1001
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
1002
|
Jin KT, Chen B, Liu YY, Lan HUR, Yan JP. Monoclonal antibodies and chimeric antigen receptor (CAR) T cells in the treatment of colorectal cancer. Cancer Cell Int 2021; 21:83. [PMID: 33522929 PMCID: PMC7851946 DOI: 10.1186/s12935-021-01763-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Besides common therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, novel therapeutic approaches, including immunotherapy, have been an advent in CRC treatment. The immunotherapy approaches try to elicit patients` immune responses against tumor cells to eradicate the tumor. Monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells are two branches of cancer immunotherapy. MAbs demonstrate the great ability to completely recognize cancer cell-surface receptors and blockade proliferative or inhibitory pathways. On the other hand, T cell activation by genetically engineered CAR receptor via the TCR/CD3 and costimulatory domains can induce potent immune responses against specific tumor-associated antigens (TAAs). Both of these approaches have beneficial anti-tumor effects on CRC. Herein, we review the different mAbs against various pathways and their applications in clinical trials, the different types of CAR-T cells, various specific CAR-T cells against TAAs, and their clinical use in CRC treatment.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - Bo Chen
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - H Uan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Zhejiang Province, Jinhua, 312000, P.R. China
| | - Jie-Ping Yan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, China.
| |
Collapse
|
1003
|
Kieber-Emmons T. "Why Not Hybridomas". Monoclon Antib Immunodiagn Immunother 2021; 40:1. [PMID: 33513053 DOI: 10.1089/mab.2020.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas Kieber-Emmons
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
1004
|
Chaves AFA, Xander P, Romera LMD, Fonseca FLA, Batista WL. What is the elephant in the room when considering new therapies for fungal diseases? Crit Rev Microbiol 2021; 47:275-289. [PMID: 33513315 DOI: 10.1080/1040841x.2021.1876632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The global scenario of antimicrobial resistance is alarming, and the development of new drugs has not appeared to make substantial progress. The constraints on drug discovery are due to difficulties in finding new targets for therapy, the high cost of development, and the mismatch between the time of drug introduction in a clinic and microorganism adaptation to a drug. Policies to address neglected diseases miss the broad spectrum of mycosis. Society is not aware of the actual threat represented by fungi to human health, food security, and biodiversity. The evidence discussed here is critical for warning governments to establish effective surveillance policies for fungi.HIGHLIGHTSFungal diseases are ignored even among neglected disease classifications.There are few options to treat mycoses, which is an increasing concern regarding fungal resistance to drugs, as evidenced by the spread of Candida auris.Fungal diseases represent a real threat to human health and food security.Investment in research to investigate the potential of repurposing drugs already in use could obtain results in the short term.
Collapse
Affiliation(s)
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
1005
|
Park S, Pascua E, Lindquist KC, Kimberlin C, Deng X, Mak YSL, Melton Z, Johnson TO, Lin R, Boldajipour B, Abraham RT, Pons J, Sasu BJ, Van Blarcom TJ, Chaparro-Riggers J. Direct control of CAR T cells through small molecule-regulated antibodies. Nat Commun 2021; 12:710. [PMID: 33514714 PMCID: PMC7846603 DOI: 10.1038/s41467-020-20671-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023] Open
Abstract
Antibody-based therapeutics have experienced a rapid growth in recent years and are now utilized in various modalities spanning from conventional antibodies, antibody-drug conjugates, bispecific antibodies to chimeric antigen receptor (CAR) T cells. Many next generation antibody therapeutics achieve enhanced potency but often increase the risk of adverse events. Antibody scaffolds capable of exhibiting inducible affinities could reduce the risk of adverse events by enabling a transient suspension of antibody activity. To demonstrate this, we develop conditionally activated, single-module CARs, in which tumor antigen recognition is directly modulated by an FDA-approved small molecule drug. The resulting CAR T cells demonstrate specific cytotoxicity of tumor cells comparable to that of traditional CARs, but the cytotoxicity is reversibly attenuated by the addition of the small molecule. The exogenous control of conditional CAR T cell activity allows continual modulation of therapeutic activity to improve the safety profile of CAR T cells across all disease indications.
Collapse
Affiliation(s)
- Spencer Park
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Lyell Immunopharma, South San Francisco, CA USA
| | - Edward Pascua
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA
| | | | - Christopher Kimberlin
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Asher Bio, South San Francisco, CA USA
| | - Xiaodi Deng
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Dren Bio, San Carlos, CA USA
| | - Yvonne S. L. Mak
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Zea Melton
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | | | - Regina Lin
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Bijan Boldajipour
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Lyell Immunopharma, South San Francisco, CA USA
| | - Robert T. Abraham
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: Vividion Therapeutics, San Diego, CA USA
| | - Jaume Pons
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,Present Address: ALX Oncology, Burlingame, CA USA
| | - Barbra Johnson Sasu
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | - Thomas J. Van Blarcom
- grid.410513.20000 0000 8800 7493Pfizer, La Jolla, CA USA ,grid.507497.8Present Address: Allogene Therapeutics, South San Francisco, CA USA
| | | |
Collapse
|
1006
|
Gklinos P, Papadopoulou M, Stanulovic V, Mitsikostas DD, Papadopoulos D. Monoclonal Antibodies as Neurological Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14020092. [PMID: 33530460 PMCID: PMC7912592 DOI: 10.3390/ph14020092] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Over the last 30 years the role of monoclonal antibodies in therapeutics has increased enormously, revolutionizing treatment in most medical specialties, including neurology. Monoclonal antibodies are key therapeutic agents for several neurological conditions with diverse pathophysiological mechanisms, including multiple sclerosis, migraines and neuromuscular disease. In addition, a great number of monoclonal antibodies against several targets are being investigated for many more neurological diseases, which reflects our advances in understanding the pathogenesis of these diseases. Untangling the molecular mechanisms of disease allows monoclonal antibodies to block disease pathways accurately and efficiently with exceptional target specificity, minimizing non-specific effects. On the other hand, accumulating experience shows that monoclonal antibodies may carry class-specific and target-associated risks. This article provides an overview of different types of monoclonal antibodies and their characteristics and reviews monoclonal antibodies currently in use or under development for neurological disease.
Collapse
Affiliation(s)
- Panagiotis Gklinos
- Department of Neurology, KAT General Hospital of Attica, 14561 Athens, Greece;
| | - Miranta Papadopoulou
- Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Vid Stanulovic
- Global Pharmacovigilance, R&D Sanofi, 91385 Chilly-Mazarin, France;
| | - Dimos D. Mitsikostas
- 1st Neurology Department, Aeginition Hospital, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Dimitrios Papadopoulos
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 129 Vasilissis Sophias Avenue, 11521 Athens, Greece
- Salpetriere Neuropsychiatric Clinic, 149 Papandreou Street, Metamorphosi, 14452 Athens, Greece
- Correspondence:
| |
Collapse
|
1007
|
Coënon L, Battistoni A, Poupée-Beaugé A, Germon S, Dimier-Poisson I. [Antitumoral microorganisms: The Swiss army knife of immunotherapy]. Med Sci (Paris) 2021; 37:47-52. [PMID: 33492218 DOI: 10.1051/medsci/2020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Research on viruses, bacteria and protozoa-based immunotherapy has been on the rise for several years. The antitumoral efficacy of these microorganisms relies on three main mechanisms: Destruction of tumor cells, stimulation of the immune response and reprogramming of the tumor microenvironment. In order to optimize their immunotherapeutic action, these microorganisms can be genetically engineered to enhance their tumor-targeting efficacy or to vectorize immunostimulating molecules and/or antibodies. To this aim, molecular engineering allows the design of new antibody formats optimizing their functions. From whole antibodies to tandem single-chain variable fragments, various antibody formats can be vectorized by microorganisms to target receptors such as immune checkpoints or recruit immune effector cells within the tumor. Such possibilities broaden the arsenal of immunotherapeutic cancer treatment. This review focuses on these innovations and their advantages for immunotherapy.
Collapse
Affiliation(s)
- Loïs Coënon
- Équipe BioMAP, Université de Tours, INRAe, 31 avenue Monge, 37200 Tours, France
| | - Arthur Battistoni
- Équipe BioMAP, Université de Tours, INRAe, 31 avenue Monge, 37200 Tours, France
| | | | - Stéphanie Germon
- Équipe BioMAP, Université de Tours, INRAe, 31 avenue Monge, 37200 Tours, France
| | | |
Collapse
|
1008
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
1009
|
Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem Int Ed Engl 2021; 60:1821-1830. [PMID: 33034131 PMCID: PMC7855684 DOI: 10.1002/anie.202010412] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/23/2020] [Indexed: 01/29/2023]
Abstract
The primary impediments in developing large antibodies as drugs against intracellular targets involve their low transfection efficiency and suitable reversible encapsulation strategies for intracellular delivery with retention of biological activity. To address this, we outline an electrostatics-enhanced covalent self-assembly strategy to generate polymer-protein/antibody nanoassemblies. Through structure-activity studies, we down-select the best performing self-immolative pentafluorophenyl containing activated carbonate polymer for bioconjugation. With the help of an electrostatics-aided covalent self-assembly approach, we demonstrate efficient encapsulation of medium to large proteins (HRP, 44 kDa and β-gal, 465 kDa) and antibodies (ca. 150 kDa). The designed polymeric nanoassemblies are shown to successfully traffic functional antibodies (anti-NPC and anti-pAkt) to cytosol to elicit their bioactivity towards binding intracellular protein epitopes and inducing apoptosis.
Collapse
Affiliation(s)
| | | | - Ritam Das
- University of Massachusetts, Amherst, MA, 01003, USA
| | - Sankaran Thayumanavan
- Department of Chemistry, Molecular and Cellular Biology Program, and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
1010
|
Therapeutic Application of Exosomes in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22031144. [PMID: 33498928 PMCID: PMC7865921 DOI: 10.3390/ijms22031144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation is on the cusp of being an important therapy for treating many diseases, due to the significant role of the immune system in defending the human body. Although the immune system is an essential defense system, overactivity can result in diverse sicknesses such as inflammation and autoimmune disease. Exosomes are emerging as a state-of-the-art therapeutic strategy for treating an overactive immune system. Thus, in this review, we will thoroughly review therapeutic applications of exosomes in various inflammatory and autoimmune diseases. Finally, issues for an outlook to the future of exosomal therapy will be introduced.
Collapse
|
1011
|
Klaus T, Deshmukh S. pH-responsive antibodies for therapeutic applications. J Biomed Sci 2021; 28:11. [PMID: 33482842 PMCID: PMC7821552 DOI: 10.1186/s12929-021-00709-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022] Open
Abstract
Therapeutic antibodies are instrumental in improving the treatment outcome for certain disease conditions. However, to enhance their efficacy and specificity, many efforts are continuously made. One of the approaches that are increasingly explored in this field are pH-responsive antibodies capable of binding target antigens in a pH-dependent manner. We reviewed suitability and examples of these antibodies that are functionally modulated by the tumor microenvironment. Provided in this review is an update about antigens targeted by pH-responsive, sweeping, and recycling antibodies. Applicability of the pH-responsive antibodies in the engineering of chimeric antigen receptor T-cells (CAR-T) and in improving drug delivery to the brain by the enhanced crossing of the blood-brain barrier is also discussed. The pH-responsive antibodies possess strong treatment potential. They emerge as next-generation programmable engineered biologic drugs that are active only within the targeted biological space. Thus, they are valuable in targeting acidified tumor microenvironment because of improved spatial persistence and reduced on-target off-tumor toxicities. We predict that the programmable pH-dependent antibodies become powerful tools in therapies of cancer.
Collapse
Affiliation(s)
- Tomasz Klaus
- Research and Development Department, Pure Biologics, Inc., Dunska 11, 54427, Wrocław, Poland
| | - Sameer Deshmukh
- Research and Development Department, Pure Biologics, Inc., Dunska 11, 54427, Wrocław, Poland.
| |
Collapse
|
1012
|
Arslan FB, Ozturk Atar K, Calis S. Antibody-mediated drug delivery. Int J Pharm 2021; 596:120268. [PMID: 33486037 DOI: 10.1016/j.ijpharm.2021.120268] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
Passive and active targeted nanoparticulate delivery systems show promise to compensate for lacking properties of conventional therapy such as side effects, insufficient efficiency and accumulation of the drug at target site, poor pharmacokinetic properties etc. For active targeting, physically or covalently conjugated ligands, including monoclonal antibodies and their fragments, are consistently used and researched for targeting delivery systems or drugs to their target site. Currently, there are several FDA approved actively targeted antibody-drug conjugates, whereas no active targeted delivery system is in clinical use at present. However, efforts to successfully formulate actively targeted delivery systems continue. The scope of this review will be the use of monoclonal antibodies and their fragments as targeting ligands. General information about targeted delivery and antibodies will be given at the first half of the review. As for the second half, fragmentation of antibodies and conjugation approaches will be explained. Monoclonal antibodies and their fragments as targeting ligands and approaches for conjugating these ligands to nanoparticulate delivery systems and drugs will be the main focus of this review, polyclonal antibodies will not be included.
Collapse
Affiliation(s)
- Fatma Betul Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kivilcim Ozturk Atar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Calis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
1013
|
Kreuzberger N, Hirsch C, Chai KL, Piechotta V, Valk SJ, Estcourt LJ, Salomon S, Tomlinson E, Monsef I, Wood EM, So-Osman C, Roberts DJ, McQuilten Z, Skoetz N. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2021. [DOI: 10.1002/14651858.cd013825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Caroline Hirsch
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine; Monash University; Melbourne Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research; Sanquin/Leiden University Medical Center; Leiden Netherlands
| | - Lise J Estcourt
- Haematology/Transfusion Medicine; NHS Blood and Transplant; Oxford UK
| | - Susanne Salomon
- Laboratory of Experimental Immunology, Institute of Virology; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Eve Tomlinson
- Cochrane Gynaecological, Neuro-oncology and Orphan Cancers; 1st Floor Education Centre, Royal United Hospital; Bath UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine; Monash University; Melbourne Australia
| | | | - David J Roberts
- Systematic Review Initiative; NHS Blood and Transplant; Oxford UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine; Monash University; Melbourne Australia
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| |
Collapse
|
1014
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
1015
|
Seidel-Greven M, Addai-Mensah O, Spiegel H, Chiegoua Dipah GN, Schmitz S, Breuer G, Frempong M, Reimann A, Klockenbring T, Fischer R, Barth S, Fendel R. Isolation and light chain shuffling of a Plasmodium falciparum AMA1-specific human monoclonal antibody with growth inhibitory activity. Malar J 2021; 20:37. [PMID: 33430886 PMCID: PMC7798374 DOI: 10.1186/s12936-020-03548-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium falciparum, the parasite causing malaria, affects populations in many endemic countries threatening mainly individuals with low malaria immunity, especially children. Despite the approval of the first malaria vaccine Mosquirix™ and very promising data using cryopreserved P. falciparum sporozoites (PfSPZ), further research is needed to elucidate the mechanisms of humoral immunity for the development of next-generation vaccines and alternative malaria therapies including antibody therapy. A high prevalence of antibodies against AMA1 in immune individuals has made this antigen one of the major blood-stage vaccine candidates. Material and methods Using antibody phage display, an AMA1-specific growth inhibitory human monoclonal antibody from a malaria-immune Fab library using a set of three AMA1 diversity covering variants (DiCo 1–3), which represents a wide range of AMA1 antigen sequences, was selected. The functionality of the selected clone was tested in vitro using a growth inhibition assay with P. falciparum strain 3D7. To potentially improve affinity and functional activity of the isolated antibody, a phage display mediated light chain shuffling was employed. The parental light chain was replaced with a light chain repertoire derived from the same population of human V genes, these selected antibodies were tested in binding tests and in functionality assays. Results The selected parental antibody achieved a 50% effective concentration (EC50) of 1.25 mg/mL. The subsequent light chain shuffling led to the generation of four derivatives of the parental clone with higher expression levels, similar or increased affinity and improved EC50 against 3D7 of 0.29 mg/mL. Pairwise epitope mapping gave evidence for binding to AMA1 domain II without competing with RON2. Conclusion We have thus shown that a compact immune human phage display library is sufficient for the isolation of potent inhibitory monoclonal antibodies and that minor sequence mutations dramatically increase expression levels in Nicotiana benthamiana. Interestingly, the antibody blocks parasite inhibition independently of binding to RON2, thus having a yet undescribed mode of action.
Collapse
Affiliation(s)
- Melanie Seidel-Greven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Otchere Addai-Mensah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Department of Medical Diagnostics, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Gwladys Nina Chiegoua Dipah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Stefan Schmitz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Gudrun Breuer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Margaret Frempong
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.,Purdue University, West Lafayette, IN, 47907, USA
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Pauwelsstraße 20, 52074, Aachen, Germany.,South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, and Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany. .,Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| |
Collapse
|
1016
|
Hwang K, Yoon JH, Lee JH, Lee S. Recent Advances in Monoclonal Antibody Therapy for Colorectal Cancers. Biomedicines 2021; 9:39. [PMID: 33466394 PMCID: PMC7824816 DOI: 10.3390/biomedicines9010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. Recent advances in recombinant DNA technology have led to the development of numerous therapeutic antibodies as major sources of blockbuster drugs for CRC therapy. Simultaneously, increasing numbers of therapeutic targets in CRC have been identified. In this review, we first highlight the physiological and pathophysiological roles and signaling mechanisms of currently known and emerging therapeutic targets, including growth factors and their receptors as well as immune checkpoint proteins, in CRC. Additionally, we discuss the current status of monoclonal antibodies in clinical development and approved by US Food and Drug Administration for CRC therapy.
Collapse
Affiliation(s)
| | | | | | - Sukmook Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea; (K.H.); (J.H.Y.); (J.H.L.)
| |
Collapse
|
1017
|
Gong D, Riley TP, Bzymek KP, Correia AR, Li D, Spahr C, Robinson JH, Case RB, Wang Z, Garces F. Rational selection of building blocks for the assembly of bispecific antibodies. MAbs 2021; 13:1870058. [PMID: 33397191 PMCID: PMC7808324 DOI: 10.1080/19420862.2020.1870058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies, engineered to recognize two targets simultaneously, demonstrate exceptional clinical potential for the therapeutic intervention of complex diseases. However, these molecules are often composed of multiple polypeptide chains of differing sequences. To meet industrial scale productivity, enforcing the correct quaternary assembly of these chains is critical. Here, we describe Chain Selectivity Assessment (CSA), a high-throughput method to rationally select parental monoclonal antibodies (mAbs) to make bispecific antibodies requiring correct heavy/light chain pairing. By deploying CSA, we have successfully identified mAbs that exhibit a native preference toward cognate chain pairing that enables the production of hetero-IgGs without additional engineering. Furthermore, CSA also identified rare light chains (LCs) that permit positive binding of the non-cognate arm in the common LC hetero-IgGs, also without engineering. This rational selection of parental mAbs with favorable developability characteristics is critical to the successful development of bispecific molecules with optimal manufacturability properties.
Collapse
Affiliation(s)
- Danyang Gong
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Timothy P Riley
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Krzysztof P Bzymek
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Ana R Correia
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Danqing Li
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Christopher Spahr
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - John H Robinson
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Ryan B Case
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., San Francisco, CA USA
| | - Zhulun Wang
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., San Francisco, CA USA
| | - Fernando Garces
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| |
Collapse
|
1018
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
1019
|
Improving priors for human monoclonal antibody linear pharmacokinetic parameters by using half-lives from non-human primates. J Pharmacokinet Pharmacodyn 2021; 48:295-303. [PMID: 33389522 DOI: 10.1007/s10928-020-09731-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
Obtaining a good prior for the linear pharmacokinetics of new monoclonal antibodies (mAbs) would be an advantage not only for designing first-in-human (FIH) studies but also for stabilizing fitting of data with non-linear target-mediated disposition models. We estimated the pharmacokinetics from FIH studies for five mAbs using a two-compartment model, both separately and together, using a simple pool, a third hierarchical level of random effects for between mAb differences and non-human-primate half-lives as a predictor covariate for said differences. There was good agreement between compounds for the rapidly accessible central volume of 2.9 L (70 kg human), but clearances and peripheral volumes differed with terminal half-lives ranging from 15 to 28 days. The simple pool of human studies gave inter-individual variability estimates of 32% coefficient of variation (CV) for clearance and 33% CV for peripheral volume, larger than for separate fits (13-26% CV and 15-35% CV for clearance and volume respectively). Using third level hierarchical random effects gave inter-individual variability estimates close to those of separate fits (24% and 16% CV respectively). The between-mAb differences became predictable if non-human primate body weight scaled terminal half-life estimates were included as covariates on clearance and peripheral volume. In conclusion, ignoring inter-mAb variation leads to inflated estimates of inter-individual variability and unrealistic simulations for FIH studies. However, by using 70 kg body weight scaled terminal half-life estimates from non-human primates one can account for between-mAb differences and provide non-inflated priors for the linear pharmacokinetic parameters of new mAbs.
Collapse
|
1020
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Micro-Heterogeneity of Antibody Molecules. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:1-26. [PMID: 34687006 DOI: 10.1007/978-3-030-76912-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) are mostly of the IgG class and constitute highly efficacious biopharmaceuticals for a wide range of clinical indications. Full-length IgG mAbs are large proteins that are subject to multiple posttranslational modifications (PTMs) during biosynthesis, purification, or storage, resulting in micro-heterogeneity. The production of recombinant mAbs in nonhuman cell lines may result in loss of structural fidelity and the generation of variants having altered stability, biological activities, and/or immunogenic potential. Additionally, even fully human therapeutic mAbs are of unique specificity, by design, and, consequently, of unique structure; therefore, structural elements may be recognized as non-self by individuals within an outbred human population to provoke an anti-therapeutic/anti-drug antibody (ATA/ADA) response. Consequently, regulatory authorities require that the structure of a potential mAb drug product is comprehensively characterized employing state-of-the-art orthogonal analytical technologies; the PTM profile may define a set of critical quality attributes (CQAs) for the drug product that must be maintained, employing quality by design parameters, throughout the lifetime of the drug. Glycosylation of IgG-Fc, at Asn297 on each heavy chain, is an established CQA since its presence and fine structure can have a profound impact on efficacy and safety. The glycoform profile of serum-derived IgG is highly heterogeneous while mAbs produced in mammalian cells in vitro is less heterogeneous and can be "orchestrated" depending on the cell line employed and the culture conditions adopted. Thus, the gross structure and PTM profile of a given mAb, established for the drug substance gaining regulatory approval, have to be maintained for the lifespan of the drug. This review outlines our current understanding of common PTMs detected in mAbs and endogenous IgG and the relationship between a variant's structural attribute and its impact on clinical performance.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Co Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Co Dublin, Ireland
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
1021
|
Germovsek E, Cheng M, Giragossian C. Allometric scaling of therapeutic monoclonal antibodies in preclinical and clinical settings. MAbs 2021; 13:1964935. [PMID: 34530672 PMCID: PMC8463036 DOI: 10.1080/19420862.2021.1964935] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Constant technological advancement enabled the production of therapeutic monoclonal antibodies (mAbs) and will continue to contribute to their rapid expansion. Compared to small-molecule drugs, mAbs have favorable characteristics, but also more complex pharmacokinetics (PK), e.g., target-mediated nonlinear elimination and recycling by neonatal Fc-receptor. This review briefly discusses mAb biology, similarities and differences in PK processes across species and within human, and provides a detailed overview of allometric scaling approaches for translating mAb PK from preclinical species to human and extrapolating from adults to children. The approaches described here will remain vital in mAb drug development, although more data are needed, for example, from very young patients and mAbs with nonlinear PK, to allow for more confident conclusions and contribute to further growth of this field. Improving mAb PK predictions will facilitate better planning of (pediatric) clinical studies and enable progression toward the ultimate goal of expediting drug development.
Collapse
Affiliation(s)
- Eva Germovsek
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Ming Cheng
- Development Biologicals, Drug Metabolism And Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| | - Craig Giragossian
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, US
| |
Collapse
|
1022
|
Chen J, Alduais Y, Chen B. Therapeutic and Systemic Adverse Events of Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 axis for Clinical Management of NSCLC. Cell Transplant 2021; 30:9636897211041587. [PMID: 34606729 PMCID: PMC8493325 DOI: 10.1177/09636897211041587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Non-small-cell lung cancer takes up the majority of lung carcinoma-caused deaths. It is reported that targeting PD-1/PD-L1, a well-known immune evasion checkpoint, can eradicate tumor. Checkpoint inhibitors, such as monoclonal antibodies, are actively employed in cancer treatment. Thus, this review aimed to assess the therapeutic and toxic effects of PD-1/PD-L1 inhibitors in treatment of NSCLC. So far, 6 monoclonal antibodies blocking PD-1/PD-L1 interaction are identified and used in clinical trials and randomized controlled trials for NSCLC therapy. These antibody-based therapies for NSCLC were collected by using search engine PubMed, and articles about the assessment of adverse events were collected by using Google search. Route of administration and dosage are critical parameters for efficient immunotherapy. Although antibodies can improve overall survival and are expected to be target-specific, they can cause systemic adverse effects in the host. Targeting certain biomarkers can limit the toxicity of adverse effects of the antibody-mediated therapy. Clinical experts with knowledge of adverse effects (AEs) of checkpoint inhibitors can help manage and reduce mortalities associated with antibody-based therapy of NSCLC.
Collapse
Affiliation(s)
- Jing Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Yaser Alduais
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
1023
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
1024
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Importance and Monitoring of Therapeutic Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:481-517. [PMID: 34687020 DOI: 10.1007/978-3-030-76912-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex diantennary-type oligosaccharides at Asn297 residues of the IgG heavy chains have a profound impact on the safety and efficacy of therapeutic IgG monoclonal antibodies (mAbs). Fc glycosylation of a mAb is an established critical quality attribute (CQA), and its oligosaccharide profile is required to be thoroughly characterized by state-of-the-art analytical methods. The Fc oligosaccharides are highly heterogeneous, and the differentially glycosylated species (glycoforms) of IgG express unique biological activities. Glycoengineering is a promising approach for the production of selected mAb glycoforms with improved effector functions, and non- and low-fucosylated mAbs exhibiting enhanced antibody-dependent cellular cytotoxicity activity have been approved or are under clinical evaluation for treatment of cancers, autoimmune/chronic inflammatory diseases, and infection. Recently, the chemoenzymatic glycoengineering method that allows for the transfer of structurally defined oligosaccharides to Asn-linked GlcNAc residues with glycosynthase has been developed for remodeling of IgG-Fc oligosaccharides with high efficiency and flexibility. Additionally, various glycoengineering methods have been developed that utilize the Fc oligosaccharides of IgG as reaction handles to conjugate cytotoxic agents by "click chemistry", providing new routes to the design of antibody-drug conjugates (ADCs) with tightly controlled drug-antibody ratios (DARs) and homogeneity. This review focuses on current understanding of the biological relevance of individual IgG glycoforms and advances in the development of next-generation antibody therapeutics with improved efficacy and safety through glycoengineering.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Centros, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
1025
|
Liu Q, Garg P, Hasdemir B, Wang L, Tuscano E, Sever E, Keane E, Hernandez AGL, Yuan TZ, Kwan E, Lai J, Szot G, Paruthiyil S, Axelrod F, K. Sato A. Functional GLP-1R antibodies identified from a synthetic GPCR-focused library demonstrate potent blood glucose control. MAbs 2021; 13:1893425. [PMID: 33706686 PMCID: PMC7971233 DOI: 10.1080/19420862.2021.1893425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a group of seven-transmembrane receptor proteins that have proven to be successful drug targets. Antibodies are becoming an increasingly promising modality to target these receptors due to their unique properties, such as exquisite specificity, long half-life, and fewer side effects, and their improved pharmacokinetic and pharmacodynamic profiles compared to peptides and small molecules, which results from their more favorable biodistribution. To date, there are only two US Food and Drug Administration-approved GPCR antibody drugs, namely erenumab and mogamulizumab, and this highlights the challenges encountered in identifying functional antibodies against GPCRs. Utilizing Twist's precision DNA writing technologies, we have created a GPCR-focused phage display library with 1 × 1010 diversity. Specifically, we mined endogenous GPCR binding ligand and peptide sequences and incorporated these binding motifs into the heavy chain complementarity-determining region 3 in a synthetic antibody library. Glucagon-like peptide-1 receptor (GLP-1 R) is a class B GPCR that acts as the receptor for the incretin GLP-1, which is released to regulate insulin levels in response to food intake. GLP-1 R agonists have been widely used to increase insulin secretion to lower blood glucose levels for the treatment of type 1 and type 2 diabetes, whereas GLP-1 R antagonists have applications in the treatment of severe hypoglycemia associated with bariatric surgery and hyperinsulinomic hypoglycemia. Here we present the discovery and creation of both antagonistic and agonistic GLP-1 R antibodies by panning this GPCR-focused phage display library on a GLP-1 R-overexpressing Chinese hamster ovary cell line and demonstrate their in vitro and in vivo functional activity.
Collapse
Affiliation(s)
- Qiang Liu
- Twist Biopharma, South San Francisco, CA, USA
| | - Pankaj Garg
- Twist Biopharma, South San Francisco, CA, USA
- Alamar Biosciences, Fremont, CA, USA
| | - Burcu Hasdemir
- Twist Biopharma, South San Francisco, CA, USA
- Catalyst Biosciences, South San Francisco, CA, USA
| | - Linya Wang
- Twist Biopharma, South San Francisco, CA, USA
| | | | - Emily Sever
- Twist Biopharma, South San Francisco, CA, USA
| | - Erica Keane
- Twist Biopharma, South San Francisco, CA, USA
| | | | - Tom Z. Yuan
- Twist Biopharma, South San Francisco, CA, USA
| | - Eric Kwan
- Twist Biopharma, South San Francisco, CA, USA
| | - Joyce Lai
- Twist Biopharma, South San Francisco, CA, USA
| | - Greg Szot
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
1026
|
Ashraf A, Palakkott A, Ayoub MA. Anti-Insulin Receptor Antibodies in the Pathology and Therapy of Diabetes Mellitus. Curr Diabetes Rev 2021; 17:198-206. [PMID: 32496987 DOI: 10.2174/1573399816666200604122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/12/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is recognized as the most common and the world's fastest-growing chronic disease with severe complications leading to increased mortality. Many strategies exist for the management of DM and its control, including treatment with insulin and insulin analogs, oral hypoglycemic therapy such as insulin secretion stimulators and insulin sensitizers, and diet and physical training. Over the years, many types of drugs and molecules with an interesting pharmacological diversity have been developed and proposed for their anti-diabetic potential. Such molecules target diverse key receptors, enzymes, and regulatory/signaling proteins known to be directly or indirectly involved in the pathophysiology of DM. Among them, insulin receptor (IR) is undoubtedly the target of choice for its central role in insulin-mediated glucose homeostasis and its utilization by the major insulin-sensitive tissues such as skeletal muscles, adipose tissue, and the liver. In this review, we focus on the implication of antibodies targeting IR in the pathology of DM as well as the recent advances in the development of IR antibodies as promising anti-diabetic drugs. The challenge still entails development of more powerful, highly selective, and safer anti-diabetic drugs.
Collapse
Affiliation(s)
- Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
1027
|
Ramamurthy D, Nundalall T, Cingo S, Mungra N, Karaan M, Naran K, Barth S. Recent advances in immunotherapies against infectious diseases. IMMUNOTHERAPY ADVANCES 2021; 1:ltaa007. [PMID: 38626281 PMCID: PMC7717302 DOI: 10.1093/immadv/ltaa007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapies are disease management strategies that target or manipulate components of the immune system. Infectious diseases pose a significant threat to human health as evidenced by countries continuing to grapple with several emerging and re-emerging diseases, the most recent global health threat being the SARS-CoV2 pandemic. As such, various immunotherapeutic approaches are increasingly being investigated as alternative therapies for infectious diseases, resulting in significant advances towards the uncovering of pathogen-host immunity interactions. Novel and innovative therapeutic strategies are necessary to overcome the challenges typically faced by existing infectious disease prevention and control methods such as lack of adequate efficacy, drug toxicity, and the emergence of drug resistance. As evidenced by recent developments and success of pharmaceuticals such as monoclonal antibodies (mAbs), immunotherapies already show abundant promise to overcome such limitations while also advancing the frontiers of medicine. In this review, we summarize some of the most notable inroads made to combat infectious disease, over mainly the last 5 years, through the use of immunotherapies such as vaccines, mAb-based therapies, T-cell-based therapies, manipulation of cytokine levels, and checkpoint inhibition. While its most general applications are founded in cancer treatment, advances made towards the curative treatment of human immunodeficiency virus, tuberculosis, malaria, zika virus and, most recently COVID-19, reinforce the role of immunotherapeutic strategies in the broader field of disease control. Ultimately, the comprehensive specificity, safety, and cost of immunotherapeutics will impact its widespread implementation.
Collapse
Affiliation(s)
- Dharanidharan Ramamurthy
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sanele Cingo
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Maryam Karaan
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
1028
|
Kumar M, Thangavel C, Becker RC, Sadayappan S. Monoclonal Antibody-Based Immunotherapy and Its Role in the Development of Cardiac Toxicity. Cancers (Basel) 2020; 13:E86. [PMID: 33396766 PMCID: PMC7795565 DOI: 10.3390/cancers13010086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy is one of the most effective therapeutic options for cancer patients. Five specific classes of immunotherapies, which includes cell-based chimeric antigenic receptor T-cells, checkpoint inhibitors, cancer vaccines, antibody-based targeted therapies, and oncolytic viruses. Immunotherapies can improve survival rates among cancer patients. At the same time, however, they can cause inflammation and promote adverse cardiac immune modulation and cardiac failure among some cancer patients as late as five to ten years following immunotherapy. In this review, we discuss cardiotoxicity associated with immunotherapy. We also propose using human-induced pluripotent stem cell-derived cardiomyocytes/ cardiac-stromal progenitor cells and cardiac organoid cultures as innovative experimental model systems to (1) mimic clinical treatment, resulting in reproducible data, and (2) promote the identification of immunotherapy-induced biomarkers of both early and late cardiotoxicity. Finally, we introduce the integration of omics-derived high-volume data and cardiac biology as a pathway toward the discovery of new and efficient non-toxic immunotherapy.
Collapse
Affiliation(s)
- Mohit Kumar
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA; (R.C.B.); (S.S.)
| | - Chellappagounder Thangavel
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Department of Dermatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Richard C. Becker
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA; (R.C.B.); (S.S.)
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA; (R.C.B.); (S.S.)
| |
Collapse
|
1029
|
Production of Recombinant Monoclonal Antibodies in the Egg White of Gene-Targeted Transgenic Chickens. Genes (Basel) 2020; 12:genes12010038. [PMID: 33396657 PMCID: PMC7823952 DOI: 10.3390/genes12010038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Increased commercial demand for monoclonal antibodies (mAbs) has resulted in the urgent need to establish efficient production systems. We previously developed a transgenic chicken bioreactor system that effectively produced human cytokines in egg whites using genome-edited transgenic chickens. Here, we describe the application of this system to mAb production. The genes encoding the heavy and light chains of humanized anti-HER2 mAb, linked by a 2A peptide sequence, were integrated into the chicken ovalbumin gene locus using a CRISPR/Cas9 protocol. The knock-in hens produced a fully assembled humanized mAb in their eggs. The mAb expression level in the egg white was 1.4–1.9 mg/mL, as determined by ELISA. Furthermore, the antigen binding affinity of the anti-HER2 mAb obtained was estimated to be equal to that of the therapeutic anti-HER2 mAb (trastuzumab). In addition, antigen-specific binding by the egg white mAb was demonstrated by immunofluorescence against HER2-positive and -negative cells. These results indicate that the chicken bioreactor system can efficiently produce mAbs with antigen binding capacity and can serve as an alternative production system for commercial mAbs.
Collapse
|
1030
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
1031
|
Eagles DA, Chow CY, King GF. Fifteen years of Na
V
1.7 channels as an analgesic target: Why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br J Pharmacol 2020; 179:3592-3611. [DOI: 10.1111/bph.15327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- David A. Eagles
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Glenn F. King
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| |
Collapse
|
1032
|
Megha KB, Mohanan PV. Role of immunoglobulin and antibodies in disease management. Int J Biol Macromol 2020; 169:28-38. [PMID: 33340621 DOI: 10.1016/j.ijbiomac.2020.12.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The immune system is a highly advanced and coordinated mechanism that allows a living organism to distinguish between "self" and "non-self". The host uses both innate and adaptive immune response mechanisms to identify and eliminate pathogenic microorganisms. Human immunoglobulin is the prominently used blood product in the clinical practice. Immunoglobulin applications have improved rapidly due to the exploration of its immunomodulatory and anti-inflammatory properties. This made this blood product into a precious and advanced tool in the treatment of numerous disease conditions which are linked with humoral immune deficiency or that cause immune system dysfunction. Human immunoglobulin (Ig) is used for Ig replacement therapy in both primary and secondary immunodeficiency conditions, for prevention and treatment of certain infections. It also acts as an immunomodulatory agent for autoimmune and inflammatory disorders. Therapeutic antibodies have been successfully used for the treatment of diverse pathological conditions. Drug development programs exclusively select highly specific antibodies that recognize a single disease-associated target. Hopefully this review will give an insight towards the immune system, the involvement of the specialized immune cells, their products and involvement in various immune disorders and pathological conditions.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
1033
|
Hossain MK, Hassanzadeganroudsari M, Nurgali K, Apostolopoulos V. Vaccine development against methamphetamine drug addiction. Expert Rev Vaccines 2020; 19:1105-1114. [PMID: 33251859 DOI: 10.1080/14760584.2020.1857738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION There are currently no effective treatments for Methamphetamine (METH) addiction and psychotherapy remains the sole treatment option. The development of immunopharmacotherapies for the treatment of drug addiction, overdose, and relapse management appears to be promising alternative and a significant body of information has been generated using various vaccine development strategies. Herein, we present an update on the developments toward anti-METH vaccines and their study outcomes in preclinical and clinical studies. AREAS COVERED The scope of this article is to present an update on METH vaccine development strategies such as active vaccination through hapten design and the passive immunization through monoclonal antibodies along with preclinical and clinical studies. The relevant literatures and clinical trial outcomes were searched in databases including Google, Google Scholar, PubMed, Science Direct, ClinicalTrials.gov, and www.anzctr.org.au using specific keywords. EXPERT OPINION Significant improvements have been developed for immunopharmacotherapies for METH addiction over the last two decades. However, only one monoclonal antibody candidate has been evaluated in a phase I clinical trial. At this moment, it is essential to evaluate the safety and efficacy of potential candidates in clinical trials to validate the importance of this platform drug-vaccine conjugation in order to manage or overcome METH addiction.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University , Melbourne, VIC, Australia
| | | | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University , Melbourne, VIC, Australia
| | | |
Collapse
|
1034
|
Carrara SC, Ulitzka M, Grzeschik J, Kornmann H, Hock B, Kolmar H. From cell line development to the formulated drug product: The art of manufacturing therapeutic monoclonal antibodies. Int J Pharm 2020; 594:120164. [PMID: 33309833 DOI: 10.1016/j.ijpharm.2020.120164] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic monoclonal antibodies and related products have steadily grown to become the dominant product class within the biopharmaceutical market. Production of antibodies requires special precautions to ensure safety and efficacy of the product. In particular, minimizing antibody product heterogeneity is crucial as drug substance variants may impair the activity, efficacy, safety, and pharmacokinetic properties of an antibody, consequently resulting in the failure of a product in pre-clinical and clinical development. This review will cover the manufacturing and formulation challenges and advances of therapeutic monoclonal antibodies, focusing on improved processes to minimize variants and ensure batch-to-batch consistency. Processes put in place by regulatory agencies, such as Quality-by-Design (QbD) and current Good Manufacturing Practices (cGMP), and how their implementation has aided drug development in pharmaceutical companies will be reviewed. Advances in formulation and considerations on the intended use of a therapeutic antibody, including the route of administration and patient compliance, will be discussed.
Collapse
Affiliation(s)
- Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center SA, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center SA, CH-1162 Saint-Prex, Switzerland.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
1035
|
Murphy MJ, Cohen JM, Vesely MD, Damsky W. Paradoxical eruptions to targeted therapies in dermatology: A systematic review and analysis. J Am Acad Dermatol 2020; 86:1080-1091. [PMID: 33307146 DOI: 10.1016/j.jaad.2020.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antibody-based therapies that inhibit proinflammatory cytokine signaling are commonly used in dermatology. Paradoxically, these medications may induce or exacerbate inflammatory disorders. OBJECTIVE To summarize the spectrum of manifestations, incidence, timing, potential mechanisms of, and general management approaches to paradoxical cutaneous reactions induced by cytokine-targeted antibodies in dermatology. METHODS We performed a systematic review and analysis of published cases of cutaneous paradoxical reactions (PRs) reported in association with tumor necrosis factor α, interleukin (IL) 12/23 (p40), IL-17A/17R, IL-23 (p19), and IL-4Rα inhibitors. RESULTS We identified 313 articles reporting 2049 cases of PRs. Tumor necrosis factor α inhibitors resulted in 91.2% (1869/2049) of all cases, followed by IL-17/17R (3.5%), IL-4Rα (2.7%), IL-12/23 (2.4%), and IL-23 (0.01%) inhibitors. Psoriasiform and eczematous eruptions were the most commonly reported, but a wide spectrum of patterns were described. Phenotypically overlapping reaction patterns were common. Time to onset typically ranged from weeks to months but could occur more than a year later. Improvement or resolution upon discontinuation of the inciting drug was common. LIMITATIONS This was a retrospective analysis. CONCLUSIONS Familiarity with the clinical features of PRs from cytokine-blocking antibodies may facilitate efficient recognition and management.
Collapse
Affiliation(s)
| | - Jeffrey M Cohen
- Department of Dermatology, Yale School of Medicine, New Haven
| | | | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven.
| |
Collapse
|
1036
|
Wang HC, Hung HC, Huang PN, Kung YA, Tseng SN, Wang YM, Shih SR, Tsu-An Hsu J. Engineering a novel IgG-like bispecific antibody against enterovirus A71. Biochem Biophys Rep 2020; 24:100860. [PMID: 34095549 PMCID: PMC8164134 DOI: 10.1016/j.bbrep.2020.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 11/05/2020] [Indexed: 11/12/2022] Open
Abstract
Frequent outbreaks of enterovirus A71 (EVA71) occur in the Asia-Pacific area, and these are closely associated with severe neurological symptoms in young children. No effective antiviral therapy is currently available for the treatment of EVA71 infection. The development of monoclonal antibodies (mAbs) has demonstrated promise as a novel therapy for the prevention and treatment of infectious diseases. Several medical conditions have been treated using bispecific or multi-specific antibodies that recognize two or more distinct epitopes simultaneously. However, bispecific or multi-specific antibodies often encounter protein expression and product stability problems. In this study, we developed an IgG-like bispecific antibody (E18-F1) comprising two anti-EVA71 antibodies: E18 mAb and llama-derived F1 single-domain antibody. E18-F1 was demonstrated to exhibit superior binding affinity and antiviral activity compared with E18 or F1. Additionally, E18-F1 not only improved survival rate, but also reduced clinical signs in human SCARB2 receptor (hSCARB2) transgenic mice challenged with a lethal dose of EVA71. Altogether, our results reveal that E18-F1 is a simple format bispecific antibody with promising antiviral activity for EVA71.
Collapse
Affiliation(s)
- Hsiang-Ching Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hui-Chen Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Nien Tseng
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John Tsu-An Hsu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
1037
|
Iqbal Yatoo M, Hamid Z, Parray OR, Wani AH, Ul Haq A, Saxena A, Patel SK, Pathak M, Tiwari R, Malik YS, Sah R, Rabaan AA, Rodriguez Morales AJ, Dhama K. COVID-19 - Recent advancements in identifying novel vaccine candidates and current status of upcoming SARS-CoV-2 vaccines. Hum Vaccin Immunother 2020; 16:2891-2904. [PMID: 32703064 PMCID: PMC8641591 DOI: 10.1080/21645515.2020.1788310] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has spread rapidly. To date, countries have relied on the prevention of the disease through isolation, quarantine, and clinical care of affected individuals. However, studies on the roles of asymptomatic and mildly infected subjects in disease transmission, use of antiviral drugs, and vaccination of the general population will be very important for mitigating the effects of the eventual return of this pandemic. Initial investigations are ongoing to evaluate antigenic structures of SARS-CoV-2 and the immunogenicity of vaccine candidates. There also is a need to comprehensively compile the details of previous studies on SARS-related vaccines that can be extrapolated to identify potent vaccine targets for developing COVID-19 vaccines. This review aims to analyze previous studies, current status, and future possibilities for producing SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Zeenat Hamid
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Oveas Rafiq Parray
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Aasim Habib Wani
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Abrar Ul Haq
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Archana Saxena
- Division of Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Alfonso J. Rodriguez Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
- Grupo de Investigacion Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Risaralda, Colombia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
1038
|
Divine R, Dang HV, Ueda G, Fallas JA, Vulovic I, Sheffler W, Saini S, Zhao YT, Raj IX, Morawski PA, Jennewein MF, Homad LJ, Wan YH, Tooley MR, Seeger F, Etemadi A, Fahning ML, Lazarovits J, Roederer A, Walls AC, Stewart L, Mazloomi M, King NP, Campbell DJ, McGuire AT, Stamatatos L, Ruohola-Baker H, Mathieu J, Veesler D, Baker D. Designed proteins assemble antibodies into modular nanocages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.01.406611. [PMID: 33299994 PMCID: PMC7724662 DOI: 10.1101/2020.12.01.406611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibodies are widely used in biology and medicine, and there has been considerable interest in multivalent antibody formats to increase binding avidity and enhance signaling pathway agonism. However, there are currently no general approaches for forming precisely oriented antibody assemblies with controlled valency. We describe the computational design of two-component nanocages that overcome this limitation by uniting form and function. One structural component is any antibody or Fc fusion and the second is a designed Fc-binding homo-oligomer that drives nanocage assembly. Structures of 8 antibody nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage match the corresponding computational models. Antibody nanocages targeting cell-surface receptors enhance signaling compared to free antibodies or Fc-fusions in DR5-mediated apoptosis, Tie2-mediated angiogenesis, CD40 activation, and T cell proliferation; nanocage assembly also increases SARS-CoV-2 pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-ACE2 fusion proteins. We anticipate that the ability to assemble arbitrary antibodies without need for covalent modification into highly ordered assemblies with different geometries and valencies will have broad impact in biology and medicine.
Collapse
Affiliation(s)
- Robby Divine
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ha V. Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jorge A. Fallas
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ivan Vulovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - William Sheffler
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Shally Saini
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Infencia Xavier Raj
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | | | - Madeleine F. Jennewein
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Leah J. Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Marti R. Tooley
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Franzika Seeger
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ali Etemadi
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - James Lazarovits
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alex Roederer
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Mohammadali Mazloomi
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | - Andrew T. McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
- University of Washington, Department of Global Health, Seattle, WA, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
- University of Washington, Department of Global Health, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
1039
|
Comparative analytical profiling of bevacizumab biosimilars marketed in India: a national control laboratory study. 3 Biotech 2020; 10:516. [PMID: 33194520 DOI: 10.1007/s13205-020-02506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/24/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, analytical profiling of the bevacizumab (BVZ) biosimilars (N = 3) approved in India were evaluated for charge heterogeneity, isoelectric focusing, aggregation and in vitro potency analysis. The charge variants were characterized using high performance cation-exchange chromatography (CEX-HPLC), capillary zone electrophoresis (CZE) and capillary isoelectric focusing (cIEF). cIEF was also used for estimation of isoelectric point (pI value). In addition, aggregate analysis was done using size exclusion high performance chromatography (SEC-HPLC). The cell-based inhibition of proliferation assay using HUVEC cells, indirect ELISA and Western blot were performed for in vitro biological activity. In addition of cell-based cytotoxicity assay was also performed and found no cytotoxic effect on both HuT78 and WIL2S cells by bevacizumab biosimilars. The significant variations in acidic (p < 0.0001) and basic variants (p < 0.0001), pI value (p = 0.0035), aggregates (p = 0.0306) of biosimilars were found as compared to innovator product; however, cell-based potency analysis (p = 0.6047) and indirect ELISA (p = 0.1611) have shown no significant difference in the biological activity. The banding patterns of all biosimilars in western blot were found similar to the innovator product. The comparatively higher basic variants in the biosimilars were attributing to the high pI value of biosimilars to that of innovator product, although these variations were not affecting the biological activity of the biosimiars. This is a unique study, wherein the independent analysis by a National Control Laboratory (NCL) will not only help the National Regulatory Authority (NRA) to assess the quality and consistency in manufacturing of BVZ biosimilars marketed in India but also facilitate the uptake of BVZ biosimilars, and sustainable access to new medicines against the anti-angiogenic therapy.
Collapse
|
1040
|
Song Z, Mao J, Barrero RA, Wang P, Zhang F, Wang T. Development of a CD63 Aptamer for Efficient Cancer Immunochemistry and Immunoaffinity-Based Exosome Isolation. Molecules 2020; 25:molecules25235585. [PMID: 33261145 PMCID: PMC7730289 DOI: 10.3390/molecules25235585] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022] Open
Abstract
CD63, a member of transmembrane-4-superfamily of tetraspanin proteins and a highly N-glycosylated type III lysosomal membrane protein, is known to regulate malignancy of various types of cancers such as melanoma and breast cancer and serves as a potential marker for cancer detection. Recently, its important role as a classic exosome marker was also emphasized. In this work, via using a magnetic bead-based competitive SELEX (systematic evolution of ligands by exponential enrichment) procedure and introducing a 0.5 M NaCl as elution buffer, we identified two DNA aptamers (CD63-1 and CD63-2) with high affinity and specificity to CD63 protein (Kd = 38.71 nM and 78.43, respectively). Furthermore, CD63-1 was found to be efficient in binding CD63 positive cells, including breast cancer MDA-MB-231 cells and CD63-overexpressed HEK293T cells, with a medium binding affinity (Kd ~ 100 nM) as assessed by flow cytometry. When immunostaining assay was performed using clinical breast cancer biopsy, the CD63-1 aptamer demonstrated a comparable diagnostic efficacy for CD63 positive breast cancer with commercial antibodies. After developing a magnetic bead-based exosome immunoaffinity separation system using CD63-1 aptamer, it was found that this bead-based system could effectively isolate exosomes from both MDA-MB-231 and HT29 cell culture medium. Importantly, the introduction of the NaCl elution in this work enabled the isolation of native exosomes via a simple 0.5M NaCl incubation step. Based on these results, we firmly believe that the developed aptamers could be useful towards efficient isolation of native state exosomes from clinical samples and various theranostic applications for CD63-positive cancers.
Collapse
Affiliation(s)
- Zhenguo Song
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China;
| | - Jun Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Roberto A. Barrero
- eResearch Office, Division of Research and Innovation, Queensland University of Technology, Brisbane City QLD 4001, Australia;
| | - Peng Wang
- College of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (F.Z.); (T.W.); Tel.: +86-1393839312 (F.Z.); +61-432684878 (T.W.)
| | - Tao Wang
- College of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China;
- Correspondence: (F.Z.); (T.W.); Tel.: +86-1393839312 (F.Z.); +61-432684878 (T.W.)
| |
Collapse
|
1041
|
Burianova V, Kalinin S, Supuran CT, Krasavin M. Radiotracers for positron emission tomography (PET) targeting tumour-associated carbonic anhydrase isoforms. Eur J Med Chem 2020; 213:113046. [PMID: 33303236 DOI: 10.1016/j.ejmech.2020.113046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The tumour-associated, cell membrane-bound isoforms IX and XII of human carbonic anhydrase (CA, EC 4.2.1.1) are overexpressed in cancer cells contributing to the hypoxic tumour pH/metabolism regulating machinery and as thus, can serve as markers of malignant neoplastic tissue. Inhibitors of CAs can be employed both for the treatment of hypoxic tumours and in the design of radiotracers for positron emission tomography and imaging of such cancers. The present review provides a comprehensive summary of the progress achieved to-date in the field of developing PET-tracers based on monoclonal antibodies, biomolecules, and small-molecule ligands of CA IX and XII.
Collapse
Affiliation(s)
- Valeria Burianova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy.
| | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
1042
|
Kamoto S, Shinada M, Kato D, Yoshimoto S, Ikeda N, Tsuboi M, Yoshitake R, Eto S, Hashimoto Y, Takahashi Y, Chambers J, Uchida K, Kaneko MK, Fujita N, Nishimura R, Kato Y, Nakagawa T. Phase I/II Clinical Trial of the Anti-Podoplanin Monoclonal Antibody Therapy in Dogs with Malignant Melanoma. Cells 2020; 9:E2529. [PMID: 33238582 PMCID: PMC7700559 DOI: 10.3390/cells9112529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN), a small transmembrane mucin-like glycoprotein, is ectopically expressed on tumor cells. PDPN is known to be linked with several aspects of tumor malignancies in certain types of human and canine tumors. Therefore, it is considered to be a novel therapeutic target. Monoclonal antibodies targeting PDPN expressed in human tumor cells showed obvious anti-tumor effects in preclinical studies using mouse models. Previously, we generated a cancer-specific mouse-dog chimeric anti-PDPN antibody, P38Bf, which specifically recognizes PDPN expressed in canine tumor cells. In this study, we investigated the safety and anti-tumor effects of P38Bf in preclinical and clinical trials. P38Bf showed dose-dependent antibody-dependent cellular cytotoxicity against canine malignant melanoma cells. In a preclinical trial with one healthy dog, P38Bf administration did not induce adverse effects over approximately 2 months. In phase I/II clinical trials of three dogs with malignant melanoma, one dog vomited, and all dogs had increased serum levels of C-reactive protein, although all adverse effects were grade 1 or 2. Severe adverse effects leading to withdrawal of the clinical trial were not observed. Furthermore, one dog had stable disease with P38Bf injections. This is the first reported clinical trial of anti-PDPN antibody therapy using spontaneously occurring canine tumor models.
Collapse
Affiliation(s)
- Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Sho Yoshimoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.T.); (Y.H.); (Y.T.)
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.T.); (Y.H.); (Y.T.)
| | - Yosuke Takahashi
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.T.); (Y.H.); (Y.T.)
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (J.C.); (K.U.)
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (J.C.); (K.U.)
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (Y.K.)
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (Y.K.)
- New Industry Creation Hatchery Center, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| |
Collapse
|
1043
|
Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non‐Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Ritam Das
- University of Massachusetts Amherst MA 01003 USA
| | - Sankaran Thayumanavan
- Department of Chemistry, Molecular and Cellular Biology Program, and The Center for Bioactive Delivery-Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
1044
|
Salgado E, Cao Y. Pharmacokinetics and pharmacodynamics of therapeutic antibodies in tumors and tumor-draining lymph nodes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 18:112-131. [PMID: 33525083 PMCID: PMC7935407 DOI: 10.3934/mbe.2021006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The signaling axis from the primary tumor to the tumor-draining lymph node (TDLN) has emerged as a crucial mediator for the efficacy of immunotherapies in neoadjuvant settings, challenging the primary use of immunotherapy in adjuvant settings. TDLNs are regarded as highly opportunistic sites for cancer cell dissemination and promote further spread via several primary tumor-dependent mechanisms. Lesion-level mixed responses to antibody immunotherapy have been traced to local immune signatures present in the TDLN and the organ-specific primary tumors that they drain. However, the pharmacokinetics (PK) and biodistribution gradients of antibodies in primary tumors and TDLNs have not been systemically evaluated. These concentration gradients are critical in ensuring adequate antibody pharmacodynamic (PD) T-cell activation and/or anti-tumor response. The current work reviews the knowledge for developing physiologically-based PK and pharmacodynamic (PBPK/PD) models to quantify antibody biodistribution gradients in anatomically distinct primary tumors and TDLNs as a means to characterize the clinically observed heterogeneous responses to antibody therapies. Several clinical and pathophysiological considerations in modeling the primary tumor-TDLN axis, as well as a summary of both preclinical and clinical PK/PD lymphatic antibody disposition studies, will be provided.
Collapse
Affiliation(s)
- Eric Salgado
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
- Correspondence:
| |
Collapse
|
1045
|
Lee JS, Kim HY, Won B, Kang SW, Kim YN, Jang H. SEZ6L2 Is an Important Regulator of Drug-Resistant Cells and Tumor Spheroid Cells in Lung Adenocarcinoma. Biomedicines 2020; 8:E500. [PMID: 33202873 PMCID: PMC7697537 DOI: 10.3390/biomedicines8110500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
Many lung cancer deaths result from relapses in distant organs, such as the brain or bones, after standard chemotherapy. For cancer cells to spread to other organs, they must survive as circulating tumor cells (CTCs) in blood vessels. Thus, reducing distant recurrence after chemotherapy requires simultaneously inhibiting drug resistance and CTC survival. Here, we investigated the molecular pathways and genes that are commonly altered in drug-resistant lung cancer cells and lung tumor spheroid (TS) cells. First, RNA sequencing was performed in drug-resistant cells and TS cells originating from H460 and A549 lung cancer cells. Bioinformatic pathway analysis showed that cell cycle-related pathways were downregulated in drug-resistant cells, and cholesterol biosynthesis-related pathways were upregulated in TS cells. Seizure-related 6 homolog-like 2 (SEZ6L2) was selected as a gene that was commonly upregulated in both drug-resistant cells and TS cells, and that showed elevated expression in samples from lung adenocarcinoma patients. Second, the protein expression of SEZ6L2 was analyzed by flow cytometry. The proportions of SEZ6L2 positive cells among both drug-resistant cells and TS cells was increased. Finally, as SEZ6L2 is a transmembrane protein with an extracellular region, the function of SEZ6L2 was disrupted by treatment with an anti-SEZ6L2 antibody. Treatment with the anti-SEZ6L2 antibody reduced drug resistance and TS formation. Overall, our data showed that SEZ6L2 plays an important role in drug resistance and TS formation and may be a therapeutic target for reducing distant recurrence of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jang-Seok Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (J.-S.L.); (H.Y.K.); (B.W.); (Y.-N.K.)
| | - Hee Yeon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (J.-S.L.); (H.Y.K.); (B.W.); (Y.-N.K.)
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Bomyi Won
- Research Institute, National Cancer Center, Goyang 10408, Korea; (J.-S.L.); (H.Y.K.); (B.W.); (Y.-N.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Yong-Nyun Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (J.-S.L.); (H.Y.K.); (B.W.); (Y.-N.K.)
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea; (J.-S.L.); (H.Y.K.); (B.W.); (Y.-N.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| |
Collapse
|
1046
|
Development of histidine-tagged cyclic peptide functionalized monolithic material for the affinity purification of antibodies in biological matrices. J Chromatogr A 2020; 1635:461707. [PMID: 33254002 DOI: 10.1016/j.chroma.2020.461707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023]
Abstract
The rapidly increasing applications of monoclonal antibodies (mAbs) in therapy have necessitated the development of mAb production and purification technologies for both academic and industrial usage. Herein, a histidine-tagged cyclic peptide (HHHHHHGSGSGSDC*AWHLGELVWC*T, the disulfide-bonded cysteines of which are indicated by asterisks, named HT25-cyclopeptide) functionalized monolithic material was developed by the metal ion chelation-based approach. The resulting material possessed suitable affinity and peptide ligand density (13.8 mg peptide ligand per mL of material), good porosity (67.1 %), acceptable specific surface area (52.95 m2/g), and lots of macropores (4.13 μm). Moreover, excellent antibody-specific selectivity, comparable or even better binding capacity (for dried material, maximum static binding capacity and dynamic binding capacity are about 119.3 mg/g and 17.05 mg/g, respectively) for antibody compared to previously developed affinity materials, acceptable resistance to trypsin digestion, and negligible nonspecific protein adsorption, were also achieved on this novel monolithic material. Compared with the corresponding cyclic peptide-based sepharose material, milder elution conditions were employed for the HT25-cyclopeptide-based monolithic material, which could effectively prevent the aggregation and denaturation of the enriched antibodies. This novel material was then successfully applied to the affinity enrichment and purification of mAbs (including infliximab and rituximab) in different cell culture media or IgG in human serum.
Collapse
|
1047
|
Custers R, Steyaert J. Discussions on the quality of antibodies are no reason to ban animal immunization. EMBO Rep 2020; 21:e51761. [PMID: 33179844 PMCID: PMC7726777 DOI: 10.15252/embr.202051761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/01/2023] Open
Affiliation(s)
- René Custers
- VIB (Flanders Institute for Biotechnology), Ghent, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
1048
|
Rghei AD, van Lieshout LP, Santry LA, Guilleman MM, Thomas SP, Susta L, Karimi K, Bridle BW, Wootton SK. AAV Vectored Immunoprophylaxis for Filovirus Infections. Trop Med Infect Dis 2020; 5:tropicalmed5040169. [PMID: 33182447 PMCID: PMC7709665 DOI: 10.3390/tropicalmed5040169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/07/2023] Open
Abstract
Filoviruses are among the deadliest infectious agents known to man, causing severe hemorrhagic fever, with up to 90% fatality rates. The 2014 Ebola outbreak in West Africa resulted in over 28,000 infections, demonstrating the large-scale human health and economic impact generated by filoviruses. Zaire ebolavirus is responsible for the greatest number of deaths to date and consequently there is now an approved vaccine, Ervebo, while other filovirus species have similar epidemic potential and remain without effective vaccines. Recent clinical success of REGN-EB3 and mAb-114 monoclonal antibody (mAb)-based therapies supports further investigation of this treatment approach for other filoviruses. While efficacious, protection from passive mAb therapies is short-lived, requiring repeat dosing to maintain therapeutic concentrations. An alternative strategy is vectored immunoprophylaxis (VIP), which utilizes an adeno-associated virus (AAV) vector to generate sustained expression of selected mAbs directly in vivo. This approach takes advantage of validated mAb development and enables vectorization of the top candidates to provide long-term immunity. In this review, we summarize the history of filovirus outbreaks, mAb-based therapeutics, and highlight promising AAV vectorized approaches to providing immunity against filoviruses where vaccines are not yet available.
Collapse
|
1049
|
Elter A, Bogen JP, Hinz SC, Fiebig D, Macarrón Palacios A, Grzeschik J, Hock B, Kolmar H. Humanization of Chicken-Derived scFv Using Yeast Surface Display and NGS Data Mining. Biotechnol J 2020; 16:e2000231. [PMID: 33078896 DOI: 10.1002/biot.202000231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/06/2020] [Indexed: 01/17/2023]
Abstract
Generation of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display. Complementarity determining regions (CDRs) of two high-affinity binders are grafted onto a human acceptor framework. Simultaneously, Vernier zone residues, responsible for spatial CDR arrangement, are partially randomized. A yeast surface display library comprising ≈300 000 variants is screened for high-affinity binders in the scFv and Fab formats. Next-generation sequencing discloses humanized antibody variants with restored affinity and improved protein characteristics compared to the parental chicken antibodies. Furthermore, the sequencing data give new insights into the importance of antibody format, used during the humanization process. Starting from the antibody repertoire of immunized chickens, this work features an effective and fast high-throughput approach for the generation of multiple humanized antibodies with potential therapeutic relevance.
Collapse
Affiliation(s)
- Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, Saint-Prex, 1162, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany.,Merck Lab @ Technical University of Darmstadt, Alarich-Weiss-Strasse 4, Darmstadt, D-64287, Germany
| |
Collapse
|
1050
|
Bringing the Heavy Chain to Light: Creating a Symmetric, Bivalent IgG-Like Bispecific. Antibodies (Basel) 2020; 9:antib9040062. [PMID: 33172091 PMCID: PMC7709125 DOI: 10.3390/antib9040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023] Open
Abstract
Bispecific molecules are biologically significant, yet their complex structures pose important manufacturing and pharmacokinetic challenges. Nevertheless, owing to similarities with monoclonal antibodies (mAbs), IgG-like bispecifics conceptually align well with conventional expression and manufacturing platforms and often exhibit potentially favorable drug metabolism and pharmacokinetic (DMPK) properties. However, IgG-like bispecifics do not possess target bivalency and current designs often require tedious engineering and purification to ensure appropriate chain pairing. Here, we present a near-native IgG antibody format, the 2xVH, which can create bivalency for each target or epitope and requires no engineering for cognate chain pairing. In this modality, two different variable heavy (VH) domains with distinct binding specificities are grafted onto the first constant heavy (CH1) and constant light (CL) domains, conferring the molecule with dual specificity. To determine the versatility of this format, we characterized the expression, binding, and stability of several previously identified soluble human VH domains. By grafting these domains onto an IgG scaffold, we generated several prototype 2xVH IgG and Fab molecules that display similar properties to mAbs. These molecules avoided the post-expression purification necessary for engineered bispecifics while maintaining a capacity for simultaneous dual binding. Hence, the 2xVH format represents a bivalent, bispecific design that addresses limitations of manufacturing IgG-like bispecifics while promoting biologically-relevant dual target engagement.
Collapse
|