951
|
Bouton TC, Lodi S, Turcinovic J, Weber SE, Quinn E, Korn C, Steiner J, Schechter-Perkins EM, Duffy E, Ragan EJ, Taylor BP, Schaeffer B, Miller N, Davidoff R, Hanage WP, Connor J, Pierre C, Jacobson KR. COVID-19 vaccine impact on rates of SARS-CoV-2 cases and post vaccination strain sequences among healthcare workers at an urban academic medical center: a prospective cohort study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33821283 DOI: 10.1101/2021.03.30.21254655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background COVID-19 vaccine trials and post-implementation data suggest vaccination decreases SARS-CoV-2 infections. We examine COVID-19 vaccination's impact on SARS-CoV-2 case rates and viral diversity among healthcare workers (HCW) during a high community prevalence period. Methods A prospective cohort study from Boston Medical Center (BMC)'s HCW vaccination program, where staff received two doses of BNT162b2 or mRNA-1273. We included PCR-confirmed SARS-CoV-2 cases among HCWs from December 09, 2020 to February 23, 2021. Weekly SARS-CoV-2 rates per 100,000 person-day overall and by time from first injection (1-14 and >14 days) were compared with surrounding community rates. Viral genomes were sequenced from SARS CoV-2 positive samples. Results SARS-CoV-2 cases occurred in 1.4% (96/7109) of HCWs given at least a first dose and 0.3% (17/5913) of HCWs given both vaccine doses. Adjusted SARS-CoV-2 infection rate ratios were 0.73 (95% CI 0.53-1.00) 1-14 days and 0.18 (0.10-0.32) >14 days from first dose. HCW SARS-CoV-2 cases >14 days from initial dose compared to within 14 days were more often older (46 versus 38 years, p=0.007), Latinx (10% versus 8%, p=0.03), and asymptomatic (48% versus 11%, p=0.0002). SARS-CoV-2 rates among HCWs fell below those of the surrounding community, with a 18% versus 11% weekly decrease respectively (p=0.14). Comparison of 48 SARS-CoV-2 genomes sequenced from post-first dose cases did not indicate selection pressure towards known spike-antibody escape mutations. Conclusions Our results indicate a positive impact of COVID-19 vaccines on SARS-CoV-2 case rates. Post-vaccination isolates did not show unusual genetic diversity or selection for mutations of concern. Main Point Cases of SARS-CoV-2 among health care workers dropped rapidly with COVID-19 vaccination. Sequencing 48 breakthrough infections (overwhelmingly in 14 days after 1st dose) showed no clear sign of any differences in spike protein compared with time-matched, unvaccinated control sequences.
Collapse
|
952
|
Nel AE, Miller JF. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS NANO 2021; 15:5793-5818. [PMID: 33793189 PMCID: PMC8029448 DOI: 10.1021/acsnano.1c01845] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
At the time of preparing this Perspective, large-scale vaccination for COVID-19 is in progress, aiming to bring the pandemic under control through vaccine-induced herd immunity. Not only does this vaccination effort represent an unprecedented scientific and technological breakthrough, moving us from the rapid analysis of viral genomes to design, manufacture, clinical trial testing, and use authorization within the time frame of less than a year, but it also highlights rapid progress in the implementation of nanotechnology to assist vaccine development. These advances enable us to deliver nucleic acid and conformation-stabilized subunit vaccines to regional lymph nodes, with the ability to trigger effective humoral and cellular immunity that prevents viral infection or controls disease severity. In addition to a brief description of the design features of unique cationic lipid and virus-mimicking nanoparticles for accomplishing spike protein delivery and presentation by the cognate immune system, we also discuss the importance of adjuvancy and design features to promote cooperative B- and T-cell interactions in lymph node germinal centers, including the use of epitope-based vaccines. Although current vaccine efforts have demonstrated short-term efficacy and vaccine safety, key issues are now vaccine durability and adaptability against viral variants. We present a forward-looking perspective of how vaccine design can be adapted to improve durability of the immune response and vaccine adaptation to overcome immune escape by viral variants. Finally, we consider the impact of nano-enabled approaches in the development of COVID-19 vaccines for improved vaccine design against other infectious agents, including pathogens that may lead to future pandemics.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jeff F. Miller
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, 90095, United States
| |
Collapse
|
953
|
Nagy A, Alhatlani B. An overview of current COVID-19 vaccine platforms. Comput Struct Biotechnol J 2021; 19:2508-2517. [PMID: 33936564 PMCID: PMC8076774 DOI: 10.1016/j.csbj.2021.04.061] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic that emerged in December 2019 in Wuhan city, China. An effective vaccine is urgently needed to protect humans and to mitigate the economic and societal impacts of the pandemic. Despite standard vaccine development usually requiring an extensive process and taking several years to complete all clinical phases, there are currently 184 vaccine candidates in pre-clinical testing and another 88 vaccine candidates in clinical phases based on different vaccine platforms as of April 13, 2021. Moreover, three vaccine candidates have recently been granted an Emergency Use Authorization by the United States Food and Drug Administration (for Pfizer/BioNtech, Moderna mRNA vaccines, and Johnson and Johnson viral vector vaccine) and by the UK government (for University of Oxford/AstraZeneca viral vector vaccine). Here we aim to briefly address the current advances in reverse genetics system of SARS-CoV-2 and the use of this in development of SARS-CoV-2 vaccines. Additionally, we cover the essential points concerning the different platforms of current SARS-CoV-2 vaccine candidates and the advantages and drawbacks of these platforms. We also assess recommendations for controlling the COVID-19 pandemic and future pandemics using the benefits of genetic engineering technology to design effective vaccines against emerging and re-emerging viral diseases with zoonotic and/or pandemic potential.
Collapse
Affiliation(s)
- Abdou Nagy
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Bader Alhatlani
- Department of Applied Medical Sciences, Unayzah Community College, Qassim University, Unayzah, Saudi Arabia
| |
Collapse
|
954
|
Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model. Proc Natl Acad Sci U S A 2021; 118:2025622118. [PMID: 33858942 PMCID: PMC8106328 DOI: 10.1073/pnas.2025622118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.
Collapse
|
955
|
Diamond M, Chen R, Winkler E, Case J, Aziati I, Bricker T, Joshi A, Darling T, Ying B, Errico J, Shrihari S, VanBlargan L, Xie X, Gilchuk P, Zost S, Droit L, Liu Z, Stumpf S, Wang D, Handley S, Stine W, Shi PY, Garcia-Knight M, Andino R, Chiu C, Ellebedy A, Fremont D, Whelan S, Crowe J, Purcell L, Corti D, Boon A. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. RESEARCH SQUARE 2021:rs.3.rs-448370. [PMID: 34013259 PMCID: PMC8132254 DOI: 10.21203/rs.3.rs-448370/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rapidly-emerging variants jeopardize antibody-based countermeasures against SARS-CoV-2. While recent cell culture experiments have demonstrated loss of potency of several anti-spike neutralizing antibodies against SARS-CoV-2 variant strains1-3, the in vivo significance of these results remains uncertain. Here, using a panel of monoclonal antibodies (mAbs) corresponding to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron, and Lilly we report the impact on protection in animals against authentic SARS-CoV-2 variants including WA1/2020 strains, a B.1.1.7 isolate, and chimeric strains with South African (B.1.351) or Brazilian (B.1.1.28) spike genes. Although some individual mAbs showed reduced or abrogated neutralizing activity against B.1.351 and B.1.1.28 viruses with E484K spike protein mutations in cell culture, low prophylactic doses of mAb combinations protected against infection in K18-hACE2 transgenic mice, 129S2 immunocompetent mice, and hamsters without emergence of resistance. Two exceptions were mAb LY-CoV555 monotherapy which lost all protective activity in vivo, and AbbVie 2B04/47D11, which showed partial loss of activity. When administered after infection as therapy, higher doses of mAb cocktails protected in vivo against viruses displaying a B.1.351 spike gene. Thus, many, but not all, of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing SARS-CoV-2 variant strains.
Collapse
Affiliation(s)
| | - Rita Chen
- Washington University School of Medicine
| | | | - James Case
- Washington University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | - Seth Zost
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | - Pei-Yong Shi
- The University of Texas Medical Branch at Galveston
| | | | | | | | | | | | | | | | - Lisa Purcell
- Vir Biotechnology, Washington University School of Medicine
| | - Davide Corti
- Vir Biotechnology, Washington University School of Medicine
| | | |
Collapse
|
956
|
West AP, Wertheim JO, Wang JC, Vasylyeva TI, Havens JL, Chowdhury MA, Gonzalez E, Fang CE, Di Lonardo SS, Hughes S, Rakeman JL, Lee HH, Barnes CO, Gnanapragasam PNP, Yang Z, Gaebler C, Caskey M, Nussenzweig MC, Keeffe JR, Bjorkman PJ. Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.14.431043. [PMID: 33907745 PMCID: PMC8077570 DOI: 10.1101/2021.02.14.431043] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wide-scale SARS-CoV-2 genome sequencing is critical to tracking viral evolution during the ongoing pandemic. Variants first detected in the United Kingdom, South Africa, and Brazil have spread to multiple countries. We developed the software tool, Variant Database (VDB), for quickly examining the changing landscape of spike mutations. Using VDB, we detected an emerging lineage of SARS-CoV-2 in the New York region that shares mutations with previously reported variants. The most common sets of spike mutations in this lineage (now designated as B.1.526) are L5F, T95I, D253G, E484K or S477N, D614G, and A701V. This lineage was first sequenced in late November 2020 when it represented <1% of sequenced coronavirus genomes that were collected in New York City (NYC). By February 2021, genomes from this lineage accounted for ~32% of 3288 sequenced genomes from NYC specimens. Phylodynamic inference confirmed the rapid growth of the B.1.526 lineage in NYC, notably the sub-clade defined by the spike mutation E484K, which has outpaced the growth of other variants in NYC. Pseudovirus neutralization experiments demonstrated that B.1.526 spike mutations adversely affect the neutralization titer of convalescent and vaccinee plasma, indicating the public health importance of this lineage.
Collapse
Affiliation(s)
- Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jade C. Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, 10016 USA
| | | | - Jennifer L. Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093
| | - Moinuddin A. Chowdhury
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, 10016 USA
| | - Edimarlyn Gonzalez
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, 10016 USA
| | - Courtney E. Fang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, 10016 USA
| | - Steve S. Di Lonardo
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, 10016 USA
| | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, 10016 USA
| | - Jennifer L. Rakeman
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, 10016 USA
| | - Henry H. Lee
- Pandemic Response Laboratory, Long Island City, NY 11101
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065 USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
957
|
Peled Y, Ram E, Lavee J, Sternik L, Segev A, Wieder-Finesod A, Mandelboim M, Indenbaum V, Levy I, Raanani E, Lustig Y, Rahav G. BNT162b2 vaccination in heart transplant recipients: Clinical experience and antibody response. J Heart Lung Transplant 2021; 40:759-762. [PMID: 34034958 PMCID: PMC8058049 DOI: 10.1016/j.healun.2021.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Data on the safety and efficacy of SARS-CoV-2 vaccines in immunocompromised populations are sparse. METHODS We conducted a prospective study of 77 heart transplant (HT) recipients vaccinated with two doses of BNT162b2 vaccine and monitored for adverse events following both doses, the receptor-binding domain (RBD) IgG response, and neutralizing antibodies. RESULTS BNT162b2 vaccination was associated with a low rate of adverse events, characterized mostly by pain at the injection site. By a mean 41 days post second dose there were no clinical episodes of rejection, as suggested by a troponin leak or allograft dysfunction. At a mean 21 days following the second dose, IgG anti-RBD antibodies were detectable in 14 (18%) HT recipients. Immune sera neutralized SARS-CoV-2 pseudo-virus in 8 (57%) of those with IgG anti-RBD antibodies. Immunosuppressive regimen containing mycophenolic acid was associated with lower odds of an antibody response (OR = 0.12, p = 0.042). CONCLUSIONS Whether a longer time-frame for observation of an antibody response is required after vaccination in immunosuppressed individuals remains unknown.
Collapse
Affiliation(s)
- Yael Peled
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel.
| | - Eilon Ram
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Jacob Lavee
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Leonid Sternik
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Amit Segev
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Anat Wieder-Finesod
- Sackler Faculty of Medicine, Tel Aviv University, Israel; Infectious Disease Unit, Sheba Medical Center, Israel
| | - Michal Mandelboim
- Sackler Faculty of Medicine, Tel Aviv University, Israel; Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Israel
| | | | - Itzchak Levy
- Sackler Faculty of Medicine, Tel Aviv University, Israel; Infectious Disease Unit, Sheba Medical Center, Israel
| | - Ehud Raanani
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yaniv Lustig
- Sackler Faculty of Medicine, Tel Aviv University, Israel; Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Israel
| | - Galia Rahav
- Sackler Faculty of Medicine, Tel Aviv University, Israel; Infectious Disease Unit, Sheba Medical Center, Israel
| |
Collapse
|
958
|
Martinez DR, Schaefer A, Leist SR, Li D, Gully K, Yount B, Feng JY, Bunyan E, Porter DP, Cihlar T, Montgomery SA, Haynes BF, Baric RS, Nussenzweig MC, Sheahan TP. Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.27.428478. [PMID: 33532765 PMCID: PMC7852229 DOI: 10.1101/2021.01.27.428478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improving the standard of clinical care for individuals infected with SARS-CoV-2 variants is a global health priority. Small molecule antivirals like remdesivir (RDV) and biologics such as human monoclonal antibodies (mAb) have demonstrated therapeutic efficacy against SARS-CoV-2, the causative agent of COVID-19. However, it is not known if combination RDV/mAb will improve outcomes over single agent therapies or whether antibody therapies will remain efficacious against variants. In kinetic studies in a mouse-adapted model of ancestral SARS-CoV-2 pathogenesis, we show that a combination of two mAbs in clinical trials, C144 and C135, have potent antiviral effects against even when initiated 48 hours after infection. The same antibody combination was also effective in prevention and therapy against the B.1.351 variant of concern (VOC). Combining RDV and antibodies provided a modest improvement in outcomes compared to single agents. These data support the continued use of RDV to treat SARS-CoV-2 infections and support the continued clinical development of the C144 and C135 antibody combination to treat patients infected with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Equal contribution
| | - Alexandra Schaefer
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Equal contribution
| | - Sarah R. Leist
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Kendra Gully
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Ralph S. Baric
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michel C. Nussenzweig
- The Rockefeller University, New York, NY, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
959
|
Greaney AJ, Loes AN, Gentles LE, Crawford KH, Starr TN, Malone KD, Chu HY, Bloom JD. The SARS-CoV-2 mRNA-1273 vaccine elicits more RBD-focused neutralization, but with broader antibody binding within the RBD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.14.439844. [PMID: 33880474 PMCID: PMC8057239 DOI: 10.1101/2021.04.14.439844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of SARS-CoV-2 variants with mutations in key antibody epitopes has raised concerns that antigenic evolution will erode immunity. The susceptibility of immunity to viral evolution is shaped in part by the breadth of epitopes targeted. Here we compare the specificity of antibodies elicited by the mRNA-1273 vaccine versus natural infection. The neutralizing activity of vaccine-elicited antibodies is even more focused on the spike receptor-binding domain (RBD) than for infection-elicited antibodies. However, within the RBD, binding of vaccine-elicited antibodies is more broadly distributed across epitopes than for infection-elicited antibodies. This greater binding breadth means single RBD mutations have less impact on neutralization by vaccine sera than convalescent sera. Therefore, antibody immunity acquired by different means may have differing susceptibility to erosion by viral evolution. ONE SENTENCE SUMMARY Deep mutational scanning shows the mRNA-1273 RBD-binding antibody response is less affected by single viral mutations than the infection response.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington; Seattle, WA 98195, USA
| | - Andrea N. Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Lauren E. Gentles
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Department of Microbiology, University of Washington; Seattle, WA 98195, USA
| | - Katharine H.D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington; Seattle, WA 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Keara D. Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington; Seattle, Washington, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| |
Collapse
|
960
|
Miao M, Clercq ED, Li G. Genetic Diversity of SARS-CoV-2 over a One-Year Period of the COVID-19 Pandemic: A Global Perspective. Biomedicines 2021; 9:412. [PMID: 33920487 PMCID: PMC8069977 DOI: 10.3390/biomedicines9040412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic of coronavirus disease in 2019 (COVID-19). Genome surveillance is a key method to track the spread of SARS-CoV-2 variants. Genetic diversity and evolution of SARS-CoV-2 were analyzed based on 260,673 whole-genome sequences, which were sampled from 62 countries between 24 December 2019 and 12 January 2021. We found that amino acid (AA) substitutions were observed in all SARS-CoV-2 proteins, and the top six proteins with the highest substitution rates were ORF10, nucleocapsid, ORF3a, spike glycoprotein, RNA-dependent RNA polymerase, and ORF8. Among 25,629 amino acid substitutions at 8484 polymorphic sites across the coding region of the SARS-CoV-2 genome, the D614G (93.88%) variant in spike and the P323L (93.74%) variant in RNA-dependent RNA polymerase were the dominant variants on six continents. As of January 2021, the genomic sequences of SARS-CoV-2 could be divided into at least 12 different clades. Distributions of SARS-CoV-2 clades were featured with temporal and geographical dynamics on six continents. Overall, this large-scale analysis provides a detailed mapping of SARS-CoV-2 variants in different geographic areas at different time points, highlighting the importance of evaluating highly prevalent variants in the development of SARS-CoV-2 antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Miao Miao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China;
| | - Erik De Clercq
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium;
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China;
| |
Collapse
|
961
|
Affiliation(s)
- Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, Netherlands; Department of Microbiology and Immunology, Weill Medical Center of Cornell University, New York, NY, USA.
| | - Menno D de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, Netherlands
| |
Collapse
|
962
|
Guo S, Liu K, Zheng J. The Genetic Variant of SARS-CoV-2: would It Matter for Controlling the Devastating Pandemic? Int J Biol Sci 2021; 17:1476-1485. [PMID: 33907511 PMCID: PMC8071763 DOI: 10.7150/ijbs.59137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is far from being controlled despite the great effort that have been taken throughout the world. Herd immunity through vaccination is our major expectation to rein the virus. However, the emergence of widespread genetic variants could potentially undermine the vaccines. The evidence that some variants could evade immune responses elicited by vaccines and previous infection is growing. In this review, we summarized the current understanding on five notable genetic variants, i.e., D614G, Cluster 5, VOC 202012/01, 501Y.V2 and P.1, and discussed the potential impact of these variants on the virus transmission, pathogenesis and vaccine efficacy. We also highlight that mutations in the N-terminal domain of spike protein should be considered when evaluating the antibody neutralization abilities. Among these genetic variants, a concern of genetic variant 501Y.V2 to escape the protection by vaccines was raised. We therefore call for new vaccines targeting this variant to be developed.
Collapse
Affiliation(s)
- Shuxin Guo
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Kefang Liu
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, University of Macau, Macau SAR, China
| |
Collapse
|
963
|
Kwok HF. Review of Covid-19 vaccine clinical trials - A puzzle with missing pieces. Int J Biol Sci 2021; 17:1461-1468. [PMID: 33907509 PMCID: PMC8071768 DOI: 10.7150/ijbs.59170] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
A year after the initial outbreak of Covid-19 pandemic, several Phase III clinical trials investigating vaccine safety and efficacy have been published. These vaccine candidates were developed by different research groups and pharmaceutical companies with various vaccine technologies including mRNA, recombinant protein, adenoviral vector and inactivated virus-based platforms. Despite numerous successful clinical trials, participants enrolled in these trials are limited by trial inclusion and exclusion criteria, geographic location and viral outbreak situation. Many questions still remain, especially for specific subgroups, including the elderly, females with pregnancy and breastfeeding status, and adolescents. At the same time, vaccine efficacy towards asymptomatic infection and specific viral variants are still largely unknown. This review will cover vaccine candidates with Phase III clinical trial data released and discuss the scientific data available so far for these vaccine candidates for different subgroups of people and different viral variants.
Collapse
Affiliation(s)
- Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| |
Collapse
|
964
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.08.438911. [PMID: 33851164 PMCID: PMC8043454 DOI: 10.1101/2021.04.08.438911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Magda Rutkowska
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicolas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
965
|
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CAB, Russell TW, Tully DC, Washburne AD, Wenseleers T, Gimma A, Waites W, Wong KLM, van Zandvoort K, Silverman JD, Diaz-Ordaz K, Keogh R, Eggo RM, Funk S, Jit M, Atkins KE, Edmunds WJ. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021; 372:eabg3055. [PMID: 33658326 PMCID: PMC8128288 DOI: 10.1126/science.abg3055] [Citation(s) in RCA: 1638] [Impact Index Per Article: 409.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.
Collapse
Affiliation(s)
- Nicholas G Davies
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Sam Abbott
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Rosanna C Barnard
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Christopher I Jarvis
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Adam J Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James D Munday
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Carl A B Pearson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Timothy W Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Damien C Tully
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Tom Wenseleers
- Lab of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Amy Gimma
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - William Waites
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kerry L M Wong
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kevin van Zandvoort
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, University Park, PA, USA
| | - Karla Diaz-Ordaz
- Centre for Statistical Methodology and Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Ruth Keogh
- Centre for Statistical Methodology and Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Rosalind M Eggo
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sebastian Funk
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark Jit
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Katherine E Atkins
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Global Health, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - W John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
966
|
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CAB, Russell TW, Tully DC, Washburne AD, Wenseleers T, Gimma A, Waites W, Wong KLM, van Zandvoort K, Silverman JD, Diaz-Ordaz K, Keogh R, Eggo RM, Funk S, Jit M, Atkins KE, Edmunds WJ. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021; 372:science.abg3055. [PMID: 33658326 DOI: 10.1101/2020.12.24.20248822] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 05/23/2023]
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.
Collapse
Affiliation(s)
- Nicholas G Davies
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Sam Abbott
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Rosanna C Barnard
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Christopher I Jarvis
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Adam J Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James D Munday
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Carl A B Pearson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Timothy W Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Damien C Tully
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Tom Wenseleers
- Lab of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Amy Gimma
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - William Waites
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kerry L M Wong
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kevin van Zandvoort
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, University Park, PA, USA
| | - Karla Diaz-Ordaz
- Centre for Statistical Methodology and Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Ruth Keogh
- Centre for Statistical Methodology and Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Rosalind M Eggo
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sebastian Funk
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark Jit
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Katherine E Atkins
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Global Health, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - W John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
967
|
Werner M, Pervan P, Glück V, Zeman F, Koller M, Burkhardt R, Glück T, Wenzel JJ, Schmidt B, Gessner A, Peterhoff D. Evaluation of a Broad Panel of SARS-CoV-2 Serological Tests for Diagnostic Use. J Clin Med 2021; 10:1580. [PMID: 33918081 PMCID: PMC8070215 DOI: 10.3390/jcm10081580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Serological testing is crucial in detection of previous infection and in monitoring convalescent and vaccine-induced immunity. During the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) pandemic, numerous assay platforms have been developed and marketed for clinical use. Several studies recently compared clinical performance of a limited number of serological tests, but broad comparative evaluation is currently missing. Within this study, a panel of 161 sera from SARS-CoV-2 infected, seasonal CoV-infected and SARS-CoV-2 naïve subjects was enrolled to evaluate 16 ELISA/ECLIA-based and 16 LFA-based tests. Specificities of all ELISA/ECLIA-based assays were acceptable and generally in agreement with the providers' specifications, but sensitivities were lower as specified. Results of the LFAs were less accurate as compared to the ELISAs, albeit with some exceptions. We found a sporadic unequal immune response for different antigens and thus recommend the use of a nucleocapsid protein (N)- and spike protein (S)-based test combination when maximal sensitivity is necessary. Finally, the quality of the immune response in terms of neutralization should be tested using S-based IgG tests.
Collapse
Affiliation(s)
- Maren Werner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (M.W.); (B.S.); (A.G.)
| | - Philip Pervan
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (P.P.); (V.G.); (J.J.W.)
| | - Vivian Glück
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (P.P.); (V.G.); (J.J.W.)
| | - Florian Zeman
- Center for Clinical Studies, University Hospital Regensburg, 93053 Regensburg, Germany; (F.Z.); (M.K.)
| | - Michael Koller
- Center for Clinical Studies, University Hospital Regensburg, 93053 Regensburg, Germany; (F.Z.); (M.K.)
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Thomas Glück
- Kliniken Südostbayern, 83278 Traunstein/Trostberg, Germany;
| | - Jürgen J. Wenzel
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (P.P.); (V.G.); (J.J.W.)
| | - Barbara Schmidt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (M.W.); (B.S.); (A.G.)
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (P.P.); (V.G.); (J.J.W.)
| | - André Gessner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (M.W.); (B.S.); (A.G.)
- Institute for Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany; (P.P.); (V.G.); (J.J.W.)
| | - David Peterhoff
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (M.W.); (B.S.); (A.G.)
| |
Collapse
|
968
|
Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F, Bowen JE, Jaconi S, di iulio J, Wang Z, De Marco A, Zepeda SK, Pinto D, Liu Z, Beltramello M, Bartha I, Housley MP, Lempp FA, Rosen LE, Dellota E, Kaiser H, Montiel-Ruiz M, Zhou J, Addetia A, Guarino B, Culap K, Sprugasci N, Saliba C, Vetti E, Giacchetto-Sasselli I, Silacci Fregni C, Abdelnabi R, Caroline Foo SY, Havenar-Daughton C, Schmid MA, Benigni F, Cameroni E, Neyts J, Telenti A, Snell G, Virgin HW, Whelan SP, Bloom JD, Corti D, Veesler D, Pizzuto MS. Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.07.438818. [PMID: 33851169 PMCID: PMC8043460 DOI: 10.1101/2021.04.07.438818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2X259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2X259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1 and B.1.427/B.1.429 VOC, as well as a wide spectrum of human and zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses a remarkably high barrier to the emergence of resistance mutants. We show that prophylactic administration of S2X259 protects Syrian hamsters against challenges with the prototypic SARS-CoV-2 and the B.1.351 variant, suggesting this mAb is a promising candidate for the prevention and treatment of emergent VOC and zoonotic infections. Our data unveil a key antigenic site targeted by broadly-neutralizing antibodies and will guide the design of pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- M. Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | | | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roberta Marzi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Istvan Bartha
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Amin Addetia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Eneida Vetti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | | | - Michael A. Schmid
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | | | | | | | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
969
|
Karim SSA. Vaccines and SARS-CoV-2 variants: the urgent need for a correlate of protection. Lancet 2021; 397:1263-1264. [PMID: 33765410 PMCID: PMC7984864 DOI: 10.1016/s0140-6736(21)00468-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban 4013, South Africa; Department of Epidemiology, Columbia University, New York, USA.
| |
Collapse
|
970
|
Williams TC, Burgers WA. SARS-CoV-2 evolution and vaccines: cause for concern? THE LANCET. RESPIRATORY MEDICINE 2021; 9:333-335. [PMID: 33524316 PMCID: PMC8009632 DOI: 10.1016/s2213-2600(21)00075-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Thomas C Williams
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Wendy A Burgers
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
971
|
Hennrich AA, Sawatsky B, Santos-Mandujano R, Banda DH, Oberhuber M, Schopf A, Pfaffinger V, Wittwer K, Riedel C, Pfaller CK, Conzelmann KK. Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19: Protection of mice after a single immunization. PLoS Pathog 2021; 17:e1009064. [PMID: 33882114 PMCID: PMC8092985 DOI: 10.1371/journal.ppat.1009064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/03/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
Vaccines of outstanding efficiency, safety, and public acceptance are needed to halt the current SARS-CoV-2 pandemic. Concerns include potential side effects caused by the antigen itself and safety of viral DNA and RNA delivery vectors. The large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which might cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine complemented with VSV G, VSVΔG-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients, and protected transgenic K18-hACE2 mice from COVID-19-like disease. Homologous boost immunization further enhanced virus neutralizing activity. The results demonstrate that non-spreading rhabdovirus RNA replicons expressing minispike proteins represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.
Collapse
Affiliation(s)
- Alexandru A. Hennrich
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Bevan Sawatsky
- Department of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Dominic H. Banda
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Martina Oberhuber
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Anika Schopf
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Verena Pfaffinger
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Kevin Wittwer
- Department of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
972
|
Kastenhuber ER, Jaimes JA, Johnson JL, Mercadante M, Muecksch F, Weisblum Y, Bram Y, Schwartz RE, Whittaker GR, Cantley LC. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33821268 DOI: 10.1101/2021.03.31.437960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coagulopathy is recognized as a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. Other host proteases, including TMPRSS2, are recognized to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing viral entry. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases as well as coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.
Collapse
|
973
|
Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J Gen Virol 2021; 102:001584. [PMID: 33855951 PMCID: PMC8290271 DOI: 10.1099/jgv.0.001584] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral 'genetic drift' or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.
Collapse
Affiliation(s)
- Thomas P. Peacock
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| | | | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wendy S. Barclay
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| |
Collapse
|
974
|
Abstract
SARS-CoV-2 entry is mediated by the spike (S) glycoprotein which contains the receptor-binding domain (RBD) and the N-terminal domain (NTD) as the two main targets of neutralizing antibodies (Abs). A novel variant of concern (VOC) named CAL.20C (B.1.427/B.1.429) was originally detected in California and is currently spreading throughout the US and 29 additional countries. It is unclear whether antibody responses to SARS-CoV-2 infection or to the prototypic Wuhan-1 isolate-based vaccines will be impacted by the three B.1.427/B.1.429 S mutations: S13I, W152C and L452R. Here, we assessed neutralizing Ab responses following natural infection or mRNA vaccination using pseudoviruses expressing the wildtype or the B.1.427/B.1.429 S protein. Plasma from vaccinated or convalescent individuals exhibited neutralizing titers, which were reduced 3-6 fold against the B.1.427/B.1.429 variant relative to wildtype pseudoviruses. The RBD L452R mutation reduced or abolished neutralizing activity of 14 out of 35 RBD-specific monoclonal antibodies (mAbs), including three clinical-stage mAbs. Furthermore, we observed a complete loss of B.1.427/B.1.429 neutralization for a panel of mAbs targeting the N-terminal domain due to a large structural rearrangement of the NTD antigenic supersite involving an S13I-mediated shift of the signal peptide cleavage site. These data warrant closer monitoring of signal peptide variants and their involvement in immune evasion and show that Abs directed to the NTD impose a selection pressure driving SARS-CoV-2 viral evolution through conventional and unconventional escape mechanisms.
Collapse
|
975
|
Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu J, Errico JM, Xie X, Suryadevara N, Gilchuk P, Zost SJ, Tahan S, Droit L, Turner JS, Kim W, Schmitz AJ, Thapa M, Wang D, Boon ACM, Presti RM, O'Halloran JA, Kim AHJ, Deepak P, Pinto D, Fremont DH, Crowe JE, Corti D, Virgin HW, Ellebedy AH, Shi PY, Diamond MS. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 2021; 27:717-726. [PMID: 33664494 PMCID: PMC8058618 DOI: 10.1038/s41591-021-01294-w] [Citation(s) in RCA: 732] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic. Rapidly spreading SARS-CoV-2 variants may jeopardize newly introduced antibody and vaccine countermeasures. Here, using monoclonal antibodies (mAbs), animal immune sera, human convalescent sera and human sera from recipients of the BNT162b2 mRNA vaccine, we report the impact on antibody neutralization of a panel of authentic SARS-CoV-2 variants including a B.1.1.7 isolate, chimeric strains with South African or Brazilian spike genes and isogenic recombinant viral variants. Many highly neutralizing mAbs engaging the receptor-binding domain or N-terminal domain and most convalescent sera and mRNA vaccine-induced immune sera showed reduced inhibitory activity against viruses containing an E484K spike mutation. As antibodies binding to spike receptor-binding domain and N-terminal domain demonstrate diminished neutralization potency in vitro against some emerging variants, updated mAb cocktails targeting highly conserved regions, enhancement of mAb potency or adjustments to the spike sequences of vaccines may be needed to prevent loss of protection in vivo.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jianying Liu
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahima Thapa
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel M Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jane A O'Halloran
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alfred H J Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Parakkal Deepak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dora Pinto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Herbert W Virgin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Vir Biotechnology, San Francisco, CA, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ali H Ellebedy
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
976
|
Carvalho T, Krammer F, Iwasaki A. The first 12 months of COVID-19: a timeline of immunological insights. Nat Rev Immunol 2021; 21:245-256. [PMID: 33723416 PMCID: PMC7958099 DOI: 10.1038/s41577-021-00522-1] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
Since the initial reports of a cluster of pneumonia cases of unidentified origin in Wuhan, China, in December 2019, the novel coronavirus that causes this disease - severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - has spread throughout the world, igniting the twenty-first century's deadliest pandemic. Over the past 12 months, a dizzying array of information has emerged from numerous laboratories, covering everything from the putative origin of SARS-CoV-2 to the development of numerous candidate vaccines. Many immunologists quickly pivoted from their existing research to focus on coronavirus disease 2019 (COVID-19) and, owing to this unprecedented convergence of efforts on one viral infection, a remarkable body of work has been produced and disseminated, through both preprint servers and peer-reviewed journals. Here, we take readers through the timeline of key discoveries during the first year of the pandemic, which showcases the extraordinary leaps in our understanding of the immune response to SARS-CoV-2 and highlights gaps in our knowledge as well as areas for future investigations.
Collapse
Affiliation(s)
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
977
|
Eguia RT, Crawford KHD, Stevens-Ayers T, Kelnhofer-Millevolte L, Greninger AL, Englund JA, Boeckh MJ, Bloom JD. A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog 2021; 17:e1009453. [PMID: 33831132 PMCID: PMC8031418 DOI: 10.1371/journal.ppat.1009453] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
There is intense interest in antibody immunity to coronaviruses. However, it is unknown if coronaviruses evolve to escape such immunity, and if so, how rapidly. Here we address this question by characterizing the historical evolution of human coronavirus 229E. We identify human sera from the 1980s and 1990s that have neutralizing titers against contemporaneous 229E that are comparable to the anti-SARS-CoV-2 titers induced by SARS-CoV-2 infection or vaccination. We test these sera against 229E strains isolated after sera collection, and find that neutralizing titers are lower against these "future" viruses. In some cases, sera that neutralize contemporaneous 229E viral strains with titers >1:100 do not detectably neutralize strains isolated 8-17 years later. The decreased neutralization of "future" viruses is due to antigenic evolution of the viral spike, especially in the receptor-binding domain. If these results extrapolate to other coronaviruses, then it may be advisable to periodically update SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Rachel T. Eguia
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Katharine H. D. Crawford
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Terry Stevens-Ayers
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Alexander L. Greninger
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Janet A. Englund
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Michael J. Boeckh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
978
|
Ko SH, Bayat Mokhtari E, Mudvari P, Stein S, Stringham CD, Wagner D, Ramelli S, Ramos-Benitez MJ, Strich JR, Davey RT, Zhou T, Misasi J, Kwong PD, Chertow DS, Sullivan NJ, Boritz EA. High-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19. PLoS Pathog 2021; 17:e1009431. [PMID: 33831133 PMCID: PMC8031304 DOI: 10.1371/journal.ppat.1009431] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH2-terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elham Bayat Mokhtari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Prakriti Mudvari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sydney Stein
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher D. Stringham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danielle Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sabrina Ramelli
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
| | - Marcos J. Ramos-Benitez
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey R. Strich
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
| | - Richard T. Davey
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel S. Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland, United States of America
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
979
|
Cho H, Gonzales-Wartz KK, Huang D, Yuan M, Peterson M, Liang J, Beutler N, Torres JL, Cong Y, Postnikova E, Bangaru S, Talana CA, Shi W, Yang ES, Zhang Y, Leung K, Wang L, Peng L, Skinner J, Li S, Wu NC, Liu H, Dacon C, Moyer T, Cohen M, Zhao M, Lee FEH, Weinberg RS, Douagi I, Gross R, Schmaljohn C, Pegu A, Mascola JR, Holbrook M, Nemazee D, Rogers TF, Ward AB, Wilson IA, Crompton PD, Tan J. Ultrapotent bispecific antibodies neutralize emerging SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.01.437942. [PMID: 33821267 PMCID: PMC8020967 DOI: 10.1101/2021.04.01.437942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-CoV-2 variants that threaten the efficacy of existing vaccines and therapeutic antibodies underscores the urgent need for new antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells of COVID-19 patients. The three most potent antibodies targeted distinct regions of the RBD, and all three neutralized the SARS-CoV-2 variants B.1.1.7 and B.1.351. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the ACE2 receptor, and has limited contact with key variant residues K417, E484 and N501. We designed bispecific antibodies by combining non-overlapping specificities and identified five ultrapotent bispecific antibodies that inhibit authentic SARS-CoV-2 infection at concentrations of <1 ng/mL. Through a novel mode of action three bispecific antibodies cross-linked adjacent spike proteins using dual NTD/RBD specificities. One bispecific antibody was >100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a 2.5 mg/kg dose. Notably, six of nine bispecific antibodies neutralized B.1.1.7, B.1.351 and the wild-type virus with comparable potency, despite partial or complete loss of activity of at least one parent monoclonal antibody against B.1.351. Furthermore, a bispecific antibody that neutralized B.1.351 protected against SARS-CoV-2 expressing the crucial E484K mutation in the hamster model. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Hyeseon Cho
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kristina Kay Gonzales-Wartz
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Janie Liang
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Cong
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Elena Postnikova
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie Cohen
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rona S. Weinberg
- New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robin Gross
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connie Schmaljohn
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- These authors jointly supervised the work
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- These authors jointly supervised the work
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- These authors jointly supervised the work
| |
Collapse
|
980
|
Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V, Glantz H, Neradilek M, Seydoux E, Jennewein MF, MacCamy AJ, Feng J, Mize G, De Rosa SC, Finzi A, Lemos MP, Cohen KW, Moodie Z, McElrath MJ, McGuire AT. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021; 372:eabg9175. [PMID: 33766944 PMCID: PMC8139425 DOI: 10.1126/science.abg9175] [Citation(s) in RCA: 402] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naïve donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naïve donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Julie Czartoski
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Vanessa Rubin
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Hayley Glantz
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Moni Neradilek
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Madeleine F Jennewein
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Gregory Mize
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Stephen C De Rosa
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Maria P Lemos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kristen W Cohen
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Zoe Moodie
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - M Juliana McElrath
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
981
|
Schmitz AJ, Turner JS, Liu Z, Aziati ID, Chen RE, Joshi A, Bricker TL, Darling TL, Adelsberg DC, Alsoussi WB, Case JB, Lei T, Thapa M, Amanat F, O’Halloran JA, Shi PY, Presti RM, Krammer F, Bajic G, Whelan SP, Diamond MS, Boon ACM, Ellebedy AH. A public vaccine-induced human antibody protects against SARS-CoV-2 and emerging variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.24.436864. [PMID: 33791696 PMCID: PMC8010723 DOI: 10.1101/2021.03.24.436864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The emergence of antigenically distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility is a public health threat. Some of these variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies, which principally target the receptor binding domain (RBD) on the virus spike glycoprotein. Here, we describe 2C08, a SARS-CoV-2 mRNA vaccine-induced germinal center B cell-derived human monoclonal antibody that binds to the receptor binding motif within the RBD. 2C08 broadly neutralizes SARS-CoV-2 variants with remarkable potency and reduces lung inflammation, viral load, and morbidity in hamsters challenged with either an ancestral SARS-CoV-2 strain or a recent variant of concern. Clonal analysis identified 2C08-like public clonotypes among B cell clones responding to SARS-CoV-2 infection or vaccination in at least 20 out of 78 individuals. Thus, 2C08-like antibodies can be readily induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern. ONE SENTENCE SUMMARY Protection against SARS-CoV-2 variants by a potently neutralizing vaccine-induced human monoclonal antibody.
Collapse
Affiliation(s)
- Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
| | - Zhuoming Liu
- Molecular Microbiology, Washington University School of Medicine; St. Louis, USA
| | | | - Rita E. Chen
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
- Medicine, Washington University School of Medicine; St. Louis, USA
| | - Astha Joshi
- Medicine, Washington University School of Medicine; St. Louis, USA
| | - Traci L. Bricker
- Medicine, Washington University School of Medicine; St. Louis, USA
| | | | - Daniel C. Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, USA
| | - Wafaa B. Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
- Molecular Microbiology, Washington University School of Medicine; St. Louis, USA
| | - James Brett Case
- Medicine, Washington University School of Medicine; St. Louis, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai; New York, USA
| | | | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch; Galveston, USA
| | - Rachel M. Presti
- Medicine, Washington University School of Medicine; St. Louis, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai; New York, USA
| | - Sean P.J. Whelan
- Molecular Microbiology, Washington University School of Medicine; St. Louis, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
- Molecular Microbiology, Washington University School of Medicine; St. Louis, USA
- Medicine, Washington University School of Medicine; St. Louis, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, USA
| | - Adrianus C. M. Boon
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
- Molecular Microbiology, Washington University School of Medicine; St. Louis, USA
- Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, USA
- Molecular Microbiology, Washington University School of Medicine; St. Louis, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, USA
| |
Collapse
|
982
|
Abstract
In the latest issues of Cell Host & Microbe and Cell, three articles describe new mutations in the SARS-CoV-2 Spike receptor binding domain that escape neutralizing responses. These highlight the importance of surveillance of SARS-CoV-2 evolution to anticipate and manage new variants that could impact reinfection, vaccine efficacy, and immunotherapies.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
983
|
Rees-Spear C, Muir L, Griffith SA, Heaney J, Aldon Y, Snitselaar JL, Thomas P, Graham C, Seow J, Lee N, Rosa A, Roustan C, Houlihan CF, Sanders RW, Gupta RK, Cherepanov P, Stauss HJ, Nastouli E, Doores KJ, van Gils MJ, McCoy LE. The effect of spike mutations on SARS-CoV-2 neutralization. Cell Rep 2021; 34:108890. [PMID: 33713594 DOI: 10.1101/2021.01.15.426849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 05/18/2023] Open
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines show protective efficacy, which is most likely mediated by neutralizing antibodies recognizing the viral entry protein, spike. Because new SARS-CoV-2 variants are emerging rapidly, as exemplified by the B.1.1.7, B.1.351, and P.1 lineages, it is critical to understand whether antibody responses induced by infection with the original SARS-CoV-2 virus or current vaccines remain effective. In this study, we evaluate neutralization of a series of mutated spike pseudotypes based on divergence from SARS-CoV and then compare neutralization of the B.1.1.7 spike pseudotype and individual mutations. Spike-specific monoclonal antibody neutralization is reduced dramatically; in contrast, polyclonal antibodies from individuals infected in early 2020 remain active against most mutated spike pseudotypes, but potency is reduced in a minority of samples. This work highlights that changes in SARS-CoV-2 spike can alter neutralization sensitivity and underlines the need for effective real-time monitoring of emerging mutations and their effect on vaccine efficacy.
Collapse
Affiliation(s)
- Chloe Rees-Spear
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Luke Muir
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Sarah A Griffith
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Judith Heaney
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK
| | - Yoann Aldon
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jonne L Snitselaar
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Peter Thomas
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Carl Graham
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Jeffrey Seow
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Nayung Lee
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | | | | | - Catherine F Houlihan
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK; Research Department of Infection, Division of Infection and Immunity, University College London, London WC1 6BT, UK
| | - Rogier W Sanders
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Hans J Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Eleni Nastouli
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK; The Francis Crick Institute, London NW1 1AT, UK; Great Ormond Street Institute for Child Health, Infection, Immunity and Inflammation, University College London, London WC1N 1EH, UK
| | - Katie J Doores
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Marit J van Gils
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Laura E McCoy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK.
| |
Collapse
|
984
|
Hirotsu Y, Omata M. Discovery of a SARS-CoV-2 variant from the P.1 lineage harboring K417T/E484K/N501Y mutations in Kofu, Japan. J Infect 2021; 82:276-316. [PMID: 33766552 PMCID: PMC7985610 DOI: 10.1016/j.jinf.2021.03.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan.
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan; The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
985
|
Rees-Spear C, Muir L, Griffith SA, Heaney J, Aldon Y, Snitselaar JL, Thomas P, Graham C, Seow J, Lee N, Rosa A, Roustan C, Houlihan CF, Sanders RW, Gupta RK, Cherepanov P, Stauss HJ, Nastouli E, Doores KJ, van Gils MJ, McCoy LE. The effect of spike mutations on SARS-CoV-2 neutralization. Cell Rep 2021; 34:108890. [PMID: 33713594 PMCID: PMC7936541 DOI: 10.1016/j.celrep.2021.108890] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines show protective efficacy, which is most likely mediated by neutralizing antibodies recognizing the viral entry protein, spike. Because new SARS-CoV-2 variants are emerging rapidly, as exemplified by the B.1.1.7, B.1.351, and P.1 lineages, it is critical to understand whether antibody responses induced by infection with the original SARS-CoV-2 virus or current vaccines remain effective. In this study, we evaluate neutralization of a series of mutated spike pseudotypes based on divergence from SARS-CoV and then compare neutralization of the B.1.1.7 spike pseudotype and individual mutations. Spike-specific monoclonal antibody neutralization is reduced dramatically; in contrast, polyclonal antibodies from individuals infected in early 2020 remain active against most mutated spike pseudotypes, but potency is reduced in a minority of samples. This work highlights that changes in SARS-CoV-2 spike can alter neutralization sensitivity and underlines the need for effective real-time monitoring of emerging mutations and their effect on vaccine efficacy.
Collapse
Affiliation(s)
- Chloe Rees-Spear
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Luke Muir
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Sarah A Griffith
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Judith Heaney
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK
| | - Yoann Aldon
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jonne L Snitselaar
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Peter Thomas
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Carl Graham
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Jeffrey Seow
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Nayung Lee
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | | | | | - Catherine F Houlihan
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK; Research Department of Infection, Division of Infection and Immunity, University College London, London WC1 6BT, UK
| | - Rogier W Sanders
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Hans J Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Eleni Nastouli
- Advanced Pathogens Diagnostic Unit, Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London W1T 4EU, UK; The Francis Crick Institute, London NW1 1AT, UK; Great Ormond Street Institute for Child Health, Infection, Immunity and Inflammation, University College London, London WC1N 1EH, UK
| | - Katie J Doores
- School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Marit J van Gils
- Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Laura E McCoy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK.
| |
Collapse
|
986
|
Elyanow R, Snyder TM, Dalai SC, Gittelman RM, Boonyaratanakornkit J, Wald A, Selke S, Wener MH, Morishima C, Greninger AL, Holbrook MR, Kaplan IM, Zahid HJ, Carlson JM, Baldo L, Manley T, Robins HS, Koelle DM. T-cell receptor sequencing identifies prior SARS-CoV-2 infection and correlates with neutralizing antibody titers and disease severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.19.21251426. [PMID: 33791723 PMCID: PMC8010755 DOI: 10.1101/2021.03.19.21251426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Measuring the adaptive immune response to SARS-CoV-2 can enable the assessment of past infection as well as protective immunity and the risk of reinfection. While neutralizing antibody (nAb) titers are one measure of protection, such assays are challenging to perform at a large scale and the longevity of the SARS-CoV-2 nAb response is not fully understood. Here, we apply a T-cell receptor (TCR) sequencing assay that can be performed on a small volume standard blood sample to assess the adaptive T-cell response to SARS-CoV-2 infection. Samples were collected from a cohort of 302 individuals recovered from COVID-19 up to 6 months after infection. Previously published findings in this cohort showed that two commercially available SARS-CoV-2 serologic assays correlate well with nAb testing. We demonstrate that the magnitude of the SARS-CoV-2-specific T-cell response strongly correlates with nAb titer, as well as clinical indicators of disease severity including hospitalization, fever, or difficulty breathing. While the depth and breadth of the T-cell response declines during convalescence, the T-cell signal remains well above background with high sensitivity up to at least 6 months following initial infection. Compared to serology tests detecting binding antibodies to SARS-CoV-2 spike and nucleoprotein, the overall sensitivity of the TCR-based assay across the entire cohort and all timepoints was approximately 5% greater for identifying prior SARS-CoV-2 infection. Notably, the improved performance of T-cell testing compared to serology was most apparent in recovered individuals who were not hospitalized and were sampled beyond 150 days of their initial illness, suggesting that antibody testing may have reduced sensitivity in individuals who experienced less severe COVID-19 illness and at later timepoints. Finally, T-cell testing was able to identify SARS-CoV-2 infection in 68% (55/81) of convalescent samples having nAb titers below the lower limit of detection, as well as 37% (13/35) of samples testing negative by all three antibody assays. These results demonstrate the utility of a TCR-based assay as a scalable, reliable measure of past SARS-CoV-2 infection across a spectrum of disease severity. Additionally, the TCR repertoire may be useful as a surrogate for protective immunity with additive clinical value beyond serologic or nAb testing methods.
Collapse
Affiliation(s)
| | | | - Sudeb C. Dalai
- Adaptive Biotechnologies, Seattle, Washington, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Jim Boonyaratanakornkit
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Mark H. Wener
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Chihiro Morishima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alex L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michael R. Holbrook
- National Institute of Allergy and Infectious Diseases Integrated Research Facility, Frederick, Maryland, USA
| | | | | | | | - Lance Baldo
- Adaptive Biotechnologies, Seattle, Washington, USA
| | | | | | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| |
Collapse
|
987
|
Dicken SJ, Murray MJ, Thorne LG, Reuschl AK, Forrest C, Ganeshalingham M, Muir L, Kalemera MD, Palor M, McCoy LE, Jolly C, Towers GJ, Reeves MB, Grove J. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.22.436468. [PMID: 33791702 PMCID: PMC8010729 DOI: 10.1101/2021.03.22.436468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent emergence of SARS-CoV-2 variants with increased transmission, pathogenesis and immune resistance has jeopardised the global response to the COVID-19 pandemic. Determining the fundamental biology of viral variants and understanding their evolutionary trajectories will guide current mitigation measures, future genetic surveillance and vaccination strategies. Here we examine virus entry by the B.1.1.7 lineage, commonly referred to as the UK/Kent variant. Pseudovirus infection of model cell lines demonstrate that B.1.1.7 entry is enhanced relative to the Wuhan-Hu-1 reference strain, particularly under low expression of receptor ACE2. Moreover, the entry characteristics of B.1.1.7 were distinct from that of its predecessor strain containing the D614G mutation. These data suggest evolutionary tuning of spike protein function. Additionally, we found that amino acid deletions within the N-terminal domain (NTD) of spike were important for efficient entry by B.1.1.7. The NTD is a hotspot of diversity across sarbecoviruses, therefore, we further investigated this region by examining the entry of closely related CoVs. Surprisingly, Pangolin CoV spike entry was 50-100 fold enhanced relative to SARS-CoV-2; suggesting there may be evolutionary pathways by which SARSCoV-2 may further optimise entry. Swapping the NTD between Pangolin CoV and SARS-CoV-2 demonstrates that changes in this region alone have the capacity to enhance virus entry. Thus, the NTD plays a hitherto unrecognised role in modulating spike activity, warranting further investigation and surveillance of NTD mutations.
Collapse
Affiliation(s)
- Samuel J Dicken
- Division of Infection and Immunity, University College London, UK
| | - Matthew J Murray
- Division of Infection and Immunity, University College London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, UK
| | | | - Calum Forrest
- Division of Infection and Immunity, University College London, UK
| | | | - Luke Muir
- Division of Infection and Immunity, University College London, UK
| | | | - Machaela Palor
- Division of Infection and Immunity, University College London, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, UK
| | - Matthew B Reeves
- Division of Infection and Immunity, University College London, UK
| | - Joe Grove
- Division of Infection and Immunity, University College London, UK
| |
Collapse
|
988
|
Abstract
In the year since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and with understanding of the etiology of the coronavirus disease 2019 (COVID-19) pandemic, it has become clear that most infected individuals achieve some form of immunity against the virus with relatively few reported reinfections. A number of vaccines have already achieved emergency use authorization based on data from large phase 3 field efficacy clinical trials. However, our knowledge about the extent and durability of this immunity, and the breadth of vaccine coverage against SARS-CoV-2 variants is still evolving. In this narrative review, we summarize the latest and rapidly developing understanding of immunity to SARS-CoV-2 infection, including what we have learned about the key antigens of SARS-CoV-2 (i.e., the spike protein and its receptor-binding domain), their importance in vaccine development, the immediate immune response to SARS-CoV-2, breadth of coverage of emerging SARS-CoV-2 variants, contributions of preexisting immunity to related coronaviruses, and duration of immunity. We also discuss lessons from newer approaches, such as systems serology, that provide insights into molecular and cellular immune responses elicited and how they relate to the trajectory of infection, and potentially inform immune correlates of protection. We also briefly examine the limited research literature on immune responses in special populations, such as pregnant women and children.
Collapse
Affiliation(s)
- Jaime Fergie
- Department of Pediatric Infectious Diseases, Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Amit Srivastava
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, United States
| |
Collapse
|
989
|
Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F, Caskey M, Gaebler C, Cho A, Agudelo M, Finkin S, Wang Z, Poston D, Muecksch F, Hatziioannou T, Bieniasz PD, Robbiani DF, Nussenzweig MC, Bjorkman PJ, Bloom JD. Mutational escape from the polyclonal antibody response to SARS-CoV-2 infection is largely shaped by a single class of antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.17.435863. [PMID: 33758856 PMCID: PMC7987015 DOI: 10.1101/2021.03.17.435863] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting a variety of epitopes have been isolated from individuals previously infected with SARS-CoV-2, but the relative contributions of these different antibody classes to the polyclonal response remains unclear. Here we use a yeast-display system to map all mutations to the viral spike receptor-binding domain (RBD) that escape binding by representatives of three potently neutralizing classes of anti-RBD antibodies with high-resolution structures. We compare the antibody-escape maps to similar maps for convalescent polyclonal plasma, including plasma from individuals from whom some of the antibodies were isolated. The plasma-escape maps most closely resemble those of a single class of antibodies that target an epitope on the RBD that includes site E484. Therefore, although the human immune system can produce antibodies that target diverse RBD epitopes, in practice the polyclonal response to infection is dominated by a single class of antibodies targeting an epitope that is already undergoing rapid evolution.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D. Bieniasz
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), 6500 Bellinzona, Switzerland
| | - Michel C. Nussenzweig
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
990
|
Tauzin A, Nayrac M, Benlarbi M, Gong SY, Gasser R, Beaudoin-Bussières G, Brassard N, Laumaea A, Vézina D, Prévost J, Anand SP, Bourassa C, Gendron-Lepage G, Medjahed H, Goyette G, Niessl J, Tastet O, Gokool L, Morrisseau C, Arlotto P, Stamatatos L, McGuire AT, Larochelle C, Uchil P, Lu M, Mothes W, Serres GD, Moreira S, Roger M, Richard J, Martel-Laferrière V, Duerr R, Tremblay C, Kaufmann DE, Finzi A. A single BNT162b2 mRNA dose elicits antibodies with Fc-mediated effector functions and boost pre-existing humoral and T cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33758857 DOI: 10.1101/2021.03.18.435972] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The standard dosing of the Pfizer/BioNTech BNT162b2 mRNA vaccine validated in clinical trials includes two doses administered three weeks apart. While the decision by some public health authorities to space the doses because of limiting supply has raised concerns about vaccine efficacy, data indicate that a single dose is up to 90% effective starting 14 days after its administration. We analyzed humoral and T cells responses three weeks after a single dose of this mRNA vaccine. Despite the proven efficacy of the vaccine at this time point, no neutralizing activity were elicited in SARS-CoV-2 naïve individuals. However, we detected strong anti-receptor binding domain (RBD) and Spike antibodies with Fc-mediated effector functions and cellular responses dominated by the CD4 + T cell component. A single dose of this mRNA vaccine to individuals previously infected by SARS-CoV-2 boosted all humoral and T cell responses measured, with strong correlations between T helper and antibody immunity. Neutralizing responses were increased in both potency and breadth, with distinctive capacity to neutralize emerging variant strains. Our results highlight the importance of vaccinating uninfected and previously-infected individuals and shed new light into the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support to spacing the doses of two-vaccine regimens to vaccinate a larger pool of the population in the context of vaccine scarcity against SARS-CoV-2.
Collapse
|
991
|
Huang SW, Wang SF. SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity. Int J Mol Sci 2021; 22:3060. [PMID: 33802729 PMCID: PMC8002537 DOI: 10.3390/ijms22063060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to display particular patterns of genetic diversity in the genome across geographical regions. These variations in the virus and genetic variation in human populations can determine virus transmissibility and coronavirus disease 2019 (COVID-19) severity. Genetic variations and immune differences in human populations could be the driving forces in viral evolution. Recently emerged SARS-CoV-2 variants show several mutations at the receptor binding domain in the spike (S) glycoprotein and contribute to immune escape and enhanced binding with angiotensin 1-converting enzyme 2 (ACE2). Since ACE2 and transmembrane protease serine 2 (TMPRSS2) play important roles in SARS-CoV-2 entry into the cell, genetic variation in these host entry-related proteins may be a driving force for positive selection in the SARS-CoV-2 S glycoprotein. Dendritic or liver/lymph cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin is also known to play vital roles in several pathogens. Genetic variations of these host proteins may affect the susceptibility to SARS-CoV-2. This review summarizes the latest research to describe the impacts of genetic variation in the viral S glycoprotein and critical host proteins and aims to provide better insights for understanding transmission and pathogenesis and more broadly for developing vaccine/antiviral drugs and precision medicine strategies, especially for high risk populations with genetic risk variants.
Collapse
Affiliation(s)
- Szu-Wei Huang
- Model Development Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Clinical Microbiology Laboratory, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
992
|
Walls AC, Miranda MC, Pham MN, Schäfer A, Greaney A, Arunachalam PS, Navarro MJ, Tortorici MA, Rogers K, O'Connor MA, Shireff L, Ferrell DE, Brunette N, Kepl E, Bowen J, Zepeda SK, Starr T, Hsieh CL, Fiala B, Wrenn S, Pettie D, Sydeman C, Johnson M, Blackstone A, Ravichandran R, Ogohara C, Carter L, Tilles SW, Rappuoli R, O'Hagan DT, Van Der Most R, Van Voorhis WC, McLellan JS, Kleanthous H, Sheahan TP, Fuller DH, Villinger F, Bloom J, Pulendran B, Baric R, King N, Veesler D. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.15.435528. [PMID: 33758839 PMCID: PMC7986998 DOI: 10.1101/2021.03.15.435528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the ability of SARS-CoV-2 vaccine-elicited antibodies to neutralize and protect against emerging variants of concern and other sarbecoviruses is key for guiding vaccine development decisions and public health policies. We show that a clinical stage multivalent SARS-CoV-2 receptor-binding domain nanoparticle vaccine (SARS-CoV-2 RBD-NP) protects mice from SARS-CoV-2-induced disease after a single shot, indicating that the vaccine could allow dose-sparing. SARS-CoV-2 RBD-NP elicits high antibody titers in two non-human primate (NHP) models against multiple distinct RBD antigenic sites known to be recognized by neutralizing antibodies. We benchmarked NHP serum neutralizing activity elicited by RBD-NP against a lead prefusion-stabilized SARS-CoV-2 spike immunogen using a panel of single-residue spike mutants detected in clinical isolates as well as the B.1.1.7 and B.1.351 variants of concern. Polyclonal antibodies elicited by both vaccines are resilient to most RBD mutations tested, but the E484K substitution has similar negative consequences for neutralization, and exhibit modest but comparable neutralization breadth against distantly related sarbecoviruses. We demonstrate that mosaic and cocktail sarbecovirus RBD-NPs elicit broad sarbecovirus neutralizing activity, including against the SARS-CoV-2 B.1.351 variant, and protect mice against severe SARS-CoV challenge even in the absence of the SARS-CoV RBD in the vaccine. This study provides proof of principle that sarbecovirus RBD-NPs induce heterotypic protection and enables advancement of broadly protective sarbecovirus vaccines to the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Allison Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary-Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Kenneth Rogers
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, 70560 USA
| | - Megan A O'Connor
- Washington National Primate Research Center, Seattle, WA 98121, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Lisa Shireff
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, 70560 USA
| | - Douglas E Ferrell
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, 70560 USA
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tyler Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Sasha W Tilles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | - Wesley C Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Deborah H Fuller
- Washington National Primate Research Center, Seattle, WA 98121, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA, 70560 USA
| | - Jesse Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Neil King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
993
|
Gobeil SMC, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, Kopp MF, Manne K, Saunders K, Edwards RJ, Haynes BF, Henderson RC, Acharya P. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33758838 DOI: 10.1101/2021.03.11.435037] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New SARS-CoV-2 variants that have accumulated multiple mutations in the spike (S) glycoprotein enable increased transmission and resistance to neutralizing antibodies. Here, we study the antigenic and structural impacts of the S protein mutations from four variants, one that was involved in transmission between minks and humans, and three that rapidly spread in human populations and originated in the United Kingdom, Brazil or South Africa. All variants either retained or improved binding to the ACE2 receptor. The B.1.1.7 (UK) and B.1.1.28 (Brazil) spike variants showed reduced binding to neutralizing NTD and RBD antibodies, respectively, while the B.1.351 (SA) variant showed reduced binding to both NTD- and RBD-directed antibodies. Cryo-EM structural analyses revealed allosteric effects of the mutations on spike conformations and revealed mechanistic differences that either drive inter-species transmission or promotes viral escape from dominant neutralizing epitopes. Highlights Cryo-EM structures reveal changes in SARS-CoV-2 S protein during inter-species transmission or immune evasion.Adaptation to mink resulted in increased ACE2 binding and spike destabilization.B.1.1.7 S mutations reveal an intricate balance of stabilizing and destabilizing effects that impact receptor and antibody binding.E484K mutation in B.1.351 and B.1.1.28 S proteins drives immune evasion by altering RBD conformation.S protein uses different mechanisms to converge upon similar solutions for altering RBD up/down positioning.
Collapse
|
994
|
Gómez CE, Perdiguero B, Esteban M. Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19. Vaccines (Basel) 2021; 9:243. [PMID: 33799505 PMCID: PMC7999234 DOI: 10.3390/vaccines9030243] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants in different continents is causing a major concern in human global health. These variants have in common a higher transmissibility, becoming dominant within populations in a short time, and an accumulation of a high number of mutations in the spike (S) protein, especially within the amino terminal domain (NTD) and the receptor binding domain (RBD). These mutations have direct implications on virus infection rates through higher affinity of S RBD for the cellular angiotensin-converting enzyme-2 (ACE-2) receptor. There are also signs of enhanced virulence, re-infection frequency, and increased resistance to the action of monoclonal and polyclonal antibodies from convalescence sera and in vaccinated individuals in regions where the variants spread dominantly. In this review, we describe the different SARS-CoV-2 variants that have thus far been identified in various parts of the world with mutational changes and biological properties as well as their impact in medical countermeasures and human health.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Centro Nacional de Biotecnología, Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | | | - Mariano Esteban
- Centro Nacional de Biotecnología, Department of Molecular and Cellular Biology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
995
|
Sun D, Sang Z, Kim YJ, Xiang Y, Cohen T, Belford AK, Huet A, Conway JF, Sun J, Taylor DJ, Schneidman-Duhovny D, Zhang C, Huang W, Shi Y. Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting novel and conserved epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.09.434592. [PMID: 33758850 PMCID: PMC7987009 DOI: 10.1101/2021.03.09.434592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an urgent need to develop effective interventions resistant to the evolving variants of SARS-CoV-2. Nanobodies (Nbs) are stable and cost-effective agents that can be delivered by novel aerosolization route to treat SARS-CoV-2 infections efficiently. However, it remains unknown if they possess broadly neutralizing activities against the prevalent circulating strains. We found that potent neutralizing Nbs are highly resistant to the convergent variants of concern that evade a large panel of neutralizing antibodies (Abs) and significantly reduce the activities of convalescent or vaccine-elicited sera. Subsequent determination of 9 high-resolution structures involving 6 potent neutralizing Nbs by cryoelectron microscopy reveals conserved and novel epitopes on virus spike inaccessible to Abs. Systematic structural comparison of neutralizing Abs and Nbs provides critical insights into how Nbs uniquely target the spike to achieve high-affinity and broadly neutralizing activity against the evolving virus. Our study will inform the rational design of novel pan-coronavirus vaccines and therapeutics.
Collapse
Affiliation(s)
- Dapeng Sun
- Department of Pharmacology and Chemical Biology, University of Pittsburgh
| | - Zhe Sang
- The University of Pittsburgh and Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, PA, USA
| | - Yong Joon Kim
- Department of Cell Biology, University of Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, PA, USA
| | - Tomer Cohen
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh
| | | | - Ji Sun
- Department of Structure Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Derek J. Taylor
- Department of Pharmacology, Case Western Reserve University, Clevaland, OH, USA
- Department of Biochemistry, Case Western Reserve University, Clevaland, OH, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Clevaland, OH, USA
| | - Yi Shi
- The University of Pittsburgh and Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
996
|
Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V, Glantz H, Neradilek M, Seydoux E, Jennewein MF, MacCamy AJ, Feng J, Mize G, De Rosa SC, Finzi A, Lemos MP, Cohen KW, Moodie Z, McElrath MJ, McGuire AT. A single mRNA immunization boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.05.21251182. [PMID: 33758873 PMCID: PMC7987032 DOI: 10.1101/2021.02.05.21251182] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naive donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naïve donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Julie Czartoski
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Leah J. Homad
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Vanessa Rubin
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Hayley Glantz
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Moni Neradilek
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Madeleine F. Jennewein
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Anna J. MacCamy
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Gregory Mize
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Stephen C. De Rosa
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Maria P. Lemos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kristen W. Cohen
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Zoe Moodie
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - M. Juliana McElrath
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T. McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
997
|
Santiago L, Uranga-Murillo I, Arias M, González-Ramírez AM, Macías-León J, Moreo E, Redrado S, García-García A, Taleb V, Lira-Navarrete E, Hurtado-Guerrero R, Aguilo N, del Mar Encabo-Berzosa M, Hidalgo S, Galvez EM, Ramirez-Labrada A, de Miguel D, Benito R, Miranda P, Fernández A, Domingo JM, Serrano L, Yuste C, Villanueva-Saz S, Paño-Pardo JR, Pardo J. Determination of the Concentration of IgG against the Spike Receptor-Binding Domain That Predicts the Viral Neutralizing Activity of Convalescent Plasma and Serum against SARS-CoV-2. BIOLOGY 2021; 10:208. [PMID: 33801808 PMCID: PMC8001978 DOI: 10.3390/biology10030208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022]
Abstract
Several hundred millions of people have been diagnosed of coronavirus disease 2019 (COVID-19), causing millions of deaths and a high socioeconomic burden. SARS-CoV-2, the causative agent of COVID-19, induces both specific T- and B-cell responses, being antibodies against the virus detected a few days after infection. Passive immunization with hyperimmune plasma from convalescent patients has been proposed as a potentially useful treatment for COVID-19. Using an in-house quantitative ELISA test, we found that plasma from 177 convalescent donors contained IgG antibodies specific to the spike receptor-binding domain (RBD) of SARS-CoV-2, although at very different concentrations which correlated with previous disease severity and gender. Anti-RBD IgG plasma concentrations significantly correlated with the plasma viral neutralizing activity (VN) against SARS-CoV-2 in vitro. Similar results were found using an independent cohort of serum from 168 convalescent health workers. These results validate an in-house RBD IgG ELISA test in a large cohort of COVID-19 convalescent patients and indicate that plasma from all convalescent donors does not contain a high enough amount of anti-SARS-CoV-2-RBD neutralizing IgG to prevent SARS-CoV-2 infection in vitro. The use of quantitative anti-RBD IgG detection systems might help to predict the efficacy of the passive immunization using plasma from patients recovered from SARS-CoV-2.
Collapse
Affiliation(s)
- Llipsy Santiago
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
| | - Iratxe Uranga-Murillo
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
| | - Maykel Arias
- Instituto de Carboquímica (ICB), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain; (M.A.); (S.R.); (E.M.G.)
| | - Andrés Manuel González-Ramírez
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Javier Macías-León
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Eduardo Moreo
- Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; (E.M.); (N.A.)
| | - Sergio Redrado
- Instituto de Carboquímica (ICB), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain; (M.A.); (S.R.); (E.M.G.)
| | - Ana García-García
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Víctor Taleb
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Erandi Lira-Navarrete
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain; (A.M.G.-R.); (J.M.-L.); (A.G.-G.); (V.T.); (E.L.-N.); (R.H.-G.)
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
- Laboratorio de Microscopías Avanzada (LMA), Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nacho Aguilo
- Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; (E.M.); (N.A.)
| | | | - Sandra Hidalgo
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
| | - Eva M. Galvez
- Instituto de Carboquímica (ICB), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain; (M.A.); (S.R.); (E.M.G.)
| | - Ariel Ramirez-Labrada
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Diego de Miguel
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
| | - Rafael Benito
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
- Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; (E.M.); (N.A.)
- Servicio de Microbiología, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Patricia Miranda
- Banco de Sangre y Tejidos de Aragón, 50009 Zaragoza, Spain; (P.M.); (J.M.D.)
| | - Antonio Fernández
- Department Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain;
| | - José María Domingo
- Banco de Sangre y Tejidos de Aragón, 50009 Zaragoza, Spain; (P.M.); (J.M.D.)
| | - Laura Serrano
- Servicio de Prevención de Riesgos Laborales, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain; (L.S.); (C.Y.)
| | - Cristina Yuste
- Servicio de Prevención de Riesgos Laborales, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain; (L.S.); (C.Y.)
| | - Sergio Villanueva-Saz
- Department Pharmacology and Physiology, University of Zaragoza, 50013 Zaragoza, Spain;
| | - José Ramón Paño-Pardo
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
- Servicio de Enfermedades Infecciosas, Hospital Clinico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Julián Pardo
- Biomedical Research Centre of Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; (L.S.); (I.U.-M.); (S.H.); (D.d.M.); (R.B.)
- Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; (E.M.); (N.A.)
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
- Centro de Investigación Biomédicaen Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Madrid, Spain
| |
Collapse
|
998
|
Tong P, Gautam A, Windsor I, Travers M, Chen Y, Garcia N, Whiteman NB, McKay LG, Lelis FJ, Habibi S, Cai Y, Rennick LJ, Duprex WP, McCarthy KR, Lavine CL, Zuo T, Lin J, Zuiani A, Feldman J, MacDonald EA, Hauser BM, Griffths A, Seaman MS, Schmidt AG, Chen B, Neuberg D, Bajic G, Harrison SC, Wesemann DR. Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.10.434840. [PMID: 33758863 PMCID: PMC7987022 DOI: 10.1101/2021.03.10.434840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with an unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded monoclonal antibodies (mAbs) from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found 7 major mAb competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of mAb-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. mAbs that competed for binding the original S isolate bound differentially to S variants, suggesting the protective importance of otherwise-redundant recognition. The results furnish a global atlas of the S-specific memory B cell repertoire and illustrate properties conferring robustness against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pei Tong
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avneesh Gautam
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian Windsor
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Meghan Travers
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuezhou Chen
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Garcia
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noah B. Whiteman
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay G.A. McKay
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02115, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02115, USA
| | - Felipe J.N. Lelis
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaghayegh Habibi
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yongfei Cai
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Linda J. Rennick
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- The Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - W. Paul Duprex
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- The Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Kevin R. McCarthy
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- The Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA
| | - Christy L. Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Teng Zuo
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junrui Lin
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Zuiani
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Elizabeth A. MacDonald
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Blake M. Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Anthony Griffths
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02115, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02115, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Harvard Medical School, Boston MA 02115
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Bing Chen
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Goran Bajic
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Duane R. Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
999
|
Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 2021; 29:463-476.e6. [PMID: 33592168 PMCID: PMC7869748 DOI: 10.1016/j.chom.2021.02.003] [Citation(s) in RCA: 835] [Impact Index Per Article: 208.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The evolution of SARS-CoV-2 could impair recognition of the virus by human antibody-mediated immunity. To facilitate prospective surveillance for such evolution, we map how convalescent plasma antibodies are impacted by all mutations to the spike's receptor-binding domain (RBD), the main target of plasma neutralizing activity. Binding by polyclonal plasma antibodies is affected by mutations in three main epitopes in the RBD, but longitudinal samples reveal that the impact of these mutations on antibody binding varies substantially both among individuals and within the same individual over time. Despite this inter- and intra-person heterogeneity, the mutations that most reduce antibody binding usually occur at just a few sites in the RBD's receptor-binding motif. The most important site is E484, where neutralization by some plasma is reduced >10-fold by several mutations, including one in the emerging 20H/501Y.V2 and 20J/501Y.V3 SARS-CoV-2 lineages. Going forward, these plasma escape maps can inform surveillance of SARS-CoV-2 evolution.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Binding Sites
- COVID-19/virology
- Cell Line
- Female
- Humans
- Male
- Middle Aged
- Mutation
- Prospective Studies
- Protein Binding
- Protein Domains
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Young Adult
Collapse
Affiliation(s)
- Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Keara D Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
1000
|
Kronbichler A, Anders HJ, Fernandez-Juárez GM, Floege J, Goumenos D, Segelmark M, Tesar V, Turkmen K, van Kooten C, Bruchfeld A. Recommendations for the use of COVID-19 vaccines in patients with immune-mediated kidney diseases. Nephrol Dial Transplant 2021; 36:gfab064. [PMID: 33693778 PMCID: PMC7989374 DOI: 10.1093/ndt/gfab064] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus Disease 19 (COVID-19) vaccine platforms are becoming available and are the most promising strategy to curb the spread of SARS-CoV-2 infections. However, numerous uncertainties exist regarding the pros and cons of vaccination, especially in patients with (immune-mediated) kidney diseases on immunosuppressive drugs. Here, members of the Immunonephrology Working Group (IWG) of the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) discuss thirteen frequently-asked questions regarding safety and efficacy of the most promising vaccine candidates. Post-marketing surveillance should be performed to estimate the rate of vaccine response (humoral and cellular) of different vaccine platforms, and surveillance of disease activity following administration of COVID-19 vaccines. Some of the candidates induce signaling pathways which also promote autoimmune kidney diseases, e.g. type I interferons in systemic lupus erythematosus. Efficacy estimates would thus far favor the use of selected COVID-19 vaccines, such as BNT162b2, mRNA-1273 or Gam-COVID-Vac. Humoral immune response after vaccination should be monitored using appropriate assays. Even in the absence of neutralizing antibodies patients might be protected by a sufficient cellular immune response capable to reduce severity of COVID-19. A reduced vaccine response after the use of CD20-depleting agents is anticipated, and it is particularly important to discuss strategies to improve vaccine response with these patients. Distancing and shielding measures remain important as not all vaccines fully protect from coronavirus infection. In-depth information about the most pressing vaccine questions is essential to reduce vaccine hesitancy of patients.
Collapse
Affiliation(s)
- Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany
| | | | - Jürgen Floege
- Division of Nephrology, RTWH Aachen University Hospital, Aachen, Germany
| | - Dimitrios Goumenos
- Department of Nephrology and Renal Transplantation, Patras University Hospital, Patras, Greece
| | - Mårten Segelmark
- Division of Nephrology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kultigin Turkmen
- Division of Nephrology, Department of Internal Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Cees van Kooten
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette Bruchfeld
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|