1151
|
Nekrasov V, Li J, Batoux M, Roux M, Chu ZH, Lacombe S, Rougon A, Bittel P, Kiss-Papp M, Chinchilla D, van Esse HP, Jorda L, Schwessinger B, Nicaise V, Thomma BPHJ, Molina A, Jones JDG, Zipfel C. Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J 2009; 28:3428-38. [PMID: 19763086 DOI: 10.1038/emboj.2009.262] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/10/2009] [Indexed: 01/17/2023] Open
Abstract
In plant innate immunity, the surface-exposed leucine-rich repeat receptor kinases EFR and FLS2 mediate recognition of the bacterial pathogen-associated molecular patterns EF-Tu and flagellin, respectively. We identified the Arabidopsis stromal-derived factor-2 (SDF2) as being required for EFR function, and to a lesser extent FLS2 function. SDF2 resides in an endoplasmic reticulum (ER) protein complex with the Hsp40 ERdj3B and the Hsp70 BiP, which are components of the ER-quality control (ER-QC). Loss of SDF2 results in ER retention and degradation of EFR. The differential requirement for ER-QC components by EFR and FLS2 could be linked to N-glycosylation mediated by STT3a, a catalytic subunit of the oligosaccharyltransferase complex involved in co-translational N-glycosylation. Our results show that the plasma membrane EFR requires the ER complex SDF2-ERdj3B-BiP for its proper accumulation, and provide a demonstration of a physiological requirement for ER-QC in transmembrane receptor function in plants. They also provide an unexpected differential requirement for ER-QC and N-glycosylation components by two closely related receptors.
Collapse
|
1152
|
Kay S, Hahn S, Marois E, Wieduwild R, Bonas U. Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Deltarep16. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:859-71. [PMID: 19473322 DOI: 10.1111/j.1365-313x.2009.03922.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) employs a type III secretion system to translocate effector proteins into plant cells where they modulate host signaling pathways to the pathogen's benefit. The effector protein AvrBs3 acts as a eukaryotic transcription factor and induces the expression of plant genes termed UPA (up-regulated by AvrBs3). Here, we describe 11 new UPA genes from bell pepper that are induced by AvrBs3 early after infection with Xcv. Sequence comparisons revealed the presence of a conserved AvrBs3-responsive element, the UPA box, in all UPA gene promoters analyzed. Analyses of UPA box mutant derivatives confirmed its importance for gene induction by AvrBs3. We show that DNA binding and gene activation were strictly correlated. DNase I footprint studies demonstrated that the UPA box corresponds to the center of the AvrBs3-protected DNA region. Type III delivery of AvrBs3 and mutant derivatives showed that some UPA genes are induced by the AvrBs3 deletion derivative AvrBs3Deltarep16, which lacks four repeats. We show that AvrBs3Deltarep16 recognizes a mutated UPA box with two nucleotide exchanges in positions that are not essential for binding and activation by AvrBs3.
Collapse
Affiliation(s)
- Sabine Kay
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
1153
|
Ogawa T, Nishimura K, Aoki T, Takase H, Tomizawa KI, Ashida H, Yokota A. A phosphofructokinase B-type carbohydrate kinase family protein, NARA5, for massive expressions of plastid-encoded photosynthetic genes in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:114-28. [PMID: 19587101 PMCID: PMC2736000 DOI: 10.1104/pp.109.139683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To date, there have been no reports on screening for mutants defective in the massive accumulation of Rubisco in higher plants. Here, we describe a screening method based on the toxic accumulation of ammonia in the presence of methionine sulfoximine, a specific inhibitor of glutamine synthetase, during photorespiration initiated by the oxygenase reaction of Rubisco in Arabidopsis (Arabidopsis thaliana). Five recessive mutants with decreased amounts of Rubisco were identified and designated as nara mutants, as they contained a mutation in genes necessary for the achievement of Rubisco accumulation. The nara5-1 mutant showed markedly lower levels of plastid-encoded photosynthetic proteins, including Rubisco. Map-based cloning revealed that NARA5 encoded a chloroplast phosphofructokinase B-type carbohydrate kinase family protein of unknown function. The NARA5 protein fused to green fluorescent protein localized in chloroplasts. We conducted expression analyses of photosynthetic genes during light-induced greening of etiolated seedlings of nara5-1 and the T-DNA insertion mutant, nara5-2. Our results strongly suggest that NARA5 is indispensable for hyperexpression of photosynthetic genes encoded in the plastid genome, particularly rbcL.
Collapse
Affiliation(s)
- Taro Ogawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
1154
|
Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ. BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. PLANT PHYSIOLOGY 2009; 151:241-52. [PMID: 19571304 PMCID: PMC2735987 DOI: 10.1104/pp.109.142125] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/29/2009] [Indexed: 05/18/2023]
Abstract
Plants have evolved a range of cellular responses to maintain developmental homeostasis and to survive over a range of temperatures. Here, we describe the in vivo and in vitro functions of BOBBER1 (BOB1), a NudC domain containing Arabidopsis (Arabidopsis thaliana) small heat shock protein. BOB1 is an essential gene required for the normal partitioning and patterning of the apical domain of the Arabidopsis embryo. Because BOB1 loss-of-function mutants are embryo lethal, we used a partial loss-of-function allele (bob1-3) to demonstrate that BOB1 is required for organismal thermotolerance and postembryonic development. Recombinant BOB1 protein functions as a molecular chaperone and prevents the aggregation of a model protein substrate in vitro. In plants, BOB1 is cytoplasmic at basal temperatures, but forms heat shock granules containing canonical small heat shock proteins at high temperatures. In addition to thermotolerance defects, bob1-3 exhibits pleiotropic development defects during all phases of development. bob1-3 phenotypes include decreased rates of shoot and root growth as well as patterning defects in leaves, flowers, and inflorescence meristems. Most eukaryotic chaperones play important roles in protein folding either during protein synthesis or during cellular responses to denaturing stress. Our results provide, to our knowledge, the first evidence of a plant small heat shock protein that has both developmental and thermotolerance functions and may play a role in both of these folding networks.
Collapse
Affiliation(s)
- Dahlia E Perez
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | | | | | | | | | | |
Collapse
|
1155
|
Kunz HH, Scharnewski M, Feussner K, Feussner I, Flügge UI, Fulda M, Gierth M. The ABC transporter PXA1 and peroxisomal beta-oxidation are vital for metabolism in mature leaves of Arabidopsis during extended darkness. THE PLANT CELL 2009; 21:2733-49. [PMID: 19794119 PMCID: PMC2768912 DOI: 10.1105/tpc.108.064857] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 08/11/2009] [Accepted: 09/02/2009] [Indexed: 05/17/2023]
Abstract
Fatty acid beta-oxidation is essential for seedling establishment of oilseed plants, but little is known about its role in leaf metabolism of adult plants. Arabidopsis thaliana plants with loss-of-function mutations in the peroxisomal ABC-transporter1 (PXA1) or the core beta-oxidation enzyme keto-acyl-thiolase 2 (KAT2) have impaired peroxisomal beta-oxidation. pxa1 and kat2 plants developed severe leaf necrosis, bleached rapidly when returned to light, and died after extended dark treatment, whereas the wild type was unaffected. Dark-treated pxa1 plants showed a decrease in photosystem II efficiency early on and accumulation of free fatty acids, mostly alpha-linolenic acid [18:3(n-3)] and pheophorbide a, a phototoxic chlorophyll catabolite causing the rapid bleaching. Isolated wild-type and pxa1 chloroplasts challenged with comparable alpha-linolenic acid concentrations both showed an 80% reduction in photosynthetic electron transport, whereas intact pxa1 plants were more susceptible to the toxic effects of alpha-linolenic acid than the wild type. Furthermore, starch-free mutants with impaired PXA1 function showed the phenotype more quickly, indicating a link between energy metabolism and beta-oxidation. We conclude that the accumulation of free polyunsaturated fatty acids causes membrane damage in pxa1 and kat2 plants and propose a model in which fatty acid respiration via peroxisomal beta-oxidation plays a major role in dark-treated plants after depletion of starch reserves.
Collapse
Affiliation(s)
- Hans-Henning Kunz
- Department of Botany II, University of Cologne, 50931 Koeln, Germany
| | - Michael Scharnewski
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Goettingen, Germany
| | - Kirstin Feussner
- Department of Developmental Biochemistry, Institute for Biochemistry and DFG Research Center for the Molecular Physiology of the Brain, Georg-August-University, Goettingen, Germany
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Goettingen, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, University of Cologne, 50931 Koeln, Germany
| | - Martin Fulda
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Goettingen, Germany
| | - Markus Gierth
- Department of Botany II, University of Cologne, 50931 Koeln, Germany
- Address correspondence to
| |
Collapse
|
1156
|
Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. THE PLANT CELL 2009; 21:2307-22. [PMID: 19717615 PMCID: PMC2751941 DOI: 10.1105/tpc.109.068387] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/16/2009] [Accepted: 08/14/2009] [Indexed: 05/20/2023]
Abstract
Leaf trichomes in Arabidopsis thaliana develop through several distinct cellular processes, such as patterning, differentiation, and growth. Although recent studies have identified several key transcription factors as regulating early patterning and differentiation steps, it is still largely unknown how these regulatory proteins mediate subsequent trichome development, which is accompanied by rapid cell growth and branching. Here, we report a novel trichome mutation in Arabidopsis, which in contrast with previously identified mutants, increases trichome cell size without altering its overall patterning or branching. We show that the corresponding gene encodes a GT-2-LIKE1 (GTL1) protein, a member of the trihelix transcription factor family. GTL1 is present within the nucleus during the postbranching stages of trichome development, and its loss of function leads to an increase in the nuclear DNA content only in trichomes that have completed branching. Our data further demonstrate that the gtl1 mutation modifies the expression of several cell cycle genes and partially rescues the ploidy defects in the cyclin-dependent kinase inhibitor mutant siamese. Taken together, this study provides the genetic evidence for the requirement of transcriptional regulation in the repression of ploidy-dependent plant cell growth as well as for an involvement of GTL trihelix proteins in this regulation.
Collapse
|
1157
|
Takatsuka H, Ohno R, Umeda M. The Arabidopsis cyclin-dependent kinase-activating kinase CDKF;1 is a major regulator of cell proliferation and cell expansion but is dispensable for CDKA activation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:475-487. [PMID: 19368694 DOI: 10.1111/j.1365-313x.2009.03884.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and post-embryonic development of various organisms. Full activation of CDKs requires not only binding to cyclins but also phosphorylation of the T-loop domain. This phosphorylation is catalysed by CDK-activating kinases (CAKs). Plants have two distinct types of CAKs, namely CDKD and CDKF; in Arabidopsis, CDKF;1 exhibits the highest CDK kinase activity in vitro. We have previously shown that CDKF;1 also functions in the activation of CDKD;2 and CDKD;3 by T-loop phosphorylation. Here, we isolated the knockout mutants of CDKF;1 and showed that they had severe defects in cell division, cell elongation and endoreduplication. No defect was observed during embryogenesis, suggesting that CDKF;1 function is primarily required for post-embryonic development. In the cdkf;1 mutants, T-loop phosphorylation of CDKA;1, an orthologue of yeast Cdc2/Cdc28p, was comparable to that in wild-type plants, and its kinase activity did not decrease. In contrast, the protein level and kinase activity of CDKD;2 were significantly reduced in the mutants. Substitution of threonine-168 with a non-phosphorylatable alanine residue made CDKD;2 unstable in Arabidopsis tissues. These results indicate that CDKF;1 is dispensable for CDKA;1 activation but is essential for maintaining a steady-state level of CDKD;2, thereby suggesting the quantitative regulation of a vertebrate-type CAK in a plant-specific manner.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | |
Collapse
|
1158
|
Römer P, Strauss T, Hahn S, Scholze H, Morbitzer R, Grau J, Bonas U, Lahaye T. Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. PLANT PHYSIOLOGY 2009; 150:1697-712. [PMID: 19448036 PMCID: PMC2719119 DOI: 10.1104/pp.109.139931] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/11/2009] [Indexed: 05/19/2023]
Abstract
The pepper (Capsicum annuum) bacterial spot (Bs) resistance gene Bs3 and its allelic variant Bs3-E mediate recognition of the Xanthomonas campestris pv vesicatoria type III effector protein AvrBs3 and its deletion derivative AvrBs3Deltarep16. Recognition specificity resides in the Bs3 and Bs3-E promoters and is determined by a defined promoter region, the UPA (for up-regulated by AvrBs3) box. Using site-directed mutagenesis, we defined the exact boundaries of the UPA(AvrBs3) box of the Bs3 promoter and the UPA(AvrBs3Deltarep16) box of the Bs3-E promoter and show that both boxes overlap by at least 11 nucleotides. Despite partial sequence identity, the UPA(AvrBs3) box and the UPA(AvrBs3Deltarep16) box were bound specifically by the corresponding AvrBs3 and AvrBs3Deltarep16 proteins, respectively, suggesting that selective promoter binding of AvrBs3-like proteins is the basis for promoter activation specificity. We also demonstrate that the UPA(AvrBs3) box retains its functionality at different positions within the pepper Bs3 promoter and confers AvrBs3 inducibility in a novel promoter context. Notably, the transfer of the UPA(AvrBs3) box to different promoter locations is always correlated with a new transcriptional start site. The analysis of naturally occurring Bs3 alleles revealed many pepper accessions that encode a nonfunctional Bs3 variant. These accessions showed no apparent abnormalities, supporting the supposition that Bs3 functions only in disease resistance and not in other developmental or physiological processes.
Collapse
Affiliation(s)
- Patrick Römer
- Institute of Biology, Department of Genetics , Martin Luther University Halle-Wittenberg, 06120 Halle , Germany
| | | | | | | | | | | | | | | |
Collapse
|
1159
|
Jang YH, Park HY, Kim SK, Lee JH, Suh MC, Chung YS, Paek KH, Kim JK. Survey of rice proteins interacting with OsFCA and OsFY proteins which are homologous to the Arabidopsis flowering time proteins, FCA and FY. PLANT & CELL PHYSIOLOGY 2009; 50:1479-92. [PMID: 19561057 DOI: 10.1093/pcp/pcp093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The FCA protein is involved in controlling flowering time and plays more general roles in RNA-mediated chromatin silencing in Arabidopsis. It contains two RNA-binding domains and a WW domain. The FCA protein interacts with FY, a polyadenylation factor, via its WW domain. We previously characterized a rice gene, OsFCA, which was homologous to FCA. Here, we found that the OsFCA protein could interact through its WW domain with the following proteins: OsFY, a protein containing a CID domain present in RNA-processing factors such as Pcf11 and Nrd1; a protein similar to splicing factor SF1; a protein similar to FUSE splicing factor; and OsMADS8. The FY protein is associated with the 3' end processing machinery in Arabidopsis. Thus, we examined interactions between OsFY and the rice homologs (OsCstF-50, -64 and -77) of the AtCstF-50, -64 and -77 proteins. We found that OsFY could bind OsCstF50, whereas the OsCstF77 protein could bridge the interaction between OsCstF50 and OsCstF64. Taken together, our data suggest that OsFCA could interact with several proteins other than OsFY through its WW domain and may play several roles in rice.
Collapse
Affiliation(s)
- Yun Hee Jang
- Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
1160
|
Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K. SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. THE PLANT CELL 2009; 21:2284-97. [PMID: 19666737 PMCID: PMC2751947 DOI: 10.1105/tpc.109.068072] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/09/2009] [Accepted: 07/22/2009] [Indexed: 05/18/2023]
Abstract
Endoreduplication involves a doubling of chromosomal DNA without corresponding cell division. In plants, many cell types transit from the mitotic cycle to the endoreduplication cycle or endocycle, and this transition is often coupled with the initiation of cell expansion and differentiation. Although a number of cell cycle regulators implicated in endocycle onset have been identified, it is still largely unknown how this transition is developmentally regulated at the whole organ level. Here, we report that a nuclear-localized SUMO E3 ligase, HIGH PLOIDY2 (HPY2), functions as a repressor of endocycle onset in Arabidopsis thaliana meristems. Loss of HPY2 results in a premature transition from the mitotic cycle to the endocycle, leading to severe dwarfism with defective meristems. HPY2 possesses an SP-RING domain characteristic of MMS21-type SUMO E3 ligases, and we show that the conserved residues within this domain are required for the in vivo and in vitro function of HPY2. HPY2 is predominantly expressed in proliferating cells of root meristems and it functions downstream of meristem patterning transcription factors PLETHORA1 (PLT1) and PLT2. These results establish that HPY2-mediated sumoylation modulates the cell cycle progression and meristem development in the PLT-dependent signaling pathway.
Collapse
Affiliation(s)
- Takashi Ishida
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1161
|
Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H. OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 2009; 284:26510-8. [PMID: 19635799 DOI: 10.1074/jbc.m109.036871] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Production of major diterpenoid phytoalexins, momilactones and phytocassanes, is induced in rice upon recognition of pathogenic invasion as plant defense-related compounds. We recently showed that biosynthetic genes for momilactones are clustered on rice chromosome 4 and co-expressed after elicitation, mimicking pathogen attack. Because genes for most metabolic pathways in plants are not organized in gene clusters, examination of the mechanism(s) regulating the expression of such clustered genes is needed. Here, we report a chitin oligosaccharide elicitor-inducible basic leucine zipper transcription factor, OsTGAP1, which is essential for momilactone biosynthesis and regulates the expression of the five genes in the cluster. The knock-out mutant for OsTGAP1 had almost no expression of the five clustered genes (OsCPS4, OsKSL4, CYP99A2, CYP99A3, and OsMAS) or production of momilactones upon elicitor treatment. Inductive expression of OsKSL7 for phytocassane biosynthesis was also largely affected in the ostgap1 mutant, although phytocassane accumulation still occurred. Conversely, OsTGAP1-overexpressing lines exhibited enhanced expression of the clustered genes and hyperaccumulation of momilactones in response to the elicitor. Furthermore, enhanced expression of OsKSL7 and hyperaccumulation of phytocassanes was also observed. We also found that OsTGAP1 overexpression can influence transcriptional up-regulation of OsDXS3 in the methylerythritol phosphate pathway, eventually leading to inductive production of diterpenoid phytoalexins. These results indicate that OsTGAP1 functions as a key regulator of the coordinated transcription of genes involved in inductive diterpenoid phytoalexin production in rice and mainly exerts an essential role on expression of the clustered genes for momilactone biosynthesis.
Collapse
Affiliation(s)
- Atsushi Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
1162
|
Monaghan J, Xu F, Gao M, Zhao Q, Palma K, Long C, Chen S, Zhang Y, Li X. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 2009; 5:e1000526. [PMID: 19629177 PMCID: PMC2709443 DOI: 10.1371/journal.ppat.1000526] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 06/30/2009] [Indexed: 01/01/2023] Open
Abstract
Plant Resistance (R) proteins play an integral role in defense against pathogen infection. A unique gain-of-function mutation in the R gene SNC1, snc1, results in constitutive activation of plant immune pathways and enhanced resistance against pathogen infection. We previously found that mutations in MOS4 suppress the autoimmune phenotypes of snc1, and that MOS4 is part of a nuclear complex called the MOS4-Associated Complex (MAC) along with the transcription factor AtCDC5 and the WD-40 protein PRL1. Here we report the immuno-affinity purification of the MAC using HA-tagged MOS4 followed by protein sequence analysis by mass spectrometry. A total of 24 MAC proteins were identified, 19 of which have predicted roles in RNA processing based on their homology to proteins in the Prp19-Complex, an evolutionarily conserved spliceosome-associated complex containing homologs of MOS4, AtCDC5, and PRL1. Among these were two highly similar U-box proteins with homology to the yeast and human E3 ubiquitin ligase Prp19, which we named MAC3A and MAC3B. MAC3B was recently shown to exhibit E3 ligase activity in vitro. Through reverse genetics analysis we show that MAC3A and MAC3B are functionally redundant and are required for basal and R protein-mediated resistance in Arabidopsis. Like mos4-1 and Atcdc5-1, mac3a mac3b suppresses snc1-mediated autoimmunity. MAC3 localizes to the nucleus and interacts with AtCDC5 in planta. Our results suggest that MAC3A and MAC3B are members of the MAC that function redundantly in the regulation of plant innate immunity.
Collapse
Affiliation(s)
- Jacqueline Monaghan
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Minghui Gao
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Qingguo Zhao
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Kristoffer Palma
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chengzu Long
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Yuelin Zhang
- National Institute of Biological Sciences (NIBS), Beijing, People's Republic of China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
1163
|
Nakamura M, Hashimoto T. A mutation in the Arabidopsis γ-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 2009; 122:2208-17. [DOI: 10.1242/jcs.044131] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant cortical microtubules are mainly nucleated on previously established microtubules, grow at a narrow range of angles to the wall of mother microtubules, and eventually are released from the nucleation sites. These nucleation events are thought to be regulated by γ-tubulin-containing complexes. We here show that a null mutation of Arabidopsis GCP2, a core subunit of the γ-tubulin-containing complex, severely impaired the development of male and female gametophytes. However, a missense mutation in the conserved grip1 motif, called spiral3, caused a left-handed helical organization of cortical microtubule arrays, and severe right-handed helical growth. The spiral3 mutation compromises interaction between GCP2 and GCP3, another subunit of the complex, in yeast. In the spiral3 mutant, microtubule dynamics and nucleation efficiency were not markedly affected, but nucleating angles were wider and more divergently distributed. A spiral3 katanin double mutant had swollen and twisted epidermal cells, and showed that the microtubule minus ends were not released from the nucleation sites, although the nucleating angles distributed in a similar manner to those in spiral3. These results show that Arabidopsis GCP2 has an important role in precisely positioning the γ-tubulin-containing complex on pre-existing microtubules and in the proper organization of cortical arrays.
Collapse
Affiliation(s)
- Masayoshi Nakamura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
1164
|
Chen Z, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. THE PLANT CELL 2009; 21:1972-91. [PMID: 19602625 PMCID: PMC2729597 DOI: 10.1105/tpc.108.062653] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 06/10/2009] [Accepted: 06/24/2009] [Indexed: 05/18/2023]
Abstract
Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.
Collapse
Affiliation(s)
- Zhongying Chen
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1165
|
Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, Friml J, Nakano A, Fukuda H. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development 2009; 136:1529-38. [PMID: 19363154 DOI: 10.1242/dev.030098] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ACAP-type ARF GTPase activating proteins (ARF-GAPs) regulate multiple cellular processes, including endocytosis, secretion, phagocytosis, cell adhesion and cell migration. However, the regulation of ACAP functions by other cellular proteins is poorly understood. We have reported previously that a plant ACAP, VAN3, plays a pivotal role in plant venation continuity. Here, we report on newly identified VAN3 regulators: the CVP2 (cotyledon vascular pattern 2) 5 PTase, which is considered to degrade IP(3) and also to produce PtdIns(4)P from PtdIns(4,5)P(2); and a PH domain-containing protein, VAB (VAN3 binding protein). Combinational mutations of both CVP2 and its closest homologue CVL1 (CVP2 like 1) phenocopied the strong allele of van3 mutants, showing severe vascular continuity. The phenotype of double mutants between van3, cvp2 and vab suggested that VAN3, CVP2 and VAB function in vascular pattern formation in the same pathway. Localization analysis revealed that both CVP2 and VAB colocalize with VAN3 in the trans-Golgi network (TGN), supporting their functions in the same pathway. The subcellular localization of VAN3 was dependent on its PH domain, and mislocalization of VAN3 was induced in cvp2 or vab mutants. These results suggest that CVP2 and VAB cooperatively regulate the subcellular localization of VAN3 through the interaction between its PH domain and phosphoinositides and/or inositol phosphates. In addition, PtdIns(4)P, to which VAN3 binds preferentially, enhanced the ARF-GAP activity of VAN3, whereas IP(3) inhibited it. These results suggest the existence of PtdIns(4)P and/or IP(3)-dependent subcellular targeting and regulation of VAN3 ACAP activity that governs plant vascular tissue continuity.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
1166
|
Zhu T, Wang W, Yang X, Wang K, Cui Z. Construction of two gateway vectors for gene expression in fungi. Plasmid 2009; 62:128-33. [PMID: 19545587 DOI: 10.1016/j.plasmid.2009.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
We report the construction of two Gateway fungal expression vectors pCBGW and pGWBF. The pCBGW was generated by introducing an expression cassette, which consists of a Gateway recombinant cassette (attR1-Cmr-ccdB-attR2) under the control of fungal promoter PgpdA and a terminator TtrpC, into the multiple cloning site of fungal vector pCB1004. The pGWBF is a binary vector, which was generated from the plant expression vector pGWB2 by replacing the CaMV35S promoter with PgpdA. The pGWBF can be transformed into fungi efficiently with Agrobacterium-mediated transformation. The applicability of two newly constructed vectors was tested by generating the destination vectors pGWBF-GFP and pCBGW-GFP and examining the expression of GFP gene in Trichoderma viride and Gibberella fujikuroi, respectively. Combining with the advantage of Gateway cloning technology, pCBGW and pGWBF will be useful in fungi for large-scale investigation of gene functions by constructing the interested gene destination/expression vectors in a high-throughput way.
Collapse
Affiliation(s)
- Tingheng Zhu
- Zhejiang University of Technology, Hangzhou, China
| | | | | | | | | |
Collapse
|
1167
|
Tokunaga N, Kaneta T, Sato S, Sato Y. Analysis of expression profiles of three peroxidase genes associated with lignification in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2009; 136:237-49. [PMID: 19453502 DOI: 10.1111/j.1399-3054.2009.01233.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have investigated the mechanism of lignification during tracheary element (TE) differentiation using a Zinnia elegans xylogenic culture. In the process, we isolated ZPO-C, a peroxidase gene of Z. elegans that is expressed specifically in differentiating TEs. ZPO-C is suggested to be involved in lignification of Z. elegans TEs in vivo and in vitro. Furthermore, a peroxidase gene of Arabidopsis thaliana (AtPrx66), which is homologous to ZPO-C, was identified. The expression profile and functions of the gene in planta remain to be investigated. In this study, we performed promoter::beta-glucuronidase (GUS) assays to investigate the expression profiles and functions of the ZPO-C-like peroxidases in A. thaliana. We generated transgenic A. thaliana lines carrying AtPrx66, AtPrx47 or AtPrx64 (peroxidases showing high sequence similarity to AtPrx66) promoter::GUS reporter gene fusions. The GUS activities of AtPrx66, AtPrx47 and AtPrx64 promoter::GUS lines were arranged concentrically from the center to the periphery in the roots of seedlings. Furthermore, histochemical GUS assays using inflorescence stems showed that AtPrx66, AtPrx47 and AtPrx64 promoter-driven GUS were mainly expressed in the differentiating vessels, xylem parenchyma and sclerenchyma, respectively. These results suggest that the gene expressions of these three peroxidases, which showed high sequence similarity to one another, are differentially regulated in various tissues and organs. In addition, our results suggest that while AtPrx66 and AtPrx47 are associated with lignification of vessels, AtPrx64 is associated with lignification of sclerenchyma.
Collapse
Affiliation(s)
- Naohito Tokunaga
- Biology and Environmental Science, Graduate School of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | |
Collapse
|
1168
|
Fujimoto M, Arimura SI, Mano S, Kondo M, Saito C, Ueda T, Nakazono M, Nakano A, Nishimura M, Tsutsumi N. Arabidopsis dynamin-related proteins DRP3A and DRP3B are functionally redundant in mitochondrial fission, but have distinct roles in peroxisomal fission. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:388-400. [PMID: 19144001 DOI: 10.1111/j.1365-313x.2009.03786.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two similar Arabidopsis dynamin-related proteins, DRP3A and DRP3B, are thought to be key factors in both mitochondrial and peroxisomal fission. However, the functional and genetic relationships between DRP3A and DRP3B have not been fully investigated. In a yeast two-hybrid assay, DRP3A and DRP3B interacted with themselves and with each other. DRP3A and DRP3B localized to mitochondria and peroxisomes, and co-localized with each other in leaf epidermal cells. In two T-DNA insertion mutants, drp3a and drp3b, the mitochondria are a little longer and fewer in number than those in the wild-type cells. In the double mutant, drp3a/drp3b, mitochondria are connected to each other, resulting in massive elongation. Overexpression of either DRP3A or DRP3B in drp3a/drp3b restored the particle shape of mitochondria, suggesting that DRP3A and DRP3B are functionally redundant in mitochondrial fission. In the case of peroxisomal fission, DRP3A and DRP3B appear to have different functions: peroxisomes in drp3a were larger and fewer in number than those in the wild type, whereas peroxisomes in drp3b were as large and as numerous as those in the wild type, and peroxisomes in drp3a/drp3b were as large and as numerous as those in drp3a. Although overexpression of DRP3A in drp3a/drp3b restored the shape and number of peroxisomes, overexpression of DRP3B did not restore the phenotypes, and often caused elongation instead. These results suggest that DRP3B and DRP3A have redundant molecular functions in mitochondrial fission, whereas DRP3B has a minor role in peroxisomal fission that is distinct from that of DRP3A.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1169
|
Adachi S, Nobusawa T, Umeda M. Quantitative and cell type-specific transcriptional regulation of A-type cyclin-dependent kinase in Arabidopsis thaliana. Dev Biol 2009; 329:306-14. [PMID: 19285489 DOI: 10.1016/j.ydbio.2009.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/30/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Sumiko Adachi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
1170
|
Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci U S A 2009; 106:5996-6001. [PMID: 19321749 PMCID: PMC2667043 DOI: 10.1073/pnas.0902019106] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Indexed: 11/18/2022] Open
Abstract
The walls of grasses and related members of the Poales are characterized by the presence of the polysaccharide (1,3, 1,4)-beta-D-glucan (beta-glucan). To date, only members of the grass-specific cellulose synthase-like F (CSLF) gene family have been implicated in its synthesis. Assuming that other grass-specific CSL genes also might encode synthases for this polysaccharide, we cloned HvCSLH1, a CSLH gene from barley (Hordeum vulgare L.), and expressed an epitope-tagged version of the cDNA in Arabidopsis, a species with no CSLH genes and no beta-glucan in its walls. Transgenic Arabidopsis lines that had detectable amounts of the epitope-tagged HvCSLH1 protein accumulated beta-glucan in their walls. The presence of beta-glucan was confirmed by immunoelectron microscopy (immuno-EM) of sectioned tissues and chemical analysis of wall extracts. In the chemical analysis, characteristic tri- and tetra-saccharides were identified by high-performance anion-exchange chromatography and MALDI-TOF MS following their release from transgenic Arabidopsis walls by a specific beta-glucan hydrolase. Immuno-EM also was used to show that the epitope-tagged HvCSLH1 protein was in the endoplasmic reticulum and Golgi-associated vesicles, but not in the plasma membrane. In barley, HvCSLH1 was expressed at very low levels in leaf, floral tissues, and the developing grain. In leaf, expression was highest in xylem and interfascicular fiber cells that have walls with secondary thickenings containing beta-glucan. Thus both the CSLH and CSLF families contribute to beta-glucan synthesis in grasses and probably do so independently of each other, because there is no significant transcriptional correlation between these genes in the barley tissues surveyed.
Collapse
Affiliation(s)
- Monika S. Doblin
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Filomena A. Pettolino
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Sarah M. Wilson
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Rebecca Campbell
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Rachel A. Burton
- Australian Centre for Plant Functional Genomics, School of Agriculture and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia; and
| | - Geoffrey B. Fincher
- Australian Centre for Plant Functional Genomics, School of Agriculture and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia; and
| | - Ed Newbigin
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Antony Bacic
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Victoria 3010, Australia
- Australian Centre for Plant Functional Genomics, School of Botany, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
1171
|
Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. PLANTA 2009; 229:1065-75. [PMID: 19225807 DOI: 10.1007/s00425-009-0895-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 01/20/2009] [Indexed: 05/04/2023]
Abstract
Environmental stresses limit plant growth and crop production worldwide. We attempted to isolate rice genes involved in conferring tolerance to environmental stresses by using a transgenic Arabidopsis population expressing full-length cDNAs of rice. Among these lines, a thermotolerant line, R08946, was detected. The rice cDNA inserted in R08946 encoded a NAC transcription factor, ONAC063. This protein was localized in the nucleus and showed transactivation activity at the C-terminus. ONAC063 expression was not induced by high-temperature but highly induced by high-salinity in rice roots. High-osmotic pressure and reactive oxygen species levels also induced ONAC063 expression. The seeds of ONAC063-expressing transgenic Arabidopsis showed enhanced tolerance to high-salinity and osmotic pressure. Microarray and real-time reverse transcription-polymerase chain reaction analyses showed upregulated expression of some salinity-inducible genes, including the amylase gene AMY1, in ONAC063-expressing transgenic Arabidopsis. Thus, ONAC063 may play an important role in eliciting responses to high-salinity stress.
Collapse
Affiliation(s)
- Naoki Yokotani
- Research Institute for Biological Sciences, Okayama, 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| | | | | | | | | | | | | |
Collapse
|
1172
|
Zeng CJT, Lee YRJ, Liu B. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. THE PLANT CELL 2009; 21:1129-40. [PMID: 19383896 PMCID: PMC2685624 DOI: 10.1105/tpc.109.065953] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 03/27/2009] [Accepted: 04/08/2009] [Indexed: 05/23/2023]
Abstract
Although cells of flowering plants lack a structurally defined microtubule-organizing center like the centrosome, organization of the spindles and phragmoplasts in mitosis is known to involve the evolutionarily conserved gamma-tubulin complex. We have investigated the function of Arabidopsis thaliana NEDD1, a WD40 repeat protein related to the animal NEDD1/GCP-WD protein, which interacts with the gamma-tubulin complex. The NEDD1 protein decorates spindle microtubules (MTs) preferentially toward spindle poles and phragmoplast MTs toward their minus ends. A T-DNA insertional allele of the single NEDD1 gene was isolated and maintained in heterozygous sporophytes, and NEDD1's function in cell division was analyzed in haploid microspores produced by the heterozygote. In approximately half of the dividing microspores exhibiting aberrant MT organization, spindles were no longer restricted to the cell periphery and became abnormally elongated. After mitosis, MTs aggregated between reforming nuclei but failed to appear in a bipolar configuration. Consequently, defective microspores did not form a continuous cell plate, and two identical nuclei were produced with no differentiation into generative and vegetative cells. Our results support the notion that the plant NEDD1 homolog plays a critical role in MT organization during mitosis, and its function is likely linked to that of the gamma-tubulin complex.
Collapse
Affiliation(s)
- C J Tracy Zeng
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
1173
|
Jung B, Flörchinger M, Kunz HH, Traub M, Wartenberg R, Jeblick W, Neuhaus HE, Möhlmann T. Uridine-ribohydrolase is a key regulator in the uridine degradation pathway of Arabidopsis. THE PLANT CELL 2009; 21:876-91. [PMID: 19293370 PMCID: PMC2671717 DOI: 10.1105/tpc.108.062612] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 02/03/2009] [Accepted: 03/03/2009] [Indexed: 05/17/2023]
Abstract
Nucleoside degradation and salvage are important metabolic pathways but hardly understood in plants. Recent work on human pathogenic protozoans like Leishmania and Trypanosoma substantiates an essential function of nucleosidase activity. Plant nucleosidases are related to those from protozoans and connect the pathways of nucleoside degradation and salvage. Here, we describe the cloning of such an enzyme from Arabidopsis thaliana, Uridine-Ribohydrolase 1 (URH1) and the characterization by complementation of a yeast mutant. Furthermore, URH1 was synthesized as a recombinant protein in Escherichia coli. The pure recombinant protein exhibited highest hydrolase activity for uridine, followed by inosine and adenosine, the corresponding K(m) values were 0.8, 1.4, and 0.7 mM, respectively. In addition, URH1 was able to cleave the cytokinin derivative isopentenyladenine-riboside. Promoter beta-glucuronidase fusion studies revealed that URH1 is mainly transcribed in the vascular cells of roots and in root tips, guard cells, and pollen. Mutants expressing the Arabidopsis enzyme or the homolog from rice (Oryza sativa) exhibit resistance toward toxic fluorouridine, fluorouracil, and fluoroorotic acid, providing clear evidence for a pivotal function of URH1 as regulative in pyrimidine degradation. Moreover, mutants with increased and decreased nucleosidase activity are delayed in germination, indicating that this enzyme activity must be well balanced in the early phase of plant development.
Collapse
Affiliation(s)
- Benjamin Jung
- Abteilung Pflanzenphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1174
|
Tamaki H, Konishi M, Daimon Y, Aida M, Tasaka M, Sugiyama M. Identification of novel meristem factors involved in shoot regeneration through the analysis of temperature-sensitive mutants of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:1027-39. [PMID: 19054368 DOI: 10.1111/j.1365-313x.2008.03750.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adventitious organogenesis in plant tissue culture involves de novo formation of apical meristems and should therefore provide important information about the fundamentals of meristem gene networks. We identified novel factors required for neoformation of the shoot apical meristem (SAM) through an analysis of shoot regeneration in root initiation defective3 (rid3) and root growth defective3 (rgd3) temperature-sensitive mutants of Arabidopsis. After induction of callus to regenerate shoots, cell division soon ceased and was then reactivated locally in the surface region, resulting in formation of mounds of dense cells in which adventitious-bud SAMs were eventually constructed. The rgd3 mutation inhibited reactivation of cell division and suppressed expression of CUP-SHAPED COTYLEDON1 (CUC1), CUC2 and SHOOT MERISTEMLESS (STM). In contrast, the rid3 mutation caused excess ill-controlled cell division on the callus surface. This was intimately related to enhanced and broadened expression of CUC1. Positional cloning revealed that the RGD3 and RID3 genes encode BTAF1 (a kind of TATA-binding protein-associated factor) and an uncharacterized WD-40 repeat protein, respectively. In the early stages of shoot regeneration, RGD3 was expressed (as was CUC1) in the developing cell mounds, whereas RID3 was expressed outside the cell mounds. When RID3 was over-expressed artificially, the expression levels of CUC1 and STM were significantly reduced. Taken together, these findings show that both negative regulation by RID3 and positive regulation by RGD3 of the CUC-STM pathway participate in proper control of cell division as a prerequisite for SAM neoformation.
Collapse
Affiliation(s)
- Hiroaki Tamaki
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
1175
|
Gürlebeck D, Jahn S, Gürlebeck N, Szczesny R, Szurek B, Hahn S, Hause G, Bonas U. Visualization of novel virulence activities of the Xanthomonas type III effectors AvrBs1, AvrBs3 and AvrBs4. MOLECULAR PLANT PATHOLOGY 2009; 10:175-88. [PMID: 19236567 PMCID: PMC6640404 DOI: 10.1111/j.1364-3703.2008.00519.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Xanthomonas campestris pv. vesicatoria secretes at least 20 effector proteins through the type III secretion system directly into plant cells. In this study, we uncovered virulence activities of the effector proteins AvrBs1, AvrBs3 and AvrBs4 using Agrobacterium-mediated transient expression of the corresponding genes in Nicotiana benthamiana, followed by microscopic analyses. We showed that, in addition to the nuclear-localized AvrBs3, the effector AvrBs1, which localizes to the plant cell cytoplasm, also induces a morphological change in mesophyll cells. Comparative analyses revealed that avrBs3-expressing plant cells contain highly active nuclei. Furthermore, plant cells expressing avrBs3 or avrBs1 show a decrease in the starch content in chloroplasts and an increased number of vesicles, indicating an enlargement of the central vacuole and the cell wall. Both AvrBs1 and AvrBs3 cause an increased ion efflux when expressed in N. benthamiana. By contrast, expression of the avrBs3 homologue avrBs4 leads to large catalase crystals in peroxisomes, suggesting a possible virulence function of AvrBs4 in the suppression of the plant defence responses. Taken together, our data show that microscopic inspection can uncover subtle and novel virulence activities of type III effector proteins.
Collapse
Affiliation(s)
- Doreen Gürlebeck
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1176
|
Schröder F, Lisso J, Lange P, Müssig C. The extracellular EXO protein mediates cell expansion in Arabidopsis leaves. BMC PLANT BIOLOGY 2009; 9:20. [PMID: 19216774 PMCID: PMC2661892 DOI: 10.1186/1471-2229-9-20] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/13/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND The EXO (EXORDIUM) gene was identified as a potential mediator of brassinosteroid (BR)-promoted growth. It is part of a gene family with eight members in Arabidopsis. EXO gene expression is under control of BR, and EXO overexpression promotes shoot and root growth. In this study, the consequences of loss of EXO function are described. RESULTS The exo loss of function mutant showed diminished leaf and root growth and reduced biomass production. Light and scanning electron microscopy analyses revealed that impaired leaf growth is due to reduced cell expansion. Epidermis, palisade, and spongy parenchyma cells were smaller in comparison to the wild-type. The exo mutant showed reduced brassinolide-induced cotyledon and hypocotyl growth. In contrast, exo roots were significantly more sensitive to the inhibitory effect of synthetic brassinolide. Apart from reduced growth, exo did not show severe morphological abnormalities. Gene expression analyses of leaf material identified genes that showed robust EXO-dependent expression. Growth-related genes such as WAK1, EXP5, and KCS1, and genes involved in primary and secondary metabolism showed weaker expression in exo than in wild-type plants. However, the vast majority of BR-regulated genes were normally expressed in exo. HA- and GFP-tagged EXO proteins were targeted to the apoplast. CONCLUSION The EXO gene is essential for cell expansion in leaves. Gene expression patterns and growth assays suggest that EXO mediates BR-induced leaf growth. However, EXO does not control BR-levels or BR-sensitivity in the shoot. EXO presumably is involved in a signalling process which coordinates BR-responses with environmental or developmental signals. The hypersensitivity of exo roots to BR suggests that EXO plays a diverse role in the control of BR responses in the root.
Collapse
Affiliation(s)
- Florian Schröder
- Max Planck Institute of Molecular Plant Physiology, Dept. Willmitzer, Am Mühlenberg 1, 14476 Potsdam – Golm, Germany
| | - Janina Lisso
- Max Planck Institute of Molecular Plant Physiology, Dept. Willmitzer, Am Mühlenberg 1, 14476 Potsdam – Golm, Germany
| | - Peggy Lange
- Universität Potsdam, Karl-Liebknecht-Str. 24/25, Haus 26, 14476 Potsdam – Golm, Germany
| | - Carsten Müssig
- GoFORSYS, Universität Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam – Golm, Germany
| |
Collapse
|
1177
|
Chemical genetics reveal the novel transmembrane protein BIL4, which mediates plant cell elongation in brassinosteroid signaling. Biosci Biotechnol Biochem 2009; 73:415-21. [PMID: 19202280 DOI: 10.1271/bbb.80752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steroid hormones are conserved between animals and plants as signaling molecules to control growth and development. Plant steroid hormones, brassinosteroids (BRs), appear to play an important role in plant cell elongation. BRs bind to leucine-rich repeat kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) localized to the plasma membrane, activate transcription factors in collaboration with cytosolic kinases and phosphatases, and regulate BR-responsive gene expression, but the details regarding the BR signaling pathway from perception to nuclear events remain unknown. In this study we used chemical genetics to identify an evolutionarily conserved transmembrane protein, Brz-insensitive-long hypocotyls 4 (BIL4), and demonstrated its role as a critical component of plant cell elongation occurring upon BR signaling. A dominant mutation, bil4-1D, showed cell elongation in the presence of the BR-specific inhibitor Brz. Brz suppresses expression of the BIL4 gene in wild-type plants, and overexpression of BIL4 in bil4-1D suppresses the BR deficiency caused by Brz. Our results indicate that BIL4 mediates cell elongation on BR signaling.
Collapse
|
1178
|
Tilsner J, Linnik O, Christensen NM, Bell K, Roberts IM, Lacomme C, Oparka KJ. Live-cell imaging of viral RNA genomes using a Pumilio-based reporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:758-70. [PMID: 18980643 DOI: 10.1111/j.1365-313x.2008.03720.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protein, coupled to bimolecular fluorescence complementation (BiFC). Two Pumilio homology domain (PUMHD) polypeptides, fused to either the N- or C-terminal halves of split mCitrine, were engineered to recognize two closely adjacent eight-nucleotide sequences in the genomic RNA of tobacco mosaic virus (TMV). Binding of the PUMHDs to their target sites brought the split mCitrine halves into close proximity, allowing BiFC to occur and revealing the localization of viral RNA within infected cells. The bulk of the RNA was sequestered in characteristic inclusion bodies known as viral replication complexes (VRCs), with a second population of RNA localized in discrete particles distributed throughout the peripheral cytoplasm. Transfer of the TMV Pumilio recognition sequences into the genome of potato virus X (PVX) allowed the PVX RNA to be localized. Unlike TMV, the PVX RNA was concentrated in distinctive 'whorls' within the VRC. Optical sectioning of the PVX VRCs revealed that one of the viral movement proteins was localized to the centres of the RNA whorls, demonstrating significant partitioning of viral RNA and proteins within the VRC. The utility of Pumilio as a fluorescence-based reporter for viral RNA is discussed.
Collapse
Affiliation(s)
- Jens Tilsner
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
1179
|
de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ. A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. THE PLANT CELL 2009; 21:507-25. [PMID: 19218397 PMCID: PMC2660628 DOI: 10.1105/tpc.108.062513] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/04/2008] [Accepted: 01/27/2009] [Indexed: 05/18/2023]
Abstract
Acyl-CoA Synthetase (ACOS) genes are related to 4-coumarate:CoA ligase (4CL) but have distinct functions. The Arabidopsis thaliana ACOS5 protein is in clade A of Arabidopsis ACOS proteins, the clade most closely related to 4CL proteins. This clade contains putative nonperoxisomal ACOS enzymes conserved in several angiosperm lineages and in the moss Physcomitrella patens. Although its function is unknown, ACOS5 is preferentially expressed in the flowers of all angiosperms examined. Here, we show that an acos5 mutant produced no pollen in mature anthers and no seeds by self-fertilization and was severely compromised in pollen wall formation apparently lacking sporopollenin or exine. The phenotype was first evident at stage 8 of anther development and correlated with maximum ACOS5 mRNA accumulation in tapetal cells at stages 7 to 8. Green fluorescent protein-ACOS5 fusions showed that ACOS5 is located in the cytoplasm. Recombinant ACOS5 enzyme was active against oleic acid, allowing kinetic constants for ACOS5 substrates to be established. Substrate competition assays indicated broad in vitro preference of the enzyme for medium-chain fatty acids. We propose that ACOS5 encodes an enzyme that participates in a conserved and ancient biochemical pathway required for sporopollenin monomer biosynthesis that may also include the Arabidopsis CYP703A2 and MS2 enzymes.
Collapse
|
1180
|
Enami K, Ichikawa M, Uemura T, Kutsuna N, Hasezawa S, Nakagawa T, Nakano A, Sato MH. Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2009; 50:280-9. [PMID: 19098073 DOI: 10.1093/pcp/pcn197] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane trafficking to the plasma membrane (PM) is a highly organized process which enables plant cells to build up their bodies. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) genes, which encode the proteins involved in membrane trafficking, are much more abundant in the Arabidopsis genome than in that of any other eukaryote. We have previously shown that a large number of SNARE molecules in the Arabidopsis cell are localized predominantly on the PM. In the present study, in order to elucidate the physiological function of each PM-localized SNARE, we analyzed the spatiotemporal expression profiling of nine SYP1s that are resident in the PM of Arabidopsis, and used the information thus acquired to generate transgenic Arabidopsis plants expressing green fluorescent protein-fused Qa-SNAREs under control of their authentic promoters. Among the nine SYP1s, only SYP132 is expressed ubiquitously in all tissues throughout plant development. The expression patterns of the other SYP1s, in contrast, are tissue specific, and all different from one another. A particularly noteworthy example is SYP123, which is predominantly expressed in root hair cells during root development, and shows a focal accumulation pattern at the tip region of root hairs. These results suggest that SYP132 is involved in constitutive membrane trafficking to the PM throughout plant development, while the other SYP1s are involved in membrane trafficking events such as root formation or tip growth of root hair, with some redundancy.
Collapse
|
1181
|
Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M, Shinozaki K, Fukao Y, Yanagawa Y. Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3067-73. [PMID: 19429840 PMCID: PMC2718211 DOI: 10.1093/jxb/erp134] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/09/2009] [Accepted: 04/06/2009] [Indexed: 05/20/2023]
Abstract
The majority of proteins in eukaryotic cells are modified according to highly regulated mechanisms to fulfill specific functions and to achieve localization, stability, and transport. Protein ubiquitination is one of the major post-translational modifications occurring in eukaryotic cells. To obtain the proteomic dataset related to the ubiquitin (Ub)-dependent regulatory system in Arabidopsis, affinity purification with an anti-Ub antibody under native condition was performed. Using MS/MS analysis, 196 distinct proteins represented by 251 distinct genes were identified. The identified proteins were involved in metabolism (23.0%), stress response (21.4%), translation (16.8%), transport (6.7%), cell morphology (3.6%), and signal transduction (1.5%), in addition to proteolysis (16.8%) to which proteasome subunits (14.3%) is included. On the basis of potential ubiquitination-targeting signal motifs, in-gel mobilities, and previous reports, 78 of the identified proteins were classified as ubiquitinated proteins and the rest were speculated to be associated proteins of ubiquitinated proteins. The degradation of three proteins predicted to be ubiquitinated proteins was inhibited by a proteasome inhibitor, suggesting that the proteins were regulated by Ub/proteasome-dependent proteolysis.
Collapse
Affiliation(s)
- Tomoko Igawa
- The Plant Science Education Unit, The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Masayuki Fujiwara
- The Plant Science Education Unit, The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Hirotaka Takahashi
- Cell-Free Science and Technology Research Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Sawasaki
- Cell-Free Science and Technology Research Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yaeta Endo
- Cell-Free Science and Technology Research Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Motoaki Seki
- RIKEN Bioresource Center, 3-1-1 Takayama-cho, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuo Shinozaki
- RIKEN Bioresource Center, 3-1-1 Takayama-cho, Tsukuba, Ibaraki 305-0074, Japan
| | - Yoichiro Fukao
- The Plant Science Education Unit, The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Yuki Yanagawa
- The Plant Science Education Unit, The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101, Japan
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
1182
|
Guo J, Wang J, Xi L, Huang WD, Liang J, Chen JG. RACK1 is a negative regulator of ABA responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3819-33. [PMID: 19584117 PMCID: PMC2736894 DOI: 10.1093/jxb/erp221] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/11/2009] [Accepted: 06/22/2009] [Indexed: 05/18/2023]
Abstract
Receptor for Activated C Kinase 1 (RACK1) is viewed as a versatile scaffold protein in mammals. The protein sequence of RACK1 is highly conserved in eukaryotes. However, the function of RACK1 in plants remains poorly understood. Accumulating evidence suggested that RACK1 may be involved in hormone responses, but the precise role of RACK1 in any hormone signalling pathway remains elusive. Molecular and genetic evidence that Arabidopsis RACK1 is a negative regulator of ABA responses is provided here. It is shown that three RACK1 genes act redundantly to regulate ABA responses in seed germination, cotyledon greening and root growth, because rack1a single and double mutants are hypersensitive to ABA in each of these processes. On the other hand, plants overexpressing RACK1A displayed ABA insensitivity. Consistent with their proposed roles in seed germination and early seedling development, all three RACK1 genes were expressed in imbibed, germinating and germinated seeds. It was found that the ABA-responsive marker genes, RD29B and RAB18, were up-regulated in rack1a mutants. Furthermore, the expression of all three RACK1 genes themselves was down-regulated by ABA. Consistent with the view that RACK1 negatively regulates ABA responses, rack1a mutants lose water significantly more slowly from the rosettes and are hypersensitive to high concentrations of NaCl during seed germination. In addition, the expression of some putative RACK1-interacting, ABA-, or abiotic stress-regulated genes was mis-regulated in rack1a rack1b double mutants in response to ABA. Taken together, these findings provide compelling evidence that RACK1 is a critical, negative regulator of ABA responses.
Collapse
Affiliation(s)
- Jianjun Guo
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| | - Junbi Wang
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Li Xi
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| | - Wei-Dong Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiansheng Liang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jin-Gui Chen
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
1183
|
Takabayashi A, Ishikawa N, Obayashi T, Ishida S, Obokata J, Endo T, Sato F. Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:207-219. [PMID: 18785996 DOI: 10.1111/j.1365-313x.2008.03680.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chloroplastic NAD(P)H dehydrogenase (NDH) plays a role in cyclic electron flow around photosystem I to produce ATP, especially in adaptation to environmental changes. Although the NDH complex contains 11 subunits that are homologous to NADH:ubiquinone oxidoreductase (complex I; EC 1.6.5.3), recent genetic and biological studies have indicated that NDH also comprises unique subunits. We describe here an in silico approach based on co-expression analysis and phylogenetic profiling that was used to identify 65 genes as potential candidates for NDH subunits. Characterization of 21 Arabidopsis T-DNA insertion mutants among these ndh gene candidates indicated that three novel ndf (NDH-dependent cyclic electron flow) mutants (ndf1, ndf2 and ndf4) had impaired NDH activity as determined by measurement of chlorophyll fluorescence. The amount of NdhH subunit was greatly decreased in these mutants, suggesting that the loss of NDH activity was caused by a defect in accumulation of the NDH complex. In addition, NDF1, NDF2 and NDF4 proteins co-migrated with the NdhH subunit, as shown by blue native electrophoresis. These results strongly suggest that NDF proteins are novel subunits of the NDH complex. Further analysis revealed that the NDF1 and NDF2 proteins were unstable in the mutants lacking hydrophobic subunits of the NDH complex, but were stable in mutants lacking the hydrophilic subunits, suggesting that NDF1 and NDF2 interact with a hydrophobic sub-complex. NDF4 protein was predicted to possess a redox-active iron-sulfur cluster domain that may be involved in the electron transfer.
Collapse
Affiliation(s)
- Atsushi Takabayashi
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606 8502, Japan
| | | | | | | | | | | | | |
Collapse
|
1184
|
Okubo-Kurihara E, Sano T, Higaki T, Kutsuna N, Hasezawa S. Acceleration of vacuolar regeneration and cell growth by overexpression of an aquaporin NtTIP1;1 in tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2009; 50:151-60. [PMID: 19042915 DOI: 10.1093/pcp/pcn181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aquaporin is a water channel that increases water permeability through membranous structures. In plants, vacuoles are essential organelles that undergo dynamic volume changes during cell growth. To understand the contribution of aquaporins to plant cell growth, we developed a transgenic tobacco BY-2 cell line overexpressing the tonoplast intrinsic protein (TIP), gammaTIP. Vacuolar membranes of isolated vacuoles from gammaTIP-overexpressing cells showed higher water permeation activities than those from wild-type cells. We then examined the role of gammaTIP in vacuolar regeneration of evacuolated tobacco BY-2 protoplasts (miniprotoplasts). Vacuolar regeneration from thin to thick tube-network vacuoles and subsequent development of large vacuoles was accelerated in miniprotoplasts of this cell line. A parallel increase in the rate of cell expansion indicated a tight relationship between vacuolar development and cellular volume increases. Interestingly, overexpression of tobacco gammaTIP also enhanced cell division. Thus, increased vacuolar aquaporin activity may accelerate both cell expansion and cell division by increasing water permeability through the vacuolar membrane.
Collapse
Affiliation(s)
- Emiko Okubo-Kurihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | |
Collapse
|
1185
|
Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ. A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. THE PLANT CELL 2009; 21:318-33. [PMID: 19168716 PMCID: PMC2648071 DOI: 10.1105/tpc.108.063511] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/12/2008] [Accepted: 01/09/2009] [Indexed: 05/19/2023]
Abstract
Hydroxycinnamic acid amides are a class of secondary metabolites distributed widely in plants. We have identified two sinapoyl spermidine derivatives, N-((4'-O-glycosyl)-sinapoyl),N'-sinapoylspermidine and N,N'-disinapoylspermidine, which comprise the two major polyamine conjugates that accumulate in Arabidopsis thaliana seed. Using metabolic profiling of knockout mutants to elucidate the functions of members of the BAHD acyltransferase family in Arabidopsis, we have also identified two genes encoding spermidine disinapoyl transferase (SDT) and spermidine dicoumaroyl transferase (SCT) activities. At2g23510, which is expressed mainly in seeds, encodes a spermidine sinapoyl CoA acyltransferase (SDT) that is required for the production of disinapoyl spermidine and its glucoside in Arabidopsis seed. The structurally related BAHD enzyme encoded by At2g25150 is expressed specifically in roots and has spermidine coumaroyl CoA acyltransferase (SCT) activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Jie Luo
- Department of Metabolic Biology, John Ines Centre, Colney, Norwich, NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
1186
|
Kraft E, Bostick M, Jacobsen SE, Callis J. ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:704-15. [PMID: 18643997 PMCID: PMC2973330 DOI: 10.1111/j.1365-313x.2008.03631.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Appropriate methylation of genomes is essential for gene regulation. Here, we describe the six-member ORTHRUS (ORTH) gene family of Arabidopsis thaliana that plays a role in DNA methylation in vivo. ORTH1- ORTH5 are predicted to encode proteins that contain one plant homeodomain (PHD), two really interesting new gene (RING) domains, and one set ring associated (SRA) domain, whereas ORTHlike-1 encodes a protein with only one RING and SRA domain. cDNAs for ORTH1, ORTH2, ORTH5 and ORTHlike-1 were isolated, and when expressed as glutathione-S-transferase (GST) fusion proteins, were capable of promoting ubiquitylation in vitro with the E2 AtUBC11. ORTH1 promotes ubiquitylation when paired with additional AtUBC8 family members. ORTH1 proteins with substitutions in metal-ligand binding residues in each ORTH1 RING domain individually, and ORTH1 truncation derivatives lacking one or both RING domains, were tested for their ability to catalyze ubiquitylation in vitro. In these assays, either ORTH1 RING domain is capable of promoting ubiquitylation. The PHD alone is not active as an E3 ligase, nor is it required for ligase activity. GFP-ORTH1 and GFP-ORTH2 are nuclear-localized in transgenic Arabidopsis plants. Overexpression of ORTH1 or ORTH2 in Arabidopsis leads to an altered flowering time. Inspection of DNA methylation at FWA and Cen180 repeats revealed hypomethylation when ORTH proteins were overexpressed. Once initiated, a late-flowering phenotype persisted in the absence of the ORTH transgene, consistent with epigenetic effects at FWA. We conclude that ORTH proteins are E3 ligases mediating DNA methylation status in vivo.
Collapse
Affiliation(s)
- Edward Kraft
- Department of Molecular and Cellular Biology University of California-Davis, One Shields Avenue, Davis, CA 95616 and Plant Biology Graduate Group, University of CA-Davis, One Shields Ave. Davis, CA 95616
| | - Magnolia Bostick
- Department of Molecular, Cell and Developmental Biology, University of CA-Los Angeles, P.O. Box 951606, Los Angeles, CA 90095-1606
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of CA-Los Angeles, P.O. Box 951606, Los Angeles, CA 90095-1606
- Howard Hughes Medical Institute, University of CA-Los Angeles, Los Angeles, CA 90095-1606
| | - Judy Callis
- Department of Molecular and Cellular Biology University of California-Davis, One Shields Avenue, Davis, CA 95616 and Plant Biology Graduate Group, University of CA-Davis, One Shields Ave. Davis, CA 95616
| |
Collapse
|
1187
|
Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. THE PLANT CELL 2008; 20:3148-62. [PMID: 18996978 PMCID: PMC2613658 DOI: 10.1105/tpc.108.061341] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/05/2008] [Accepted: 10/22/2008] [Indexed: 05/18/2023]
Abstract
There are three iron superoxide dismutases in Arabidopsis thaliana: FE SUPEROXIDE DISMUTASE1 (FSD1), FSD2, and FSD3. Their biological roles in chloroplast development are unknown. Here, we show that FSD2 and FSD3 play essential roles in early chloroplast development, whereas FSD1, which is found in the cytoplasm, does not. An fsd2-1 fsd3-1 double mutant had a severe albino phenotype on agar plates, whereas fsd2 and fsd3 single knockout mutants had pale green phenotypes. Chloroplast development was arrested in young seedlings of the double mutant. The mutant plants were highly sensitive to oxidative stress and developed increased levels of reactive oxygen species (ROS) during extended darkness. The FSD2 and FSD3 proteins formed a heteromeric protein complex in the chloroplast nucleoids. Furthermore, transgenic Arabidopsis plants overexpressing both the FSD2 and FSD3 genes showed greater tolerance to oxidative stress induced by methyl viologen than did the wild type or single FSD2- or FSD3-overexpressing lines. We propose that heteromeric FSD2 and FSD3 act as ROS scavengers in the maintenance of early chloroplast development by protecting the chloroplast nucleoids from ROS.
Collapse
Affiliation(s)
- Fumiyoshi Myouga
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1188
|
Wawrzynska A, Christiansen KM, Lan Y, Rodibaugh NL, Innes RW. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. PLANT PHYSIOLOGY 2008; 148:1510-22. [PMID: 18815384 PMCID: PMC2577273 DOI: 10.1104/pp.108.127605] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/05/2008] [Indexed: 05/18/2023]
Abstract
Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling.
Collapse
Affiliation(s)
- Anna Wawrzynska
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
1189
|
Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, Aida M, Tasaka M, Kondo M, Nishimura M, Hara-Nishimura I. NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. THE PLANT CELL 2008; 20:2631-42. [PMID: 18849494 PMCID: PMC2590734 DOI: 10.1105/tpc.108.060160] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 09/10/2008] [Accepted: 09/21/2008] [Indexed: 05/18/2023]
Abstract
Seed morphogenesis consists of embryogenesis and the development of maternal tissues such as the inner and outer integuments, both of which give rise to seed coats. We show that expression of chimeric repressors derived from NAC-REGULATED SEED MORPHOLOGY1 and -2 (NARS1 and NARS2, also known as NAC2 and NAM, respectively) caused aberrant seed shapes in Arabidopsis thaliana. Double knockout mutant nars1 nars2 exhibited abnormally shaped seeds; moreover, neither nars1 nor nars2 produced abnormal seeds, indicating that NARS1 and NARS2 redundantly regulate seed morphogenesis. Degeneration of the integuments in nars1 nars2 was markedly delayed, while that of the wild type occurred around the torpedo-shaped embryo stage. Additionally, nars1 nars2 showed a defect in embryogenesis: some nars1 nars2 embryos were developmentally arrested at the torpedo-shaped embryo stage. Unexpectedly, however, neither NARS1 nor NARS2 was expressed in the embryo at this stage, although they were found to be expressed in the outer integument. Wild-type pistils pollinated with nars1 nars2 pollen generated normal seeds, while the reverse crossing generated abnormal seeds. Taken together, these results indicate that NARS1 and NARS2 regulate embryogenesis by regulating the development and degeneration of ovule integuments. Our findings suggest that there is an intertissue communication between the embryo and the maternal integument.
Collapse
Affiliation(s)
- Tadashi Kunieda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1190
|
Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:169-79. [PMID: 18643979 DOI: 10.1111/j.1365-313x.2008.03596.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The functional genomics approach requires systematic analysis of protein subcellular distribution and interaction networks, preferably by optimizing experimental simplicity and physiological significance. Here, we present an efficient in planta transient transformation system that allows single or multiple expression of constructs containing various fluorescent protein tags in Arabidopsis cotyledons. The optimized protocol is based on vacuum infiltration of agrobacteria directly into young Arabidopsis seedlings. We demonstrate that Arabidopsis epidermal cells show a subcellular distribution of reference markers similar to that in tobacco epidermal cells, and can be used for co-localization or bi-molecular fluorescent complementation studies. We then used this new system to investigate the subcellular distribution of enzymes involved in sphingolipid metabolism. In contrast to transformation systems using tobacco epidermal cells or cultured Arabidopsis cells, our system provides the opportunity to take advantage of the extensive collections of mutant and transgenic lines available in Arabidopsis. The fact that this assay uses conventional binary vectors and a conventional Agrobacterium strain, and is compatible with a large variety of fluorescent tags, makes it a versatile tool for construct screening and characterization before stable transformation. Transient expression in Arabidopsis seedlings is thus a fast and simple method that requires minimum handling and potentially allows medium- to high-throughput analyses of fusion proteins harboring fluorescent tags in a whole-plant cellular context.
Collapse
Affiliation(s)
- Jessica Marion
- Laboratoire Biologie Cellulaire, Institute Jean-Pierre Bourgin, INRA, 78000 Versailles, France
| | | | | | | | | | | |
Collapse
|
1191
|
Conti L, Price G, O'Donnell E, Schwessinger B, Dominy P, Sadanandom A. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. THE PLANT CELL 2008; 20:2894-908. [PMID: 18849491 PMCID: PMC2590731 DOI: 10.1105/tpc.108.058669] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Understanding salt stress signaling is key to producing salt-tolerant crops. The small ubiquitin-like modifier (SUMO) is a crucial regulator of signaling proteins in eukaryotes. Attachment of SUMO onto substrates is reversible, and SUMO proteases, which specifically cleave the SUMO-substrate linkages, play a vital regulatory role during SUMOylation. We have identified two SUMO proteases, OVERLY TOLERANT TO SALT1 (OTS1) and OTS2, which are localized in the nucleus and act redundantly to regulate salt stress responses in Arabidopsis thaliana. ots1 ots2 double mutants show extreme sensitivity to salt. However, under low-salt conditions, ots1 ots2 double mutants are phenotypically similar to wild-type plants. We demonstrate that salt stress induces a dose-dependent accumulation of SUMO1/2-conjugated proteins in Arabidopsis. ots1 ots2 double mutants constitutively accumulate high levels of SUMO1/2-conjugated proteins even under nonstress conditions and show a further dramatic increase in SUMO1/2-conjugated proteins in response to salt stress. Transgenic lines overexpressing OTS1 have increased salt tolerance and a concomitant reduction in the levels of SUMOylated proteins. Conversely, the ectopic expression of the mutant ots1(C526S) protein lacking SUMO protease activity fails to produce a salt-tolerant phenotype. We show that salt directly affects OTS1-dependent signaling by inducing OTS1 protein degradation. Our results indicate a requirement for OTS1 deSUMOylation activity in plant salt tolerance responses.
Collapse
Affiliation(s)
- Lucio Conti
- Biomedical and Life Sciences Department, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
1192
|
Rubio A, Rambla JL, Santaella M, Gómez MD, Orzaez D, Granell A, Gómez-Gómez L. Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 2008; 283:24816-25. [PMID: 18611853 PMCID: PMC3259819 DOI: 10.1074/jbc.m804000200] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/27/2008] [Indexed: 11/06/2022] Open
Abstract
Saffron, the processed stigma of Crocus sativus, is characterized by the presence of several apocarotenoids that contribute to the color, flavor, and aroma of the spice. However, little is known about the synthesis of aroma compounds during the development of the C. sativus stigma. The developing stigma is nearly odorless, but before and at anthesis, the aromatic compound beta-ionone becomes the principal norisoprenoid volatile in the stigma. In this study, four carotenoid cleavage dioxygenase (CCD) genes, CsCCD1a, CsCCD1b, CsCCD4a, and CsCCD4b, were isolated from C. sativus. Expression analysis showed that CsCCD1a was constitutively expressed, CsCCD1b was unique to the stigma tissue, but only CsCCD4a and -b had expression patterns consistent with the highest levels of beta-carotene and emission of beta-ionone derived during the stigma development. The CsCCD4 enzymes were localized in plastids and more specifically were present in the plastoglobules. The enzymatic activities of CsCCD1a, CsCCD1b, and CsCCD4 enzymes were determined by Escherichia coli expression, and subsequent analysis of the volatile products was generated by GC/MS. The four CCDs fell in two phylogenetically divergent dioxygenase classes, but all could cleave beta-carotene at the 9,10(9',10') positions to yield beta-ionone. The data obtained suggest that all four C. sativus CCD enzymes may contribute in different ways to the production of beta-ionone. In addition, the location and precise timing of beta-ionone synthesis, together with its known activity as a fragrance and insect attractant, suggest that this volatile may have a role in Crocus pollination.
Collapse
Affiliation(s)
- Angela Rubio
- Sección de Biotecnología,
Instituto de Desarrollo Regional, ETSIA, Universidad de Castilla-La Mancha,
Campus Universitario s/n, Albacete, 02071 and the
Instituto de Biología Molecular y Celular
de Plantas, Consejo Superior de Investigacíones
Científicas-Universidad Politécnica de Valencia, Ingeniero
Fausto Elio s/n, 46022 Valencia, Spain
| | - José Luís Rambla
- Sección de Biotecnología,
Instituto de Desarrollo Regional, ETSIA, Universidad de Castilla-La Mancha,
Campus Universitario s/n, Albacete, 02071 and the
Instituto de Biología Molecular y Celular
de Plantas, Consejo Superior de Investigacíones
Científicas-Universidad Politécnica de Valencia, Ingeniero
Fausto Elio s/n, 46022 Valencia, Spain
| | - Marcella Santaella
- Sección de Biotecnología,
Instituto de Desarrollo Regional, ETSIA, Universidad de Castilla-La Mancha,
Campus Universitario s/n, Albacete, 02071 and the
Instituto de Biología Molecular y Celular
de Plantas, Consejo Superior de Investigacíones
Científicas-Universidad Politécnica de Valencia, Ingeniero
Fausto Elio s/n, 46022 Valencia, Spain
| | - M. Dolores Gómez
- Sección de Biotecnología,
Instituto de Desarrollo Regional, ETSIA, Universidad de Castilla-La Mancha,
Campus Universitario s/n, Albacete, 02071 and the
Instituto de Biología Molecular y Celular
de Plantas, Consejo Superior de Investigacíones
Científicas-Universidad Politécnica de Valencia, Ingeniero
Fausto Elio s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Sección de Biotecnología,
Instituto de Desarrollo Regional, ETSIA, Universidad de Castilla-La Mancha,
Campus Universitario s/n, Albacete, 02071 and the
Instituto de Biología Molecular y Celular
de Plantas, Consejo Superior de Investigacíones
Científicas-Universidad Politécnica de Valencia, Ingeniero
Fausto Elio s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Sección de Biotecnología,
Instituto de Desarrollo Regional, ETSIA, Universidad de Castilla-La Mancha,
Campus Universitario s/n, Albacete, 02071 and the
Instituto de Biología Molecular y Celular
de Plantas, Consejo Superior de Investigacíones
Científicas-Universidad Politécnica de Valencia, Ingeniero
Fausto Elio s/n, 46022 Valencia, Spain
| | - Lourdes Gómez-Gómez
- Sección de Biotecnología,
Instituto de Desarrollo Regional, ETSIA, Universidad de Castilla-La Mancha,
Campus Universitario s/n, Albacete, 02071 and the
Instituto de Biología Molecular y Celular
de Plantas, Consejo Superior de Investigacíones
Científicas-Universidad Politécnica de Valencia, Ingeniero
Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
1193
|
Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response. Biochem Biophys Res Commun 2008; 374:242-7. [DOI: 10.1016/j.bbrc.2008.07.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/05/2008] [Indexed: 11/18/2022]
|
1194
|
Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. PLANT PHYSIOLOGY 2008; 148:142-55. [PMID: 18614709 PMCID: PMC2528122 DOI: 10.1104/pp.108.122770] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 07/01/2008] [Indexed: 05/17/2023]
Abstract
During senescence and at times of stress, plants can mobilize needed nitrogen from chloroplasts in leaves to other organs. Much of the total leaf nitrogen is allocated to the most abundant plant protein, Rubisco. While bulk degradation of the cytosol and organelles in plants occurs by autophagy, the role of autophagy in the degradation of chloroplast proteins is still unclear. We have visualized the fate of Rubisco, stroma-targeted green fluorescent protein (GFP) and DsRed, and GFP-labeled Rubisco in order to investigate the involvement of autophagy in the mobilization of stromal proteins to the vacuole. Using immunoelectron microscopy, we previously demonstrated that Rubisco is released from the chloroplast into Rubisco-containing bodies (RCBs) in naturally senescent leaves. When leaves of transgenic Arabidopsis (Arabidopsis thaliana) plants expressing stroma-targeted fluorescent proteins were incubated with concanamycin A to inhibit vacuolar H(+)-ATPase activity, spherical bodies exhibiting GFP or DsRed fluorescence without chlorophyll fluorescence were observed in the vacuolar lumen. Double-labeled immunoelectron microscopy with anti-Rubisco and anti-GFP antibodies confirmed that the fluorescent bodies correspond to RCBs. RCBs could also be visualized using GFP-labeled Rubisco directly. RCBs were not observed in leaves of a T-DNA insertion mutant in ATG5, one of the essential genes for autophagy. Stroma-targeted DsRed and GFP-ATG8 fusion proteins were observed together in autophagic bodies in the vacuole. We conclude that Rubisco and stroma-targeted fluorescent proteins can be mobilized to the vacuole through an ATG gene-dependent autophagic process without prior chloroplast destruction.
Collapse
Affiliation(s)
- Hiroyuki Ishida
- Department of Applied Plant Science, Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1195
|
Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R, Kunst L. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:97-107. [PMID: 18621978 PMCID: PMC2528131 DOI: 10.1104/pp.108.123471] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Wax esters are neutral lipids composed of aliphatic alcohols and acids, with both moieties usually long-chain (C(16) and C(18)) or very-long-chain (C(20) and longer) carbon structures. They have diverse biological functions in bacteria, insects, mammals, and terrestrial plants and are also important substrates for a variety of industrial applications. In plants, wax esters are mostly found in the cuticles coating the primary shoot surfaces, but they also accumulate to high concentrations in the seed oils of a few plant species, including jojoba (Simmondsia chinensis), a desert shrub that is the major commercial source of these compounds. Here, we report the identification and characterization of WSD1, a member of the bifunctional wax ester synthase/diacylglycerol acyltransferase gene family, which plays a key role in wax ester synthesis in Arabidopsis (Arabidopsis thaliana) stems, as first evidenced by severely reduced wax ester levels of in the stem wax of wsd1 mutants. In vitro assays using protein extracts from Escherichia coli expressing WSD1 showed that this enzyme has a high level of wax synthase activity and approximately 10-fold lower level of diacylglycerol acyltransferase activity. Expression of the WSD1 gene in Saccharomyces cerevisiae resulted in the accumulation of wax esters, but not triacylglycerol, indicating that WSD1 predominantly functions as a wax synthase. Analyses of WSD1 expression revealed that this gene is transcribed in flowers, top parts of stems, and leaves. Fully functional yellow fluorescent protein-tagged WSD1 protein was localized to the endoplasmic reticulum, demonstrating that biosynthesis of wax esters, the final products of the alcohol-forming pathway, occurs in this subcellular compartment.
Collapse
Affiliation(s)
- Fengling Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | | | | | |
Collapse
|
1196
|
RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci U S A 2008; 105:12915-20. [PMID: 18725639 DOI: 10.1073/pnas.0806019105] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transition from the vegetative phase to reproductive phase is a crucial process in the life cycle of higher plants. Although the molecular mechanisms of flowering regulation have been extensively characterized in a number of plant species, little is known regarding how the transition process initiates. Here, we show that the Rice Indeterminate 1 (RID1) gene acts as the master switch for the transition from the vegetative to reproductive phase. RID1 encodes a Cys-2/His-2-type zinc finger transcription factor that does not have an ortholog in Arabidopsis spp. A RID1 knockout (rid1), mutated by T-DNA insertion, never headed after growing for >500 days under a range of growth conditions and is thus referred to as a never-flowering phenotype. This mutation-suppressed expression of the genes is known to be involved in flowering regulation, especially in the Ehd1/Hd3a pathway and a series of RFT homologs. RID1 seems to be independent of the circadian clock. A model was proposed to place RID1 in the molecular pathways of flowering regulation in rice, for which there are two indispensable elements. In the first, RID1 is controlling the phase transition and initiation of floral induction. In the other, the Hd3a/RFL1/FTL complex acts as the immediate inducer of flowering. Loss of function in either element would cause never-flowering. Once the phase transition is induced with the activation of RID1, flowering signal is transduced and regulated through the various pathways and eventually integrated with FT-like proteins to induce flowering.
Collapse
|
1197
|
Lorenz C, Kirchner O, Egler M, Stuttmann J, Bonas U, Büttner D. HpaA from Xanthomonas is a regulator of type III secretion. Mol Microbiol 2008; 69:344-60. [PMID: 18485076 DOI: 10.1111/j.1365-2958.2008.06280.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject effector proteins into the host cell cytoplasm. Efficient secretion of several effector proteins depends on the cytoplasmic global T3S chaperone HpaB. In this study, we show that HpaB interacts with the virulence factor HpaA, which is secreted by the T3S system and translocated into the plant cell. HpaA promotes secretion of pilus, translocon and effector proteins and therefore appears to be an important control protein of the T3S system. Protein-protein interaction studies and the analysis of HpaA deletion derivatives revealed that the C-terminal protein region, which contains a HpaB binding site, is crucial for the contribution of HpaA to T3S. Secretion of pilus and translocon proteins is not affected when HpaA is expressed as an N-terminal deletion derivative that lacks the secretion and translocation signal. Our data suggest that binding of HpaA to HpaB within the bacterial cell favours secretion of extracellular components of the secretion apparatus. Secretion of HpaA presumably liberates HpaB and thus promotes effector protein secretion after assembly of the T3S apparatus.
Collapse
Affiliation(s)
- Christian Lorenz
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
1198
|
Gómez-Mena C, Sablowski R. ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. THE PLANT CELL 2008; 20:2059-72. [PMID: 18757555 PMCID: PMC2553610 DOI: 10.1105/tpc.108.059188] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 08/11/2008] [Accepted: 08/15/2008] [Indexed: 05/18/2023]
Abstract
Apical meristems play a central role in plant development. Self-renewing cells in the central region of the shoot meristem replenish the cell population in the peripheral region, where organ primordia emerge in a predictable pattern, and in the underlying rib meristem, where new stem tissue is formed. While much is known about how organ primordia are initiated and their lateral boundaries established, development at the interface between the stem and the meristem or the lateral organs is poorly understood. Here, we show that the BELL-type ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) is required for proper development of the boundary between the stem and both vegetative and reproductive organs and that this role partially overlaps with that of CUP-SHAPED COTYLEDON genes. During the vegetative phase, ATH1 also functions redundantly with light-activated genes to inhibit growth of the region below the shoot meristem. Consistent with a role in inhibiting stem growth, ATH1 is downregulated at the start of inflorescence development and ectopic ATH1 expression prevents growth of the inflorescence stem by reducing cell proliferation. Thus, ATH1 modulates growth at the interface between the stem, meristem, and organ primordia and contributes to the compressed vegetative habit of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Concepción Gómez-Mena
- Department of Cell and Developmental Biology, John Ines Centre, Norwich NR4 7UH, United Kingdom
| | | |
Collapse
|
1199
|
Yao M, Wakamatsu Y, Itoh TJ, Shoji T, Hashimoto T. Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J Cell Sci 2008; 121:2372-81. [DOI: 10.1242/jcs.030221] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SPIRAL2 (SPR2) of Arabidopsis thaliana is a microtubule-associated protein containing multiple HEAT repeats that are found only in the plant lineage. We show that SPR2 and SP2L, their closest Arabidopsis homolog, are expressed in various tissues with partially overlapping patterns, and spr2-sp2l double mutants exhibit enhanced right-handed helical growth. Fusion to green fluorescent protein (GFP) expressed under the control of the native regulatory elements showed that both SPR2 and SP2L were localized to cortical microtubules, mainly in particles of various sizes. Along the microtubule, the GFP-fused forms also distributed partly at the plus ends. In the spr2-mutant background, cortical microtubules were less dynamic, and the pause state – in which microtubules undergo neither growth nor shrinkage – increased at the plus ends. The continuous plus-end tracking of GFP-EB1 was occasionally interrupted in the mutant cells. Recombinant SPR2 protein promoted microtubule polymerization, and bound to microtubules with an N-terminal segment that contained two HEAT repeats as well as to those with a C-terminal region. In vitro analyses of microtubule dynamics revealed that SPR2 and SP2L suppressed the pause state at microtubule ends, thereby leading to enhanced microtubule growth. We propose that the SPR2-family proteins act on the pause state to facilitate a transition to microtubule growth.
Collapse
Affiliation(s)
- Maki Yao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yoshinori Wakamatsu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Tomohiko J. Itoh
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
1200
|
Zhong S, Lin Z, Fray RG, Grierson D. Improved plant transformation vectors for fluorescent protein tagging. Transgenic Res 2008; 17:985-9. [PMID: 18594998 PMCID: PMC2522295 DOI: 10.1007/s11248-008-9199-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 06/10/2008] [Indexed: 10/29/2022]
Abstract
Fluorescent protein labelling technologies enable dynamic protein actions to be imaged in living cells and can also be used in conjunction with other methods such as Forster resonance energy transfer and biomolecular fluorescence complementation. In this report, we describe the generation of a series of 23 novel GATEWAY-compatible vectors based on pGreenII and pDH51 backbones with the latest fluorescent protein tags (Cerulean, EGFP and Venus) and the choice of three in planta selection markers. These vectors can be obtained from the Nottingham Arabidopsis Stock Centre (N9819-N9846) and should be a powerful tool box for transgenic research in plants.
Collapse
Affiliation(s)
- Silin Zhong
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | | | | | |
Collapse
|