951
|
Jin M, Qian Z, Yin J, Xu W, Zhou X. The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med 2019; 23:2343-2350. [PMID: 30712327 PMCID: PMC6433673 DOI: 10.1111/jcmm.14195] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/01/2019] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence has indicated that intestinal microbiota is involved in the development of various human diseases, including cardiovascular diseases (CVDs). In the recent years, both human and animal experiments have revealed that alterations in the composition and function of intestinal flora, recognized as gut microflora dysbiosis, can accelerate the progression of CVDs. Moreover, intestinal flora metabolizes the diet ingested by the host into a series of metabolites, including trimethylamine N-oxide, short chain fatty acids, secondary bile acid and indoxyl sulfate, which affects the host physiological processes by activation of numerous signalling pathways. The aim of this review was to summarize the role of gut microbiota in the pathogenesis of CVDs, including coronary artery disease, hypertension and heart failure, which may provide valuable insights into potential therapeutic strategies for CVD that involve interfering with the composition, function and metabolites of the intestinal flora.
Collapse
Affiliation(s)
- Mengchao Jin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiting Xu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
952
|
Morris DJ, Brem AS. Role of gut metabolism of adrenal corticosteroids and hypertension: clues gut-cleansing antibiotics give us. Physiol Genomics 2019; 51:83-89. [PMID: 30681907 DOI: 10.1152/physiolgenomics.00115.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intestinal bacteria can metabolize sterols, bile acids, steroid hormones, dietary proteins, fiber, foodstuffs, and short chain fatty acids. The metabolic products generated by some of these intestinal bacteria have been linked to a number of systemic diseases including obesity with Type 2 diabetes mellitus, some forms of inflammation, and more recently, systemic hypertension. In this review, we primarily focus on the potential role selected gut bacteria play in metabolizing the endogenous glucocorticoids corticosterone and cortisol. Those generated steroid metabolites, when reabsorbed in the intestine back into the circulation, produce biological effects most notably as inhibitors of 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2. Inhibition of the dehydrogenase actions of 11β-HSD, particularly in kidney and vascular tissue, allows both corticosterone and cortisol the ability to bind to and activate mineralocorticoid receptors with attended changes in sodium handling and vascular resistance leading to increases in blood pressure. In several animal models of hypertension, administration of gut-cleansing antibiotics results in transient resolution of hypertension and transfer of intestinal contents from a hypertensive animal to a normotensive animal produces hypertension in the recipient. Moreover, fecal samples from hypertensive humans transplanted into germ-free mice resulted in hypertension in the recipient mice. Thus, it appears that the intestinal microbiome may not just be an innocent bystander but certain perturbations in the type and number of bacteria may directly or indirectly affect hypertension and other diseases.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University , Providence, Rhode Island
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Rhode Island Hospital, Warren Alpert Medical School of Brown University , Providence, Rhode Island
| |
Collapse
|
953
|
Chen YY, Chen DQ, Chen L, Liu JR, Vaziri ND, Guo Y, Zhao YY. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med 2019; 17:5. [PMID: 30602367 PMCID: PMC6317198 DOI: 10.1186/s12967-018-1756-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Dysbiosis represents changes in composition and structure of the gut microbiome community (microbiome), which may dictate the physiological phenotype (health or disease). Recent technological advances and efforts in metagenomic and metabolomic analyses have led to a dramatical growth in our understanding of microbiome, but still, the mechanisms underlying gut microbiome–host interactions in healthy or diseased state remain elusive and their elucidation is in infancy. Disruption of the normal gut microbiota may lead to intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation. Excessive uremic toxins are produced as a result of gut microbiota alteration, including indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide, all implicated in the variant processes of kidney diseases development. This review focuses on the pathogenic association between gut microbiota and kidney diseases (the gut–kidney axis), covering CKD, IgA nephropathy, nephrolithiasis, hypertension, acute kidney injury, hemodialysis and peritoneal dialysis in clinic. Targeted interventions including probiotic, prebiotic and symbiotic measures are discussed for their potential of re-establishing symbiosis, and more effective strategies for the treatment of kidney diseases patients are suggested. The novel insights into the dysbiosis of the gut microbiota in kidney diseases are helpful to develop novel therapeutic strategies for preventing or attenuating kidney diseases and complications.![]()
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Jing-Ru Liu
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.,Department of Internal Medicine, University of New Mexico, Albuquerque, 87131, USA
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
954
|
Chen Z, Hui PC, Hui M, Yeoh YK, Wong PY, Chan MCW, Wong MCS, Ng SC, Chan FKL, Chan PKS. Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling. mSystems 2019; 4:e00271-18. [PMID: 30834331 PMCID: PMC6392095 DOI: 10.1128/msystems.00271-18] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
Proper preservation of stool samples to minimize microbial community shifts and inactivate infectious agents is important for self-collected specimens requiring shipment to laboratories when cold chain transport is not feasible. In this study, we evaluated the performance of six preservation solutions (Norgen, OMNI, RNAlater, CURNA, HEMA, and Shield) for these aspects. Following storage of human stool samples with these preservatives at room temperature for 7 days, three hypervariable regions of the bacterial 16S rRNA gene (V1-V2, V3-V4, and V4) were amplicon sequenced. We found that samples collected in two preservatives, Norgen and OMNI, showed the least shift in community composition relative to -80°C standards compared with other storage conditions, and both efficiently inhibited the growth of aerobic and anaerobic bacteria. RNAlater did not prevent bacterial activity and exhibited relatively larger community shift. Although the effect of preservation solution was small compared to intersubject variation, notable changes in microbiota composition were observed, which could create biases in downstream data analysis. When community profiles inferred from different 16S rRNA gene hypervariable regions were compared, we found differential sensitivity of primer sets in identifying overall microbial community and certain bacterial taxa. For example, reads generated by the V4 primer pair showed a higher alpha diversity of the gut microbial community. The degenerate 27f-YM primer failed to detect the majority of Bifidobacteriales. Our data indicate that choice of preservation solution and 16S rRNA gene primer pair are critical determinants affecting gut microbiota profiling. IMPORTANCE Large-scale human microbiota studies require specimens collected from multiple sites and/or time points to maximize detection of the small effects in microbe-host interactions. However, batch biases caused by experimental protocols, such as sample collection, massively parallel sequencing, and bioinformatics analyses, remain critical and should be minimized. This work evaluated the effects of preservation solutions and bacterial 16S rRNA gene primer pairs in revealing human gut microbiota composition. Since notable changes in detecting bacterial composition and abundance were observed among choice of preservatives and primer pairs, a consistent methodology is essential in minimizing their effects to facilitate comparisons between data sets.
Collapse
Affiliation(s)
- Zigui Chen
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pak Chun Hui
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mamie Hui
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kit Yeoh
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Po Yee Wong
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin C. W. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin C. S. Wong
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew C. Ng
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- LKS Institute of Health Science, State Key Laboratory of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Francis K. L. Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Centre for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
955
|
Dan X, Mushi Z, Baili W, Han L, Enqi W, Huanhu Z, Shuchun L. Differential Analysis of Hypertension-Associated Intestinal Microbiota. Int J Med Sci 2019; 16:872-881. [PMID: 31337961 PMCID: PMC6643114 DOI: 10.7150/ijms.29322] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
Hypertension is the main risk factor for cerebral stroke and death resulting from cerebral stroke. Current association studies on hypertension and intestinal microbiota focus on patients with hypertension (HTN); however, no investigations involving patients with isolated diastolic hypertension (IDH) or systolic hypertension (SH) have been conducted to date. In this study, fecal samples from 62 cases with normal blood pressure (BP) and 67 cases with high BP were used for 16S amplicon sequencing. Sixty-one cases of HTN and 61 corresponding cases with normal BP were obtained by propensity score matching (PSM), and differential analysis was conducted using the DEseq2 package. PSM was also used to match six IDH patients with six controls and to match 35 cases of SH with 35 controls. There were 54 differential genera between the HTN and normal BP groups, and there were five differential genera between the IDH and normal BP groups. There were 38 differential genera between the SH and normal BP groups, including Christensenella. Bayesian network analysis showed that variations in BP influenced microbial abundance. Pearson's correlation analysis showed that bacterial abundance is correlated with BP. Significant differences between the intestinal microbiota of high and normal BP groups were observed. Gut microbiota dysbiosis differed among HTN, IDH, and SH patients. In particular, diastolic blood pressure (DBP) and systolic blood pressure (SBP) were related to different intestinal microbiota.
Collapse
Affiliation(s)
- Xie Dan
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of education, Beijing 100081, P.R. China
| | - Zhang Mushi
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of education, Beijing 100081, P.R. China
| | - Wang Baili
- School Hospital, Minzu University of China, Beijing 100081, China
| | - Lin Han
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of education, Beijing 100081, P.R. China
| | - Wu Enqi
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of education, Beijing 100081, P.R. China
| | - Zhao Huanhu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of education, Beijing 100081, P.R. China
| | - Li Shuchun
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of education, Beijing 100081, P.R. China
| |
Collapse
|
956
|
Han M, Yang P, Zhong C, Ning K. The Human Gut Virome in Hypertension. Front Microbiol 2018; 9:3150. [PMID: 30619215 PMCID: PMC6305721 DOI: 10.3389/fmicb.2018.03150] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives: Previous studies have reported that the gut microbiome has an important link with the development of hypertension. Though previous researches have focused on the links of gut bacteria with hypertension, little has been known about the linkage of gut viruses to hypertension and the development of hypertension, largely due to the lack of data mining tools for such investigation. In this work, we have analyzed 196 fecal metagenomic data related to hypertension aiming to profile the gut virome and link the gut virome to pre-hypertension and hypertension. Design: Here, we have applied a statistically sound method for mining of gut virome data and linking gut virome to hypertension. We characterized the viral composition and bacterial composition of 196 samples, identified the viral-type of each sample and linked gut virome to hypertension. Results: We stratified these 196 fecal samples into two viral-types and selected 32 viruses as the biomarkers for these groups. We found that viruses could have a superior resolution and discrimination power than bacteria for differentiation of healthy samples and pre-hypertension samples, as well as hypertension samples. Moreover, as to the co-occurrence networks linking viruses and bacteria, we found increasingly pervasive virus-bacteria linkages from healthy people to pre-hypertension people to hypertension patients. Conclusion: Overall, our results have shown ample indications of the link between human gut virome and hypertension, and could help provide microbial solutions toward early diagnoses of hypertension.
Collapse
Affiliation(s)
- Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
957
|
Wun K, Theriault BR, Pierre JF, Chen EB, Leone VA, Harris KG, Xiong L, Jiang Q, Spedale M, Eskandari OM, Chang EB, Ho KJ. Microbiota control acute arterial inflammation and neointimal hyperplasia development after arterial injury. PLoS One 2018; 13:e0208426. [PMID: 30521585 PMCID: PMC6283560 DOI: 10.1371/journal.pone.0208426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The microbiome has a functional role in a number of inflammatory processes and disease states. While neointimal hyperplasia development has been linked to inflammation, a direct role of the microbiota in neointimal hyperplasia has not yet been established. Germ-free (GF) mice are an invaluable model for studying causative links between commensal organisms and the host. We hypothesized that GF mice would exhibit altered neointimal hyperplasia following carotid ligation compared to conventionally raised (CONV-R) mice. METHODS Twenty-week-old male C57BL/6 GF mice underwent left carotid ligation under sterile conditions. Maintenance of sterility was assessed by cultivation and 16S rRNA qPCR of stool. Neointimal hyperplasia was assessed by morphometric and histologic analysis of arterial sections after 28 days. Local arterial cell proliferation and inflammation was assessed by immunofluorescence for Ki67 and inflammatory cell markers at five days. Systemic inflammation was assessed by multiplex immunoassays of serum. CONV-R mice treated in the same manner served as the control cohort. GF and CONV-R mice were compared using standard statistical methods. RESULTS All GF mice remained sterile during the entire study period. Twenty-eight days after carotid ligation, CONV-R mice had significantly more neointimal hyperplasia development compared to GF mice, as assessed by intima area, media area, intima+media area, and intima area/(intima+media) area. The collagen content of the neointimal lesions appeared qualitatively similar on Masson's trichrome staining. There was significantly reduced Ki67 immunoreactivity in the media and adventitia of GF carotid arteries 5 days after ligation. GF mice also had increased arterial infiltration of anti-inflammatory M2 macrophages compared to CONV-R mouse arteries and a reduced proportion of mature neutrophils. GF mice had significantly reduced serum IFN-γ-inducible protein (IP)-10 and MIP-2 5 days after carotid ligation, suggesting a reduced systemic inflammatory response. CONCLUSIONS GF mice have attenuated neointimal hyperplasia development compared to CONV-R mice, which is likely related to altered kinetics of wound healing and acute inflammation. Recognizing the role of commensals in the regulation of arterial remodeling will provide a deeper understanding of the pathophysiology of restenosis and support strategies to treat or reduce restenosis risk by manipulating microbiota.
Collapse
Affiliation(s)
- Kelly Wun
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Betty R. Theriault
- Department of Surgery and Animal Resources Center, University of Chicago, Chicago, IL, United States of America
| | - Joseph F. Pierre
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Edmund B. Chen
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Vanessa A. Leone
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Katharine G. Harris
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Liqun Xiong
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Qun Jiang
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Melanie Spedale
- Department of Surgery and Animal Resources Center, University of Chicago, Chicago, IL, United States of America
| | - Owen M. Eskandari
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| | - Eugene B. Chang
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL, United States of America
| | - Karen J. Ho
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
958
|
Tribe RM, Taylor PD, Kelly NM, Rees D, Sandall J, Kennedy HP. Parturition and the perinatal period: can mode of delivery impact on the future health of the neonate? J Physiol 2018; 596:5709-5722. [PMID: 29533463 PMCID: PMC6265543 DOI: 10.1113/jp275429] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
Caesarean section and instrumental delivery rates are increasing in many parts of the world for a range of cultural and medical reasons, with limited consideration as to how 'mode of delivery' may impact on childhood and long-term health. However, babies born particularly by pre-labour caesarean section appear to have a subtly different physiology from those born by normal vaginal delivery, with both acute and chronic complications such as respiratory and cardio-metabolic morbidities being apparent. It has been hypothesized that inherent mechanisms within the process of labour and vaginal delivery, far from being a passive mechanical process by which the fetus and placenta are expelled from the birth canal, may trigger certain protective developmental processes permissive for normal immunological and physiological development of the fetus postnatally. Traditionally the primary candidate mechanism has been the hormonal surges or stress response associated with labour and vaginal delivery, but there is increasing awareness that transfer of the maternal microbiome to the infant during parturition. Transgenerational transmission of disease traits through epigenetics are also likely to be important. Interventions such as probiotics, neonatal gut seeding and different approaches to clinical care have potential to influence parturition physiology and improve outcomes for infants.
Collapse
Affiliation(s)
- R. M. Tribe
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - P. D. Taylor
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - N. M. Kelly
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - D. Rees
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - J. Sandall
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Hospital CampusKing's College LondonLondon SE1 7EHUK
| | - H. P. Kennedy
- Yale School of Nursing400 West Campus DriveWest HavenCT 06516USA
| |
Collapse
|
959
|
Taniguchi H, Tanisawa K, Sun X, Kubo T, Hoshino Y, Hosokawa M, Takeyama H, Higuchi M. Effects of short-term endurance exercise on gut microbiota in elderly men. Physiol Rep 2018; 6:e13935. [PMID: 30536648 PMCID: PMC6286434 DOI: 10.14814/phy2.13935] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Regular exercise reduces the risks for cardiovascular diseases. Although the gut microbiota has been associated with fitness level and cardiometabolic risk factors, the effects of exercise-induced gut microbiota changes in elderly individuals are unclear. This study evaluated whether endurance exercise modulates the gut microbiota in elderly subjects, and whether these changes are associated with host cardiometabolic phenotypes. In a randomized crossover trial, 33 elderly Japanese men participated in a 5-week endurance exercise program. 16S rRNA gene-based metagenomic analyses revealed that the effect of endurance exercise on gut microbiota diversity was not greater than interindividual differences, whereas changes in α-diversity indices during intervention were negatively correlated with changes in systolic and diastolic blood pressure, especially during exercise. Microbial composition analyses showed that the relative abundance of Clostridium difficile significantly decreased, whereas that of Oscillospira significantly increased during exercise as compared to the control period. The changes in these taxa were correlated with the changes in several cardiometabolic risk factors. The findings indicate that short-term endurance exercise has little effect on gut microbiota in elderly individuals, and that the changes in gut microbiota were associated with cardiometabolic risk factors, such as systolic and diastolic blood pressure, providing preliminary insight into the associations between the gut microbiota and cardiometabolic phenotypes.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Division of Applied Life SciencesGraduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Kumpei Tanisawa
- Department of Physical Activity ResearchNational Institutes of Biomedical InnovationHealth and NutritionTokyoJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
- Institute of Advanced Active Aging ResearchTokorozawaJapan
| | - Xiaomin Sun
- Department of Nutrition and Food SafetySchool of Public HealthXi’ an Jiaotong UniversityXi'anChina
- Global Health InstituteXi'an Jiaotong University Health Science CenterXi'anChina
- Faculty of Sport SciencesWaseda UniversityTokorozawaJapan
| | - Takafumi Kubo
- Graduate School of Sport SciencesWaseda UniversityTokorozawaJapan
| | - Yuri Hoshino
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Masahito Hosokawa
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Haruko Takeyama
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Mitsuru Higuchi
- Institute of Advanced Active Aging ResearchTokorozawaJapan
- Faculty of Sport SciencesWaseda UniversityTokorozawaJapan
| |
Collapse
|
960
|
Yu Y, Mao G, Wang J, Zhu L, Lv X, Tong Q, Fang Y, Lv Y, Wang G. Gut dysbiosis is associated with the reduced exercise capacity of elderly patients with hypertension. Hypertens Res 2018; 41:1036-1044. [PMID: 30291307 PMCID: PMC8076014 DOI: 10.1038/s41440-018-0110-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/22/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
Hypertension is a global health issue, and a reduced exercise capacity is unavoidable for older people. According to recent clinical studies, the intestinal microbiota play a crucial role in the pathogenesis of many human diseases. We investigated whether specific alterations in the gut microbiota contribute to the reduced exercise capacity of elderly patients with hypertension. This study enrolled 56 subjects, and all patients performed a cardiopulmonary exercise test and underwent fecal bacteria sequencing (16 s ribosomal RNA V4 region). According to peak oxygen uptake values, patients were divided into three groups (Weber A = 19, Weber B = 20, and Weber C = 17). The alpha diversity was not significantly different among the three groups. Regarding the beta diversity, Weber A samples were separate from the other two groups in the nonmetric multidimensional scaling ordination plot (ANOSIM pairwise comparisons generated an R > 0.5; p < 0.05). The abundance of Betaproteobacteria, Burkholderiales, Alcaligenaceae, Faecalibacterium and Ruminococcaceae was diminished in subjects with a reduced exercise capacity (LDA score > 4.0). Escherichia coli are a primary producer of trimethylamine and inflammation in the human gut, and the abundance of this bacteria was increased in patients with a reduced exercise capacity (LDA score > 4.0). On the other hand, Lachnospiraceae-Eubacterium_hallii_group, Lachnospiraceae-Lachnoclostridium, Lachnospiraceae-Blautia-Ruminococcus_sp__5_1_39BFAA, and Ruminococcaceae-Faecalibacterium belong to the order Clostridiales that are likely to produce short-chain fatty acids (LDA score > 4.0), and some of these species were enriched in the Weber B or Weber C group in multiple comparisons. Our data pointed to an altered gut microbiota as a potential contributor to the pathogenesis and progression of the reduced exercise capacity of elderly patients with hypertension.
Collapse
Affiliation(s)
- Yanbo Yu
- Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
- Department of Geriatrics, Xinchang People's Hospital, 312500, Shaoxing, Zhejiang, China
| | - Genxiang Mao
- Department of Geriatrics, Zhejiang Hospital, 310013, Hangzhou, Zhejiang, China
| | - Jirong Wang
- Department of Geriatrics, Zhejiang Hospital, 310013, Hangzhou, Zhejiang, China
| | - Liyue Zhu
- Department of Geriatrics, Zhejiang Hospital, 310013, Hangzhou, Zhejiang, China
| | - Xiaoling Lv
- Department of Geriatrics, Zhejiang Hospital, 310013, Hangzhou, Zhejiang, China
| | - Qian Tong
- Department of Geriatrics, Zhejiang Hospital, 310013, Hangzhou, Zhejiang, China
| | - Yefei Fang
- Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yinxiang Lv
- Department of Oncology, Xinchang People's Hospital, 312500, Shaoxing, Zhejiang, China.
| | - Guofu Wang
- Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
- Department of Geriatrics, Zhejiang Hospital, 310013, Hangzhou, Zhejiang, China.
| |
Collapse
|
961
|
Lucking EF, O'Connor KM, Strain CR, Fouhy F, Bastiaanssen TFS, Burns DP, Golubeva AV, Stanton C, Clarke G, Cryan JF, O'Halloran KD. Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea-pigs. EBioMedicine 2018; 38:191-205. [PMID: 30446434 PMCID: PMC6306383 DOI: 10.1016/j.ebiom.2018.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Carotid body (peripheral oxygen sensor) sensitisation is pivotal in the development of chronic intermittent hypoxia (CIH)-induced hypertension. We sought to determine if exposure to CIH, modelling human sleep apnoea, adversely affects cardiorespiratory control in guinea-pigs, a species with hypoxia-insensitive carotid bodies. We reasoned that CIH-induced disruption of gut microbiota would evoke cardiorespiratory morbidity. METHODS Adult male guinea-pigs were exposed to CIH (6.5% O2 at nadir, 6 cycles.hour-1) for 8 h.day-1 for 12 consecutive days. FINDINGS CIH-exposed animals established reduced faecal microbiota species richness, with increased relative abundance of Bacteroidetes and reduced relative abundance of Firmicutes bacteria. Urinary corticosterone and noradrenaline levels were unchanged in CIH-exposed animals, but brainstem noradrenaline concentrations were lower compared with sham. Baseline ventilation was equivalent in CIH-exposed and sham animals; however, respiratory timing variability, sigh frequency and ventilation during hypoxic breathing were all lower in CIH-exposed animals. Baseline arterial blood pressure was unaffected by exposure to CIH, but β-adrenoceptor-dependent tachycardia and blunted bradycardia during phenylephrine-induced pressor responses was evident compared with sham controls. INTERPRETATION Increased carotid body chemo-afferent signalling appears obligatory for the development of CIH-induced hypertension and elevated chemoreflex control of breathing commonly reported in mammals, with hypoxia-sensitive carotid bodies. However, we reveal that exposure to modest CIH alters gut microbiota richness and composition, brainstem neurochemistry, and autonomic control of heart rate, independent of carotid body sensitisation, suggesting modulation of breathing and autonomic homeostasis via the microbiota-gut-brainstem axis. The findings have relevance to human sleep-disordered breathing. FUNDING The Department of Physiology, and APC Microbiome Ireland, UCC.
Collapse
Affiliation(s)
- Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
962
|
Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients 2018; 10:nu10111651. [PMID: 30400297 PMCID: PMC6266067 DOI: 10.3390/nu10111651] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Resveratrol is a polyphenol which has been shown to have beneficial effects on metabolic syndrome-related alterations in experimental animals, including glucose and lipid homeostasis improvement and a reduction in fat mass, blood pressure, low-grade inflammation, and oxidative stress. Clinical trials have been carried out to address its potential; however, results are still inconclusive. Even though resveratrol is partly metabolized by gut microbiota, the relevance of this “forgotten organ” had not been widely considered. However, in the past few years, data has emerged suggesting that the therapeutic potential of this compound may be due to its interaction with gut microbiota, reporting changes in bacterial composition associated with beneficial metabolic outcomes. Even though data is still scarce and for the most part observational, it is promising nevertheless, suggesting that resveratrol supplementation could be a useful tool for the treatment of metabolic syndrome and its associated conditions.
Collapse
|
963
|
Tindall AM, Petersen KS, Lamendella R, Shearer GC, Murray-Kolb LE, Proctor DN, Kris-Etherton PM. Tree Nut Consumption and Adipose Tissue Mass: Mechanisms of Action. Curr Dev Nutr 2018; 2:nzy069. [PMID: 30488045 PMCID: PMC6252345 DOI: 10.1093/cdn/nzy069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 01/03/2023] Open
Abstract
There is concern that tree nuts may cause weight gain due to their energy density, yet evidence shows that tree nuts do not adversely affect weight status. Epidemiologic and experimental studies have shown a reduced risk of chronic diseases with tree nut consumption without an increased risk of weight gain. In fact, tree nuts may protect against weight gain and benefit weight-loss interventions. However, the relation between tree nut consumption and adiposity is not well understood at the mechanistic level. This review summarizes the proposed underlying mechanisms that might account for this relation. Evidence suggests that tree nuts may affect adiposity through appetite control, displacement of unfavorable nutrients, increased diet-induced thermogenesis, availability of metabolizable energy, antiobesity action of bioactive compounds, and improved functionality of the gut microbiome. The gut microbiome is a common factor among these mechanisms and may mediate, in part, the relation between tree nut consumption and reduced adiposity. Further research is needed to understand the impact of tree nuts on the gut microbiome and how the gut microbial environment affects the nutrient absorption and metabolism of tree nuts. The evidence to date suggests that tree nut consumption favorably affects body composition through different mechanisms that involve the gut microbiome. A better understanding of these mechanisms will contribute to the evolving science base that addresses the causes and treatments for overweight and obesity.
Collapse
Affiliation(s)
- Alyssa M Tindall
- Departments of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Kristina S Petersen
- Departments of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | | | - Gregory C Shearer
- Departments of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Laura E Murray-Kolb
- Departments of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - David N Proctor
- Departments of Kinesiology, The Pennsylvania State University, University Park, PA
| | - Penny M Kris-Etherton
- Departments of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
964
|
Abais-Battad JM, Mattson DL. Influence of dietary protein on Dahl salt-sensitive hypertension: a potential role for gut microbiota. Am J Physiol Regul Integr Comp Physiol 2018; 315:R907-R914. [PMID: 30133303 PMCID: PMC6295491 DOI: 10.1152/ajpregu.00399.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
High blood pressure affects 1.39 billion adults across the globe and is the leading preventable cause of death worldwide. Hypertension is a multifaceted disease with known genetic and environmental factors contributing to its progression. Our studies utilizing the Dahl salt-sensitive (SS) rat have demonstrated the remarkable influence of dietary protein and maternal environment on the development of hypertension and renal damage in response to high salt. There is growing interest in the relationship between the microbiome and hypertension, with gut dysbiosis being correlated to a number of pathologies. This review summarizes the current literature regarding the interplay among dietary protein, the gut microbiota, and hypertension. These studies may provide insight into the effects we have observed between diet and hypertension in Dahl SS rats and, we hope, lead to new perspectives where potential dietary interventions or microbiota manipulations could serve as plausible therapies for hypertension.
Collapse
Affiliation(s)
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
965
|
Peng J, Xiao X, Hu M, Zhang X. Interaction between gut microbiome and cardiovascular disease. Life Sci 2018; 214:153-157. [PMID: 30385177 DOI: 10.1016/j.lfs.2018.10.063] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/17/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023]
Abstract
Traditional cardiovascular risk factors do not underlie all incidence of cardiovascular disease. In recent years, accumulating evidence has demonstrated that gut microbiota and its metabolites also play a pivotal role in the onset and development of cardiovascular disease, including atherosclerosis, hypertension, heart failure, atrial fibrillation and myocardial fibrosis. Trillions of bacteria indwell the gastrointestinal tract and metabolize nutrients into trimethylamine-N-oxide, short-chain fatty acids and so on. Targeting these microorganisms and relevant metabolic pathways has beneficial effects in cardiovascular disease. This review will summarize the role of gut microbiota and its metabolites, mainly trimethylamine-N-oxide, in the pathogenesis of cardiovascular diseases, and discuss the possible mechanisms that drive cardiovascular diseases and highlight potential therapies in this field.
Collapse
Affiliation(s)
- Jieting Peng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xun Xiao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
966
|
Malik M, Suboc TM, Tyagi S, Salzman N, Wang J, Ying R, Tanner MJ, Kakarla M, Baker JE, Widlansky ME. Lactobacillus plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease. Circ Res 2018; 123:1091-1102. [PMID: 30355158 PMCID: PMC6205737 DOI: 10.1161/circresaha.118.313565] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/26/2018] [Indexed: 01/16/2023]
Abstract
RATIONALE A strong association has emerged between the gut microbiome and atherosclerotic disease. Our recent data suggest Lactobacillus plantarum 299v (Lp299v) supplementation reduces infarct size in male rats. Limited human data are available on the impact of Lp299v on the vasculature. OBJECTIVE To determine whether oral Lp299v supplementation improves vascular endothelial function and reduces systemic inflammation in humans with stable coronary artery disease (CAD). METHODS AND RESULTS Twenty men with stable CAD consumed a drink containing Lp299v (20 billion CFU) once daily for 6 weeks. After a 4-week washout, subjects were given an option of additionally participating in a 10-day study of oral liquid vancomycin (250 mg QID). Vascular endothelial function was measured by brachial artery flow-mediated dilation. Before and after Lp299v, plasma short-chain fatty acids, trimethylamine oxide, and adipokine levels were measured. Additional plasma samples underwent unbiased metabolomic analyses using liquid chromatography/mass spectroscopy. 16S rRNA sequencing was used to determine changes of the stool microbiome. Arterioles from patients with CAD were obtained, and endothelium-dependent vasodilation was measured by video microscopy after intraluminal incubation with plasma from Lp299v study subjects. Lp299v supplementation improved brachial flow-mediated dilation ( P=0.008) without significant changes in plasma cholesterol profiles, fasting glucose, or body mass index. Vancomycin did not impact flow-mediated dilation. Lp299v supplementation decreased circulating levels of IL (interleukin)-8 ( P=0.01), IL-12 ( P=0.02), and leptin ( P=0.0007) but did not significantly change plasma trimethylamine oxide concentrations ( P=0.27). Plasma propionate ( P=0.004) increased, whereas acetate levels decreased ( P=0.03). Post-Lp299v plasma improved endothelium-dependent vasodilation in resistance arteries from patients with CAD ( P=0.02).16S rRNA analysis showed the Lactobacillus genus was enriched in postprobiotic stool samples without other changes. CONCLUSIONS Lp299v improved vascular endothelial function and decreased systemic inflammation in men with CAD, independent of changes in traditional risk factors and trimethylamine oxide. Circulating gut-derived metabolites likely account for these improvements and merit further study. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov . Unique identifier: NCT01952834.
Collapse
Affiliation(s)
- Mobin Malik
- Department of Medicine, Division of Cardiovascular Medicine, Milwaukee, WI, USA
| | - Tisha M. Suboc
- Department of Medicine, Division of Cardiovascular Medicine, Milwaukee, WI, USA
| | - Sudhi Tyagi
- Department of Medicine, Division of Cardiovascular Medicine, Milwaukee, WI, USA
| | - Nita Salzman
- Departments of Pediatrics and Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jingli Wang
- Department of Medicine, Division of Cardiovascular Medicine, Milwaukee, WI, USA
| | - Rong Ying
- Department of Medicine, Division of Cardiovascular Medicine, Milwaukee, WI, USA
| | - Michael J. Tanner
- Department of Medicine, Division of Cardiovascular Medicine, Milwaukee, WI, USA
| | - Mamatha Kakarla
- Department of Medicine, Division of Cardiovascular Medicine, Milwaukee, WI, USA
| | - John E. Baker
- Department of Surgery, Division of Congenital Cardiac Surgery and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael E. Widlansky
- Department of Medicine, Division of Cardiovascular Medicine and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
967
|
Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients. Sci Rep 2018; 8:14305. [PMID: 30250232 PMCID: PMC6155189 DOI: 10.1038/s41598-018-32675-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/28/2018] [Indexed: 11/08/2022] Open
Abstract
Human intestinal microbes can mediate development of arthritis – Studies indicate that certain bacterial nucleic acids may exist in synovial fluid (SF) and could be involved in arthritis, although the underlying mechanism remains unclear. To characterize potential SF bacterial nucleic acids, we used 16S rRNA gene amplicon sequencing to assess bacterial nucleic acid communities in 15 synovial tissue (ST) and 110 SF samples from 125 patients with rheumatoid arthritis (RA) and 16 ST and 42 SF samples from 58 patients with osteoarthritis (OA). Our results showed an abundant diversity of bacterial nucleic acids in these clinical samples, including presence of Porphyromonas and Bacteroides in all 183 samples. Agrobacterium, Comamonas, Kocuria, Meiothermus, and Rhodoplanes were more abundant in synovial tissues of rheumatoid arthritis (STRA). Atopobium, Phascolarctobacterium, Rhodotorula mucilaginosa, Bacteroides uniformis, Rothia, Megasphaera, Turicibacter, Leptotrichia, Haemophilus parainfluenzae, Bacteroides fragilis, Porphyromonas, and Streptococcus were more abundant in synovial tissues of osteoarthritis (STOA). Veillonella dispar, Haemophilus parainfluenzae, Prevotella copri and Treponema amylovorum were more abundant in synovial fluid of rheumatoid arthritis (SFRA), while Bacteroides caccae was more abundant in the synovial fluid of osteoarthritis (SFOA). Overall, this study confirms existence of bacterial nucleic acids in SF and ST samples of RA and OA lesions and reveals potential correlations with degree of disease.
Collapse
|
968
|
Drapkina OM, Shirobokikh OE. Role of Gut Microbiota in the Pathogenesis of Cardiovascular Diseases and Metabolic Syndrome. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2018. [DOI: 10.20996/1819-6446-2018-14-4-567-574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of gut microbiota in the pathogenesis of cardiovascular diseases (CVD) and metabolic syndrome has attracted massive attention in the past decade. Accumulating evidence has revealed that the metabolic potential of gut microbiota can be identified as a contributing factor in the development of atherosclerosis, hypertension, heart failure, obesity, diabetes mellitus. The gut-host interaction occurs through many pathways including trimethylamine-N-oxide pathway (TMAO), short-chain fatty acids and second bile acids pathways. TMAO (the hepatic oxidation product of the microbial metabolite of trimethylamine) enhances platelet hyperreactivity and thrombosis risk and predicts major adverse cardiovascular events. Short-chain fatty acids and second bile acids, which are produced with the help of microbiota, can modulate host lipid metabolism as well as carbohydrate metabolism through several receptors such as G-protein-coupled receptors 41,43, farnesoid X-receptor, Takeda-G-protein-receptor-5. This way microbiota can impact host lipid levels, processes of weight gain, insulin sensitivity. Besides these metabolism-dependent pathways, there are some other pathways, which link microbiota and the pathogenesis of CVD. For example, lipopolysaccharide, the major component of the outer bacterial membrane, causes metabolic endotoxemia and low-grade systemic inflammation and contribute this way to obesity and progression of heart failure and atherosclerosis. This review aims to illustrate the complex interplay between microbiota, their metabolites, and the development and progression of CVD and metabolic syndrome. It is also discussed how modulating of gut microbiota composition and function through diet, prebiotics, probiotics and fecal microbiota transplantation can become a novel therapeutic and preventative target for CVD and metabolic syndrome. Many questions remain unresolved in this field and undoubtedly further studies are needed.
Collapse
|
969
|
Tindall AM, Petersen KS, Kris-Etherton PM. Dietary Patterns Affect the Gut Microbiome-The Link to Risk of Cardiometabolic Diseases. J Nutr 2018; 148:1402-1407. [PMID: 30184227 PMCID: PMC7263841 DOI: 10.1093/jn/nxy141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/25/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Clusters of bacterial species within the gut microenvironment, or gut enterotype, have been correlated with cardiometabolic disease risk. The metabolic products and metabolites that bacteria produce, such as short-chain fatty acids, secondary bile acids, and trimethylamine, may also affect the microbial community and disease risk. Diet has a direct impact on the gut microenvironment by providing substrates to and promoting the colonization of resident bacteria. To date, few dietary patterns have been evaluated for their effect on the gut microbiome, but the Mediterranean diet and Vegetarian diets have shown favorable effects for both the gut microbiome and cardiometabolic disease risk. This review examines the gut microbiome as a mediator between these dietary patterns and cardiometabolic disease risk.
Collapse
Affiliation(s)
- Alyssa M Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
970
|
Abstract
The microbiome has received increasing attention over the last 15 years. Although gut microbes have been explored for several decades, investigations of the role of microorganisms that reside in the human gut has attracted much attention beyond classical infectious diseases. For example, numerous studies have reported changes in the gut microbiota during not only obesity, diabetes, and liver diseases but also cancer and even neurodegenerative diseases. The human gut microbiota is viewed as a potential source of novel therapeutics. Between 2013 and 2017, the number of publications focusing on the gut microbiota was, remarkably, 12 900, which represents four-fifths of the total number of publications over the last 40 years that investigated this topic. This review discusses recent evidence of the impact of the gut microbiota on metabolic disorders and focus on selected key mechanisms. This review also aims to provide a critical analysis of the current knowledge in this field, identify putative key issues or problems and discuss misinterpretations. The abundance of metagenomic data generated on comparing diseased and healthy subjects can lead to the erroneous claim that a bacterium is causally linked with the protection or the onset of a disease. In fact, environmental factors such as dietary habits, drug treatments, intestinal motility and stool frequency and consistency are all factors that influence the composition of the microbiota and should be considered. The cases of the bacteria Prevotella copri and Akkermansia muciniphila will be discussed as key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group, Université catholique de Louvain, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Brussels, Belgium
| |
Collapse
|
971
|
Robles-Vera I, Toral M, de la Visitación N, Sánchez M, Romero M, Olivares M, Jiménez R, Duarte J. The Probiotic Lactobacillus fermentum
Prevents Dysbiosis and Vascular Oxidative Stress in Rats with Hypertension Induced by Chronic Nitric Oxide Blockade. Mol Nutr Food Res 2018; 62:e1800298. [DOI: 10.1002/mnfr.201800298] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
| | - Marta Toral
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
| | | | - Manuel Sánchez
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
| | - Miguel Romero
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica; Departamento de Investigación BIOSEARCH S.A.; 18004 Granada Spain
| | - Rosario Jiménez
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
- CIBERCV; 18071 Granada Spain
| | - Juan Duarte
- Department of Pharmacology; School of Pharmacy; University of Granada; 18071 Granada Spain
- Instituto de Investigación Biosanitaria de Granada; 18012 Granada Spain
- Centro de Investigaciones Biomedicas (CIBM); 18100 Granada Spain
| |
Collapse
|
972
|
Zhu J, Liao M, Yao Z, Liang W, Li Q, Liu J, Yang H, Ji Y, Wei W, Tan A, Liang S, Chen Y, Lin H, Zhu X, Huang S, Tian J, Tang R, Wang Q, Mo Z. Breast cancer in postmenopausal women is associated with an altered gut metagenome. MICROBIOME 2018; 6:136. [PMID: 30081953 PMCID: PMC6080540 DOI: 10.1186/s40168-018-0515-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/10/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Increasing evidence suggests that gut microbiota play a role in the pathogenesis of breast cancer. The composition and functional capacity of gut microbiota associated with breast cancer have not been studied systematically. METHODS We performed a comprehensive shotgun metagenomic analysis of 18 premenopausal breast cancer patients, 25 premenopausal healthy controls, 44 postmenopausal breast cancer patients, and 46 postmenopausal healthy controls. RESULTS Microbial diversity was higher in breast cancer patients than in controls. Relative species abundance in gut microbiota did not differ significantly between premenopausal breast cancer patients and premenopausal controls. In contrast, relative abundance of 45 species differed significantly between postmenopausal patients and postmenopausal controls: 38 species were enriched in postmenopausal patients, including Escherichia coli, Klebsiella sp_1_1_55, Prevotella amnii, Enterococcus gallinarum, Actinomyces sp. HPA0247, Shewanella putrefaciens, and Erwinia amylovora, and 7 species were less abundant in postmenopausal patients, including Eubacterium eligens and Lactobacillus vaginalis. Acinetobacter radioresistens and Enterococcus gallinarum were positively but weakly associated with expression of high-sensitivity C-reactive protein; Shewanella putrefaciens and Erwinia amylovora were positively but weakly associated with estradiol levels. Actinomyces sp. HPA0247 negatively but weakly correlated with CD3+CD8+ T cell numbers. Further characterization of metagenome functional capacity indicated that the gut metagenomes of postmenopausal breast cancer patients were enriched in genes encoding lipopolysaccharide biosynthesis, iron complex transport system, PTS system, secretion system, and beta-oxidation. CONCLUSION The composition and functions of the gut microbial community differ between postmenopausal breast cancer patients and healthy controls. The gut microbiota may regulate or respond to host immunity and metabolic balance. Thus, while cause and effect cannot be determined, there is a reproducible change in the microbiota of treatment-naive patients relative to matched controls.
Collapse
Affiliation(s)
- Jia Zhu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Breast Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Ming Liao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ziting Yao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenying Liang
- Clabee Genomics, Urban Garden Building, Bookstore Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Qibin Li
- Clabee Genomics, Urban Garden Building, Bookstore Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Jianlun Liu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huawei Yang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yinan Ji
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wei Wei
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Aihua Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Chemotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Siyuan Liang
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haisong Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiujuan Zhu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiarong Tian
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ruiqiang Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
973
|
Amar J. Microbiota-Host Crosstalk: A Bridge Between Cardiovascular Risk Factors, Diet, and Cardiovascular Disease. Am J Hypertens 2018; 31:941-944. [PMID: 30016413 DOI: 10.1093/ajh/hpy067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and is also a major cause of disability worldwide. Indeed, even in well-treated patients for hypertension or dyslipidemia, there is still a high cardiovascular risk called residual risk. It is of utmost importance to identify the pathway leading from risk factors to cardiovascular disease to further improve stroke and myocardial infarction prevention. In this review, we presented some of experimental and epidemiological evidences suggesting that microbiota-host crosstalk is involved in this pathway and bridges the gap between cardiovascular risk factors, diet, and cardiovascular residual risk. We considered the 3 participants in this dialogue: the gut microbiota, the intestinal barrier, and bacterial translocation. We analyzed their relations with cardiovascular risk factors and cardiovascular diseases. Also, we presented some of therapeutic strategies aiming to control microbiota to further prevent cardiovascular disease and the take home messages that can be drawn for clinical practice.
Collapse
Affiliation(s)
- Jacques Amar
- Toulouse teaching hospital, Department of arterial Hypertension, CARDIOMET Institute, Toulouse, France
| |
Collapse
|
974
|
Abstract
PURPOSE OF THE REVIEW This review presents the analytical techniques, processing and analytical steps used in metabolomics phenotyping studies, as well as the main results from epidemiological studies on the associations between metabolites and high blood pressure. RECENT FINDINGS A variety of metabolomic approaches have been applied to a range of epidemiological studies to uncover the pathophysiology of high blood pressure. Several pathways have been suggested in relation to blood pressure including the possible role of the gut microflora, inflammatory, oxidative stress, and lipid pathways. Metabolic changes have also been identified associated with blood pressure lowering effects of diets high in fruits and vegetables and low in meat intake. However, the current body of literature on metabolic profiling and blood pressure is still in its infancy, not fully consistent and requires careful interpretation. Metabolic phenotyping is a promising approach to uncover metabolic pathways associated with high blood pressure and throw light into the complex pathophysiology of hypertension.
Collapse
Affiliation(s)
- Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.
| | - Aikaterini Iliou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Health Data Research UK (HDR-UK), London, UK
- Dementia Research Institute at Imperial College London, London, UK
| |
Collapse
|
975
|
Affiliation(s)
- Sasha A Fahme
- From the Center for Global Health, Weill Cornell Medical College, New York, NY (S.A.F., R.P.)
- Department of Internal Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania (S.A.F., R.P.)
| | - Gerald S Bloomfield
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (G.S.B.)
| | - Robert Peck
- From the Center for Global Health, Weill Cornell Medical College, New York, NY (S.A.F., R.P.)
- Department of Internal Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania (S.A.F., R.P.)
- Mwanza Interventions Trial Unit, Tanzania (R.P.)
| |
Collapse
|
976
|
Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res 2018; 197:470-477. [PMID: 29352709 DOI: 10.1016/j.schres.2018.01.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/26/2017] [Accepted: 01/01/2018] [Indexed: 12/20/2022]
Abstract
With the advent of sequencing technology, characterization of schizophrenia with underlying probing of gut microbiome can provide abundant clues for diagnosis and prognosis of schizophrenia. In this study, we first compared the difference of gut microbiota between schizophrenia patients and healthy controls by 16S rRNA sequencing. We further explored whether gut microbiota can be used as a biomarker to assist in the diagnosis of schizophrenia. We restricted inclusion criteria strictly to control confounding bias. Finally, we investigated differences in fecal microbiota between 64 schizophrenia patients and 53 healthy controls. At the phylum level, we found that the abundance of Proteobacteria in the schizophrenia patients was significantly increased. At the genus level, the relative abundance of Succinivibrio, Megasphaera, Collinsella, Clostridium, Klebsiella and Methanobrevibacter was significantly higher whereas the abundance of Blautia, Coprococcus, Roseburia was decreased compared to health controls. The receiver operating characteristic curve analysis demonstrated that 12 significant microbiota biomarkers were capable of being used as diagnostic factors for distinguishing the schizophrenia cohort from those in the control cohort (AUC = 0.837). We performed PICRUSt analysis and found that several metabolic pathways differed significantly between healthy controls and schizophrenia patients, including vitamin B6 and fatty acid. In conclusion, there are some difference of gut microbiota between schizophrenia patients and healthy controls and the insights from this study could be used to develop microbiota-based diagnosis for schizophrenia.
Collapse
|
977
|
Amar J. [Host-microbiota crosstalk and cardiovascular diseases]. Presse Med 2018; 47:775-779. [PMID: 29909161 DOI: 10.1016/j.lpm.2018.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
When analyzing the microbiota-host crosstalk, we have to consider three participants in this dialogue: the gut microbiota, the intestinal barrier and bacterial translocation. Experimental data demonstrate that host microbiota crosstalk plays a causal on the regulation of blood pressure, glucose metabolism and the development of atherosclerosis. Host microbiota crosstalk is associated in humans with main cardiovascular risk factors notably hypertension and type 2 diabetes. Host microbiota crosstalk is associated in humans with the onset of cardiovascular diseases. The Mediterranean diet has proven as proven to be an effective strategy in improving cardiovascular prognosis and in changing gut microbiota.
Collapse
Affiliation(s)
- Jacques Amar
- CHU de Toulouse, ESH excellence center, fédération de cardiologie, service d'hypertension artérielle, 1, avenue du Professeur-Jean-Poulhès, TSA 50032, 31059 Toulouse cedex 9, France.
| |
Collapse
|
978
|
Abstract
PURPOSE OF REVIEW In recent years, an interest in intestinal microbiota-host interactions has increased due to many findings about the impact of gut bacteria on human health and disease. Dysbiosis, a change in the composition of the gut microbiota, has been associated with much pathology, including cardiovascular diseases (CVD). This article will review normal functions of the gut microbiome, its link to CVD, and potential therapeutic interventions. RECENT FINDINGS The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention towards the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, arguably the largest, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to much pathology including chronic kidney disease, atherosclerosis, and hypertension. SUMMARY Although our understanding of gut microbiota-host interactions has increased recently; many questions remain about the mechanistic links between the gut microbiome and CVD. With further research, we may one day be able to add gut microbiota profiles as an assessable risk factor for CVD and target therapies towards the gut microbiota.
Collapse
|
979
|
Serena C, Ceperuelo-Mallafré V, Keiran N, Queipo-Ortuño MI, Bernal R, Gomez-Huelgas R, Urpi-Sarda M, Sabater M, Pérez-Brocal V, Andrés-Lacueva C, Moya A, Tinahones FJ, Fernández-Real JM, Vendrell J, Fernández-Veledo S. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. THE ISME JOURNAL 2018; 12:1642-1657. [PMID: 29434314 PMCID: PMC6018807 DOI: 10.1038/s41396-018-0068-2] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Gut microbiota-related metabolites are potential clinical biomarkers for cardiovascular disease (CVD). Circulating succinate, a metabolite produced by both microbiota and the host, is increased in hypertension, ischemic heart disease, and type 2 diabetes. We aimed to analyze systemic levels of succinate in obesity, a major risk factor for CVD, and its relationship with gut microbiome. We explored the association of circulating succinate with specific metagenomic signatures in cross-sectional and prospective cohorts of Caucasian Spanish subjects. Obesity was associated with elevated levels of circulating succinate concomitant with impaired glucose metabolism. This increase was associated with specific changes in gut microbiota related to succinate metabolism: a higher relative abundance of succinate-producing Prevotellaceae (P) and Veillonellaceae (V), and a lower relative abundance of succinate-consuming Odoribacteraceae (O) and Clostridaceae (C) in obese individuals, with the (P + V/O + C) ratio being a main determinant of plasma succinate. Weight loss intervention decreased (P + V/O + C) ratio coincident with the reduction in circulating succinate. In the spontaneous evolution after good dietary advice, alterations in circulating succinate levels were linked to specific metagenomic signatures associated with carbohydrate metabolism and energy production with independence of body weight change. Our data support the importance of microbe-microbe interactions for the metabolite signature of gut microbiome and uncover succinate as a potential microbiota-derived metabolite related to CVD risk.
Collapse
Affiliation(s)
- Carolina Serena
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Ceperuelo-Mallafré
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Keiran
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Isabel Queipo-Ortuño
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
- CIBER de Obesidad y Nutrición (CIBERObN), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Bernal
- CIBER de Obesidad y Nutrición (CIBERObN), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Medicina Interna, IBIMA, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Ricardo Gomez-Huelgas
- CIBER de Obesidad y Nutrición (CIBERObN), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Medicina Interna, IBIMA, Hospital Regional Universitario de Málaga, 29010, Málaga, Spain
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, 08028, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28028, Spain
| | - Mónica Sabater
- CIBER de Obesidad y Nutrición (CIBERObN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Diabetes Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), València, Spain
- CIBER de Epidemiology y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, 08028, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28028, Spain
| | - Andres Moya
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), València, Spain
- CIBER de Epidemiology y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Integrative Systems Biology, Universitat de València, València, Spain
| | - Francisco J Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga Virgen de la Victoria, Universidad de Málaga, 29010, Málaga, Spain
- CIBER de Obesidad y Nutrición (CIBERObN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Manuel Fernández-Real
- CIBER de Obesidad y Nutrición (CIBERObN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Diabetes Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
| | - Joan Vendrell
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
- Universitat Rovira i Virgili, Tarragona, Spain.
| | - Sonia Fernández-Veledo
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
980
|
González-Sarrías A, Romo-Vaquero M, García-Villalba R, Cortés-Martín A, Selma MV, Espín JC. The Endotoxemia Marker Lipopolysaccharide-Binding Protein is Reduced in Overweight-Obese Subjects Consuming Pomegranate Extract by Modulating the Gut Microbiota: A Randomized Clinical Trial. Mol Nutr Food Res 2018; 62:e1800160. [PMID: 29665619 DOI: 10.1002/mnfr.201800160] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/21/2018] [Indexed: 12/15/2022]
Abstract
SCOPE Gut microbiota dysbiosis, intestinal barrier failure, obesity, metabolic endotoxemia, and pro-inflammatory status promote cardiovascular risk. However, the modulation of the gut microbiome to prevent endotoxemia in obesity has been scarcely studied. We investigated the association between gut microbiota modulation and plasma lipopolysaccharide-binding protein (LBP), a surrogate marker of endotoxemia, in overweight-obese individuals. METHODS AND RESULTS In a randomized trial, 49 overweight-obese subjects (body mass index> 27 kg m-2 ) with mild hypelipidemia daily consumed, in a cross-over fashion, two doses (D1 and D2, lasting 3 weeks each) of pomegranate extract (PE) or placebo alternating with 3 weeks of wash-out periods. A significant decrease (p < 0.05) of plasma LBP and a marginal decrease (p = 0.054) of high-sensitivity C-reactive protein were observed, but only after PE-D2 administration (656 mg phenolics). 16S rDNA sequencing analyses revealed the increase of microorganisms important for maintaining normal balance of gut microbiota and gut barrier function, particularly Bacteroides, Faecalibacterium, Butyricicoccus, Odoribacter, and Butyricimonas. PE-D2 also decreased pro-inflammatory microorganisms including Parvimonas, Methanobrevibacter, and Methanosphaera. Remarkably, plasma LBP reduction was significantly associated (p < 0.05) with both Faecalibacterium and Odoribacter increase and Parvimonas decrease. CONCLUSIONS Consumption of PE decreased endotoxemia in overweight-obese individuals by reshaping the gut microbiota, mainly through the modulation of Faecalibacterium, Odoribacter, and Parvimonas.
Collapse
Affiliation(s)
- Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Campus de Espinardo, Murcia, Spain
| | - María Romo-Vaquero
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Campus de Espinardo, Murcia, Spain
| | - Rocío García-Villalba
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Campus de Espinardo, Murcia, Spain
| | - Adrián Cortés-Martín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Campus de Espinardo, Murcia, Spain
| | - María Victoria Selma
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Campus de Espinardo, Murcia, Spain
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Campus de Espinardo, Murcia, Spain
| |
Collapse
|
981
|
The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 2018; 50:1453-1466. [PMID: 29728993 DOI: 10.1007/s11255-018-1873-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) has been shown to result in profound changes in the composition and functions of the gut microbial flora which by disrupting intestinal epithelial barrier and generating toxic by-products contributes to systemic inflammation and the associated complications. On the other hand, emerging evidence points to the role of the gut microbiota in the development and progression of CKD by provoking inflammation, proteinuria, hypertension, and diabetes. These observations demonstrate the causal interconnection between the gut microbial dysbiosis and CKD. The gut microbiota closely interacts with the inflammatory, renal, cardiovascular, and endocrine systems via metabolic, humoral, and neural signaling pathways, events which can lead to chronic systemic inflammation, proteinuria, hypertension, diabetes, and kidney disease. Given the established role of the gut microbiota in the development and progression of CKD and its complications, favorable modification of the composition and function of the gut microbiome represents an appealing therapeutic target for prevention and treatment of CKD. This review provides an overview of the role of the gut microbial dysbiosis in the pathogenesis of the common causes of CKD including hypertension, diabetes, and proteinuria as well as progression of CKD.
Collapse
|
982
|
Minnifield BA, Aslibekyan SW. The Interplay Between the Microbiome and Cardiovascular Risk. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0142-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
983
|
Han GG, Lee JY, Jin GD, Park J, Choi YH, Kang SK, Chae BJ, Kim EB, Choi YJ. Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment. Sci Rep 2018; 8:6012. [PMID: 29662088 PMCID: PMC5902624 DOI: 10.1038/s41598-018-24508-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
The intestinal microbiota affect various physiological traits of host animals such as brain development, obesity, age, and the immune system. In the swine industry, understanding the relationship between intestinal microbiota and growth stage is essential because growth stage is directly related to the feeding system of pigs, thus we studied the intestinal microbiota of 32 healthy pigs across five sows at 10, 21, 63, 93, and 147 d of ages. The intestinal microbiota were altered with growth of pigs and were separated into three distinct clusters. The relative abundance of several phyla and genera were significantly different between growth stages. We observed co-occurrence pattern of the intestinal microbiota at each growth stage. In addition, we predicted the functions of the intestinal microbiota and confirmed that several KEGG pathways were significantly different between growth stages. We also explored the relationship between the intestinal microbiota and innate factors such as the maternal effect and gender. When pigs were young, innate factors affected on construction of intestinal microbiota, however this tendency was disappeared with growth. Our findings broaden the understanding of microbial ecology, and the results will be used as a reference for investigating host-microbe interactions in the swine industry.
Collapse
Affiliation(s)
- Geon Goo Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jun-Yeong Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Gwi-Deuk Jin
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jongbin Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Yo Han Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Gangwon-do, Republic of Korea
| | - Byung Jo Chae
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Eun Bae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea. .,Division of Applied Animal Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
984
|
Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res 2018; 130:172-179. [DOI: 10.1016/j.phrs.2017.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
985
|
Kang Y, Cai Y. Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies. Clin Res Hepatol Gastroenterol 2018; 42:110-117. [PMID: 29102544 DOI: 10.1016/j.clinre.2017.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Hypertension (HTN) has become a global public health concern and a major risk factor for cardiovascular, cerebrovascular, and kidney diseases. The complex interplay of genetic and environmental influences is important for the development of the disease. Accumulating evidence has illustrated the association of dysbiosis of gut microbiota with hypertension. Certain gut microbial strains may play either a pathogenic or a protective role in the development of hypertension. Oral probiotics can therefore represent a therapeutic approach for hypertension treatment. However, the relevant scientific work has only just begun, and the available data in this field remain limited. Fortunately, recent technological developments that permit identification of microbes and their products using culture-independent molecular detection techniques. In this review, we summarize the role of gut microbiota in hypertension progression, and probiotics in the treatment of hypertension.
Collapse
Affiliation(s)
- Yongbo Kang
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Yue Cai
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Pathogen biology Laboratory, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
986
|
Guirro M, Costa A, Gual-Grau A, Mayneris-Perxachs J, Torrell H, Herrero P, Canela N, Arola L. Multi-omics approach to elucidate the gut microbiota activity: Metaproteomics and metagenomics connection. Electrophoresis 2018; 39:1692-1701. [PMID: 29427518 DOI: 10.1002/elps.201700476] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022]
Abstract
Over the last few years, the application of high-throughput meta-omics methods has provided great progress in improving the knowledge of the gut ecosystem and linking its biodiversity to host health conditions, offering complementary support to classical microbiology. Gut microbiota plays a crucial role in relevant diseases such as obesity or cardiovascular disease (CVD), and its regulation is closely influenced by several factors, such as dietary composition. In fact, polyphenol-rich diets are the most palatable treatment to prevent hypertension associated with CVD, although the polyphenol-microbiota interactions have not been completely elucidated. For this reason, the aim of this study was to evaluate microbiota effect in obese rats supplemented by hesperidin, after being fed with cafeteria or standard diet, using a multi meta-omics approaches combining strategy of metagenomics and metaproteomics analysis. We reported that cafeteria diet induces obesity, resulting in changes in the microbiota composition, which are related to functional alterations at proteome level. In addition, hesperidin supplementation alters microbiota diversity and also proteins involved in important metabolic pathways. Overall, going deeper into strategies to integrate omics sciences is necessary to understand the complex relationships between the host, gut microbiota, and diet.
Collapse
Affiliation(s)
- Maria Guirro
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Tarragona, Spain
| | - Andrea Costa
- Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Spain
| | - Andreu Gual-Grau
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Tarragona, Spain
| | - Jordi Mayneris-Perxachs
- Nutrition and Health Technological Unit, EURECAT-Technology Centre of Catalonia, Reus, Spain
| | - Helena Torrell
- Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Spain
| | - Pol Herrero
- Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Rovira i Virgili University, Tarragona, Spain.,Nutrition and Health Technological Unit, EURECAT-Technology Centre of Catalonia, Reus, Spain
| |
Collapse
|
987
|
Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, Mohammed M, Handberg EM, Richards EM, Pepine CJ, Raizada MK. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 2018; 132:701-718. [PMID: 29507058 PMCID: PMC5955695 DOI: 10.1042/cs20180087] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R2 = 0.5301, P<0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R2 = 0.4608, P<0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN.
Collapse
Affiliation(s)
- Seungbum Kim
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Ruby Goel
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Ashok Kumar
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Yanfei Qi
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Gil Lobaton
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, FL, U.S.A
| | - Mohammed Mohammed
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Eileen M Handberg
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Elaine M Richards
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A.
| | - Mohan K Raizada
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A.
| |
Collapse
|
988
|
Sleep Apnea Morbidity: A Consequence of Microbial-Immune Cross-Talk? Chest 2018; 154:754-759. [PMID: 29548630 DOI: 10.1016/j.chest.2018.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/24/2022] Open
Abstract
OSA has emerged as a highly prevalent public health problem that imposes important mid- and long-term consequences, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. OSA is characterized by increased upper airway resistance, alveolar hypoventilation, and recurrent upper airway obstruction during sleep. Recurrent collapse of the upper airway develops with sleep onset and is associated with both intermittent hypoxemia and sleep fragmentation. The microbiome is a vast and complex polymicrobial ecosystem that coexists with the human organism, and it has been identified as playing significant roles in the development of host immunologic phenotypes. In humans and animal models, changes in gut microbial communities occur with lifestyle behaviors, such as smoking, long-distance travel, dietary preferences, physical exercise, and circadian rhythm disturbances. In parallel, diseases previously attributed in part to lifestyle such as obesity, coronary heart disease, depression, and asthma (also associated with OSA) are now claimed as microbiota related. We therefore posit that altered patterns of sleep and oxygenation, as seen in OSA, will promote specific alterations in gut microbiota that in turn will elicit the immunologic alterations that lead to OSA-induced end-organ morbidities. The present article assesses the potential mechanistic links between OSA-induced changes in gut microbiota and its morbid phenotypes.
Collapse
|
989
|
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA) is a significant risk factor for systemic hypertension and other cardiovascular diseases. While this relationship has been firmly established, a detailed understanding of how OSA leads to hypertension is lacking. This review will examine the emerging idea that the gut microbiota plays a role in the development of hypertension, including that associated with OSA. RECENT FINDINGS Disruption of the normal composition of the gut microbiota, termed dysbiosis, has been identified in a number of metabolic and cardiovascular diseases, including diabetes, obesity, and atherosclerosis. Recently, a number of studies have demonstrated gut dysbiosis in various animal models of hypertension as well as in hypertensive patients. Evidence is now emerging that gut dysbiosis plays a causal role in the development of OSA-induced hypertension. In this review, we will examine the evidence that gut dysbiosis plays a role in OSA-induced hypertension. We will discuss potential mechanisms linking OSA to gut dysbiosis, examine how gut dysbiosis may be linked to hypertension, and highlight how this understanding may be utilized for the development of future therapeutics.
Collapse
Affiliation(s)
- David J Durgan
- Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Room 434D, Houston, TX, 77030, USA.
| |
Collapse
|
990
|
Abstract
In chronic kidney disease (CKD), influx of urea and other retained toxins exerts a change in the gut microbiome. There is decreased number of beneficial bacteria that produce short-chain fatty acids, an essential nutrient for the colonic epithelium, concurrent with an increase in bacteria that produce uremic toxins such as indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide (TMAO). Due to intestinal wall inflammation and degradation of intercellular tight junctions, gut-derived uremic toxins translocate into the bloodstream and exert systemic effects. In this review, we discuss the evidence supporting a role for gut-derived uremic toxins in promoting multiorgan dysfunction via inflammatory, oxidative stress, and apoptosis pathways. End-organ effects include vascular calcification, kidney fibrosis, anemia, impaired immune system, adipocyte dysfunction with insulin resistance, and low turnover bone disease. Higher blood levels of gut-derived uremic toxins are associated with increased cardiovascular events and mortality in the CKD population. Clinical trials that have examined interventions to trap toxic products or reverse gut microbial dysbiosis via oral activated charcoal AST-120, prebiotics and probiotics have not shown impact on cardiovascular or survival outcomes but were limited by sample size and short trials. In summary, the gut microbiome is a major contributor to adverse cardiovascular outcomes and progression of CKD.
Collapse
|
991
|
Jiang Z, Jacob JA, Li J, Wu X, Wei G, Vimalanathan A, Mani R, Nainangu P, Rajadurai UM, Chen B. Influence of diet and dietary nanoparticles on gut dysbiosis. Microb Pathog 2018. [PMID: 29530804 DOI: 10.1016/j.micpath.2018.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human gut comprises of a huge mixture of microorganisms as they had co-existed for millions of years. The change in co-existence of microbial genera leads to dysbiosis, which creates several disorders in humans. Diet and diet associated agents can have a considerable influence on host health by regulating the gut microbiome, which can thereby maintain the homeostasis of the gut. Analysis of the gut microbiome and the agents that can have an influence on the gut need a profound understanding, which is the need of the hour. The current review therefore focuses on the influence of diet and dietary nanoparticles on the gut microbiota and their positive or adverse effect.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China; Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Joe Antony Jacob
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jianyue Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiahui Wu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | | | - Rajesh Mani
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Uma Maheshwari Rajadurai
- Department of Plant Pathology, National Research Centre for Banana, Tiruchirappalli, Tamil Nadu, India
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
992
|
Chen G, Xie M, Dai Z, Wan P, Ye H, Zeng X, Sun Y. Kudingcha and Fuzhuan Brick Tea Prevent Obesity and Modulate Gut Microbiota in High-Fat Diet Fed Mice. Mol Nutr Food Res 2018; 62:e1700485. [DOI: 10.1002/mnfr.201700485] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/28/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Minhao Xie
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Zhuqing Dai
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Peng Wan
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Hong Ye
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Xiaoxiong Zeng
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| | - Yi Sun
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing P.R. China
| |
Collapse
|
993
|
Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M, Rossi M, Wilber S, Green SJ, Hamaker BR, Khazaie K, Voigt RM, Forsyth CB, Keshavarzian A. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes (Basel) 2018; 9:genes9020102. [PMID: 29462896 PMCID: PMC5852598 DOI: 10.3390/genes9020102] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre × cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Nailliw Z Preite
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Marco Rossi
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA.
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Khashayarsha Khazaie
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
- Department of Physiology, Rush University Medical Center, Chicago, IL USA.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht Netherlands.
- Department of Pharmacology, Rush University Medical Center, Chicago, IL USA.
| |
Collapse
|
994
|
Sircana A, De Michieli F, Parente R, Framarin L, Leone N, Berrutti M, Paschetta E, Bongiovanni D, Musso G. Gut microbiota, hypertension and chronic kidney disease: Recent advances. Pharmacol Res 2018; 144:390-408. [PMID: 29378252 DOI: 10.1016/j.phrs.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
A large number of different microbial species populates intestine. Extensive research has studied the entire microbial population and their genes (microbiome) by using metagenomics, metatranscriptomics and metabolomic analysis. Studies suggest that the imbalances of the microbial community causes alterations in the intestinal homeostasis, leading to repercussions on other systems: metabolic, nervous, cardiovascular, immune. These studies have also shown that alterations in the structure and function of the gut microbiota play a key role in the pathogenesis and complications of Hypertension (HTN) and Chronic Kidney Disease (CKD). Increased blood pressure (BP) and CKD are two leading risk factors for cardiovascular disease and their treatment represents a challenge for the clinicians. In this Review, we discuss mechanisms whereby gut microbiota (GM) and its metabolites act on downstream cellular targets to contribute to the pathogenesis of HTN and CKD, and potential therapeutic implications.
Collapse
Affiliation(s)
- Antonio Sircana
- Unità Operativa di Cardiologia, Azienda Ospedaliero Universitaria, Sassari, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Franco De Michieli
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Renato Parente
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Luciana Framarin
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Nicola Leone
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Mara Berrutti
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Elena Paschetta
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Daria Bongiovanni
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Giovanni Musso
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy.
| |
Collapse
|
995
|
Ascher S, Reinhardt C. The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol 2018; 48:564-575. [DOI: 10.1002/eji.201646879] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Stefanie Ascher
- Center for Thrombosis and Hemostasis; University Medical Center Mainz, Johannes Gutenberg University of Mainz; Mainz Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis; University Medical Center Mainz, Johannes Gutenberg University of Mainz; Mainz Germany
- German Center for Cardiovascular Research (DZHK); Partner Site RheinMain; Mainz Germany
| |
Collapse
|
996
|
Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 2018; 8:635. [PMID: 29330424 PMCID: PMC5766622 DOI: 10.1038/s41598-017-18756-2] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
Previous studies suggested a possible gut microbiota dysbiosis in chronic heart failure (CHF). However, direct evidence was lacking. In this study, we investigated the composition and metabolic patterns of gut microbiota in CHF patients to provide direct evidence and comprehensive understanding of gut microbiota dysbiosis in CHF. We enrolled 53 CHF patients and 41 controls. Metagenomic analyses of faecal samples and metabolomic analyses of faecal and plasma samples were then performed. We found that the composition of gut microbiota in CHF was significantly different from controls. Faecalibacterium prausnitzii decrease and Ruminococcus gnavus increase were the essential characteristics in CHF patients' gut microbiota. We also observed an imbalance of gut microbes involved in the metabolism of protective metabolites such as butyrate and harmful metabolites such as trimethylamine N-oxide in CHF patients. Metabolic features of both faecal and plasma samples from CHF patients also significantly changed. Moreover, alterations in faecal and plasma metabolic patterns correlated with gut microbiota dysbiosis in CHF. Taken together, we found that CHF was associated with distinct gut microbiota dysbiosis and pinpointed the specific core bacteria imbalance in CHF, along with correlations between changes in certain metabolites and gut microbes.
Collapse
|
997
|
Azam AB, Azizan EAB. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension. Int J Endocrinol 2018; 2018:7259704. [PMID: 29666641 PMCID: PMC5831899 DOI: 10.1155/2018/7259704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.
Collapse
Affiliation(s)
- Afifah Binti Azam
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Elena Aisha Binti Azizan
- Department of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
998
|
Horne R, Foster JA. Metabolic and Microbiota Measures as Peripheral Biomarkers in Major Depressive Disorder. Front Psychiatry 2018; 9:513. [PMID: 30405455 PMCID: PMC6204462 DOI: 10.3389/fpsyt.2018.00513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Advances in understanding the role of the microbiome in physical and mental health are at the forefront of medical research and hold potential to have a direct impact on precision medicine approaches. In the past 7 years, we have studied the role of microbiota-brain communication on behavior in mouse models using germ-free mice, mice exposed to antibiotics, and healthy specific pathogen free mice. Through our work and that of others, we have seen an amazing increase in our knowledge of how bacteria signal to the brain and the implications this has for psychiatry. Gut microbiota composition and function are influenced both by genetics, age, sex, diet, life experiences, and many other factors of psychiatric and bodily disorders and thus may act as potential biomarkers of the gut-brain axis that could be used in psychiatry and co-morbid conditions. There is a particular need in major depressive disorder and other mental illness to identify biomarkers that can stratify patients into more homogeneous groups to provide better treatment and for development of new therapeutic approaches. Peripheral outcome measures of host-microbe bidirectional communication have significant translational value as biomarkers. Enabling stratification of clinical populations, based on individual biological differences, to predict treatment response to pharmacological and non-pharmacological interventions. Here we consider the links between co-morbid metabolic syndrome and depression, focusing on biomarkers including leptin and ghrelin in combination with assessing gut microbiota composition, as a potential tool to help identify individual differences in depressed population.
Collapse
Affiliation(s)
- Rachael Horne
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Department of Psychiatry, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
999
|
Helicobacter pylori infection and prevalence of high blood pressure among Chinese adults. J Hum Hypertens 2017; 32:158-164. [PMID: 29289960 DOI: 10.1038/s41371-017-0028-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Epidemiological studies demonstrated that Helicobacter pylori (H. pylori) infection was associated with cardiovascular disease and its risk factors. However, the association between H. pylori infection and hypertension remained unclear. The aim of this study was to investigate the association between H. pylori infection and prevalence of hypertension among Chinese adults. We performed a cross-sectional study of 5246 adult participants who were recruited from a health manage center. All participants underwent a 13C-urea breath test and a routine health check-up. Logistic and liner regression models were used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for hypertension in relation to H. pylori infection. Of the 5168 study participants aged 18-70 years, 2034 (39.4%) were females and 955 (18.5%) had hypertension. After adjustment for potential confounders, H. pylori infection was associated with an increased prevalence of hypertension (OR, 1.23; 95% CI, 1.04, 1.46). In addition, compared with participants not infected with H. pylori, those with H. pylori infection had an increase of 0.735 mmHg (95% CI, 0.101, 1.369) for diastolic blood pressure and 0.723 mmHg (95% CI, 0.034, 1.413) for mean arterial pressure. There was no significant interaction between H. pylori infection and age, sex, and body mass index on the prevalence of hypertension (all P values for interaction >0.05). Findings from this study demonstrate that H. pylori infection was positively associated with prevalence of hypertension among Chinese adults. More well-designed studies are warranted to confirm our findings.
Collapse
|
1000
|
Haran JP, Bucci V, Dutta P, Ward D, McCormick B. The nursing home elder microbiome stability and associations with age, frailty, nutrition and physical location. J Med Microbiol 2017; 67:40-51. [PMID: 29134939 DOI: 10.1099/jmm.0.000640] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The microbiome from nursing home (NH) residents is marked by a loss in diversity that is associated with increased frailty. Our objective was to explore the associations of NH environment, frailty, nutritional status and residents' age to microbiome composition and potential metabolic function. METHODOLOGY We conducted a prospective longitudinal cohort study of 23 residents, 65 years or older, from one NH that had four floors: two separate medical intensive floors and two floors with active elders. Residents were assessed using the mini nutritional assessment tool and clinical frailty scale. Bacterial composition and metabolic potential of residents' stool samples was determined by metagenomic sequencing. We performed traditional unsupervised correspondence analysis and linear mixed effect modelling regression to assess the bacteria and functional pathways significantly affected by these covariates.Results/Key findings. NH resident microbiomes demonstrated temporal stability (PERMANOVA P=0.001) and differing dysbiotic associations with increasing age, frailty and malnutrition scores. As residents aged, the abundance of microbiota-encoded genes and pathways related to essential amino acid, nitrogenous base and vitamin B production declined. With increasing frailty, residents had lower abundances of butyrate-producing organisms, which are associated with increased health and higher abundances of known dysbiotic species. As residents became malnourished, butyrate-producing organisms declined and dysbiotic bacterial species increased. Finally, the microbiome of residents living in proximity shared similar species and, as demonstrated for Escherichia coli, similar strains. CONCLUSION These findings support the conclusion that a signature 'NH' microbiota may exist that is affected by the residents' age, frailty, nutritional status and physical location.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vanni Bucci
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Protiva Dutta
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Doyle Ward
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Beth McCormick
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|