1151
|
Iwata Y, Pan Y, Yoshida T, Hanada H, Shigekawa M. Alpha1-syntrophin has distinct binding sites for actin and calmodulin. FEBS Lett 1998; 423:173-7. [PMID: 9512352 DOI: 10.1016/s0014-5793(98)00085-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Overlay and co-sedimentation assays using recombinant alpha1-syntrophin proteins revealed that two regions of alpha1-syntrophin, i.e. aa 274-315 and 449-505, contain high-affinity binding sites for F-actin (Kd 0.16-0.45 microM), although only a single high-affinity site (Kd 0.35 microM) was detected in the recombinant full-length syntrophin. We also found that actomyosin fractions prepared from both cardiac and skeletal muscle contain proteins recognized by anti-syntrophin antibody. These data suggest a novel role for syntrophin as an actin binding protein, which may be important for the function of the dystrophin-glycoprotein complex or for other cell functions. We also found that alpha1-syntrophin binds calmodulin at two distinct sites with high (Kd 15 nM) and low (Kd 0.3 microM) affinity.
Collapse
Affiliation(s)
- Y Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
1152
|
Abstract
Tandem pore domain K+ channels represent a new family of ion channels involved in the control of background membrane conductances. We report the structural and functional properties of a TWIK-related acid-sensitive K+ channel (rTASK), a new member of this family cloned from rat cerebellum. The salient features of the primary amino acid sequence include four putative transmembrane domains and, unlike other cloned tandem pore domain channels, a PDZ (postsynaptic density protein, disk-large, zo-1) binding sequence at the C terminal. rTASK has distant overall homology to a putative Caenorhabditis elegans K+ channel and to the mammalian clones TREK-1 and TWIK-1. rTASK expression is most abundant in rat heart, lung, and brain. When exogenously expressed in Xenopus oocytes, rTASK currents activate instantaneously, are noninactivating, and are not gated by voltage. Because rTASK currents satisfy the Goldman-Hodgkin-Katz current equation for an open channel, rTASK can be classified an open rectifier. Activation of protein kinase A produces inhibition of rTASK, whereas activation of protein kinase C has no effect. rTASK currents were inhibited by extracellular acidity. rTASK currents also were inhibited by Zn2+ (IC50 = 175 microM), the local anesthetic bupivacaine (IC50 = 68 microM), and the anti-convulsant phenytoin ( approximately 50% inhibition at 200 microM). By demonstrating open rectification and open probability independent of voltage, we have established that rTASK is a baseline potassium channel.
Collapse
|
1153
|
Schnermann J. Juxtaglomerular cell complex in the regulation of renal salt excretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R263-79. [PMID: 9486281 DOI: 10.1152/ajpregu.1998.274.2.r263] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Luminal NaCl concentration at the macula densa (MD) has the two established effects of regulating glomerular arteriolar resistance and renin secretion. Tubuloglomerular feedback (TGF), the inverse relationship between MD NaCl concentration and glomerular filtration rate (GFR), stabilizes distal salt delivery and thereby NaCl excretion in response to random perturbations unrelated to changes in body salt balance. Control of vasomotor tone by TGF is exerted primarily by NaCl transport-dependent changes in local adenosine concentrations. During long-lasting perturbations of MD NaCl concentration, control of renin secretion becomes the dominant function of the MD. The potentially maladaptive effect of TGF under chronic conditions is prevented by TGF adaptations, permitting adjustments in GFR to occur. TGF adaptation is mechanistically coupled to the end point targeted by chronic deviations in MD NaCl, the rate of local and systemic angiotensin II generation. MD control of renin secretion is the result of the coordinated action of local mediators that include nitric oxide synthase (NOS) and cyclooxygenase (COX) products. Thus vascular smooth muscle cell activation during high MD transport and granular cell activation during low MD transport is achieved by different extracellular mediators. The coordinated regulation of NOS I and COX-2 expression in MD cells and of renin expression in granular cells suggests that control of juxtaglomerular regulation of gene transcription or mRNA metabolism may be another consequence of a chronic alteration in MD NaCl concentration.
Collapse
Affiliation(s)
- J Schnermann
- Department of Physiology, University of Michigan, Ann Arbor 48109, USA
| |
Collapse
|
1154
|
Abstract
Recently, it has been shown for mouse skeletal muscle that caveolin-3 is localized in the sarcolemma and cofractionates with the original dystrophin complex (DC). In order to find out whether caveolin-3 is a further component of the recently established and enlarged nitric oxide synthase (NOS) I-DC and whether members of this complex interact with and are potentially regulated by caveolin-3, mammalian and non-mammalian healthy and diseased (dystrophic) skeletal muscles were investigated using caveolin-3, NOS I, DC components and myosin immunohistochemistry as well as NOS I-associated diaphorase histochemistry. In healthy mammalian skeletal muscle, caveolin-3 was colocalized with the DC components in all extra- and intrafusal fibers. By contrast, NOS I was absent in type I extrafusal fibers of certain species. In patients with Duchenne muscular dystrophy and mdx mice the components of the NOS I-DC were not detected in all extra- and intrafusal fiber types, while caveolin-3 was found unchanged. In healthy non-mammalian skeletal muscle, i.e. of birds, reptiles and fishes, caveolin-3 immunoreactivity was lacking in the sarcolemma as was alpha-sarcoglycan; the other NOS I-DC components were either present or absent. In conclusion, although caveolin-3 is localized in the sarcolemma of mammalian myofibers, there are differences in the microarchitecture of the components of the DC complex and of caveolin-3 which does not appear to be linked with the NOS I-DC. Potential regulatory interactions between caveolin-3 and NOS I may nevertheless exist in those fibers where both molecules are colocalized. The absence of caveolin-3 and alpha-sarcoglycan immunoreactivities in non-mammalian myofibers may suggest that the functions of these proteins are subserved by other components of NOS I-DC complex.
Collapse
Affiliation(s)
- R Gossrau
- Institute of Anatomy, University Clinic Benjamin Franklin, Free University of Berlin, Germany
| |
Collapse
|
1155
|
Wehling M, Stull JT, McCabe TJ, Tidball JG. Sparing of mdx extraocular muscles from dystrophic pathology is not attributable to normalized concentration or distribution of neuronal nitric oxide synthase. Neuromuscul Disord 1998; 8:22-9. [PMID: 9565987 DOI: 10.1016/s0960-8966(97)00136-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous findings have led to speculations that decreased concentration of nNOS (neuronal nitric oxide synthase) may underlie some aspects of the pathophysiology of dystrophic muscle. We have tested whether the sparing of extraocular muscles (EOM) in muscular dystrophy is attributable to the presence of normal nNOS concentration and distribution in these muscles. Measurements of total nNOS concentration in control muscle showed that total nNOS comprises approximately 0.05% of total muscle protein, indicating a molar stoichiometry of approximately 60 and 20 to total dystrophin and syntrophin, respectively. Thus, most muscle nNOS is either not associated with the dystrophin complex, or binds to yet unidentified sites in the complex. nNOS concentration was at least two-fold greater in C57 EOM and tibialis anterior (TA) compared with mdx samples. No significant differences in nNOS concentration in EOM versus TA in either mdx or C57 mice were observed, nNOS was concentrated at the sarcolemma of all C57 samples, while mdx nNOS displayed a cytosolic distribution, except in fibers that reverted to express dystrophin. These data show that mdx EOM are spared by a mechanism other than normalized concentration and location of nNOS.
Collapse
Affiliation(s)
- M Wehling
- Department of Physiological Science, University of California, Los Angeles 90095-1527, USA
| | | | | | | |
Collapse
|
1156
|
Sagami I, Shimizu T. The crucial roles of Asp-314 and Thr-315 in the catalytic activation of molecular oxygen by neuronal nitric-oxide synthase. A site-directed mutagenesis study. J Biol Chem 1998; 273:2105-8. [PMID: 9442050 DOI: 10.1074/jbc.273.4.2105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nitric-oxide synthase (NOS) is a flavohemoprotein that has a cytochrome P450 (P450)-type heme active site and catalyzes the monooxygenation of L-Arg to NG-hydroxy-L-Arg (NHA) according to the normal P450-type reaction in the first step of NO synthesis. However, there is some controversy as to how the second step of the reaction, from NHA to NO and L-citrulline, occurs within the P450 domain of NOS. By referring to the heme active site of P450, it is conjectured that polar amino acid(s) such as Asp/Glu and Thr must be responsible for the activation of molecular oxygen in NOS. In this study, we have created Asp-314-->Ala and Thr-315-->Ala mutants of neuronal NOS, both of which had absorption maxima at 450 nm in the spectra of the CO-reduced complexes and studied NO formation rates and other kinetic parameters as well as the substrate binding affinity. The Asp-314-->Ala mutant totally abolished NO formation activity and markedly increased the rate of H2O2 formation by 20-fold compared with the wild type when L-Arg was used as the substrate. The NADPH oxidation and O2 consumption rates for the Asp-314-->Ala mutant were 60-65% smaller than for the wild type. The Thr-315-->Ala mutant, on the other hand, retained NO formation activity that was 23% higher than the wild type, but like the Asp-314-->Ala mutation, markedly increased the H2O2 formation rate. The NADPH oxidation and O2 consumption rates for the Thr-315-->Ala mutant were, respectively, 56 and 27% higher than for the wild type. When NHA was used as the substrate, similar values were obtained. Thus, we propose that Asp-314 is crucial for catalysis, perhaps through involvement in the stabilization of an oxygen-bound intermediate. An important role for Thr-315 in the catalysis is also suggested.
Collapse
Affiliation(s)
- I Sagami
- Institute for Chemical Reaction Science, Tohoku University, Sendai, Japan
| | | |
Collapse
|
1157
|
Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J Neurosci 1998. [PMID: 9412493 DOI: 10.1523/jneurosci.18-01-00128.1998] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Syntrophins are cytoplasmic peripheral membrane proteins of the dystrophin-associated protein complex (DAPC). Three syntrophin isoforms, alpha1, beta1, and beta2, are encoded by distinct genes. Each contains two pleckstrin homology (PH) domains, a syntrophin-unique (SU) domain, and a PDZ domain. The name PDZ comes from the first three proteins found to contain repeats of this domain (PSD-95, Drosophila discs large protein, and the zona occludens protein 1). PDZ domains in other proteins bind to the C termini of ion channels and neurotransmitter receptors containing the consensus sequence (S/T)XV-COOH and mediate the clustering or synaptic localization of these proteins. Two voltage-gated sodium channels (NaChs), SkM1 and SkM2, of skeletal and cardiac muscle, respectively, have this consensus sequence. Because NaChs are sarcolemmal components like syntrophins, we have investigated possible interactions between these proteins. NaChs copurify with syntrophin and dystrophin from extracts of skeletal and cardiac muscle. Peptides corresponding to the C-terminal 10 amino acids of SkM1 and SkM2 are sufficient to bind detergent-solubilized muscle syntrophins, to inhibit the binding of native NaChs to syntrophin PDZ domain fusion proteins, and to bind specifically to PDZ domains from alpha1-, beta1-, and beta2-syntrophin. These peptides also inhibit binding of the syntrophin PDZ domain to the PDZ domain of neuronal nitric oxide synthase, an interaction that is not mediated by C-terminal sequences. Brain NaChs, which lack the (S/T)XV consensus sequence, also copurify with syntrophin and dystrophin, an interaction that does not appear to be mediated by the PDZ domain of syntrophin. Collectively, our data suggest that syntrophins link NaChs to the actin cytoskeleton and the extracellular matrix via dystrophin and the DAPC.
Collapse
|
1158
|
Rothe F, Canzler U, Wolf G. Subcellular localization of the neuronal isoform of nitric oxide synthase in the rat brain: A critical evaluation. Neuroscience 1998; 83:259-69. [PMID: 9466415 DOI: 10.1016/s0306-4522(97)00373-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the aldehyde-fixed rat brain NADPH-diaphorase is suggested to be related to brain nitric oxide synthase but also to other isoforms of this enzyme as well as to several non-related types of NADPH-oxidoreductases. In this study NADPH-diaphorase histochemistry using the tetrazolium salt BSPT (2-(2'-benzothiazolyl)-5-styryl-3-(4'-phthalhydrazidyl)-tetrazoliu m chloride) (to yield an electron dense formazan) and immunocytochemistry were applied for the cellular and subcellular localization of brain nitric oxide synthase in the striatum and the pontine laterodorsal tegmental nucleus of the rat. Combining the two techniques, in both brain regions identical distribution patterns of heavily-stained neurons were observed at the light microscopic level. There are inconsistencies in the literature with regard to the subcellular localization of brain nitric oxide synthase and NADPH-diaphorase in neurons. In our results brain nitric oxide synthase immunoreactivity in abundantly stained neurons was mainly cytosolically distributed, sometimes in a patch-like form and distant from membranes, whereas the NADPH-diaphorase reaction product BSPT-formazan was closely attached to discrete portions of intracellular membranes. Other neurons and glial cells including their processes showed also, but to a lesser extent, formazan-labelled membrane portions. In such cell populations brain nitric oxide synthase immunoreactivity was not detectable. Possible reasons for these inconsistencies are discussed in detail. The strength but not the specificity of the NADPH-diaphorase related reaction was shown to be dependent on concentrations of Triton X-100 and tetrazolium salt. We suggest that, for electron microscopical cytochemistry, the BSPT technique combined with other independent techniques, such as immunocytochemistry and in situ hybridization, may be a viable means for the identification and subcellular localization of the different nitric oxide synthase isoforms, and to discriminate them from other types of NADPH-diaphorases.
Collapse
Affiliation(s)
- F Rothe
- Institute of Medical Neurobiology, University of Magdeburg, Germany
| | | | | |
Collapse
|
1159
|
Reid MB, Kobzik L, Bredt DS, Stamler JS. Nitric oxide modulates excitation-contraction coupling in the diaphragm. Comp Biochem Physiol A Mol Integr Physiol 1998; 119:211-8. [PMID: 11253787 DOI: 10.1016/s1095-6433(97)00417-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We investigated the enzymatic source, cellular production, and functional importance of nitric oxide (NO) in rat diaphragm. Neuronal and endothelial isoforms of constituitive nitric oxide synthase (nc-NOS, ec-NOS) were identified by immunostaining. NOS activity measured in diaphragm homogenates averaged 5.1 pmol/min/mg. Passive diaphragm fiber bundles produced NO derivatives (NOx) at the rate of 0.9 pmol/min/mg as measured by the cytochrome c reduction assay; NO production was confirmed by photolysis/ chemiluminescence measurements. Endogenous NO depressed diaphragm contractile function. The force of submaximal contraction was increased by NOS inhibitors, an effect that was stable for up to 60 min and was reversed by NO donors. We conclude that diaphragm muscle fibers express nc-NOS, ec-NOS, or both; passive myocytes produce NOx; and NO or NO-derivatives inhibit force production by modulating excitation-contraction coupling.
Collapse
Affiliation(s)
- M B Reid
- Department of Medicine, Pulmonary and Critical Care Section, Baylor College of Medicine, Houston, TX, 77030, USA.
| | | | | | | |
Collapse
|
1160
|
Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 1998; 20:115-24. [PMID: 9459447 DOI: 10.1016/s0896-6273(00)80439-0] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) is important for N-methyl-D-aspartate (NMDA) receptor-dependent neurotransmitter release, neurotoxicity, and cyclic GMP elevations. The coupling of NMDA receptor-mediated calcium influx and nNOS activation is postulated to be due to a physical coupling of the receptor and the enzyme by an intermediary adaptor protein, PSD95, through a unique PDZ-PDZ domain interaction between PSD95 and nNOS. Here, we report the identification of a novel nNOS-associated protein, CAPON, which is highly enriched in brain and has numerous colocalizations with nNOS. CAPON interacts with the nNOS PDZ domain through its C terminus. CAPON competes with PSD95 for interaction with nNOS, and overexpression of CAPON results in a loss of PSD95/nNOS complexes in transfected cells. CAPON may influence nNOS by regulating its ability to associate with PSD95/NMDA receptor complexes.
Collapse
Affiliation(s)
- S R Jaffrey
- The Johns Hopkins University School of Medicine, Department of Neuroscience, Pharmacology and Molecular Sciences, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
1161
|
Schultz J, Hoffmüller U, Krause G, Ashurst J, Macias MJ, Schmieder P, Schneider-Mergener J, Oschkinat H. Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. NATURE STRUCTURAL BIOLOGY 1998; 5:19-24. [PMID: 9437424 DOI: 10.1038/nsb0198-19] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Syntrophins are modular proteins belonging to the dystrophin associated glycoprotein complex and are thought to be involved in the regulation of the muscular system. Screening of peptide libraries revealed selectivity of the synotrophin PDZ domain toward the motif R/K/Q-E-S/T-X-V-COO- found to be highly conserved in the alpha-subunit C-terminus of vertebrate voltage gated sodium channels (VGSCs). The solution structure of the domain in complex with the peptide G-V-K-E-S-L-V shows specific interactions between the conserved residues in the peptide and syntrophin-characteristic residues in the domain. We propose that syntrophins localize VGSCs to the dystrophin network through its PDZ domain.
Collapse
Affiliation(s)
- J Schultz
- Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1162
|
Abstract
Nitric oxide (NO.) can lead to damaging or protective actions in the central nervous system. Here we consider the chemistry of the NO group and its redox-related species that can lead to these exactly opposite ends. In the neurodestructive mode, NO. reacts with superoxide anion (02.-) to form peroxynitrite (ONOO-), which leads to neuronal injury. In contrast, the reaction of the NO group with cysteine sulfhydryls on the NMDA receptor leads to a decrease in receptor/channel activity. avoidance of excessive Ca2+ entry, and thus neuroprotection. Site-directed mutagenesis of recombinant NMDA receptor subunits has recently increased our knowledge of such redox modulation by NO. Transfer of the NO group to cysteine sulfhydryls on the NMDA receptor or other proteins, known as S-nitrosylation, is becoming recognized as a ubiquitous regulatory reaction, skin to phosphorylation, and represents a form of redox modulation in diverse tissues including the brain.
Collapse
Affiliation(s)
- S A Lipton
- CNS Research Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
1163
|
Topinka JR, Bredt DS. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron 1998; 20:125-34. [PMID: 9459448 DOI: 10.1016/s0896-6273(00)80440-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels and associated signal transduction cascades are clustered at excitatory synapses by PSD-95 and related PDZ-containing proteins. Mechanisms that target PSD-95 to synaptic membranes, however, are unknown. Here, PSD-95 is shown to partition as an integral membrane protein in brain homogenates. Metabolic labeling of brain slices or cultured cells demonstrates that PSD-95 is modified by thioester-linked palmitate, a long chain fatty acid that targets proteins to cell membranes. In fact, PSD-95 is a major palmitoylated protein in intact cells, and palmitoylated PSD-95 partitions exclusively with cell membranes. Mutagenesis indicates that palmitoylation of PSD-95 occurs on conserved N-terminal cysteines 3 and 5. Palmitoylation-deficient mutants of PSD-95 do not partition as integral membrane proteins and do not participate in PDZ-ion channel interactions in vivo. This work identifies palmitoylation as a critical regulatory mechanism for receptor interactions with PSD-95.
Collapse
Affiliation(s)
- J R Topinka
- Department of Physiology, University of California at San Francisco, 94143, USA
| | | |
Collapse
|
1164
|
Hoang LM, Mathers DA. Internally applied endotoxin and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway. Br J Pharmacol 1998; 123:5-12. [PMID: 9484848 PMCID: PMC1565131 DOI: 10.1038/sj.bjp.0701570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. In this study the role of nitric oxide synthase (NOS) in the acute activation of large conductance, Ca2+-activated K+ channels (BK channels) by internally applied E. coli lipopolysaccharide (LPS, endotoxin) was examined in vascular smooth muscle cells. 2. Cerebrovascular smooth muscle cells (CVSMCs) were enzymatically dispersed from the middle, posterior communicating and posterior cerebral arteries of adult Wistar rats and maintained at 4 degrees C for 2-4 days before recording with standard patch-clamp techniques. 3. Acute application of LPS (100 microg ml(-1)) to inside-out patches of CVSMC membrane isolated in a cell-free environment rapidly and reversibly increased the open probability, Po of BK channels in these patches by 3.3+/-0.30 fold. 4. Acute application of the nitric oxide (NO) donor sodium nitroprusside (SNP, 100 microM) to inside-out patches of CVSMC membrane, studied in the presence of intact cells, also reversibly increased Po, by some 1.8+/-0.2 fold over control. 5. Kinetic analysis showed that both LPS and SNP increased Po by accelerating the rate of BK channel reopening, rather than by retarding the closure of open channels. 6. Neither LPS nor SNP altered the reversal potential or conductance of BK channels. 7. The NOS substrate L-arginine (1 microM) potentiated the acute activation of BK channels by LPS, while the synthetic enantiomer D-arginine (1 microM) inhibited the action of LPS on BK channels. 8. The acute activation of BK channels by LPS was suppressed by pre-incubation of cells with N(omega)-nitro-L-arginine (50 microM) or N(omega)-nitro-L-arginine methyl ester (1 mM), two competitive antagonists of nitric oxide synthases. N(omega)-nitro-D-arginine (50 microM), a poor inhibitor of NOS in in vitro assays, had no effect on BK channel activation by LPS. 9. These results indicate that excised, inside-out patches of CVSMC membrane exhibit a NOS-like activity which is acutely activated when LPS is present at the cytoplasmic membrane surface. Possible relationships between this novel mechanism and the properties of known isoforms of nitric oxide synthase are discussed.
Collapse
Affiliation(s)
- L M Hoang
- Department of Physiology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
1165
|
Fanning AS, Anderson JM. PDZ domains and the formation of protein networks at the plasma membrane. Curr Top Microbiol Immunol 1997; 228:209-33. [PMID: 9401208 DOI: 10.1007/978-3-642-80481-6_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A S Fanning
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8019, USA
| | | |
Collapse
|
1166
|
Staudinger J, Lu J, Olson EN. Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J Biol Chem 1997; 272:32019-24. [PMID: 9405395 DOI: 10.1074/jbc.272.51.32019] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PICK1 is a protein kinase C (PKC) alpha-binding protein initially identified using the yeast two-hybrid system. Here we report that PICK1 contains a PDZ domain that interacts specifically with a previously unidentified PDZ-binding domain (QSAV) at the extreme COOH terminus of PKCalpha and that mutation of a putative carboxylate-binding loop within the PICK1 PDZ domain abolishes this interaction. The PDZ-binding domain in PKCalpha is absent from other PKC isoforms that do not interact with PICK1. We also demonstrate that PICK1 can homooligomerize through sequences that are distinct from the carboxylate-binding loop, suggesting that self-association and PKCalpha binding are not mutually exclusive. A Caenorhabditis elegans PICK1-like protein is also able to bind to PKCalpha, suggesting a conservation of function through evolution. Association of PKCalpha with PICK1 provides a potential mechanism for the selective targeting of PKCalpha to unique subcellular sites.
Collapse
Affiliation(s)
- J Staudinger
- Department of Molecular Endocrinology, GlaxoWellcome, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
1167
|
Abstract
The process by which extracellular signals are relayed from the plasma membrane to specific intracellular sites is an essential facet of cellular regulation. Many signaling pathways do so by altering the phosphorylation state of tyrosine, serine, or threonine residues of target proteins. Recently, it has become apparent that regulatory mechanisms exist to influence where and when protein kinases and phosphatases are activated in the cell. The role of scaffold, anchoring, and adaptor proteins that contribute to the specificity of signal transduction events by recruiting active enzymes into signaling networks or by placing enzymes close to their substrates is discussed.
Collapse
Affiliation(s)
- T Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
1168
|
Peters MF, O'Brien KF, Sadoulet-Puccio HM, Kunkel LM, Adams ME, Froehner SC. beta-dystrobrevin, a new member of the dystrophin family. Identification, cloning, and protein associations. J Biol Chem 1997; 272:31561-9. [PMID: 9395493 DOI: 10.1074/jbc.272.50.31561] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dystrophin, the protein disrupted in Duchenne muscular dystrophy, is one of several related proteins that are key components of the submembrane cytoskeleton. Three dystrophin-related proteins (utrophin, dystrophin-related protein-2 (DRP2), and dystrobrevin) have been described. Here, we identify a human gene on chromosome 2p22-23 that encodes a novel protein, beta-dystrobrevin, with significant homology to the other known dystrobrevin (now termed alpha-dystrobrevin). Sequence alignments including this second dystrobrevin strongly support the concept that two distinct subfamilies exist within the dystrophin family, one composed of dystrophin, utrophin, and DRP2 and the other composed of alpha- and beta-dystrobrevin. The possibility that members of each subfamily form distinct protein complexes was examined by immunopurifying dystrobrevins and dystrophin. A beta-dystrobrevin antibody recognized a protein of the predicted size (71 kDa) that copurified with the dystrophin short form, Dp71. Thus, like alpha-dystrobrevin, beta-dystrobrevin is likely to associate directly with dystrophin. alpha- and beta-dystrobrevins failed to copurify with each other, however. These results suggest that members of the dystrobrevin subfamily form heterotypic associations with dystrophin and raise the possibility that pairing of a particular dystrobrevin with dystrophin may be regulated, thereby providing a mechanism for assembly of distinct submembrane protein complexes.
Collapse
Affiliation(s)
- M F Peters
- Department of Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA
| | | | | | | | | | | |
Collapse
|
1169
|
Dobrosotskaya I, Guy RK, James GL. MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains. J Biol Chem 1997; 272:31589-97. [PMID: 9395497 DOI: 10.1074/jbc.272.50.31589] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Membrane-associated guanylate kinase (MAGUK) proteins participate in the assembly of multiprotein complexes on the inner surface of the plasma membrane at regions of cell-cell contact. MAGUKs are characterized by three types of protein-protein interaction modules: the PDZ domain, the Src homology 3 (SH3) domain, and the guanylate kinase (GuK) domain. The arrangement of these domains is conserved in all previously known MAGUKs: either one or three PDZ domains in the NH2-terminal half, followed by the SH3 domain, followed by a COOH-terminal GuK domain. In this report, we describe the cDNA cloning and subcellular distribution of MAGI-1, a MAGUK with three unique structural features: 1) the GuK domain is at the NH2 terminus, 2) the SH3 domain is replaced by two WW domains, and 3) it contains five PDZ domains. MAGI-1 mRNA was detected in several adult mouse tissues. Sequence analysis of overlapping cDNAs revealed the existence of three splice variants that are predicted to encode MAGI-1 proteins with different COOH termini. The longest variant, MAGI-1c, contains three bipartite nuclear localization signals in its unique COOH-terminal sequence and was found predominantly in the nucleus of Madin-Darby canine kidney cells. A shorter form lacking these signals was found primarily in membrane and cytoplasmic fractions. This distribution, which is reminiscent of that seen for the tight junction protein ZO-1, suggests that MAGI-1 may participate in the transmission of regulatory signals from the cell surface to the nucleus.
Collapse
Affiliation(s)
- I Dobrosotskaya
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78284-7760, USA
| | | | | |
Collapse
|
1170
|
Grootjans JJ, Zimmermann P, Reekmans G, Smets A, Degeest G, Dürr J, David G. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci U S A 1997; 94:13683-8. [PMID: 9391086 PMCID: PMC28366 DOI: 10.1073/pnas.94.25.13683] [Citation(s) in RCA: 337] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The syndecans are transmembrane proteoglycans that place structurally heterogeneous heparan sulfate chains at the cell surface and a highly conserved polypeptide in the cytoplasm. Their versatile heparan sulfate moieties support various processes of molecular recognition, signaling, and trafficking. Here we report the identification of a protein that binds to the cytoplasmic domains of the syndecans in yeast two-hybrid screens, surface plasmon resonance experiments, and ligand-overlay assays. This protein, syntenin, contains a tandem repeat of PDZ domains that reacts with the FYA C-terminal amino acid sequence of the syndecans. Recombinant enhanced green fluorescent protein (eGFP)-syntenin fusion proteins decorate the plasmamembrane and intracellular vesicles, where they colocalize and cosegregate with syndecans. Cells that overexpress eGFP-syntenin show numerous cell surface extensions, suggesting effects of syntenin on cytoskeleton-membrane organization. We propose that syntenin may function as an adaptor that couples syndecans to cytoskeletal proteins or cytosolic downstream signal-effectors.
Collapse
Affiliation(s)
- J J Grootjans
- Laboratory for Glycobiology and Developmental Genetics, Center for Human Genetics, University of Leuven, and Flanders Interuniversity Institute for Biotechnology, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
1171
|
Kim SK. Polarized signaling: basolateral receptor localization in epithelial cells by PDZ-containing proteins. Curr Opin Cell Biol 1997; 9:853-9. [PMID: 9425351 DOI: 10.1016/s0955-0674(97)80088-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular signals are normally presented to one surface of epithelial cells and to one end of neurons, and so neuronal and epithelial cell signaling is inherently polarized. Another aspect of signaling polarity is that receptors are often asymmetrically distributed on the surfaces of polarized cells. Recent evidence from studies of Caenorhabditis elegans shows that signaling polarity plays an important role in development. The underlying mesoderm induces the overlying ectoderm to form the vulva, and asymmetric distribution of the signal receptor on the basolateral surface of the epithelium is crucial for this signaling. In neurons, the localization of neurotransmitter receptors and ion channels at synapses allows neurons to be exquisitely sensitive to synaptic inputs. Exciting recent reports suggest that receptor localization to neuronal synapses and the basolateral membrane domains of epithelia may involve a common molecular mechanism involving localization by PDZ-containing proteins.
Collapse
Affiliation(s)
- S K Kim
- Department of Developmental Biology, Stanford University Medical Center, CA 94305-5427, USA.
| |
Collapse
|
1172
|
Affiliation(s)
- E B Ziff
- Howard Hughes Medical Institute, New York University Medical Center, Department of Biochemistry, New York, New York 10016, USA
| |
Collapse
|
1173
|
Abstract
Nitric oxide (NO) can act as a vasorelaxant, a modulator of neurotransmission and a defence against pathogens. However, under certain conditions, NO can also have damaging effects to cells. Whether NO is useful or harmful depends on its chemical fate, and on the rate and location of its production. Here, we discuss progress in NO chemistry and the enzymology of NO synthases, and we will also attempt to explain its actions in the cardiovascular, nervous and immune systems.
Collapse
Affiliation(s)
- B Mayer
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria.
| | | |
Collapse
|
1174
|
Abstract
We performed an electron microscopic study in layers II-III of S-1 in rats, using postembedding immunogold histochemistry to compare the synaptic distribution of N-methyl D-aspartate (NMDA) receptors (assessed with an antibody for the NMDAR1 subunit) with that of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors (assessed with an antibody for the GluR2/3 subunit). Labeling for each receptor was concentrated at active zones of asymmetric synapses. Analysis of the tangential position of gold particles along the postsynaptic active zone revealed that NMDA receptors were at highest concentration in the middle of the synaptic apposition, whereas AMPA receptors were concentrated in an annulus away from its center. These data support the view that the two types of receptors are anchored by distinct subsynaptic assemblies, and raise the possibility of independent synaptic microdomains.
Collapse
Affiliation(s)
- V N Kharazia
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
1175
|
Lin L, Sahr KE, Chishti AH. Identification of the mouse homologue of human discs large and rat SAP97 genes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1362:1-5. [PMID: 9434093 DOI: 10.1016/s0925-4439(97)00059-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human homologue of the Drosophila discs large (dlg) tumor suppressor gene encodes a 926 amino acid protein, hDlg, which is a member of the MAGUK (Membrane Associated GUanylate Kinase homologues) family of proteins. To facilitate the development of murine model system for functional studies in vivo, the primary structure of the mouse homologue of hDlg has been determined. Dlgh1 encodes a approximately 5.5 kb transcript that is ubiquitously expressed in murine tissues. Mouse mDlg is a 927 amino acid protein that is 95% identical to hDlg and 94% identical to rat synapse associated protein, SAP97. The unusually high conservation of the primary structure of murine and human Dlg proteins across their distinct protein domains suggests a conserved function in vivo.
Collapse
Affiliation(s)
- L Lin
- Laboratory of Tumor Cell Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | |
Collapse
|
1176
|
Wu K, Aoki C, Elste A, Rogalski-Wilk AA, Siekevitz P. The synthesis of ATP by glycolytic enzymes in the postsynaptic density and the effect of endogenously generated nitric oxide. Proc Natl Acad Sci U S A 1997; 94:13273-8. [PMID: 9371836 PMCID: PMC24299 DOI: 10.1073/pnas.94.24.13273] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/1997] [Indexed: 02/05/2023] Open
Abstract
The major contribution of this paper is the finding of a glycolytic source of ATP in the isolated postsynaptic density (PSD). The enzymes involved in the generation of ATP are glyceraldehyde-3-phosphate dehydrogenase (G3PD) and phosphoglycerate kinase (PGK). Lactate dehydrogenase (LDH) is available for the regeneration of NAD+, as well as aldolase for the regeneration of glyceraldehyde-3-phosphate (G3P). The ATP was shown to be used by the PSD Ca2+/calmodulin-dependent protein kinase and can probably be used by two other PSD kinases, protein kinase A and protein kinase C. We confirmed by immunocytochemistry the presence of G3PD in the PSD and its binding to actin. Also present in the PSD is NO synthase, the source of NO. NO increases the binding of NAD, a G3PD cofactor, to G3PD and inhibits its activity as also found by others. The increased NAD binding resulted in an increase in G3PD binding to actin. We confirmed the autophosphorylation of G3PD by ATP, and further found that this procedure also increased the binding of G3PD to actin. ATP and NO are connected in that the formation of NO from NOS at the PSD resulted, in the presence of NAD, in a decrease of ATP formation in the PSD. In the discussion, we raise the possible roles of G3PD and of ATP in protein synthesis at the PSD, the regulation by NO, as well as the overall regulatory role of the PSD complex in synaptic transmission.
Collapse
Affiliation(s)
- K Wu
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
1177
|
Christopherson KS, Bredt DS. Nitric oxide in excitable tissues: physiological roles and disease. J Clin Invest 1997; 100:2424-9. [PMID: 9366555 PMCID: PMC508441 DOI: 10.1172/jci119783] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- K S Christopherson
- Department of Physiology, University of California at San Francisco 94143, USA
| | | |
Collapse
|
1178
|
Venema VJ, Ju H, Zou R, Venema RC. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 1997; 272:28187-90. [PMID: 9353265 DOI: 10.1074/jbc.272.45.28187] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuronal nitric-oxide synthase (nNOS) has been shown previously to interact with alpha1-syntrophin in the dystrophin complex of skeletal muscle. In the present study, we have examined whether nNOS also interacts with caveolin-3 in skeletal muscle. nNOS and caveolin-3 are coimmunoprecipitated from rat skeletal muscle homogenates by antibodies directed against either of the two proteins. Synthetic peptides corresponding to the membrane-proximal caveolin-3 residues 65-84 and 109-130 and homologous caveolin-1 residues 82-101 and 135-156 potently inhibit the catalytic activity of purified, recombinant nNOS. Purified nNOS also binds to a glutathione S-transferase-caveolin-1 fusion protein in in vitro binding assays. In vitro binding is completely abolished by preincubation of nNOS with either of the two caveolin-3 inhibitory peptides. Interactions between nNOS and caveolin-3, therefore, appear to be direct and to involve two distinct caveolin scaffolding/inhibitory domains. Other caveolin-interacting enzymes, including endothelial nitric-oxide synthase and the c-Src tyrosine kinase, are also potently inhibited by each of the four caveolin peptides. Inhibitory interactions mediated by two different caveolin domains may thus be a general feature of enzyme docking to caveolin proteins in plasmalemmal caveolae.
Collapse
Affiliation(s)
- V J Venema
- Department of Pediatrics, Medical College of Georgia, Augusta, Georgia 30912,
| | | | | | | |
Collapse
|
1179
|
Yamamoto T, Harada N, Kano K, Taya S, Canaani E, Matsuura Y, Mizoguchi A, Ide C, Kaibuchi K. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 1997; 139:785-95. [PMID: 9348294 PMCID: PMC2141704 DOI: 10.1083/jcb.139.3.785] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dynamic rearrangement of cell-cell junctions such as tight junctions and adherens junctions is a critical step in various cellular processes, including establishment of epithelial cell polarity and developmental patterning. Tight junctions are mediated by molecules such as occludin and its associated ZO-1 and ZO-2, and adherens junctions are mediated by adhesion molecules such as cadherin and its associated catenins. The transformation of epithelial cells by activated Ras results in the perturbation of cell-cell contacts. We previously identified the ALL-1 fusion partner from chromosome 6 (AF-6) as a Ras target. AF-6 has the PDZ domain, which is thought to localize AF-6 at the specialized sites of plasma membranes such as cell-cell contact sites. We investigated roles of Ras and AF-6 in the regulation of cell-cell contacts and found that AF-6 accumulated at the cell-cell contact sites of polarized MDCKII epithelial cells and had a distribution similar to that of ZO-1 but somewhat different from those of catenins. Immunoelectron microscopy revealed a close association between AF-6 and ZO-1 at the tight junctions of MDCKII cells. Native and recombinant AF-6 interacted with ZO-1 in vitro. ZO-1 interacted with the Ras-binding domain of AF-6, and this interaction was inhibited by activated Ras. AF-6 accumulated with ZO-1 at the cell-cell contact sites in cells lacking tight junctions such as Rat1 fibroblasts and PC12 rat pheochromocytoma cells. The overexpression of activated Ras in Rat1 cells resulted in the perturbation of cell-cell contacts, followed by a decrease of the accumulation of AF-6 and ZO-1 at the cell surface. These results indicate that AF-6 serves as one of the peripheral components of tight junctions in epithelial cells and cell-cell adhesions in nonepithelial cells, and that AF-6 may participate in the regulation of cell-cell contacts, including tight junctions, via direct interaction with ZO-1 downstream of Ras.
Collapse
Affiliation(s)
- T Yamamoto
- Division of Signal Transduction, Nara Institute of Science and Technology, Nara 630-01, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1180
|
Hell JW. Phosphorylation of receptors and ion channels and their interaction with structural proteins. Neurochem Int 1997; 31:651-8. [PMID: 9364451 DOI: 10.1016/s0197-0186(97)00023-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J W Hell
- Department of Pharmacology, University of Wisconsin, Madison 53706-1532, USA
| |
Collapse
|
1181
|
Affiliation(s)
- T Michel
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
1182
|
Yang CC, Alvarez RB, Engel WK, Haun CK, Askanas V. Immunolocalization of nitric oxide synthases at the postsynaptic domain of human and rat neuromuscular junctions--light and electron microscopic studies. Exp Neurol 1997; 148:34-44. [PMID: 9398448 DOI: 10.1006/exnr.1997.6663] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuronal (n) and inducible (i) nitric oxide synthase (NOS) were immunolocalized at the postsynaptic domain of human and rat neuromuscular junctions (NMJs) by light and electron microscopy. We applied polyclonal and monoclonal antibodies for colocalization with three other synaptic proteins, utilizing double and triple fluorescence labeling, and gold and peroxidase for immunoelectron microscopy. By light microscopy, nNOS and iNOS colocalized with desmin and dystrophin, known postsynaptic components, but not with neurofilament protein, a presynaptic component. By electronmicroscopy, nNOS, but not iNOS, colocalized postsynaptically on the same structures as desmin; iNOS was also postsynaptic, but did not colocalize with desmin immunoreactivity. At the NMJs of Duchenne muscular dystrophy patients, both nNOS and iNOS were strongly immunoreactive. At the NMJs of a patient with myasthenia gravis, nNOS was weaker than in controls. Total denervation of rat sciatic nerve did not cause any decrease of nNOS or iNOS immunoreactivity 7 days thereafter. At 15 days after denervation, there was a gradual decrease of immunoreactivity, and immunoreactivity disappeared 30 days after denervation, corresponding to the ultrastructurally detectable disorganization of the postsynaptic region. This seems to be the first combined light and electron microscopic description of the postsynaptic localization of nNOS and iNOS at human and rat NMJs.
Collapse
Affiliation(s)
- C C Yang
- USC Neuromuscular Center, Department of Neurology, Los Angeles, California 90017-1912, USA
| | | | | | | | | |
Collapse
|
1183
|
Gossrau R, Grozdanovic Z. NO is not substantially involved in afferent signalling in rat muscle spindles. Acta Histochem 1997; 99:445-58. [PMID: 9429603 DOI: 10.1016/s0065-1281(97)80036-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As intrafusal nuclear bag and chain fibers of muscle spindles take part in both sensory and motor functions, these stretch receptors may represent a useful model to answer the question whether nitric oxide (NO) signalling is involved in sensory and motor functions or motor events only, as has already been shown for ordinary extrafusal fibers. To answer these questions, we have applied immunohistochemical and enzyme histochemical methods to serial transverse sections of the rat gastrosoleus muscle for determining the presence or absence of NOS I, NOS-associated diaphorase (NOSaD), AChE and proteins related to the dystrophin complex. NOS I, NOSaD, and AChE were practically absent from the equatorial (central) region of intrafusal fibers, i.e. the site of termination of the primary and secondary afferents. These regions showed weak staining for dystrophin, beta-dystroglycan as well as alpha- and gamma-sarcoglycan. By contrast, all of these molecules were found enriched in the polar (peripheral) regions of the intrafusal fiber sarcolemma. NOS I, NOSaD, dystrophin, beta-dystroglycan and the two sarcoglycans showed a general presence in the sarcolemma, whereas AChE was limited to the endplate region and other circumscribed areas. From these observations we would like to conclude that NO does not appear to be significantly or even not involved in signal transfer to the sensory nerve endings in the intrafusal fibers.
Collapse
Affiliation(s)
- R Gossrau
- Department of Anatomy, University Clinic Benjamin Franklin, Free University of Berlin, Germany
| | | |
Collapse
|
1184
|
Xia H, Winokur ST, Kuo WL, Altherr MR, Bredt DS. Actinin-associated LIM protein: identification of a domain interaction between PDZ and spectrin-like repeat motifs. J Cell Biol 1997; 139:507-15. [PMID: 9334352 PMCID: PMC2139795 DOI: 10.1083/jcb.139.2.507] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1997] [Revised: 07/22/1997] [Indexed: 02/05/2023] Open
Abstract
PDZ motifs are protein-protein interaction domains that often bind to COOH-terminal peptide sequences. The two PDZ proteins characterized in skeletal muscle, syntrophin and neuronal nitric oxide synthase, occur in the dystrophin complex, suggesting a role for PDZ proteins in muscular dystrophy. Here, we identify actinin-associated LIM protein (ALP), a novel protein in skeletal muscle that contains an NH2-terminal PDZ domain and a COOH-terminal LIM motif. ALP is expressed at high levels only in differentiated skeletal muscle, while an alternatively spliced form occurs at low levels in the heart. ALP is not a component of the dystrophin complex, but occurs in association with alpha-actinin-2 at the Z lines of myofibers. Biochemical and yeast two-hybrid analyses demonstrate that the PDZ domain of ALP binds to the spectrin-like motifs of alpha-actinin-2, defining a new mode for PDZ domain interactions. Fine genetic mapping studies demonstrate that ALP occurs on chromosome 4q35, near the heterochromatic locus that is mutated in fascioscapulohumeral muscular dystrophy.
Collapse
Affiliation(s)
- H Xia
- Department of Physiology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
1185
|
Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 1997; 94:11612-6. [PMID: 9326658 PMCID: PMC23554 DOI: 10.1073/pnas.94.21.11612] [Citation(s) in RCA: 375] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the majority of cervical cancers, DNAs of high-risk mucosotpropic human papillomaviruses (HPVs), such as type 16, are maintained so as to express two viral proteins, E6 and E7, suggesting an essential importance to carcinogenesis. The high-risk HPV E6 proteins are known to inactivate p53 tumor suppressor protein but appear to have an additional, molecularly unknown function(s). In this study, we demonstrate that these E6 proteins can bind to the second PDZ domain of the human homologue of the Drosophila discs large tumor suppressor protein (hDLG) through their C-terminal XS/TXV/L (where X represents any amino acid, S/T serine or threonine, and V/L valine or leucine) motif. This finding is similar to the interaction between the adenomatous polyposis coli gene product and hDLG. E6 mutants losing the ability to bind to hDLG are no longer able to induce E6-dependent transformation of rodent cells. These results suggest an intriguing possibility that interaction between the E6 protein and hDLG or other PDZ domain-containing proteins could be an underlying mechanism in the development of HPV-associated cancers.
Collapse
Affiliation(s)
- T Kiyono
- Laboratory of Viral Oncology, Aichi Cancer Center, Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464, Japan
| | | | | | | | | | | |
Collapse
|
1186
|
Characterization of guanylate kinase-associated protein, a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated protein 90. J Neurosci 1997. [PMID: 9221768 DOI: 10.1523/jneurosci.17-15-05687.1997] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure of central synapses is poorly understood at the molecular level. A recent advance came with the identification of the postsynaptic density-95 (PSD-95)/synapse-associated protein 90 family of proteins as important mediators of the synaptic clustering of certain classes of ion channels. By yeast two-hybrid screening, a novel protein termed guanylate kinase-associated protein (GKAP) has been isolated that binds to the GK-like domain of PSD-95 (). Here we present a detailed characterization of GKAP expression in the rat brain and report the cloning of a novel GKAP splice variant. By Northern blot, GKAP mRNAs (4, 6.5, and 8 kB) are expressed predominantly in the rat brain. By in situ hybridization, GKAP is expressed widely in neurons of cortex and hippocampus and in the Purkinje and granule cells of the cerebellum. On brain immunoblots, two prominent bands of 95 and 130 kDa are detected that correspond to products of short and long N-terminal splice variants of GKAP. Two independent GKAP antibodies label somatodendritic puncta in neocortical and hippocampal neurons in a pattern consistent with synaptic elements. Immunogold electron microscopy reveals GKAP to be predominantly postsynaptic and present at asymmetric synapses and in dendritic spines. The distribution of GKAP immunogold particles is uniform in the lateral plane of the PSD but peaks in the perpendicular axis approximately 20 nm from the postsynaptic membrane. In cultured hippocampal neurons GKAP immunoreactive puncta colocalize with the AMPA receptor subunit Glu receptor 1 but not with the GABAA receptor subunits beta2 and beta3. Thus GKAP is a widely expressed neuronal protein localized specifically in the PSD of glutamatergic synapses, consistent with its direct interaction with PSD-95 family proteins.
Collapse
|
1187
|
Abstract
We investigated the role of neuronal (type I) nitric oxide synthase (nNOS) in NMDA-mediated excitotoxicity in wild-type (SV129 and C57BL/6J) and type I NOS knock-out (nNOS-/-) mice and examined its relationship to apoptosis. Excitotoxic lesions were produced by intrastriatal stereotactic NMDA microinjections (10-20 nmol). Lesion size was dose- and time-dependent, completely blocked by MK-801 pretreatment, and smaller in nNOS knock-out mice compared with wild-type littermates (nNOS+/+, 11.7 +/- 1.7 mm3; n = 8; nNOS-/-, 6. 4 +/- 1.8 mm3; n = 7). The density and distribution of striatal NMDA binding sites, determined by NMDA receptor autoradiography, did not differ between strains. Pharmacological inhibition of nNOS by 7-nitroindazole (50 mg/kg, i.p.) decreased NMDA lesion size by 32% in wild-type mice (n = 7). Neurochemical and immunohistochemical measurements of brain nitrotyrosine, a product of peroxynitrite formation, were increased markedly in wild-type but not in the nNOS-/- mice. Moreover, elevations in 2,3- and 2,5-dihydroxybenzoic acid levels were significantly reduced in the mutant striatum, as a measure of hydroxyl radical production. The importance of apoptosis to NMDA receptor-mediated toxicity was evaluated by DNA laddering and by quantitative histochemistry [terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) staining]. DNA laddering was first detected within lesioned tissue after 12-24 hr. TUNEL-positive cells were first observed at 12 hr, increased in number at 48 hr and 7 d, and were located predominantly in proximity to the lesion border. The density was significantly lower in nNOS-/- mice. Hence, oligonucleosomal DNA breakdown suggesting apoptosis develops as a late consequence of NMDA microinjection and is reduced in nNOS mutants. The mechanism of protection in nNOS-/- mice may relate to decreased oxygen free radical production and related NO reaction products and, in part, involves mechanisms of neuronal death associated with the delayed appearance of apoptosis.
Collapse
|
1188
|
Thomas U, Kim E, Kuhlendahl S, Koh YH, Gundelfinger ED, Sheng M, Garner CC, Budnik V. Synaptic clustering of the cell adhesion molecule fasciclin II by discs-large and its role in the regulation of presynaptic structure. Neuron 1997; 19:787-99. [PMID: 9354326 PMCID: PMC4658217 DOI: 10.1016/s0896-6273(00)80961-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cell adhesion molecule Fasciclin II (FASII) is involved in synapse development and plasticity. Here we provide genetic and biochemical evidence that proper localization of FASII at type I glutamatergic synapses of the Drosophila neuromuscular junction is mediated by binding between the intracellular tSXV bearing C-terminal tail of FASII and the PDZ1-2 domains of Discs-Large (DLG). Moreover, mutations in fasII and/or dlg have similar effects on presynaptic ultrastructure, suggesting their functional involvement in a common developmental pathway. DLG can directly mediate a biochemical complex and a macroscopic cluster of FASII and Shaker K+ channels in heterologous cells. These results indicate a central role for DLG in the structural organization and downstream signaling mechanisms of cell adhesion molecules and ion channels at synapses.
Collapse
Affiliation(s)
- U Thomas
- Department of Neurochemistry and Molecular Biology, Federal Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1189
|
Sporns O, Jenkinson S. Potassium ion- and nitric oxide-induced exocytosis from populations of hippocampal synapses during synaptic maturation in vitro. Neuroscience 1997; 80:1057-73. [PMID: 9284060 DOI: 10.1016/s0306-4522(97)00152-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of mechanisms of neurotransmitter release is an important component in the formation of functional synaptic connections. Synaptic neurotransmitter release can be modulated by nitric oxide, a compound shown to have a variety of physiologic functions in the nervous system. The goal of this study was to determine whether, during synaptic maturation, nitric oxide is capable of affecting exocytosis of synaptic vesicles, and to compare its effects with those elicited by strongly depolarizing stimuli. To address these questions we examined vesicle release from large numbers of individual synapses of hippocampal neurons between five and 13 days in culture. Synaptic vesicles were labelled by uptake of the styrylpyridinium dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43) and their release was monitored by fluorescence imaging. Across populations of developing synapses, there was a good correspondence between FM1-43 staining and synapsin immunocytochemistry. A marked heterogeneity was observed in the ability to release vesicles both after potassium and nitric oxide stimulation. In less mature populations of synapses, the rate of potassium- and nitric oxide-induced exocytosis gradually increased, while at later stages nitric oxide-induced responses levelled off and potassium-induced responses continued to rise. Application of nitric oxide donors did not trigger any detectable changes in intracellular calcium. Combined immunocytochemical analysis of cultured hippocampal neurons for neuronal nitric oxide synthase and synapsin revealed that nitric oxide synthase was present within neurites of cultured hippocampal neurons, largely distributed in a bead-like pattern which partially overlapped presynaptic sites. Stimulation of the N-methyl-D-aspartate receptor while blocking propagation of action potentials with tetrodotoxin resulted in exocytosis from numerous individually resolved sites. Preincubation of neurons with an nitric oxide synthase inhibitor or addition of an nitric oxide scavenger eliminated these responses indicating a role for nitric oxide in N-methyl-D-aspartate-stimulated exocytosis. Using fluorescence imaging of individually resolved synaptic sites, we provide direct evidence for an effect of nitric oxide on vesicular neurotransmitter release in intact neurons. Nitric oxide is capable to produce this effect at all stages of synaptic development and acts independently of calcium influx. We show that nitric oxide synthase is present at synaptic sites and endogenously produced nitric oxide is sufficient to cause exocytosis. Taken together, these experiments suggest a possible role for nitric oxide in calcium-independent transmitter release in populations of synapses at all stages of maturation.
Collapse
Affiliation(s)
- O Sporns
- The Neurosciences Institute, San Diego, CA 92121, U.S.A
| | | |
Collapse
|
1190
|
Marfatia SM, Morais-Cabral JH, Kim AC, Byron O, Chishti AH. The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis. J Biol Chem 1997; 272:24191-7. [PMID: 9305870 DOI: 10.1074/jbc.272.39.24191] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The PDZ domain, also known as the GLGF repeat/DHR domain, is an approximately 90-amino acid motif discovered in a recently identified family of proteins termed MAGUKs (membrane-associated guanylate kinase homologues). Sequence comparison analysis has since identified PDZ domains in over 50 proteins. Like SH2 and SH3 domains, the PDZ domains mediate specific protein-protein interactions, whose specificities appear to be dictated by the primary structure of the PDZ domain as well as its binding target. Using recombinant fusion proteins and a blot overlay assay, we show that a single copy of the PDZ domain in human erythrocyte p55 binds to the carboxyl terminus of the cytoplasmic domain of human erythroid glycophorin C. Deletion mutagenesis of 21 amino acids at the amino terminus of the p55 PDZ domain completely abrogates its binding activity for glycophorin C. Using an alanine scan and surface plasmon resonance technique, we identify residues in the cytoplasmic domain of glycophorin C that are critical for its interaction with the PDZ domain. The recognition specificity of the p55 PDZ domain appears to be unique, since the three PDZ domains of hDlg (human lymphocyte homologue of the Drosophila discs large tumor suppressor) do not bind the cytoplasmic domain of glycophorin C. Taken together with our previous studies, these results complete the identification of interacting domains in the ternary complex between p55, glycophorin C, and protein 4.1. Implications of these findings are discussed in terms of binding specificity and the regulation of cytoskeleton-membrane interactions.
Collapse
Affiliation(s)
- S M Marfatia
- Laboratory of Tumor Cell Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | |
Collapse
|
1191
|
Lee MA, Cai L, Hübner N, Lee YA, Lindpaintner K. Tissue- and development-specific expression of multiple alternatively spliced transcripts of rat neuronal nitric oxide synthase. J Clin Invest 1997; 100:1507-12. [PMID: 9294118 PMCID: PMC508331 DOI: 10.1172/jci119673] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) functions as an intercellular messenger and mediates numerous biological functions. Among the three isoforms of NO synthase that produce NO, the ubiquitously expressed neuronal NO synthase (nNOS) is responsible for a large part of NO production, yet its regulation is poorly understood. Recent reports of two alternative spliceforms of nNOS in the mouse and in man have raised the possibility of spatial and temporal modulation of expression. This study demonstrates the existence of at least three transcripts of the rat nNOS gene designated nNOSa, nNOSb, and nNOSc, respectively, with distinct 5' untranslated first exons that arise from alternative splicing to a common second exon. Expression of the alternative transcripts occurs with a high degree of tissue and developmental specificity, as demonstrated by RNase protection assays on multiple tissues from both fetal and adult rats. Furthermore, terminal differentiation of rat pheochromocytoma-derived PC12 cells into neurons is associated with induction of nNOSa, suggesting, likewise, development- and tissue-specific transcriptional control of nNOS isoform expression. Physical mapping using a rat yeast artificial chromosome clone shows that the alternatively spliced first exons 1a, 1b, and 1c are separated by at least 15-60 kb from the downstream coding sequence, with exons 1b and 1c being positioned within 200 bp of each other. These findings provide evidence that the biological activity of nNOS is tightly and specifically regulated by a complex pattern of alternative splicing, indicating that the notion of constitutive expression of this isoform needs to be revised.
Collapse
Affiliation(s)
- M A Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
1192
|
Demas GE, Eliasson MJL, Dawson TM, Dawson VL, Kriegsfeld LJ, Nelson RJ, Snyder SH. Inhibition of Neuronal Nitric Oxide Synthase Increases Aggressive Behavior in Mice. Mol Med 1997. [DOI: 10.1007/bf03401818] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
1193
|
Philipp S, Flockerzi V. Molecular characterization of a novel human PDZ domain protein with homology to INAD from Drosophila melanogaster. FEBS Lett 1997; 413:243-8. [PMID: 9280290 DOI: 10.1016/s0014-5793(97)00877-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PDZ domains are thought to act as protein-binding modules mediating the clustering of membrane and membrane-associated proteins. The INAD protein has been shown to interact via a PDZ domain with the calcium channel TRP which contributes to capacitative calcium entry into Drosophila photoreceptor cells. We have cloned the cDNA of a human INAD-Like protein (hINADL) of 1524 amino acids in length containing at least five PDZ domains. Additionally, two truncated versions hINADL(delta304) and hINADL(delta853) were identified. hInadl transcripts of differing size are expressed in various tissues including brain, where transcripts are abundant in the cerebellum.
Collapse
Affiliation(s)
- S Philipp
- Pharmakologisches Institut der Universität Heidelberg, Germany.
| | | |
Collapse
|
1194
|
Schoser BG, Lück G, Blottner D. Partial loss of NADPH-diaphorase/nitric oxide synthase-complex in amyotrophic lateral sclerosis and human type-II myofiber atrophy. Neurosci Lett 1997; 231:163-6. [PMID: 9300647 DOI: 10.1016/s0304-3940(97)00554-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To substantiate the role of nitric oxide synthase type-I (NOS-I) in neurogenic muscular disorders we investigated human biopsy samples of type-II fiber atrophy and amyotrophic lateral sclerosis (ALS) by NOS-I immunoreactivity (-IR), NOS-associated NADPH-dependent diaphorase activity (NOSaD) and Western blot analysis. In type-II atrophy, loss of NOSaD and reduced NOS-I-IR was apparent in atrophic myofibers. In atrophic fiber groups lacking NOSaD, both NOS-I and dystrophin-IR was decreased while sarcolemmal beta-dystroglycan- and adhalin-IR (markers of the sarcolemmal dystrophin-glycoprotein complex) was normal. In ALS, groups of scattered angulated atrophic fibers revealed partial loss of NOS-I-IR/NOSaD. Atrophied fibers of either type-I or type-II thus revealed differential sarcolemmal NOS/NOSaD pattern thereby reflecting myopathological alterations of the NO-system in human type-II atrophy and ALS.
Collapse
Affiliation(s)
- B G Schoser
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|
1195
|
Stathakis DG, Hoover KB, You Z, Bryant PJ. Human postsynaptic density-95 (PSD95): location of the gene (DLG4) and possible function in nonneural as well as in neural tissues. Genomics 1997; 44:71-82. [PMID: 9286702 DOI: 10.1006/geno.1997.4848] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have determined the cDNA sequence, expression pattern, and chromosomal location of the human gene DLG4, encoding the postsynaptic density-95 (PSD95) protein. hPSD95 is a 723-amino-acid protein that is 99% identical to its rodent counterparts. This is the fourth human protein identified as showing significant similarity to the Drosophila tumor suppressor Dlg. These proteins constitute the DLG subfamily of the membrane-associated guanylate kinase protein family. The expression of DLG4 in neural tissue is consistent with the pattern observed for its rat homolog. However, DLG4 is also expressed in a wide range of nonneural tissues, suggesting that the protein may have additional roles in humans. Using radiation-hybrid mapping panels, we mapped the DLG4 locus to 17p13.1, a region associated with several diseases, the phenotypes of which are consistent with loss of PSD95 function.
Collapse
Affiliation(s)
- D G Stathakis
- Developmental Biology Center, University of California at Irvine 92697-2275, USA.
| | | | | | | |
Collapse
|
1196
|
Morot Gaudry-Talarmain Y, Moulian N, Meunier FA, Blanchard B, Angaut-Petit D, Faille L, Ducrocq C. Nitric oxide and peroxynitrite affect differently acetylcholine release, choline acetyltransferase activity, synthesis, and compartmentation of newly formed acetylcholine in Torpedo marmorata synaptosomes. Nitric Oxide 1997; 1:330-45. [PMID: 9441905 DOI: 10.1006/niox.1997.0141] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent reports proposed that nitric oxide was a modulator of cholinergic transmission. Here, we examined the role of NO on cholinergic metabolism in a model of the peripheral cholinergic nervous synapse: synaptosomes from Torpedo electric organ. The presence of NO synthase was immunodetected in the cell bodies, in the nerve ending area of nerve-electroplate tissue and in the electroplates. Exogenous source of NO was provided from SIN1, a donor of NO and O2-., and an end-derivative peroxynitrite (ONOO-). SIN1 increased calcium-dependent acetylcholine (ACh) release induced by KCl depolarization or a calcium ionophore A23187. The formation of ONOO- was continuously followed by a new chemiluminescent assay. The addition of superoxide dismutase, that decreases the formation of ONOO-, did not impair the stimulation of ACh release, suggesting that NO itself was the main stimulating agent. When the endogenous source of NO was blocked by proadifen, an inhibitor of cytochrome P450 activity of NO synthase, both KCl- and A23187-induced ACh release were abolished; nevertheless, the inhibitor Ng-monomethyl-L-arginine did not modify ACh release when applied in a short time duration of action. Both NO synthase inhibitors reduced the synthesis of ACh from the radioactive precursor acetate and its incorporation into synaptic vesicles as did ONOO- chemically synthesized or formed from SIN1. In addition, choline acetyltransferase activity was strongly inhibited by ONOO- and SIN1 but not by the NO donors SNAP and SNP or, by NO synthase inhibitors. Altogether these results indicate that NO and ONOO modulate presynaptic cholinergic metabolism in the micromolar range, NO (up to 100 microM) being a stimulating agent of ACh release and ONOO- being an inhibitor of ACh synthesis and choline acetyltransferase activity.
Collapse
|
1197
|
Christova T, Grozdanovic Z, Gossrau R. Nitric oxide synthase (NOS) I during postnatal development in rat and mouse skeletal muscle. Acta Histochem 1997; 99:311-24. [PMID: 9381914 DOI: 10.1016/s0065-1281(97)80025-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies on adult rat and mouse skeletal muscles have shown the spatial association of nitric oxide synthase (NOS) I to the dystrophin complex (DC) in the sarcolemma of type II fibers and, in combination with the NMDA receptor-1 (NMDAR-1), an accumulation of the enzyme at the neuromuscular junctions (NMJ) of this fiber type. Using immunohistochemistry, enzyme histochemistry and alpha-bungarotoxin labeling we report here temporal relationships of NOS I, members of the DC, other components of the cortical cytoskeleton in the junctional and non-junctional sarcolemma as well as of molecules involved in NMJ transmission of either type I or II myofibers especially in head and neck muscles during postnatal rat and mouse development. Fiber typing was performed by specific anti-myosin antibodies. Beginning with postnatal day (PD) 1 in both fiber types dystrophin, dystrophin-associated glycoproteins (DAG), beta-dystroglycan, alpha-sarcoglycan (adhalin) and spectrin were present in the junctional and extrajunctional sarcolemma, while utrophin, acetylcholinesterase, alpha-bungarotoxin labeled acetylcholine receptors were concentrated in the NMJ of both fiber types. NOS I activity and immunoreactivity were only found in the NMJ region of type II fibers, where NMDAR-1 appeared around PD 15. Primarily in the tongue there was no strict correlation between muscle fiber type and NOS I behaviour during early postnatal development, and muscle fibers not reactive for myosin antibodies against both fiber types were negative or positive for NOS I but always positive for the other molecules either in both the junctional and extrajunctional sarcolemma or in the NMJ only; later all muscle fibers of the tongue were of type II and NOS I-positive. Maturation of enzyme activities, immunoreactivities and AChR intensity depended on the respective muscle and can last until PD 50; in the tongue and neck muscles they appeared to increase approximately until PD 20 or 25. In conclusion, in type II fibers of rat and mouse skeletal muscle all molecules with the exception of NMDAR-1 and relevant for NOS I targeting and positioning as well as function inside and outside the NMJ are already present at birth, but their concentrations and/or activities increase postnatally, and the adult situation appears to be reached between the third and seventh week of postnatal life. Therefore, initial interactions between NOS I and the other molecules necessary for the formation of the NOS I-DC in and on the way to the sarcolemma presumably take place before birth.
Collapse
Affiliation(s)
- T Christova
- Institute of Anatomy and Histology, Medical University, Sofia, Bulgaria
| | | | | |
Collapse
|
1198
|
Kolesnikov YA, Pan YX, Babey AM, Jain S, Wilson R, Pasternak GW. Functionally differentiating two neuronal nitric oxide synthase isoforms through antisense mapping: evidence for opposing NO actions on morphine analgesia and tolerance. Proc Natl Acad Sci U S A 1997; 94:8220-5. [PMID: 9223342 PMCID: PMC21584 DOI: 10.1073/pnas.94.15.8220] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1997] [Accepted: 05/09/1997] [Indexed: 02/04/2023] Open
Abstract
Several isoforms of neuronal nitric oxide synthase (nNOS) have been identified. Antisense approaches have been developed which can selectively down-regulate nNOS-1, which corresponds to the full-length nNOS originally cloned from the brain, and nNOS-2, a truncated form lacking two exons which is generated by alternative splicing, as demonstrated by decreases in mRNA levels. Antisense treatment also lowers nNOS enzymatic activity. Down-regulation of nNOS-1 prevents the development of morphine tolerance. Whereas morphine analgesia is lost in control and mismatch-treated mice given daily morphine injections for 5 days, mice treated with antisense probes targeting nNOS-1 show no decrease in their morphine sensitivity over the same time period. Conversely, an antisense probe selectively targeting nNOS-2 blocks morphine analgesia, shifting the morphine dose-response curve over 2-fold to the right. Both systems are active at the spinal and the supraspinal levels. An antisense targeting inducible NOS is inactive. Studies with NG-nitro-L-arginine, which does not distinguish among NOS isoforms, indicate that the facilitating nNOS-2 system predominates at the spinal level while the inhibitory nNOS-1 system is the major supraspinal nNOS system. Thus, antisense mapping distinguishes at the functional level two isoforms of nNOS with opposing actions on morphine actions. The ability to selectively down-regulate splice variants opens many areas in the study of nNOS and other proteins.
Collapse
Affiliation(s)
- Y A Kolesnikov
- The Cotzias Laboratory of Neuro-Oncology and Departments of Neurology and Anesthesiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
1199
|
Matsuo T, Takahashi K, Kondo S, Kaibuchi K, Yamamoto D. Regulation of cone cell formation by Canoe and Ras in the developing Drosophila eye. Development 1997; 124:2671-80. [PMID: 9226438 DOI: 10.1242/dev.124.14.2671] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cone cells are lens-secreting cells in ommatidia, the unit eyes that compose the compound eye of Drosophila. Each ommatidium contains four cone cells derived from precursor cells of the R7 equivalence group which express the gene sevenless (sev). When a constitutively active form of Ras1 (Ras1V12) is expressed in the R7 equivalence group cells using the sev promoter (sev-Ras1V12), additional cone cells are formed in the ommatidium. Expression of Ras1N17, a dominant negative form of Ras1, results in the formation of 1–3 fewer cone cells than normal in the ommatidium. The effects of Ras1 variants on cone cell formation are modulated by changing the gene dosage at the canoe (cno) locus, which encodes a cytoplasmic protein with Ras-binding activity. An increase or decrease in gene dosage potentiates the sev-Ras1v12 action, leading to marked induction of cone cells. A decrease in cno+ activity also enhances the sev-Ras1N17 action, resulting in a further decrease in the number of cone cells contained in the ommatidium. In the absence of expression of sev-Ras1V12 or sev-Ras1N17, an overdose of wild-type cno (cno+) promotes cone cell formation while a significant reduction in cno+ activity results in the formation of 1–3 fewer cone cells than normal in the ommatidium. We propose that there are two signaling pathways in cone cell development, one for its promotion and the other for its repression, and Cno functions as a negative regulator for both pathways. We also postulate that Cno predominantly acts on a prevailing pathway in a given developmental context, thereby resulting in either an increase or a decrease in the number of cone cells per ommatidium. The extra cone cells resulting from the interplay of Ras1v12 and Cno are generated from a pool of undifferentiated cells that are normally fated to develop into pigment cells or undergo apoptosis.
Collapse
Affiliation(s)
- T Matsuo
- Mitsubishi Kasei Institute of Life Sciences, and ERATO Yamamoto Behavior Genes Project, Machida, Tokyo, Japan
| | | | | | | | | |
Collapse
|
1200
|
Peters MF, Adams ME, Froehner SC. Differential association of syntrophin pairs with the dystrophin complex. J Cell Biol 1997; 138:81-93. [PMID: 9214383 PMCID: PMC2139947 DOI: 10.1083/jcb.138.1.81] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1997] [Revised: 05/29/1997] [Indexed: 02/04/2023] Open
Abstract
The syntrophins are a multigene family of intracellular dystrophin-associated proteins comprising three isoforms, alpha1, beta1, and beta2. Based on their domain organization and association with neuronal nitric oxide synthase, syntrophins are thought to function as modular adapters that recruit signaling proteins to the membrane via association with the dystrophin complex. Using sequences derived from a new mouse beta1-syntrophin cDNA, and previously isolated cDNAs for alpha1- and beta2-syntrophins, we prepared isoform-specific antibodies to study the expression, skeletal muscle localization, and dystrophin family association of all three syntrophins. Most tissues express multiple syntrophin isoforms. In mouse gastrocnemius skeletal muscle, alpha1- and beta1-syntrophin are concentrated at the neuromuscular junction but are also present on the extrasynaptic sarcolemma. beta1-syntrophin is restricted to fast-twitch muscle fibers, the first fibers to degenerate in Duchenne muscular dystrophy. beta2-syntrophin is largely restricted to the neuromuscular junction. The sarcolemmal distribution of alpha1- and beta1-syntrophins suggests association with dystrophin and dystrobrevin, whereas all three syntrophins could potentially associate with utrophin at the neuromuscular junction. Utrophin complexes immunoisolated from skeletal muscle are highly enriched in beta1- and beta2-syntrophins, while dystrophin complexes contain mostly alpha1- and beta1-syntrophins. Dystrobrevin complexes contain dystrophin and alpha1- and beta1-syntrophins. From these results, we propose a model in which a dystrophin-dystrobrevin complex is associated with two syntrophins. Since individual syntrophins do not have intrinsic binding specificity for dystrophin, dystrobrevin, or utrophin, the observed preferential pairing of syntrophins must depend on extrinsic regulatory mechanisms.
Collapse
Affiliation(s)
- M F Peters
- Department of Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA
| | | | | |
Collapse
|