. While omics technologies (genomics, transcriptomics, proteomics, metabolomics)provide multidimensional molecular profiling, their synergistic potential with immunotherapy remains underexplored in large-scale trend analyses. A comprehensive search was conducted using the Web of Science Core Collection for literature related to omics in tumor immunotherapy, up to August 2024. Bibliometric analyses, conducted using R version 4.3.3, VOSviewer 1.6.20, and Citespace 6.2, examined publication trends, country and institutional contributions, journal distributions, keyword co-occurrence, and citation bursts. This analysis of 9,494 publications demonstrates rapid growth in omics-driven tumor immunotherapy research since 2019, with China leading in output (63% of articles) yet exhibiting limited multinational collaboration (7.9% vs. the UK's 61.8%). Keyword co-occurrence and citation burst analyses reveal evolving frontiers: early emphasis on "PD-1/CTLA-4 blockade" has transitioned toward "machine learning," "multi-omics," and "lncRNA," reflecting a shift to predictive modeling and biomarker discovery. Multi-omics integration has facilitated the development of immune infiltration-based prognostic models, such as TIME subtypes, which have been validated across multiple tumor types, which inform clinical trial design (e.g. NCT06833723). Additionally, proteomic analysis of melanoma patients suggests that metabolic biomarkers, particularly oxidative phosphorylation and lipid metabolism, may stratify responders to PD-1 blockade therapy. Moreover, spatial omics has confirmed ENPP1 as a potential novel therapeutic target in Ewing sarcoma. Citation trends underscore clinical translation, particularly mutation-guided therapies. Omics technologies are transforming tumor immunotherapy by enhancing biomarker discovery and improving therapeutic predictions. Future advancements will necessitate longitudinal omics monitoring, AI-driven multi-omics integration, and international collaboration to accelerate clinical translation. This study presents a systematic framework for exploring emerging research frontiers and offers insights for optimizing precision-driven immunotherapy.
Collapse
Affiliation(s)
- Huijing Dong
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmeng Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yumin Zheng
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Li
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Zhening Liu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Aolin Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yulei Shen
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Daixi Wu
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Cui
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
85
|
Wei P, Cai R, Zhang L, Zhang J, Zhang Z, Zhu A, Li H, Zhuang Z, Chen L, Chen J, Zhang Y, Xiong X, Qu B, Zhuo J, Tang T, Zhang Y, Chen L, Zhong Q, Lin Z, Xing X, Li F, Hu Q, Dai J, Shi Y, Zhao J, Zhao J, Wang Y. In vivo determination of protective antibody thresholds for SARS-CoV-2 variants using mouse models. Emerg Microbes Infect 2025; 14:2459140. [PMID: 39851259 PMCID: PMC11809195 DOI: 10.1080/22221751.2025.2459140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Neutralizing antibody titres have been shown to correlate with immune protection against COVID-19 and can be used to estimate vaccine effectiveness. Numerous studies have explored the relationship between neutralizing antibodies and protection. However, there remains a lack of quantitative data directly assessing the minimum effective protective neutralizing antibody titre in in vivo. In this study, we utilized eight cohorts of participants with diverse immune backgrounds for evaluation of protective antibody response. To precisely assess the lower threshold of neutralizing antibody titres required for effective protection against SARS-CoV-2 infections, we employed plasma adoptive transfer from different cohorts into mice. This study demonstrated that neutralizing titres in the plasma of recipient mice correlated well with those in human donors, and a positive linear correlation was observed between the human and mouse recipients of transferred plasma neutralizing titre. A pseudotyped virus neutralizing titres greater than 7 was identified as the minimum threshold necessary to reduce viral titres in infected mice, establishing a crucial baseline for effective protection. Furthermore, despite the variability in immune backgrounds, these diverse cohorts' plasma exhibited a similar neutralizing antibody threshold necessary for protection. This finding has significant implications for vaccine design and the assessment of immune competence.
Collapse
Affiliation(s)
- Peilan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Ruoxi Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lu Zhang
- Health and Quarantine Laboratory, State Key Laboratory of Respiratory Disease of Guangzhou Customs District Technology Center, Guangzhou, People’s Republic of China
| | - Jingjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Hai Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiantao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xinyi Xiong
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Bin Qu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Tian Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lei Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qier Zhong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhiwei Lin
- Health and Quarantine Laboratory, State Key Laboratory of Respiratory Disease of Guangzhou Customs District Technology Center, Guangzhou, People’s Republic of China
| | - Xindan Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qingtao Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jun Dai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
- Health and Quarantine Laboratory, State Key Laboratory of Respiratory Disease of Guangzhou Customs District Technology Center, Guangzhou, People’s Republic of China
| | - Yongxia Shi
- Health and Quarantine Laboratory, State Key Laboratory of Respiratory Disease of Guangzhou Customs District Technology Center, Guangzhou, People’s Republic of China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
86
|
Seth NP, Xu R, DuPrie M, Choudhury A, Sihapong S, Tyler S, Meador J, Avery W, Cochran E, Daly T, Brown J, Rutitzky L, Markowitz L, Kumar S, Beavers T, Bhattacharya S, Chen H, Parge V, Price K, Wang Y, Sukumaran S, Pao Y, Abouzahr K, Elwood F, Duffner J, Roy S, Narayanaswami P, Hubbard JJ, Ling LE. Nipocalimab, an immunoselective FcRn blocker that lowers IgG and has unique molecular properties. MAbs 2025; 17:2461191. [PMID: 39936406 PMCID: PMC11834464 DOI: 10.1080/19420862.2025.2461191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Nipocalimab is a human immunoglobulin G (IgG)1 monoclonal antibody that binds to the neonatal Fc receptor (FcRn) with high specificity and high affinity at both neutral (extracellular) and acidic (intracellular) pH, resulting in the reduction of circulating IgG levels, including those of pathogenic IgG antibodies. Here, we present the molecular, cellular, and nonclinical characteristics of nipocalimab that support the reported clinical pharmacology and potential clinical application in IgG-driven, autoantibody- and alloantibody-mediated diseases. The crystal structure of the nipocalimab antigen binding fragment (Fab)/FcRn complex reveals its binding to a unique epitope on the IgG binding site of FcRn that supports the observed pH-independent high-binding affinity to FcRn. Cell-based and in vivo studies demonstrate concentration/dose- and time-dependent FcRn occupancy and IgG reduction. Nipocalimab selectively reduces circulating IgG levels without detectable effects on other adaptive and innate immune functions. In vitro experiments and in vivo studies in mice and cynomolgus monkeys generated data that align with observations from clinical studies of nipocalimab in IgG autoantibody- and alloantibody-mediated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pushpa Narayanaswami
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
87
|
Yang W, Bian ZZ, Li Z, Zhang YT, Liu LB, Chang JT, Li D, Wang PG, An J, Wang W. An immunocompetent mouse model revealed that congenital Zika virus infection disrupted hippocampal function by activating autophagy. Emerg Microbes Infect 2025; 14:2465327. [PMID: 39945741 PMCID: PMC11873970 DOI: 10.1080/22221751.2025.2465327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Congenital Zika virus (ZIKV) infection significantly affects neurological development in infants and subsequently induces neurodevelopmental abnormality symptoms; however, the potential mechanism is still unknown. Therefore, in order to effectively intervene in neurodevelopmental abnormalities in infected infants, it is necessary to identify the main brain regions affected by congenital infection. In this study, we constructed a congenital ZIKV-infected murine model using immunocompetent human STAT2 knock-in mice, which presented long-term neurodevelopmental abnormalities with abnormal neurodevelopmental symptoms. We found that the hippocampus, which regulates cognitive behaviour and processes spatial information and navigation, was the main brain region affected by congenital infection and that hippocampal cells were more prone to autophagy during the growth period of these mice at the transcriptional and pathological levels. These findings highlighted that congenital ZIKV infection could interrupt hippocampal function by activating autophagy, thus providing a theoretical basis for the clinical treatment of congenital ZIKV-infected infants.
Collapse
Affiliation(s)
- Wei Yang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Zhan-Zhan Bian
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Zhe Li
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Yi-Teng Zhang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Li-Bo Liu
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Dan Li
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Wei Wang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| |
Collapse
|
88
|
Dinoto A, Pacenti M, Mariotto S, Abate D, Lisi V, Satto S, Vogiatzis S, Chiodega V, Carta S, Ferrari S, Barzon L. Serum levels of neurofilament light chain and glial fibrillary acidic protein correlate with disease severity in patients with West Nile virus infection. Emerg Microbes Infect 2025; 14:2447606. [PMID: 39945666 PMCID: PMC11849020 DOI: 10.1080/22221751.2024.2447606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 02/18/2025]
Abstract
West Nile virus (WNV) is a neurotropic mosquito-borne orthoflavivirus, representing a relevant public health threat. Identification of biomarkers that would predict the course of WNV infection is of interest for the early identification of patients at risk and for supporting decisions on therapeutic interventions. In this study, serum levels of glial fibrillary acidic protein (sGFAP) and neurofilament light chain (sNfL), which are markers of brain tissue damage and inflammation, were analysed in 103 subjects with laboratory-confirmed WNV infection, comprising 13 asymptomatic blood donors, 23 with WN fever (WNF), 50 with encephalitis/meningoencephalitis (E/ME) and 17 with acute flaccid paralysis (AFP). In addition, 55 WNV-negative subjects with fever, encephalitis or healthy asymptomatic were included as controls. Age-adjusted levels of both sNfL and sGFAP were significantly higher in patients with neuroinvasive disease than in those with fever or asymptomatic (both WNV-positive and WNV-negative), suggesting a broad association of these biomarkers with systemic inflammation and brain injury resulting from infection. In WNV patients, the combined analysis of sNfL and sGFAP early after symptom onset allowed discrimination between neuroinvasive disease and fever with 67.2% sensitivity and 91.3% specificity, but not between E/ME and AFP. Furthermore, high levels of sNfL and sGFAP were significantly associated with prolonged hospital stay, intensive care unit admission and the occurrence of death or severe sequelae. Detection of WNV RNA in CSF was associated with increased sGFAP. In conclusion, our study indicates the potential utility of sNfL and sGFAP as biomarkers of WNV disease severity and adverse outcome.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - Sara Mariotto
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Abate
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Vittoria Lisi
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - Sorsha Satto
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | | | - Vanessa Chiodega
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Carta
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Luisa Barzon
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
89
|
Yi LX, Woon HR, Saw G, Zeng L, Tan EK, Zhou ZD. Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease. Neural Regen Res 2025; 20:3193-3206. [PMID: 39665833 PMCID: PMC11881713 DOI: 10.4103/nrr.nrr-d-24-00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease, the second most common human neurodegenerative disease. Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear, the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy. The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons, which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies. The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells. The benefits of induced pluripotent stem cell-based research are highlighted. Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared. The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated. Finally, limitations, challenges, and future directions of induced pluripotent stem cell-based approaches are analyzed and proposed, which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Li Zeng
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Eng King Tan
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
90
|
Li S, Li J, Chen G, Lin T, Zhang P, Tong K, Chen N, Liu S. Exosomes originating from neural stem cells undergoing necroptosis participate in cellular communication by inducing TSC2 upregulation of recipient cells following spinal cord injury. Neural Regen Res 2025; 20:3273-3286. [PMID: 38993124 PMCID: PMC11881710 DOI: 10.4103/nrr.nrr-d-24-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00030/figure1/v/2024-12-20T164640Z/r/image-tiff We previously demonstrated that inhibiting neural stem cells necroptosis enhances functional recovery after spinal cord injury. While exosomes are recognized as playing a pivotal role in neural stem cells exocrine function, their precise function in spinal cord injury remains unclear. To investigate the role of exosomes generated following neural stem cells necroptosis after spinal cord injury, we conducted single-cell RNA sequencing and validated that neural stem cells originate from ependymal cells and undergo necroptosis in response to spinal cord injury. Subsequently, we established an in vitro necroptosis model using neural stem cells isolated from embryonic mice aged 16-17 days and extracted exosomes. The results showed that necroptosis did not significantly impact the fundamental characteristics or number of exosomes. Transcriptome sequencing of exosomes in necroptosis group identified 108 differentially expressed messenger RNAs, 104 long non-coding RNAs, 720 circular RNAs, and 14 microRNAs compared with the control group. Construction of a competing endogenous RNA network identified the following hub genes: tuberous sclerosis 2 ( Tsc2 ), solute carrier family 16 member 3 ( Slc16a3 ), and forkhead box protein P1 ( Foxp1 ). Notably, a significant elevation in TSC2 expression was observed in spinal cord tissues following spinal cord injury. TSC2-positive cells were localized around SRY-box transcription factor 2-positive cells within the injury zone. Furthermore, in vitro analysis revealed increased TSC2 expression in exosomal receptor cells compared with other cells. Further assessment of cellular communication following spinal cord injury showed that Tsc2 was involved in ependymal cellular communication at 1 and 3 days post-injury through the epidermal growth factor and midkine signaling pathways. In addition, Slc16a3 participated in cellular communication in ependymal cells at 7 days post-injury via the vascular endothelial growth factor and macrophage migration inhibitory factor signaling pathways. Collectively, these findings confirm that exosomes derived from neural stem cells undergoing necroptosis play an important role in cellular communication after spinal cord injury and induce TSC2 upregulation in recipient cells.
Collapse
Affiliation(s)
- Shiming Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Jianfeng Li
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Guoliang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Tao Lin
- Department of Orthopedics and Traumatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Penghui Zhang
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Kuileung Tong
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ningning Chen
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Shaoyu Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
91
|
Serneels PJ, De Schutter JD, De Groef L, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 PMCID: PMC11881716 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D. De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
92
|
Tian H, Zeng W, Wang Z, Li S, Wei W, Li S, Yin X, Na W, Wang Y, Song K, Zhu P, Liang W. P-Pev: micelle-like complexes transformed from tumor extracellular vesicles by PEG-PE for personalized therapeutic tumor vaccine. Biomaterials 2025; 321:123333. [PMID: 40239595 DOI: 10.1016/j.biomaterials.2025.123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/18/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
The clinical benefits of personalized therapeutic tumor vaccines are mainly challenged by the need to identify immunogenic neoantigens promptly, given the rapid pace of tumor mutations. An increasing body of literature addresses the potential of tumor-derived extracellular vesicles (TEVs) as an anti-tumor "cell-free" vaccine due to their substantial presence of neoantigens. However, their immunosuppression and limited presentation efficiency of dendritic cells (DCs) restrict their further application. Here, we have developed a novel tumor-personalized vaccine, termed P-Pev, based on remodeled TEVs by polymeric surfactant polyethylene glycol-phosphatidyleolamine (PEG-PE) and adjuvant monophosphoryl lipid A (MPLA). Our results show that PEG-PE transforms TEVs into micelle-like complexes by disrupting the original structure, facilitating antigens delivery to the cytoplasm, and cross-presentation by DCs. P-Pev particularly prevents the immunosuppressive impacts of TEVs on the ability of DCs to prime CD8+ T cells and eliminates the potency of TEVs to promote lung metastasis through their membrane-bound PD-L1. Finally, the P-Pev effectively induces neoantigen-specific cytotoxic T lymphocytes (CTLs) responses and exhibits excellent therapeutic effects in various murine tumor models. Also, the P-Pev induces neoantigen-specific antibodies, suggesting the involvement of humoral immunity in its anti-tumor effects. More importantly, it has been shown that P-Pev prepared by mutated tumor cells can retard these mutated tumor cell-established syngeneic tumors better than P-Pev prepared by original tumor cells, indicating the feasibility that leverages TEVs to prepare personalized tumor vaccines, and it is synergistically enhanced by PD-1 mAb combination. Collectively, we present a general strategy that offers a streamlined, cost-effective, and time-consuming approach to preparing personalized therapeutic tumor vaccines.
Collapse
Affiliation(s)
- Hongjian Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Zeng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zihao Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Siqi Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Wenjing Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Shanshan Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Xiaozhe Yin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenjing Na
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, TX, 78229, USA
| | - Youwang Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kai Song
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100864, China; Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100864, China.
| |
Collapse
|
93
|
Hugues N, Luo Y. Tilting homeostatic and dyshomeostatic microglial balance in health and disease: transforming growth factor-beta1 as a critical protagonist. Neural Regen Res 2025; 20:2895-2897. [PMID: 39610093 PMCID: PMC11826453 DOI: 10.4103/nrr.nrr-d-24-00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- Nicolas Hugues
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
94
|
Zhang W, Lu Y, Shen R, Wu Y, Liu C, Fang X, Zhang L, Liu B, Rong L. Inhibiting ceramide synthase 5 expression in microglia decreases neuroinflammation after spinal cord injury. Neural Regen Res 2025; 20:2955-2968. [PMID: 39610106 PMCID: PMC11826471 DOI: 10.4103/nrr.nrr-d-23-01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/24/2024] [Accepted: 04/15/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00026/figure1/v/2024-11-26T163120Z/r/image-tiff Microglia, the resident monocyte of the central nervous system, play a crucial role in the response to spinal cord injury. However, the precise mechanism remains unclear. To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury, we performed single-cell RNA sequencing dataset analysis, focusing on changes in microglial subpopulations. We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis, sphingomyelin metabolism, and neuroinflammation at high levels. Subsequently, we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury. Finally, we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells. Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis. Furthermore, ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway. Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function. Pla2g7 formed a "bridge" between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway. Collectively, these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3, thereby exerting neuroprotective effects.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Ruoqi Shen
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yingjie Wu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chenrui Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xingxing Fang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong Province, China
| |
Collapse
|
95
|
Lan X, Johnston E, Ning T, Chen G, Haglund L, Li J. Immunomodulatory bioadhesive technologies. Biomaterials 2025; 321:123274. [PMID: 40156979 DOI: 10.1016/j.biomaterials.2025.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Bioadhesives have found significant use in medicine and engineering, particularly for wound care, tissue engineering, and surgical applications. Compared to traditional wound closure methods such as sutures and staples, bioadhesives offer advantages, including reduced tissue damage, enhanced healing, and ease of implementation. Recent progress highlights the synergy of bioadhesives and immunoengineering strategies, leading to immunomodulatory bioadhesives capable of modulating immune responses at local sites where bioadhesives are applied. They foster favorable therapeutic outcomes such as reduced inflammation in wounds and implants or enhanced local immune responses to improve cancer therapy efficacy. The dual functionalities of bioadhesion and immunomodulation benefit wound management, tissue regeneration, implantable medical devices, and post-surgical cancer management. This review delves into the interplay between bioadhesion and immunomodulation, highlighting the mechanobiological coupling involved. Key areas of focus include the modulation of immune responses through chemical and physical strategies, as well as the application of these bioadhesives in wound healing and cancer treatment. Discussed are remaining challenges such as achieving long-term stability and effectiveness, necessitating further research to fully harness the clinical potential of immunomodulatory bioadhesives.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Evan Johnston
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Tianqin Ning
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Ave W, Montreal, Quebec, H3A 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec, H4A 0A9, Canada.
| | - Jianyu Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
96
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
97
|
Chung J, Pierce J, Franklin C, Olson RM, Morrison AR, Amos-Landgraf J. Translating animal models of SARS-CoV-2 infection to vascular, neurological and gastrointestinal manifestations of COVID-19. Dis Model Mech 2025; 18:dmm052086. [PMID: 40195851 PMCID: PMC12010913 DOI: 10.1242/dmm.052086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiated a global pandemic resulting in an estimated 775 million infections with over 7 million deaths, it has become evident that COVID-19 is not solely a pulmonary disease. Emerging evidence has shown that, in a subset of patients, certain symptoms - including chest pain, stroke, anosmia, dysgeusia, diarrhea and abdominal pain - all indicate a role of vascular, neurological and gastrointestinal (GI) pathology in the disease process. Many of these disease processes persist long after the acute disease has been resolved, resulting in 'long COVID' or post-acute sequelae of COVID-19 (PASC). The molecular mechanisms underlying the acute and systemic conditions associated with COVID-19 remain incompletely defined. Appropriate animal models provide a method of understanding underlying disease mechanisms at the system level through the study of disease progression, tissue pathology, immune system response to the pathogen and behavioral responses. However, very few studies have addressed PASC and whether existing models hold promise for studying this challenging problem. Here, we review the current literature on cardiovascular, neurological and GI pathobiology caused by COVID-19 in patients, along with established animal models of the acute disease manifestations and their prospects for use in PASC studies. Our aim is to provide guidance for the selection of appropriate models in order to recapitulate certain aspects of the disease to enhance the translatability of mechanistic studies.
Collapse
Affiliation(s)
- James Chung
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Julia Pierce
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Research, Ocean State Research Institute, Inc., Providence, RI 02908-4734, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - Craig Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Rachel M. Olson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Research, Ocean State Research Institute, Inc., Providence, RI 02908-4734, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
98
|
Kreider RB, Gonzalez DE, Hines K, Gil A, Bonilla DA. Safety of creatine supplementation: analysis of the prevalence of reported side effects in clinical trials and adverse event reports. J Int Soc Sports Nutr 2025; 22:2488937. [PMID: 40198156 PMCID: PMC11983583 DOI: 10.1080/15502783.2025.2488937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Individual studies have indicated that creatine supplementation is generally well tolerated and not associated with clinically significant side effects. Nevertheless, anecdotal reports about side effects persist primarily from popular and social media and on the Internet. METHODS This study evaluated side effects reported from 685 human clinical trials on creatine supplementation, worldwide adverse event report (AER) databases, and performed a social media sentiment analysis. The presence of side effects (No, Yes) in studies was evaluated using chi-squared analysis. The frequency of side effects among study participants was evaluated using a multivariate analysis of variance. RESULTS A total of 13,452 participants in 652 studies ingested placebos (PLA), while 12,839 participants in 685 studies consumed creatine (Cr). Nearly all studies (95%) provided CrM at an average dose of 0.166 [0.159, 0.173] g/kg/d (about 12.5 g/d) for 64.7 [52.0, 77.3] days in studies lasting up to 14 yrs. Side effects were reported in 13.2% of studies in the PLA groups and 13.7% of studies in the Cr-supplemented groups, with no significant differences observed between the groups (p = 0.776). There was a slightly higher percentage of studies reporting gastrointestinal (GI) issues (PLA 4.3%, Cr 4.9%, p < 0.001) and muscle cramping/pain (PLA 0.9%, Cr 2.9%, p = 0.008) with Cr supplementation, but not when the total number of participants in these studies was evaluated (muscle cramping/pain: PLA 0.07%, Cr 0.52%, p = 0.085; GI issues: PLA 4.05%, Cr 5.51%, p = 0.820). Additionally, there was no significant multivariate difference among the 49 side effects evaluated (p = 0.340), no significant difference in the total frequency of side effects reported among participants (PLA 4.21%, Cr 4.60%, p = 0.828), and no significant differences in any of the other side effect evaluated that included markers of renal function and health. The percentage prevalence of side effects was small, with differences between groups generally within ± 0.5%. Analysis of 28.4 million AERs revealed that the mention of Cr was rare (0.00072%), 46.3% of CAERS had no Cr in the products listed, and 63% of AERs with Cr in the product involved the use of other types of Cr or ingestion with other supplements or drugs. The overall sentiment analysis was neutral about perceptions of Cr, although those with strong perceptions about Cr were slightly more negative. CONCLUSION Results demonstrate that Cr supplementation does not increase the prevalence or frequency of side effects when compared to participants ingesting PLA. Therefore, claims that Cr supplementation increases the risk of side effects are unfounded.
Collapse
Affiliation(s)
- Richard B. Kreider
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Drew E. Gonzalez
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Kelly Hines
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Adriana Gil
- Texas A&M University, Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, College Station, TX, USA
| | - Diego A. Bonilla
- Dynamical Business & Science Society—DBSS International SAS, Research Division, Bogotá, Colombia
- University of the Basque Country (UPV/EHU), Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Leioa, Spain
| |
Collapse
|
99
|
Xiao B, Chu C, Lin Z, Fang T, Zhou Y, Zhang C, Shan J, Chen S, Li L. Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor- and Cygb-associated signaling pathways. Neural Regen Res 2025; 20:2706-2726. [PMID: 39105365 PMCID: PMC11801291 DOI: 10.4103/nrr.nrr-d-23-01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/30/2024] [Accepted: 03/23/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00031/figure1/v/2024-11-05T132919Z/r/image-tiff A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease. Consequently, enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression. Nonetheless, non-pharmacological interventions aimed at inducing adult neurogenesis are currently limited. Although individual non-pharmacological interventions, such as aerobic exercise, acousto-optic stimulation, and olfactory stimulation, have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease, the therapeutic effect of a strategy that combines these interventions has not been fully explored. In this study, we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months. Amyloid deposition became evident at 4 months, while neurogenesis declined by 6 months, further deteriorating as the disease progressed. However, following a 4-week multifactor stimulation protocol, which encompassed treadmill running (46 min/d, 10 m/min, 6 days per week), 40 Hz acousto-optic stimulation (1 hour/day, 6 days/week), and olfactory stimulation (1 hour/day, 6 days/week), we found a significant increase in the number of newborn cells (5'-bromo-2'-deoxyuridine-positive cells), immature neurons (doublecortin-positive cells), newborn immature neurons (5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells), and newborn astrocytes (5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells). Additionally, the amyloid-beta load in the hippocampus decreased. These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice. Furthermore, cognitive abilities were improved, and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation, as evidenced by Morris water maze, novel object recognition, forced swimming test, and tail suspension test results. Notably, the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2 weeks after treatment cessation. At the molecular level, multifactor stimulation upregulated the expression of neuron-related proteins (NeuN, doublecortin, postsynaptic density protein-95, and synaptophysin), anti-apoptosis-related proteins (Bcl-2 and PARP), and an autophagy-associated protein (LC3B), while decreasing the expression of apoptosis-related proteins (BAX and caspase-9), in the hippocampus of amyloid precursor protein/presenilin 1 mice. These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways. Furthermore, serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis, oxidative damage, and cognition. Collectively, these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Biao Xiao
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chaoyang Chu
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhicheng Lin
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Tianyuan Fang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yuyu Zhou
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuxia Zhang
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jianghui Shan
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Shiyu Chen
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Ningbo Key Laboratory of Behavioral Neuroscience, Health Science Center, Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang Province, China
| |
Collapse
|
100
|
Zhang X, Liu Y, Xu F, Zhou C, Lu K, Fang B, Wang L, Huang L, Xu Z. Protein arginine methyltransferase-6 regulates heterogeneous nuclear ribonucleoprotein-F expression and is a potential target for the treatment of neuropathic pain. Neural Regen Res 2025; 20:2682-2696. [PMID: 39503430 PMCID: PMC11801299 DOI: 10.4103/nrr.nrr-d-23-01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/20/2024] [Accepted: 02/18/2024] [Indexed: 02/08/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00029/figure1/v/2024-11-05T132919Z/r/image-tiff Protein arginine methyltransferase-6 participates in a range of biological functions, particularly RNA processing, transcription, chromatin remodeling, and endosomal trafficking. However, it remains unclear whether protein arginine methyltransferase-6 modifies neuropathic pain and, if so, what the mechanisms of this effect. In this study, protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model, chronic constriction injury model and bone cancer pain model, using immunohistochemistry, western blotting, immunoprecipitation, and label-free proteomic analysis. The results showed that protein arginine methyltransferase-6 mostly co-localized with β-tubulin III in the dorsal root ganglion, and that its expression decreased following spared nerve injury, chronic constriction injury and bone cancer pain. In addition, PRMT6 knockout (Prmt6-/-) mice exhibited pain hypersensitivity. Furthermore, the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression. Moreover, when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury, increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn, and the response to mechanical stimuli was enhanced. Mechanistically, protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F. Additionally, protein arginine methyltransferase-6-mediated modulation of heterogeneous nuclear ribonucleoprotein-F expression required amino acids 319 to 388, but not classical H3R2 methylation. These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target for the treatment of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangxia Xu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengcheng Zhou
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaimei Lu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Fang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zifeng Xu
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|