951
|
Stanciu GD, Rusu RN, Bild V, Filipiuc LE, Tamba BI, Ababei DC. Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer's Disease and Diabetes. Biomedicines 2021; 9:biomedicines9050576. [PMID: 34069618 PMCID: PMC8160780 DOI: 10.3390/biomedicines9050576] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) affects tens of millions of people worldwide. Despite the advances in understanding the disease, there is an increased urgency for pharmacological approaches able of impacting its onset and progression. With a multifactorial nature, high incidence and prevalence in later years of life, there is growing evidence highlighting a relationship between metabolic dysfunction related to diabetes and subject's susceptibility to develop AD. The link seems so solid that sometimes AD and type 3 diabetes are used interchangeably. A candidate for a shared pathogenic mechanism linking these conditions is chronically-activated mechanistic target of rapamycin (mTOR). Chronic activation of unrestrained mTOR could be responsible for sustaining metabolic dysfunction that causes the breakdown of the blood-brain barrier, tau hyperphosphorylation and senile plaques formation in AD. It has been suggested that inhibition of sodium glucose cotransporter 2 (SGLT2) mediated by constant glucose loss, may restore mTOR cycle via nutrient-driven, preventing or even decreasing the AD progression. Currently, there is an unmet need for further research insight into molecular mechanisms that drive the onset and AD advancement as well as an increase in efforts to expand the testing of potential therapeutic strategies aimed to counteract disease progression in order to structure effective therapies.
Collapse
Affiliation(s)
- Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
| | - Razvan Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| | - Veronica Bild
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| | - Leontina Elena Filipiuc
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan-Ionel Tamba
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (G.D.S.); (V.B.); (L.E.F.)
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence:
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.N.R.); (D.C.A.)
| |
Collapse
|
952
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
953
|
Uddin MS, Al Mamun A, Rahman MA, Behl T, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Emerging Proof of Protein Misfolding and Interactions in Multifactorial Alzheimer's Disease. Curr Top Med Chem 2021; 20:2380-2390. [PMID: 32479244 DOI: 10.2174/1568026620666200601161703] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a devastating neurodegenerative disorder, characterized by the extracellular accumulations of amyloid beta (Aβ) as senile plaques and intracellular aggregations of tau in the form of neurofibrillary tangles (NFTs) in specific brain regions. In this review, we focus on the interaction of Aβ and tau with cytosolic proteins and several cell organelles as well as associated neurotoxicity in AD. SUMMARY Misfolded proteins present in cells accompanied by correctly folded, intermediately folded, as well as unfolded species. Misfolded proteins can be degraded or refolded properly with the aid of chaperone proteins, which are playing a pivotal role in protein folding, trafficking as well as intermediate stabilization in healthy cells. The continuous aggregation of misfolded proteins in the absence of their proper clearance could result in amyloid disease including AD. The neuropathological changes of AD brain include the atypical cellular accumulation of misfolded proteins as well as the loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The mechanism of neurodegeneration in AD that leads to severe neuronal cell death and memory dysfunctions is not completely understood until now. CONCLUSION Examining the impact, as well as the consequences of protein misfolding, could help to uncover the molecular etiologies behind the complicated AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
954
|
Priya K, Siddesha JM, Dharini S, Shashanka KP. Interacting Models of Amyloid-β and Tau Proteins: An Approach to Identify Drug Targets in Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:405-411. [PMID: 34189412 PMCID: PMC8203288 DOI: 10.3233/adr-210018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia affecting millions each year across the world, though still remains incurable. This might be attributed to the lack of knowledge about the associated proteins, their cellular and molecular mechanisms, and the genesis of the disease. The discovery of drugs that earlier revolved around targeting the amyloid-β cascade has now been reformed with the upgraded knowledge of the cross-seeding ability of tau protein which opens new gateways for therapeutic targets. This article provides a comprehensive review of various direct and indirect connecting pathways between the two main proteins involved in development and progression of AD, enabling us to further expand our repertoire of information regarding the etiology of AD. The current review indicates the need for extensive research in this niche, thus considerable advances can be made in understanding AD which eventually helps to improve the current therapeutics against AD.
Collapse
Affiliation(s)
- Khadgawat Priya
- Department of Genetics, University of Delhi, New Delhi, India
| | - J M Siddesha
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| | - Shashank Dharini
- Department of Burns, Plastic and Maxillofacial Surgery, VMMC and Safdarjung Hospital, New Delhi, India
| | - K Prasad Shashanka
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, Karnataka, India
| |
Collapse
|
955
|
Effects of Curcumin and Ferulic Acid on the Folding of Amyloid-β Peptide. Molecules 2021; 26:molecules26092815. [PMID: 34068636 PMCID: PMC8126156 DOI: 10.3390/molecules26092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
The polyphenols curcumin (CU) and ferulic acid (FA) are able to inhibit the aggregation of amyloid-β (Aβ) peptide with different strengths. CU is a strong inhibitor while FA is a weaker one. In the present study, we examine the effects of CU and FA on the folding process of an Aβ monomer by 1 µs molecular dynamics (MD) simulations. We found that both inhibitors increase the helical propensity and decrease the non-helical propensity of Aβ peptide. They prevent the formation of a dense bulk core and shorten the average lifetime of intramolecular hydrogen bonds in Aβ. CU makes more and longer-lived hydrogen bonds, hydrophobic, π–π, and cation–π interactions with Aβ peptide than FA does, which is in a good agreement with the observed stronger inhibitory activity of CU on Aβ aggregation.
Collapse
|
956
|
Anand BG, Wu Q, Karthivashan G, Shejale KP, Amidian S, Wille H, Kar S. Mimosine functionalized gold nanoparticles (Mimo-AuNPs) suppress β-amyloid aggregation and neuronal toxicity. Bioact Mater 2021; 6:4491-4505. [PMID: 34027236 PMCID: PMC8131740 DOI: 10.1016/j.bioactmat.2021.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Evidence suggests that increased level/aggregation of beta-amyloid (Aβ) peptides initiate neurodegeneration and subsequent development of Alzheimer's disease (AD). At present, there is no effective treatment for AD. In this study, we reported the effects of gold nanoparticles surface-functionalized with a plant-based amino acid mimosine (Mimo-AuNPs), which is found to cross the blood-brain barrier, on the Aβ fibrillization process and toxicity. Thioflavin T kinetic assays, fluorescence imaging and electron microscopy data showed that Mimo-AuNPs were able to suppress the spontaneous and seed-induced Aβ1-42 aggregation. Spectroscopic studies, molecular docking and biochemical analyses further revealed that Mimo-AuNPs stabilize Aβ1-42 to remain in its monomeric state by interacting with the hydrophobic domain of Aβ1-42 (i.e., Lys16 to Ala21) there by preventing a conformational shift towards the β-sheet structure. Additionally, Mimo-AuNPs were found to trigger the disassembly of matured Aβ1-42 fibers and increased neuronal viability by reducing phosphorylation of tau protein and the production of oxyradicals. Collectively, these results reveal that the surface-functionalization of gold nanoparticles with mimosine can attenuate Aβ fibrillization and neuronal toxicity. Thus, we propose Mimo-AuNPs may be used as a potential treatment strategy towards AD-related pathologies. Mimosine functionalized with gold nanoparticles (Mimo-AuNPs) can cross blood-brain barrier. Mimo-AuNPs inhibit aggregation of Aβ peptides by interacting with its hydrophobic domain. Mimo-AuNPs can trigger disassembly of pre-aggregated Aβ fibers. Mimo-AuNPs can protect neurons against Aβ toxicity by attenuating intracellular signaling.
Collapse
Affiliation(s)
- Bibin G Anand
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Qi Wu
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Govindarajan Karthivashan
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Kiran P Shejale
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, India
| | - Sara Amidian
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Departments of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Departments of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Satyabrata Kar
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
957
|
Inagaki C. [Amyloid β hypothesis in Alzheimer's disease and Cl --ATPase-Neuronal cell death via PI4KIIα inhibition and recovery agents]. Nihon Yakurigaku Zasshi 2021; 156:166-170. [PMID: 33952846 DOI: 10.1254/fpj.20095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the brains of patients with Alzheimer's disease, a decrease in phosphatidylinositol phosphate (PIP) requiring Cl--ATPase activity was found. In cultured rat hippocampal neurons, pathophysiological concentrations of amyloid β proteins (Aβs≤10 nM) lowered PIP levels and Cl--ATPase activity with an increase in intracellular Cl- concentrations, resulting in Cl--dependent enhancements in glutamate neurotoxicity and, ultimately, neuronal cell death. Pathophysiological concentrations of Aβs(0.1-10 nM) directly lowered phosphatidylinositol-4-kinase. Non-toxic peptide fragments of Aβ, such as Ile-Gly-Leu, recovered Aβ-induced inhibition of recombinant human phosphatidylinositol-4-kinase IIα (PI4KIIα) and the intrahippocampally administered Aβ-induced degeneration of hippocampal neurons and impairment of spatial memory in mice. Agents with the potential to block these neurotoxic mechanisms of Aβ were summarized herein as (1) Aβ antagonists, (2) substrates of PI4K, (3) PI4K product, (4) PI4K activators, and (5) GABAc receptor stimulants.
Collapse
|
958
|
Pyun JM, Kang MJ, Ryoo N, Suh J, Youn YC, Park YH, Kim S. Amyloid Metabolism and Amyloid-Targeting Blood-Based Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2021; 75:685-696. [PMID: 32390633 DOI: 10.3233/jad-200104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyloid-β (Aβ) is a key protein in Alzheimer's disease (AD) in that its accumulation induces complex pathological changes. Although there has been extensive research on the metabolism of Aβ in AD, new compelling results have recently emerged. Historically, the production and clearance of Aβ have been thought to originate in the central nervous system (CNS). However, recent evidence suggests that the production and clearance of Aβ can also occur in the peripheral system, and that the peripherally driven Aβ migrates to the CNS and induces amyloidopathy with subsequent AD pathologic changes in the brain. This concept implies that AD is not restricted to the CNS but is a systemic disease instead. As such, the development of blood-based biomarkers targeting Aβ is of great interest. Central and peripheral Aβ are both active contributors to the pathology of AD and interact bidirectionally. Measuring peripheral Aβ is not just observing the reflection of the residual Aβ removed from the CNS but also tracking the ongoing process of AD pathology. Additionally, blood-based biomarkers could be a more accessible tool in clinical and research settings. Through arduous research, several blood-based biomarker assays have demonstrated notable results. In this review, we describe the metabolism of Aβ and the amyloid-targeting blood-based biomarkers of AD.
Collapse
Affiliation(s)
- Jung-Min Pyun
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Nayoung Ryoo
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Jeewon Suh
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| |
Collapse
|
959
|
Molecular Characteristics of Amyloid Precursor Protein (APP) and Its Effects in Cancer. Int J Mol Sci 2021; 22:ijms22094999. [PMID: 34066808 PMCID: PMC8125876 DOI: 10.3390/ijms22094999] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer's disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.
Collapse
|
960
|
Abidi SMS, Dar AI, Acharya A. Multifunctional Gold Nanoparticle-Conjugated Cellulose Nanoonions Alleviate Aβ42 Fibrillation-Induced Toxicity via Regulation of Oxidative Stress and Ion Homeostasis. Biomacromolecules 2021; 22:2419-2435. [PMID: 33945268 DOI: 10.1021/acs.biomac.1c00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inhibition of hen egg white lysozyme (HEWL) and Aβ42 fibrillation have been established as the main models for the treatment of systemic lysozyme amyloidosis and Alzheimer's disease (AD), respectively. Several antiamyloidogenic nanomaterials have been developed over the period; however, their intracellular mechanism of action is still not well understood. In this context, plant-based, gold-conjugated, injectable, hydrophilic cellulose nanoonions (CNOs), viz., DH-CNO (∼60 ± 5 nm) and LC-CNO (∼55 ± 12 nm), were developed from their respective hydrophobic cellulose nanocrystals (DH-CNC and LC-CNC) using a single-step chemical template-mediated process. This unique nanocellulose architecture was chemically and morphologically characterized by various spectroscopic and microscopic techniques. Further, the different biophysical studies documented marked the inhibition/disintegration potential of gold-conjugated LC-CNO against HEWL and Aβ42 peptide aggregation. It was further observed that inhibition of protein fibrillation could be achieved within ∼10 min when the same materials were used under photoirradiation conditions. In vitro protein aggregation studies using HEK293 cells suggested that gold-conjugated LC-CNO could effectively reduce the cellular toxicity via regulation of oxidative stress and ion homeostasis. The outcome of the present study will help in designing cellulose-based novel functional nanochaperones against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| |
Collapse
|
961
|
Abyadeh M, Gupta V, Chitranshi N, Gupta V, Wu Y, Saks D, Wander Wall R, Fitzhenry MJ, Basavarajappa D, You Y, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. Mitochondrial dysfunction in Alzheimer's disease - a proteomics perspective. Expert Rev Proteomics 2021; 18:295-304. [PMID: 33874826 DOI: 10.1080/14789450.2021.1918550] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is involved in Alzheimer's disease (AD) pathogenesis. Mitochondria have their own genetic material; however, most of their proteins (∼99%) are synthesized as precursors on cytosolic ribosomes, and then imported into the mitochondria. Therefore, exploring proteome changes in these organelles can yield valuable information and shed light on the molecular mechanisms underlying mitochondrial dysfunction in AD. Here, we review AD-associated mitochondrial changes including the effects of amyloid beta and tau protein accumulation on the mitochondrial proteome. We also discuss the relationship of ApoE genetic polymorphism with mitochondrial changes, and present a meta-analysis of various differentially expressed proteins in the mitochondria in AD.Area covered: Proteomics studies and their contribution to our understanding of mitochondrial dysfunction in AD pathogenesis.Expert opinion: Proteomics has proven to be an efficient tool to uncover various aspects of this complex organelle, which will broaden our understanding of mitochondrial dysfunction in AD. Evidently, mitochondrial dysfunction is an early biochemical event that might play a central role in driving AD pathogenesis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW Australia
| | - Danit Saks
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Roshana Wander Wall
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW Australia
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yuyi You
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
962
|
Cao J, Wang M, Gong C, Amakye WK, Sun X, Ren J. Identification of Microbiota within Aβ Plaque in APP/PS1 Transgenic Mouse. J Mol Neurosci 2021; 71:953-962. [PMID: 33098544 DOI: 10.1007/s12031-020-01715-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Microbes like viruses, bacteria, and fungi have all been reported in the brain of Alzheimer's postmortem patients and/or AD mouse model; however, the relationship between brain microbes and Aβ plaque deposition remains to be elucidated. In the present study, we first analyzed bacteria populations in the brain of 4-, 5-, and 6-month-old APP/PS1 mice and then examined the Aβ-positive loads of APP/PS1 mouse at 9 months old to identify bacteria in the brain by 16S rDNA sequencing. Finally, blood-brain barrier permeability was measured by injecting dextrans through the tail vein. Surprisingly, the diversity of microbial community gradually decreased in APP/PS1 mouse while wild-type mouse showed no obvious regularity. Moreover, Aβ-positive deposits in the brain showed a significantly higher relative abundance of microbiota than Aβ-negative tissues and age-matched wild-type mouse brain tissues. In addition, an increase in blood-brain barrier permeability was also observed in APP/PS1 mouse. The present study revealed the exact location of microbes within the Aβ plaques in the brain and suggested the potential antimicrobial effect of the Aβ peptide. We strongly recommend that future research on microbiota-related AD pathology should focus on the migration route of microbiota into the brain and how the microbiota enhance AD progression.
Collapse
Affiliation(s)
- Jianing Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - Congcong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - Xiaoyu Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, People's Republic of China.
- , Wushan Road 381, Guangzhou, 510641, China.
| |
Collapse
|
963
|
Wang H, Chen X, Mao M, Xue X. Multifaceted Therapy of Nanocatalysts in Neurological Diseases. J Biomed Nanotechnol 2021; 17:711-743. [PMID: 34082864 DOI: 10.1166/jbn.2021.3063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the development of enzymes immobilization technology and the discover of nanozymes, catalytic therapy exhibited tremendous potential for neurological diseases therapy. In especial, since the discovery of Fe₃O₄ nanoparticles possessing intrinsic peroxidase-like activity, various nanozymes have been developed and recently started to explore for neurological diseases therapy, such as Alzheimer's disease, Parkinson's disease and stroke. By combining the catalytic activities with other properties (such as optical, thermal, electrical, and magnetic properties) of nanomaterials, the multifunctional nanozymes would not only alleviate oxidative and nitrosative stress on the basis of multienzymes-mimicking activity, but also exert positive effects on immunization, inflammation, autophagy, protein aggregation, which provides the foundation for multifaceted treatments. This review will summarize various types of nanocatalysts and further provides a valuable discussion on multifaceted treatment by nanozymes for neurological diseases, which is anticipated to provide an easily accessible guide to the key opportunities and current challenges of the nanozymes-mediated treatments for neurological diseases.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, Tianjin 300353, People's Republic of China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, Tianjin 300353, People's Republic of China
| | - Mingxing Mao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, Tianjin 300353, People's Republic of China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, Tianjin 300353, People's Republic of China
| |
Collapse
|
964
|
Artesunate restores the levels of inhibitory synapse proteins and reduces amyloid-β and C-terminal fragments (CTFs) of the amyloid precursor protein in an AD-mouse model. Mol Cell Neurosci 2021; 113:103624. [PMID: 33933588 DOI: 10.1016/j.mcn.2021.103624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia, characterized histopathologically by the formation of amyloid plaques and neurofibrillary tangles in the brain. Amyloid β-peptide (Aβ) is a major component of amyloid plaques and is released together with carboxy-terminal fragments (CTFs) from the amyloid precursor protein (APP) through proteolytic cleavage, thought to contribute to synapse dysfunction and loss along the progression of AD. Artemisinins, primarily antimalarial drugs, reduce neuroinflammation and improve cognitive capabilities in mouse models of AD. Furthermore, artemisinins were demonstrated to target gephyrin, the main scaffold protein of inhibitory synapses and modulate GABAergic neurotransmission in vitro. Previously, we reported a robust decrease of inhibitory synapse proteins in the hippocampus of 12-month-old double transgenic APP-PS1 mice which overexpress in addition to the Swedish mutated form of the human APP a mutated presenilin 1 (PS1) gene and are characterized by a high plaque load at this age. Here, we provide in vivo evidence that treating these mice with artemisinin or its semisynthetic derivative artesunate in two different doses (10 mg/kg and 100 mg/kg), these compounds affect differently inhibitory synapse components, amyloid plaque load and APP-processing. Immunofluorescence microscopy demonstrated the rescue of gephyrin and γ2-GABAA-receptor protein levels in the brain of treated mice with both, artemisinin and artesunate, most efficiently with a low dose of artesunate. Remarkably, artemisinin reduced only in low dose the amyloid plaque load correlating with lower levels of mutated human APP (hAPPswe) whereas artesunate treatment in both doses resulted in significantly lower plaque numbers. Correspondingly, the level of APP-cleavage products, specifically the amount of CTFs in hippocampus homogenates was reduced significantly only by artesunate, in line with the findings in hAPPswe expressing cultured hippocampal neurons evidencing a concentration-dependent inhibition of CTF-release by artesunate already in the nanomolar range. Thus, our data support artemisinins as neuroprotective multi-target drugs, exhibiting a potent anti-amyloidogenic activity and reinforcing key proteins of inhibitory synapses.
Collapse
|
965
|
Jang J, Park CB. Near-Infrared-Active Copper Molybdenum Sulfide Nanocubes for Phonon-Mediated Clearance of Alzheimer's β-Amyloid Aggregates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18581-18593. [PMID: 33861570 DOI: 10.1021/acsami.1c03066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ternary chalcogenide materials have attracted significant interest in recent years because of their unique physicochemical and optoelectronic properties without relying on precious metals, rare earth metals, or toxic elements. Copper molybdenum sulfide (Cu2MoS4, CMS) nanocube is a biocompatible ternary chalcogenide nanomaterial that exhibits near-infrared (NIR) photocatalytic activity based on its low band gap and electron-phonon coupling property. Here, we study the efficacy of CMS nanocubes for dissociating neurotoxic Alzheimer's β-amyloid (Aβ) aggregates under NIR light. The accumulation of Aβ aggregates in the central nervous system is known to cause and exacerbate Alzheimer's disease (AD). However, clearance of the Aβ aggregates from the central nervous system is a considerable challenge due to their robust structure formed through self-assembly via hydrogen bonding and side-chain interactions. Our spectroscopic and microscopic analysis results have demonstrated that NIR-excited CMS nanocubes effectively disassemble Aβ fibrils by changing Aβ fibril's nanoscopic morphology, secondary structure, and primary structure. We have revealed that the toxicity of Aβ fibrils is alleviated by NIR-stimulated CMS nanocubes through in vitro analysis. Moreover, our ex vivo evaluations have suggested that the amount of Aβ plaques in AD mouse's brain decreased significantly by NIR-excited CMS nanocubes without causing any macroscopic damage to the brain tissue. Collectively, this study suggests the potential use of CMS nanocubes as a therapeutic ternary chalcogenide material to alleviate AD in the future.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
966
|
Verheggen ICM, Freeze WM, de Jong JJA, Jansen JFA, Postma AA, van Boxtel MPJ, Verhey FRJ, Backes WH. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci Biobehav Rev 2021; 127:171-183. [PMID: 33930471 DOI: 10.1016/j.neubiorev.2021.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
VERHEGGEN, I.C.M., W. Freeze, J. de Jong, J. Jansen, A. Postma, M. van Boxtel, F. Verhey and W. Backes. The application of contrast-enhanced MRI in the assessment of blood-cerebrospinal fluid barrier integrity. Choroid plexus epithelial cells form a barrier that enables active, bidirectional exchange between the blood plasma and cerebrospinal fluid (CSF), known as the blood-CSF barrier (BCSFB). Through its involvement in CSF composition, the BCSFB maintains homeostasis in the central nervous system. While the relation between blood-brain barrier disruption, aging and neurodegeneration is extensively studied using contrast-enhanced MRI, applying this technique to investigate BCSFB disruption in age-related neurodegeneration has received little attention. This review provides an overview of the current status of contrast-enhanced MRI to assess BCSFB permeability. Post-contrast ventricular gadolinium enhancement has been used to indicate BCSFB permeability. Moreover, new techniques highly sensitive to low gadolinium concentrations in the CSF, for instance heavily T2-weighted imaging with cerebrospinal fluid suppression, seem promising. Also, attempts are made at using other contrast agents, such as manganese ions or very small superparamagnetic iron oxide particles, that seem to be cleared from the brain at the choroid plexus. Advancing and applying new developments such as these could progress the assessment of BCSFB integrity.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Whitney M Freeze
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Martin P J van Boxtel
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Frans R J Verhey
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
967
|
Dual-target compounds for Alzheimer's disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur J Med Chem 2021; 221:113492. [PMID: 33984802 DOI: 10.1016/j.ejmech.2021.113492] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and represents the major cause of dementia worldwide. Currently, there are no available treatments capable to deliver disease-modifying effects, and the available drugs can only alleviate the symptoms. The exact pathology of AD is not yet fully understood and several hallmarks such as the presence of amyloid-β (Aβ) senile plaques, neurofibrillary tangles (NFTs) as well as the loss of cholinergic function have been associated to AD. Distinct pharmacological targets have been validated to address AD, with acetylcholinesterase (AChE) and β-secretase-1 (BACE-1) being two of the most explored ones. A great deal of research has been devoted to the development of new AChE and BACE-1 effective inhibitors, tackled separately or in combination of both. The multi-factorial nature of AD conducted to the development of multi-target directed ligands (MTDLs), defined as single molecules capable to modulate more than one biological target, as an alternative approach to the old paradigm one-target one-drug. In this context, this review describes a collection of natural and synthetic compounds with dual-inhibitory properties towards both AChE and BACE-1 in the MTDLs context. Furthermore, this review also provides a critical comprehensive analysis of structure-activity relationships (SAR) of the synthetic compounds.
Collapse
|
968
|
Jin Y, Vadukul DM, Gialama D, Ge Y, Thrush R, White JT, Aprile FA. The Diagnostic Potential of Amyloidogenic Proteins. Int J Mol Sci 2021; 22:4128. [PMID: 33923609 PMCID: PMC8074075 DOI: 10.3390/ijms22084128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Antonio Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; (Y.J.); (D.M.V.); (D.G.); (Y.G.); (R.T.); (J.T.W.)
| |
Collapse
|
969
|
Nikseresht Z, Ahangar N, Badrikoohi M, Babaei P. Synergistic enhancing-memory effect of D-serine and RU360, a mitochondrial calcium uniporter blocker in rat model of Alzheimer's disease. Behav Brain Res 2021; 409:113307. [PMID: 33872664 DOI: 10.1016/j.bbr.2021.113307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Although Amyloid beta (Aβ) and N - methyl d- aspartate receptors (NMDARs are involved in Ca2+ neurotoxicity, the function of mitochondrial calcium uniporter in cognition deficit remain uncertain. Here, we examined the effect of mitochondrial calcium uniporter (MCU) blocker, together with NMDA receptor agonist d-cycloserine (DCS) on memory impairment in a rat model of AD. METHODS Forty adult male Wistar rats underwent stereotaxic cannulation for inducing AD by intracerebroventricular (ICV) injection of Aβ1-42 (5 μg /8 μl/rat). Then animals were divided into 5 groups of: Saline + Saline, Aβ + Saline, Aβ + RU360, Aβ + DCS, Aβ + RU360 + DCS. Two weeks after the treatments, Morris Water Maze (MWM) and step through passive avoidance learning (SPL) were undertaken for evaluating of spatial and associative memories, respectively. Hippocampal level of cyclic-AMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were measured by western blot and ELISA. RESULTS Co - administration of RU360 and DCS significantly improved both acquisition and retrieval of spatial memory as evident by decreased escape latency and increased time spent in the target quadrant (TTS) in MWM, together with increase in step-through latency, but reduced time spent in the dark compartment in SPL. Furthermore, there was a significant rise in the hippocampal level of CREB and BDNF in comparison with Aβ + Saline. CONCLUSION The present study supports the idea that co- administration of RU360 and DCS ameliorate memory impairment induced by Aβ 1-42 probably via CREB / BDNF signaling.
Collapse
Affiliation(s)
- Zeynab Nikseresht
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahshid Badrikoohi
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
970
|
Saini N, Kadian M, khera A, Aggarwal A, Kumar A. Therapeutic potential of Allium Sativum against the Aβ (1-40)-induced oxidative stress and mitochondrial dysfunction in the Wistar rats. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2021; 10:13-27. [PMID: 34084662 PMCID: PMC8166581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
From the early stages of any neurodegenerative-disease mitochondrial functionality has been mortally extricated, though the exact timeline of these events is still unclear, it is likely to represent a progressive neurons-decline and cognitive-functions. Hence strategies suggested by herbal extract to restore mitochondrial functions may be a remedial approach to chronic neurodegenerative disorder like Alzheimer's disease (AD). This research was designed to evaluate if Aβ1-40 induced oxidative stress and mitochondrial dysfunction could be inhibited by Allium Sativum (AS) supplementation. AD was induced by a single intra-hippocampal injection of Aβ1-40 (5 μg/4 μl), while herbal supplementation was given orally (100, 250, 500 mg/kg body weight, daily) for 3 weeks. Morris water maze was used to assess cognitive function shows deficits in Aβ1-40 treated animals, there is no significant alteration in locomotor function as examined by actophotometer. This was accompanied by enhancement in oxidative stress indicating by accentuated ROS and protein carbonyl levels. Concomitantly, decrease in activity of antioxidant enzymes was observed in diseased animals; as expressed by reduced superoxide-dismutase and catalase activity, as well as reduction in GSH levels and impaired mitochondrial functions. Medium dose of AS has been found effective in restoring the memory impairment along with antioxidant levels but high dose is more efficient as observed in the Aβ1-40 treated rats. High dose of AS, on the other hand significantly ameliorates the mitochondrial-dysfunction in comparison to medium dose. Taken together, the findings reveal that AS reverses Aβ1-40 induced brain alteration, it could be an efficient clinical mitigation action against AD growth.
Collapse
Affiliation(s)
- Neetu Saini
- Division of Pharmacology, UIPS, Panjab UniversityChandigarh 160014, India
| | - Monika Kadian
- Division of Pharmacology, UIPS, Panjab UniversityChandigarh 160014, India
| | - Alka khera
- Postgraduate Institute of Medical Education and ResearchChandigarh 160012, India
| | - Aanchal Aggarwal
- National Agri Food Biotechnology InstituteMohali 140308, Punjab, India
| | - Anil Kumar
- Division of Pharmacology, UIPS, Panjab UniversityChandigarh 160014, India
| |
Collapse
|
971
|
Xie W, Kim KH, Vince R, More SS. The Amyloid Aggregation Accelerator Diacetyl Prevents Cognitive Decline in Alzheimer's Mouse Models. Chem Res Toxicol 2021; 34:1355-1366. [PMID: 33857375 DOI: 10.1021/acs.chemrestox.1c00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diacetyl (DA), a food flavorant, is linked with occupational lung disease. Our in vitro experiments described the formation of a covalent adduct by DA with Arg5 of the Aβ1-42 peptide, which resulted in only a transient increase in neurotoxicity in SH-SY5Y cells. However, in vivo implications of these effects on Alzheimer's disease (AD) pathogenesis and the underlying mechanisms remain poorly understood. In the APP/PS1 transgenic AD mouse model, DA treatment did not exacerbate learning and memory deficits in the Morris water maze test. Moreover, DA increased the Aβ1-42 plaque burden and decreased neuronal inflammation in the transgenic AD mice. Additionally, cognitive impairment induced by intracerebroventricular Aβ1-42 was restored by the DA treatment, as assessed by the T-maze test. A corresponding mitigation of neuronal inflammation was also observed in the hippocampus of these nontransgenic mice due to the acceleration of Aβ1-42 aggregation by DA into nontoxic plaques. The data from SDS-PAGE, dot-blot, and TEM in vitro experiments corroborated the acceleration of the Aβ1-42 aggregation observed in vivo in AD animal models and characterized the DA-induced formation of Aβ1-42 fibrils. Such Aβ1-42-DA fibrils were unstable in the presence of detergent and amenable to detection by the thioflavin T reagent, thus underscoring the distinct assembly of these fibrils compared to that of the fibrils of the native Aβ1-42. Taken together, the results of this study present for the first time the in vivo implications of the DA-induced acceleration of Aβ1-42 and may provide a strategy for the rational design of Aβ1-42 aggregation accelerators as AD therapeutics that promote oligomer-free Aβ1-42 fibril formation.
Collapse
Affiliation(s)
- Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kwan Hyun Kim
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
972
|
Key Disease Mechanisms Linked to Alzheimer's Disease in the Entorhinal Cortex. Int J Mol Sci 2021; 22:ijms22083915. [PMID: 33920138 PMCID: PMC8069371 DOI: 10.3390/ijms22083915] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic, neurodegenerative brain disorder affecting millions of Americans that is expected to increase in incidence with the expanding aging population. Symptomatic AD patients show cognitive decline and often develop neuropsychiatric symptoms due to the accumulation of insoluble proteins that produce plaques and tangles seen in the brain at autopsy. Unexpectedly, some clinically normal individuals also show AD pathology in the brain at autopsy (asymptomatic AD, AsymAD). In this study, SWItchMiner software was used to identify key switch genes in the brain’s entorhinal cortex that lead to the development of AD or disease resilience. Seventy-two switch genes were identified that are differentially expressed in AD patients compared to healthy controls. These genes are involved in inflammation, platelet activation, and phospholipase D and estrogen signaling. Peroxisome proliferator-activated receptor γ (PPARG), zinc-finger transcription factor (YY1), sterol regulatory element-binding transcription factor 2 (SREBF2), and early growth response 1 (EGR1) were identified as transcription factors that potentially regulate switch genes in AD. Comparing AD patients to AsymAD individuals revealed 51 switch genes; PPARG as a potential regulator of these genes, and platelet activation and phospholipase D as critical signaling pathways. Chemical–protein interaction analysis revealed that valproic acid is a therapeutic agent that could prevent AD from progressing.
Collapse
|
973
|
Banerjee A, Lu Y, Do K, Mize T, Wu X, Chen X, Chen J. Validation of Induced Microglia-Like Cells (iMG Cells) for Future Studies of Brain Diseases. Front Cell Neurosci 2021; 15:629279. [PMID: 33897370 PMCID: PMC8063054 DOI: 10.3389/fncel.2021.629279] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are the primary resident immune cells of the central nervous system that maintain physiological homeostasis in the brain and contribute to the pathogenesis of many psychiatric disorders and neurodegenerative diseases. Due to the lack of appropriate human cellular models, it is difficult to study the basic pathophysiological processes linking microglia to brain diseases. In this study, we adopted a microglia-like cellular model derived from peripheral blood monocytes with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-34 (IL-34). We characterized and validated this in vitro cellular model by morphology, immunocytochemistry, gene expression profiles, and functional study. Our results indicated that the iMG cells developed typical microglial ramified morphology, expressed microglial specific surface markers (P2RY12 and TMEM119), and possessed phagocytic activity. Principal component analyses and multidimensional scaling analyses of RNA-seq data showed that iMG cells were distinct from monocytes and induced macrophages (iMacs) but clustered closer to human microglia and hiPSC-induced microglia. Heatmap analyses also found that iMG cells, but not monocytes, were closely clustered with human primary microglia. Further pathway and relative expression analysis indicated that unique genes from iMG cells were involved in the regulation of the complement system, especially in the synapse and ion transport. Overall, our data demonstrated that the iMG model mimicked many features of the brain resident microglia, highlighting its utility in the study of microglial function in many brain diseases, such as schizophrenia and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Yimei Lu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Kenny Do
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Travis Mize
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
- Department of Psychology, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
974
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
975
|
Wang J, Zheng B, Yang S, Zhou D, Wang J. Olmesartan Prevents Oligomerized Amyloid β (Aβ)-Induced Cellular Senescence in Neuronal Cells. ACS Chem Neurosci 2021; 12:1162-1169. [PMID: 33710861 DOI: 10.1021/acschemneuro.0c00775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with high morbidity. The deposition of oligomerized amyloid β (Aβ) is the pathological feature of AD. The Aβ-caused neuronal oxidative stress and cellular senescence play an important role in the development and progression of AD. Olmesartan is a novel angiotensin receptor blocker with promising antihypertensive properties and has recently been reported to exert anti-inflammatory and antioxidative stress effects. Blood pressure control using Angiotensin receptor blockers has shown multiple benefits in Alzheimer's disease models. In the present study, the effect of Olmesartan on oligomerized amyloid β (Aβ)-induced cellular senescence was investigated in cultured M17 neuronal cells. Our results show that Olmesartan treatment significantly ameliorates oligomerized Aβ-elevated ROS and MDA levels, as well as the induced senescent cells number. At the molecular level, Olmesartan inhibits the elevated expression of senescence biomarkers (p16 and p21). Furthermore, Olmesartan potently reversed the increased K382 acetylation of p53 and the downregulation of SIRT1. Moreover, we show that the effect of Olmesartan against cell senescence and deacetylation of p53 was abolished by inhibition of SIRT1, either by using nicotinamide or by transfection with SIRT1 siRNA. In conclusion, Olmesartan prevents oligomerized Aβ-induced cellular senescence in neuronal cells by downregulating p16 and p21 through a SIRT1 dependent deacetylation of p53; our finding indicates that Olmesartan has a protective effect in Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Ya’an Peoples Hospital, Ya’an, Sichuan 625000, China
| | - Bo Zheng
- Department of Neurology, Ya’an Peoples Hospital, Ya’an, Sichuan 625000, China
| | - Shu Yang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610000, China
| | - Duoqiang Zhou
- Department of Neurology, Hospital of Traditional Chinese Medicine, Qiannan Bouyei and Miao Autonomous Prefecture, Duyun, Guizhou 558000, China
| | - Jianhong Wang
- Department of Neurology, The Affiliated Hospital of University of Electronic Science and Technology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610000, China
| |
Collapse
|
976
|
Sokratian A, Ziaee J, Kelly K, Chang A, Bryant N, Wang S, Xu E, Li JY, Wang SH, Ervin J, Swain SM, Liddle RA, West AB. Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathol 2021; 141:547-564. [PMID: 33641009 DOI: 10.1007/s00401-021-02288-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/16/2022]
Abstract
α-Synuclein aggregation underlies pathological changes in Lewy body dementia. Recent studies highlight structural variabilities associated with α-synuclein aggregates in patient populations. Here, we develop a quantitative real-time quaking-induced conversion (qRT-QuIC) assay to measure permissive α-synuclein fibril-templating activity in tissues and cerebrospinal fluid (CSF). The assay is anchored through reference panels of stabilized ultra-short fibril particles. In humanized α-synuclein transgenic mice, qRT-QuIC identifies differential levels of fibril activity across the brain months before the deposition of phosphorylated α-synuclein in susceptible neurons. α-Synuclein fibril activity in cortical brain extracts from dementia with Lewy bodies (DLB) correlates with activity in matched ventricular CSF. Elevated α-synuclein fibril activity in CSF corresponds to reduced survival in DLB. α-Synuclein fibril particles amplified from cases with high fibril activity show superior templating in the formation of new inclusions in neurons relative to the same number of fibril particles amplified from DLB cases with low fibril activity. Our results highlight a previously unknown broad heterogeneity of fibril-templating activities in DLB that may contribute to disease phenotypes. We predict that quantitative assessments of fibril activities in CSF that correlate to fibril activities in brain tissue will help stratify patient populations as well as measure therapeutic responses to facilitate the development of α-synuclein-targeted therapeutics.
Collapse
|
977
|
Castellanos DB, Martín-Jiménez CA, Rojas-Rodríguez F, Barreto GE, González J. Brain lipidomics as a rising field in neurodegenerative contexts: Perspectives with Machine Learning approaches. Front Neuroendocrinol 2021; 61:100899. [PMID: 33450200 DOI: 10.1016/j.yfrne.2021.100899] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimeŕs, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field.
Collapse
Affiliation(s)
- Daniel Báez Castellanos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Cynthia A Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E Barreto
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
978
|
Paul S, Saha D, Bk B. Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer's Disease and Type 2 Diabetes. Mol Neurobiol 2021; 58:3677-3691. [PMID: 33797062 DOI: 10.1007/s12035-021-02365-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are known to be correlated in terms of their epidemiology, histopathology, and molecular and biochemical characteristics. The prevalence of T2D leading to AD is approximately 50-70%. Moreover, AD is often considered type III diabetes because of the common risk factors. Uncontrolled T2D may affect the brain, leading to memory and learning deficits in patients. In addition, metabolic disorders and impaired oxidative phosphorylation in AD and T2D patients suggest that mitochondrial dysfunction is involved in both diseases. The dysregulation of pathways involved in maintaining mitochondrial dynamics, biogenesis and mitophagy are responsible for exacerbating the impact of hyperglycemia on the brain and neurodegeneration under T2D conditions. The first section of this review describes the recent views on mitochondrial dysfunction that connect these two disease conditions, as the pathways are observed to overlap. The second section of the review highlights the importance of different mitochondrial miRNAs (mitomiRs) involved in the regulation of mitochondrial dynamics and their association with the pathogenesis of T2D and AD. Therefore, targeting mitochondrial biogenesis and mitophagy pathways, along with the use of mitomiRs, could be a potent therapeutic strategy for T2D-related AD. The last section of the review highlights the known drugs targeting mitochondrial function for the treatment of both disease conditions.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debarpita Saha
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
979
|
Neuroprotective and anti-neuroinflammatory effects of ethanolic extract from leaves and stems of Aster glehni. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
980
|
Moin ASM, Kahal H, Al-Qaissi A, Kumar N, Sathyapalan T, Atkin SL, Butler AE. Amyloid-related protein changes associated with dementia differ according to severity of hypoglycemia. BMJ Open Diabetes Res Care 2021; 9:9/1/e002211. [PMID: 33931404 PMCID: PMC8098766 DOI: 10.1136/bmjdrc-2021-002211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Hypoglycemia in type 2 diabetes (T2D) may increase risk for Alzheimer's disease (AD), but no data on changes in AD-related proteins with differing degrees of hypoglycemia exist. We hypothesized that milder prolonged hypoglycemia would cause greater AD-related protein changes versus severe transient hypoglycemia. RESEARCH DESIGN AND METHODS Two prospective case-control induced hypoglycemia studies were compared: study 1, hypoglycemic clamp to 2.8 mmol/L (50 mg/dL) for 1 hour in 17 subjects (T2D (n=10), controls (n=7)); study 2, hypoglycemic clamp to 2.0 mmol/L (36 mg/dL) undertaken transiently and reversed in 46 subjects (T2D (n=23), controls (n=23)). Blood sampling at baseline, hypoglycemia and 24-hour post-hypoglycemia, with proteomic analysis of amyloid-related proteins performed. RESULTS In control subjects, the percentage change from baseline to hypoglycemia differed between study 1 and study 2 for 5 of 11 proteins in the AD-related panel: serum amyloid A1 (SAA1) (p=0.009), pappalysin (PAPPA) (p=0.002), apolipoprotein E2 (p=0.02), apolipoprotein E3 (p=0.03) and apolipoprotein E4 (p=0.02). In controls, the percentage change from baseline to 24 hours differed between studies for two proteins: SAA1 (p=0.003) and PAPPA (p=0.004); however, after Bonferroni correction only SAA1 and PAPPA remain significant. In T2D, there were no differential protein changes between the studies. CONCLUSIONS The differential changes in AD-related proteins were seen only in control subjects in response to iatrogenic induction of hypoglycemic insults of differing length and severity and may reflect a protective response that was absent in subjects with T2D. Milder prolonged hypoglycemia caused greater AD-related protein changes than severe acute hypoglycemia in control subjects. TRIAL REGISTRATION NUMBERS NCT02205996, NCT03102801.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Hassan Kahal
- Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | - Ahmed Al-Qaissi
- Diabetes and Metabolism, Hull York Medical School, Hull, UK
- Diabetes and Metabolism, Leeds Medical School, Leeds, UK
| | - Nitya Kumar
- Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen, Bahrain
| | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen, Bahrain
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| |
Collapse
|
981
|
Extracellular CIRP Activates the IL-6Rα/STAT3/Cdk5 Pathway in Neurons. Mol Neurobiol 2021; 58:3628-3640. [PMID: 33783711 PMCID: PMC10404139 DOI: 10.1007/s12035-021-02368-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) stimulates microglial inflammation causing neuronal damage during ischemic stroke and is a critical mediator of alcohol-induced cognitive impairment. However, the precise role of eCIRP in mediating neuroinflammation remains unknown. In this study, we report that eCIRP activates neurotoxic cyclin-dependent kinase-5 (Cdk5)/p25 through the induction of IL-6Rα/STAT3 pathway in neurons. Amyloid β (Aβ)-mediated neuronal stress, which is associated with Alzheimer's disease, increased the levels of eCIRP released from BV2 microglial cells. The released eCIRP levels from BV2 cells increased 3.2-fold upon stimulation with conditioned medium from Neuro-2a (N2a) cells containing Aβ compared to control N2a supernatant in a time-dependent manner. Stimulation of N2a cells and primary neurons with eCIRP upregulated the neuronal Cdk5 activator p25 expression in a dose- and time-dependent manner. eCIRP directly induced neuronal STAT3 phosphorylation and p25 increase via its novel receptor IL-6Rα. Next, we showed using surface plasmon resonance that eCIRP-derived peptide C23 inhibited the binding of eCIRP to IL-6Rα at 25 μM, with a 40-fold increase in equilibrium dissociation constant (Kd) value (from 8.08 × 10-8 M to 3.43 × 10-6 M), and completely abrogated the binding at 50 μM. Finally, C23 reversed the eCIRP-induced increase in neuronal STAT3 phosphorylation and p25 levels. In conclusion, the current study demonstrates that the upregulation of neuronal IL-6Rα/STAT3/Cdk5 pathway is a key mechanism of eCIRP's role in neuroinflammation and that C23 as a potent inhibitor of this pathway has translational potential in neurodegenerative pathologies controlled by eCIRP.
Collapse
|
982
|
Aggarwal L, Biswas P. Hydration Thermodynamics of Familial Parkinson's Disease-Linked Mutants of α-Synuclein. J Chem Inf Model 2021; 61:1850-1858. [PMID: 33749266 DOI: 10.1021/acs.jcim.1c00034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hydration thermodynamics of different mutants of α-synuclein (α-syn) related to familial Parkinson's disease (PD) is explored using a computational approach that combines both molecular dynamics simulations in water and integral equation theory of molecular liquids. This analysis focuses on the change in conformational entropy, hydration free energy (HFE), and partial molar volume of α-syn upon mutation. The results show that A53T, A30P, E46K, and H50Q mutants aggregate more readily and display increased HFE and less negative interaction volume than the wild-type α-syn. In contrast, an opposite trend is observed for the G51D mutant with a lower experimental aggregation rate. The residuewise decomposition analysis of the HFE highlights that the dehydration/hydration of the hydrophilic residue-rich N- and C-termini of α-syn majorly contributes to the change upon mutation. The hydration shell contributions of different residues to the interaction volume are consistent with its increase/decrease upon mutation. This work shows that both HFE and interaction volume determine the aggregation kinetics of α-syn upon mutation and may serve as an appropriate benchmark for the treatment of PD.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
983
|
Gobbo D, Cavalli A, Ballone P, Benedetto A. Computational analysis of the effect of [Tea][Ms] and [Tea][H 2PO 4] ionic liquids on the structure and stability of Aβ(17-42) amyloid fibrils. Phys Chem Chem Phys 2021; 23:6695-6709. [PMID: 33710213 DOI: 10.1039/d0cp06434c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental studies have reported the possibility of affecting the growth/dissolution of amyloid fibres by the addition of organic salts of the room-temperature ionic-liquid family, raising the tantalizing prospect of controlling these processes under physiological conditions. The effect of [Tea][Ms] and [Tea][H2PO4] at various concentrations on the structure and stability of a simple model of Aβ42 fibrils has been investigated by computational means. Free energy computations show that both [Tea][Ms] and [Tea][H2PO4] decrease the stability of fibrils with respect to isolated peptides in solution, and the effect is significantly stronger for [Tea][Ms]. The secondary structure of fibrils is not much affected, but single peptides in solution show a marked decrease in their β-strand character and an increase in α-propensity, again especially for [Tea][Ms]. These observations, consistent with the experimental picture, can be traced to two primary effects, i.e., the difference in the ionicity of the [Tea][Ms] and [Tea][H2PO4] water solutions and the remarkable affinity of peptides for [Ms]- anions, due to the multiplicity of H-bonds.
Collapse
Affiliation(s)
- D Gobbo
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| | | | | | | |
Collapse
|
984
|
Semchyshyn H. Is carbonyl/AGE/RAGE stress a hallmark of the brain aging? Pflugers Arch 2021; 473:723-734. [PMID: 33742308 DOI: 10.1007/s00424-021-02529-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have linked carbonyl stress to many physiological processes. Increase in the levels of carbonyl compounds, derived from both endogenous and exogenous sources, is believed to accompany normal age-related decline as well as different pathologies. Reactive carbonyl species (RCS) are capable of damaging biomolecules via their involvement in a net of nonspecific reactions. In the advanced stages of RCS metabolism, variety of poorly degraded adducts and crosslinks, collectively named advanced glycoxidation end products (AGEs), arises. They are accumulated in an age-dependent manner in different tissues and organs and can contribute to inflammatory processes. In particular, detrimental effects of the end products are realized via activation of the specific receptor for AGEs (RAGE) and RAGE-dependent inflammatory signaling cascade. Although it is unclear, whether carbonyl stress is causal for age-associated impairments or it results from age- and disease-related cell damages, increased levels of RCS and AGEs are tightly related to inflammaging, and therefore, attenuation of the RAGE signaling is suggested as an effective approach for the treatment of inflammation and age-related disorders. The question raised in this review is whether specific metabolism in the aging brain related to carbonyl/RCS/AGE/RAGE stress.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
985
|
Guo Q, Dammer EB, Zhou M, Kundinger SR, Gearing M, Lah JJ, Levey AI, Shulman JM, Seyfried NT. Targeted Quantification of Detergent-Insoluble RNA-Binding Proteins in Human Brain Reveals Stage and Disease Specific Co-aggregation in Alzheimer's Disease. Front Mol Neurosci 2021; 14:623659. [PMID: 33815056 PMCID: PMC8014091 DOI: 10.3389/fnmol.2021.623659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
Core spliceosome and related RNA-binding proteins aggregate in Alzheimer’s disease (AD) brain even in early asymptomatic stages (AsymAD) of disease. To assess the specificity of RNA-binding protein aggregation in AD, we developed a targeted mass spectrometry approach to quantify broad classes of RNA-binding proteins with other pathological proteins including tau and amyloid beta (Aβ) in detergent insoluble fractions from control, AsymAD, AD and Parkinson’s disease (PD) brain. Relative levels of specific insoluble RNA-binding proteins across different disease groups correlated with accumulation of Aβ and tau aggregates. RNA-binding proteins, including splicing factors with homology to the basic-acidic dipeptide repeats of U1-70K, preferentially aggregated in AsymAD and AD. In contrast, PD brain aggregates were relatively depleted of many RNA-binding proteins compared to AsymAD and AD groups. Correlation network analyses resolved 29 distinct modules of co-aggregating proteins including modules linked to spliceosome assembly, nuclear speckles and RNA splicing. Modules related to spliceosome assembly and nuclear speckles showed stage-specific enrichment of insoluble RBPs from AsymAD and AD brains, whereas the RNA splicing module was reduced specifically in PD. Collectively, this work identifies classes of RNA-binding proteins that distinctly co-aggregate in detergent-insoluble fractions across the specific neurodegenerative diseases we examined.
Collapse
Affiliation(s)
- Qi Guo
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| | - Eric B Dammer
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States.,Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maotian Zhou
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| | - Sean R Kundinger
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| | - Marla Gearing
- Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Joshua M Shulman
- Departments of Neurology, Neuroscience and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - Nicholas T Seyfried
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States.,Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
986
|
In Silico Therapeutic Peptide Design Against Pathogenic Domain Swapped Human Cystatin C Dimer. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10191-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
987
|
Jiaranaikulwanitch J, Pandith H, Tadtong S, Thammarat P, Jiranusornkul S, Chauthong N, Nilkosol S, Vajragupta O. Novel Multifunctional Ascorbic Triazole Derivatives for Amyloidogenic Pathway Inhibition, Anti-Inflammation, and Neuroprotection. Molecules 2021; 26:molecules26061562. [PMID: 33809092 PMCID: PMC7999550 DOI: 10.3390/molecules26061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder. The number of patients with AD is projected to reach 152 million by 2050. Donepezil, rivastigmine, galantamine, and memantine are the only four drugs currently approved by the United States Food and Drug Administration for AD treatment. However, these drugs can only alleviate AD symptoms. Thus, this research focuses on the discovery of novel lead compounds that possess multitarget regulation of AD etiopathology relating to amyloid cascade. The ascorbic acid structure has been designated as a core functional domain due to several characteristics, including antioxidant activities, amyloid aggregation inhibition, and the ability to be transported to the brain and neurons. Multifunctional ascorbic derivatives were synthesized by copper (I)-catalyzed azide-alkyne cycloaddition reaction (click chemistry). The in vitro and cell-based assays showed that compounds 2c and 5c exhibited prominent multifunctional activities as beta-secretase 1 inhibitors, amyloid aggregation inhibitors, and antioxidant, neuroprotectant, and anti-inflammatory agents. Significant changes in activities promoting neuroprotection and anti-inflammation were observed at a considerably low concentration at a nanomolar level. Moreover, an in silico study showed that compounds 2c and 5c were capable of being permeated across the blood-brain barrier by sodium-dependent vitamin C transporter-2.
Collapse
Affiliation(s)
- Jutamas Jiaranaikulwanitch
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
- Correspondence: ; Tel.: +66-5394-4382
| | - Hataichanok Pandith
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok 26120, Thailand;
| | - Phanit Thammarat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
| | - Supat Jiranusornkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
| | - Nattapong Chauthong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
| | - Supitcha Nilkosol
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
| | - Opa Vajragupta
- Office of Research Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
988
|
Deferoxamine reduces amyloid-beta peptides genesis and alleviates neural apoptosis after traumatic brain injury. Neuroreport 2021; 32:472-478. [PMID: 33788818 DOI: 10.1097/wnr.0000000000001619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) is recognized as the most influential risk factor for neurodegenerative diseases later in life, including Alzheimer's disease. The aberrant genesis of amyloid-β peptides, which is triggered by TBI, is associated with the development of Alzheimer's disease. Evidence suggests that iron plays a role in both the production of amyloid-β and its neurotoxicity, and iron overload has been noted in the brain after TBI. We therefore investigated the effects of an iron-chelating treatment on amyloid-β genesis in a weight-drop model of TBI in mice. Human brain samples were obtained from patients undergoing surgery for severe brain trauma. The Institute of Cancer Research mice were treated with deferoxamine by intraperitoneal injection after TBI induction. Changes in amyloid-β(1-42) were assessed using western blot and immunohistochemical staining. Ferritin was also detected using western blot to investigate iron deposition in the mice brain. Immunofluorescent terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was also performed to evaluate neural apoptosis. The amyloid-β(1-42) was markedly elevated after TBI in both humans and mice. Deferoxamine treatment in mice significantly decreased the levels of both amyloid-β(1-42) and ferritin in the brain, and reduced TBI-induced neural cell apoptosis. The iron chelator deferoxamine can alleviate the increase of amyloid-β(1-42) in the brain after TBI, and may therefore be a potential therapeutic strategy to prevent TBI patients from undergoing neurodegenerative processes.
Collapse
|
989
|
Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B, Hou W. Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action. Front Aging Neurosci 2021; 13:619543. [PMID: 33776742 PMCID: PMC7990787 DOI: 10.3389/fnagi.2021.619543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.
Collapse
Affiliation(s)
- Yinpei Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yuwei Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Weina Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
990
|
Vidal C, Zhang L. An Analysis of the Neurological and Molecular Alterations Underlying the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10030546. [PMID: 33806317 PMCID: PMC7998384 DOI: 10.3390/cells10030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid beta (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Unfortunately, despite decades of studies being performed on these histological alterations, there is no effective treatment or cure for AD. Identifying the molecular characteristics of the disease is imperative to understanding the pathogenesis of AD. Furthermore, uncovering the key causative alterations of AD can be valuable in developing models for AD treatment. Several alterations have been implicated in driving this disease, including blood–brain barrier dysfunction, hypoxia, mitochondrial dysfunction, oxidative stress, glucose hypometabolism, and altered heme homeostasis. Although these alterations have all been associated with the progression of AD, the root cause of AD has not been identified. Intriguingly, recent studies have pinpointed dysfunctional heme metabolism as a culprit of the development of AD. Heme has been shown to be central in neuronal function, mitochondrial respiration, and oxidative stress. Therefore, dysregulation of heme homeostasis may play a pivotal role in the manifestation of AD and its various alterations. This review will discuss the most common neurological and molecular alterations associated with AD and point out the critical role heme plays in the development of this disease.
Collapse
Affiliation(s)
| | - Li Zhang
- Correspondence: ; Tel.: +1-972-883-5757
| |
Collapse
|
991
|
Chen S, Zhou H, Zhang G, Dong Q, Wang Z, Wang H, Hu N. Characterization, antioxidant, and neuroprotective effects of anthocyanins from Nitraria tangutorum Bobr. fruit. Food Chem 2021; 353:129435. [PMID: 33714113 DOI: 10.1016/j.foodchem.2021.129435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/21/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
An anthocyanin-rich extract was obtained from Nitraria tangutorum Bobr. fruit, namely ANF, and its composition, antioxidant and neuroprotective effects were studied. Nine anthocyanins were identified from the ANF using UPLC-Triple-TOF/MS analysis, and cyanidin-3-[2''-(6'''-coumaroyl)-glucosyl]-glucoside (C3G) is the most abundant anthocyanin (87.06%). ANF exhibited high ferric reducing antioxidant power (FRAP) and ABTS radical scavenging activity. The online HPLC-DPPH screening revealed that C3G contributed the highest antioxidant capacity. ANF showed potential neuroprotective effects by relieving d-Galactose-induced memory deficits, reducing overexpression of receptor for advanced glycation end products (RAGE) and amyloid-beta42 (Aβ42) in the hippocampus of rats. Besides, ANF could inhibit oxidative stress by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the hippocampus, while elevating amounts of total superoxide dismutase (T-SOD) and glutathione (GSH) in the serum of rats. Thus, ANF has great potential in the development of food and health products related to antioxidant and neuroprotective effects.
Collapse
Affiliation(s)
- Shasha Chen
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Haonan Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Gong Zhang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Qi Dong
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China
| | - Zhenhua Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Huzhou 313000, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Huzhou 313000, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China.
| |
Collapse
|
992
|
Postu PA, Tiron A, Tiron CE, Gorgan DL, Mihasan M, Hritcu L. Conifer Essential Oils Reversed Amyloid Beta1-42 Action by Modulating BDNF and ARC Expression in The Rat Hippocampus. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:85-94. [PMID: 33655878 DOI: 10.2174/1871527320666210303111537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND The conifer species Pinus halepensis (Pinaceae) and Tetraclinis articulata (Cupressaceae) are widely used in traditional medicine due to their health beneficial properties. OBJECTIVE This study aimed to investigate the mechanisms by which P. halepensis and T. articulata essential oils (1% and 3%) could exhibit neuroprotective effects in an Alzheimer's disease (AD) rat model, induced by intracerebroventricular (i.c.v.) administration of amyloid beta1-42 (Aβ1-42). METHOD The essential oils were administered by inhalation to the AD rat model, once daily, for 21 days. DNA fragmentation was assessed through Cell Death Detection ELISA kit. Brain-derived neurotrophic factor (BDNF), activity-regulated cytoskeleton-associated protein (ARC) and interleukin-1β (IL-1β) gene expressions were determined by RT-qPCR analysis, while BDNF and ARC protein expressions were assessed using immunohistochemistry technique. RESULTS Our data showed that both essential oils substantially attenuated memory impairments, with P. halepensis mainly stimulating ARC expression and T. articulata mostly enhancing BDNF expression. Also, the inhalation of essential oils reduced IL-1β expression and induced positive effects against DNA fragmentation associated with Aβ1-42-induced toxicity, further contributing to the cognitive improvement in the rats with AD-like model. CONCLUSION Our findings provide further evidence that these essential oils and their chemical constituents could be natural agents of therapeutic interest against Aβ1-42-induced neurotoxicity.
Collapse
Affiliation(s)
- Paula Alexandra Postu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Romania,Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Adrian Tiron
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Crina Elena Tiron
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Dragoș Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Romania
| |
Collapse
|
993
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. BIOCHEMISTRY (MOSCOW) 2021; 85:1011-1034. [PMID: 33050849 DOI: 10.1134/s0006297920090035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Active accumulation of the data on new amyloids continuing nowadays dissolves boundaries of the term "amyloid". Currently, it is most often used to designate aggregates with cross-β structure. At the same time, amyloids also exhibit a number of other unusual properties, such as: detergent and protease resistance, interaction with specific dyes, and ability to induce transition of some proteins from a soluble form to an aggregated one. The same features have been also demonstrated for the aggregates lacking cross-β structure, which are commonly called "amyloid-like" and combined into one group, although they are very diverse. We have collected and systematized information on the properties of more than two hundred known amyloids and amyloid-like proteins with emphasis on conflicting examples. In particular, a number of proteins in membraneless organelles form aggregates with cross-β structure that are morphologically indistinguishable from the other amyloids, but they can be dissolved in the presence of detergents, which is not typical for amyloids. Such paradoxes signify the need to clarify the existing definition of the term amyloid. On the other hand, the demonstrated structural diversity of the amyloid-like aggregates shows the necessity of their classification.
Collapse
Affiliation(s)
- A B Matiiv
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - N P Trubitsina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Y A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Bioinformatics Institute, St. Petersburg, 197342, Russia
| | - G A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. .,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
994
|
Podracky CJ, An C, DeSousa A, Dorr BM, Walsh DM, Liu DR. Laboratory evolution of a sortase enzyme that modifies amyloid-β protein. Nat Chem Biol 2021; 17:317-325. [PMID: 33432237 PMCID: PMC7904614 DOI: 10.1038/s41589-020-00706-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
Epitope-specific enzymes are powerful tools for site-specific protein modification but generally require genetic manipulation of the target protein. Here, we describe the laboratory evolution of the bacterial transpeptidase sortase A to recognize the LMVGG sequence in endogenous amyloid-β (Aβ) protein. Using a yeast display selection for covalent bond formation, we evolved a sortase variant that prefers LMVGG substrates from a starting enzyme that prefers LPESG substrates, resulting in a >1,400-fold change in substrate preference. We used this evolved sortase to label endogenous Aβ in human cerebrospinal fluid, enabling the detection of Aβ with sensitivities rivaling those of commercial assays. The evolved sortase can conjugate a hydrophilic peptide to Aβ42, greatly impeding the ability of the resulting protein to aggregate into higher-order structures. These results demonstrate laboratory evolution of epitope-specific enzymes toward endogenous targets as a strategy for site-specific protein modification without target gene manipulation and enable potential future applications of sortase-mediated labeling of Aβ peptides.
Collapse
Affiliation(s)
- Christopher J. Podracky
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Chihui An
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Alexandra DeSousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - Brent M. Dorr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
995
|
Tanaka T, Hirai S, Hosokawa M, Saito T, Sakuma H, Saido T, Hasegawa M, Okado H. Early-life stress induces the development of Alzheimer's disease pathology via angiopathy. Exp Neurol 2021; 337:113552. [PMID: 33309748 DOI: 10.1016/j.expneurol.2020.113552] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 12/06/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is a major societal, scientific, and economic problem. Several early-life factors associated with an increased risk for the clinical diagnosis of AD have recently been identified. In the present study, we investigated the involvement of early-life stress in the pathogenesis of AD using heterozygous amyloid precursor protein (APP) mutant mice (AppNL-G-F/wt) and wild-type (Appwt/wt) mice. We found that maternal-separated Appwt/wt mice showed narrowing of vessels and decreased pericyte coverage of capillaries in the prefrontal cortex, while maternal-separated AppNL-G-F/wt mice additionally showed the impairment of cognitive function, earlier formation of Aβ plaques, increased vessel-associated microglia, and disruption of the blood-brain barrier. Substantial activation of microglia was detected in the maternal-separated AppNL-G-F/wt mice and maternal-separated Appwt/wt mice. At an early stage, morphological changes and inflammatory responses were observed in the microglia of the maternal-separated AppNL-G-F/wt mice and maternal-separated Appwt/wt mice, and morphological changes in the microglia were observed in the non-maternal-separated AppNL-G-F/wt mice. Microglia activation induced by maternal separation in combination with the APP mutation may impair the vascular system, leading to AD progression. These findings therefore suggest that maternal separation results in the early induction of AD-related pathology via angiopathy.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Laboratory of Neural Development, Department of Psychiatry & Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinobu Hirai
- Laboratory of Neural Development, Department of Psychiatry & Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hosokawa
- Dementia Research Project, Department of Brain & Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Aichi, Japan
| | - Hiroshi Sakuma
- Child brain Project, Department of Brain & Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Masato Hasegawa
- Dementia Research Project, Department of Brain & Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Haruo Okado
- Laboratory of Neural Development, Department of Psychiatry & Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
996
|
Phan LMT, Hoang TX, Vo TAT, Pham HL, Le HTN, Chinnadayyala SR, Kim JY, Lee SM, Cho WW, Kim YH, Choi SH, Cho S. Nanomaterial-based Optical and Electrochemical Biosensors for Amyloid beta and Tau: Potential for early diagnosis of Alzheimer's Disease. Expert Rev Mol Diagn 2021; 21:175-193. [PMID: 33560154 DOI: 10.1080/14737159.2021.1887732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), a heterogeneous pathological process representing the most common causes of dementia worldwide, has required early and accurate diagnostic tools. Neuropathological hallmarks of AD involve the aberrant accumulation of Amyloid beta (Aβ) into Amyloid plaques and hyperphosphorylated Tau into neurofibrillary tangles, occurring long before the onset of brain dysfunction.Areas covered:Considering the significance of Aβ and Tau in AD pathogenesis, these proteins have been adopted as core biomarkers of AD, and their quantification has provided precise diagnostic information to develop next-generation AD therapeutic approaches. However, conventional diagnostic methods may not suffice to achieve clinical criteria that are acceptable for proper diagnosis and treatment. The advantages of nanomaterial-based biosensors including facile miniaturization, mass fabrication, ultra-sensitivity, make them useful to be promising tools to measure Aβ and Tau simultaneously for accurate validation of low-abundance yet potentially informative biomarkers of AD.. EXPERT OPINION The study has identified the potential application of advanced biosensors as standardized clinical diagnostic tools for AD, evolving the way for new and efficient AD control with minimum economic and social burden. After clinical trial, nanobiosensors for measuring Aβ and Tau simultaneously possess innovative diagnosis of AD to provide significant contributions to primary Alzheimer's care intervention.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,School of Medicine and Pharmacy, The University of Danang, Danang, Vietnam
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hoang Lan Pham
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hien T Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do, Republic of Korea
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
997
|
Wang X, Wang C, Chan HN, Ashok I, Krishnamoorthi SK, Li M, Li HW, Wong MS. Amyloid-β oligomer targeted theranostic probes for in vivo NIR imaging and inhibition of self-aggregation and amyloid-β induced ROS generation. Talanta 2021; 224:121830. [DOI: 10.1016/j.talanta.2020.121830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
|
998
|
Kinoshita PF, Orellana AMM, Nakao VW, de Souza Port's NM, Quintas LEM, Kawamoto EM, Scavone C. The Janus face of ouabain in Na + /K + -ATPase and calcium signalling in neurons. Br J Pharmacol 2021; 179:1512-1524. [PMID: 33644859 DOI: 10.1111/bph.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
Na+ /K+ -ATPase, a transmembrane protein essential for maintaining the electrochemical gradient across the plasma membrane, acts as a receptor for cardiotonic steroids such as ouabain. Cardiotonic steroids binding to Na+ /K+ -ATPase triggers signalling pathways or inhibits Na+ /K+ -ATPas activity in a concentration-dependent manner, resulting in a modulation of Ca2+ levels, which are essential for homeostasis in neurons. However, most of the pharmacological strategies for avoiding neuronal death do not target Na+ /K+ -ATPase activity due to its complexity and the poor understanding of the mechanisms involved in Na+ /K+ -ATPase modulation. The present review aims to discuss two points regarding the interplay between Na+ /K+ -ATPase and Ca2+ signalling in the brain. One, Na+ /K+ -ATPase impairment causing illness and neuronal death due to Ca2+ signalling and two, benefits to the brain by modulating Na+ /K+ -ATPase activity. These interactions play an essential role in neuronal cell fate determination and are relevant to find new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Watanabe Nakao
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natacha Medeiros de Souza Port's
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Menezes Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Centre Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
999
|
Fonseca LC, Lopes JA, Vieira J, Viegas C, Oliveira CS, Hartmann RP, Fonte P. Intranasal drug delivery for treatment of Alzheimer's disease. Drug Deliv Transl Res 2021; 11:411-425. [PMID: 33638130 DOI: 10.1007/s13346-021-00940-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
The Alzheimer's disease is a neurodegenerative condition with severe consequences interfering with patient quality of life. It is characterized as a progressive and irreversible brain disorder hampering memory and thinking, affecting the capacity to perform daily tasks leading to physical and cognitive incapacitation. The conventional treatment occurs by the oral route, but it presents relevant drawbacks such as low bioavailability, fast metabolism, limited brain exposure, and undesirable side effects. The intranasal route has been proposed as a promising alternative to deliver drugs and improve the Alzheimer's disease treatment. Still, there is not a clear alternative delivery system available in the market with advantageous bioavailability and safety. The aim of this review is to perform an overview on the strategies for drug intranasal delivery for Alzheimer's disease treatment. The advantages and disadvantages of this delivery route and the delivery systems developed so far are discussed. A special focus is given on the use of permeation enhancers, the types of intranasal drug delivery devices, as well as possible toxicity concerns.
Collapse
Affiliation(s)
- Leonor C Fonseca
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - João A Lopes
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - João Vieira
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Cláudia Viegas
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Cláudia S Oliveira
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Rafael P Hartmann
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal.
| |
Collapse
|
1000
|
Natural Products Targeting Amyloid Beta in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22052341. [PMID: 33652858 PMCID: PMC7956407 DOI: 10.3390/ijms22052341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by severe brain damage and dementia. There are currently few therapeutics to treat this disease, and they can only temporarily alleviate some of the symptoms. The pathogenesis of AD is mainly preceded by accumulation of abnormal amyloid beta (Aβ) aggregates, which are toxic to neurons. Therefore, modulation of the formation of these abnormal aggregates is strongly suggested as the most effective approach to treat AD. In particular, numerous studies on natural products associated with AD, aiming to downregulate Aβ peptides and suppress the formation of abnormal Aβ aggregates, thus reducing neural cell death, are being conducted. Generation of Aβ peptides can be prevented by targeting the secretases involved in Aβ-peptide formation (secretase-dependent). Additionally, blocking the intra- and intermolecular interactions of Aβ peptides can induce conformational changes in abnormal Aβ aggregates, whereby the toxicity can be ameliorated (structure-dependent). In this review, AD-associated natural products which can reduce the accumulation of Aβ peptides via secretase- or structure-dependent pathways, and the current clinical trial states of these products are discussed.
Collapse
|