1251
|
Abstract
The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.
Collapse
|
1252
|
Gaitonde S, Kohli R, Seeley R. The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition. J Surg Res 2012; 178:33-9. [PMID: 22929182 PMCID: PMC3479323 DOI: 10.1016/j.jss.2011.04.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/05/2011] [Accepted: 04/19/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Bariatric surgery alters the gastrointestinal hormonal milieu leading to improved glucose homeostasis, though the mechanism leading to these changes is poorly understood. Ileal transposition (IT) is a procedure that is neither restrictive nor malabsorptive but nevertheless produces profound improvements in glucose regulation. Ileal transposition involves a short segment of distal ileum being transposed to the proximal jejunum in an isoperistaltic direction, thereby avoiding any gastric resection or intestinal bypass. METHODS Diet-induced obese rats underwent either ileal transposition (IT) or Sham procedures. The Sham operated rats were pair-fed to the IT surgical group to control for the effects of reduced food intake. Body composition data were recorded at specific time points, and glucose tolerance tests were performed at 5 and 6 wk, both in the presence and absence of Exendin 9-39, a known glucose-like peptide 1 (GLP-1) receptor antagonist. A subset of naïve rats were also maintained for comparison. RESULTS IT and Sham operated rats had no differences in food intake and body weight, however, IT rats had a significant decrease in their body fat composition (P < 0.05). No difference existed in glucose tolerance when exposed to an intraperitoneal glucose load, however, IT rats showed markedly improved glucose tolerance when submitted to an oral glucose tolerance test (P < 0.001). Blocking GLP-1 receptors reversed these important improvements in rats with IT surgery. CONCLUSIONS The present work recapitulates what is seen in rodents and humans that IT improves glucose tolerance and body composition. The present data provide compelling evidence that these improvements are a product of increased GLP-1 secretion that results from placing the key GLP-1 secreting cells closer to chyme coming from the stomach. Such data support the notion that rather than restriction or malabsorption, the underling molecular mechanisms that mediate the potent improvements produced by bariatric procedures involve increased activation of GLP-1 signaling.
Collapse
Affiliation(s)
- Shrawan Gaitonde
- Department of Surgery, University Hospital/University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|
1253
|
Zarrinpar A, Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2012; 36:909-21. [PMID: 23057494 PMCID: PMC3535499 DOI: 10.1111/apt.12084] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/27/2012] [Accepted: 09/22/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recent research has led to an interest in the role of the gut and liver in type 2 diabetes mellitus (T2DM). AIM To review the role of the gastrointestinal system in glucose homoeostasis, with particular focus on the effects of incretin hormones, hepatic steatosis and bile acids. METHODS PubMed and Google Scholar were searched using terms such as incretin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4), hepatic steatosis, bile acid and gastric bypass. Additional relevant references were identified by reviewing the reference lists of articles. RESULTS Perturbations of incretin hormones and bile acid secretion contribute to the pathogenesis of T2DM, leading to their potential as therapeutic targets. The incretin hormones (GIP and GLP-1) are deactivated by DPP-4. GLP-1 agonists and DPP-4 inhibitors improve glycaemic control in patients with T2DM. Hepatic steatosis, along with insulin resistance, may precede the development of T2DM, and may benefit from anti-diabetes medications. Bile acids play an important role in glucose homoeostasis, with effects mediated via the farnesoid X receptor (FXR) and the cell surface receptor TGR5. The bile acid sequestrant colesevelam has been shown to be effective in improving glycaemic control in patients with T2DM. Altered gastrointestinal anatomy after gastric bypass surgery may also affect enterohepatic recirculation of bile acids and contribute to improved glycaemic control. CONCLUSIONS Research in recent years has led to new pathways and processes with a role in glucose homoeostasis, and new therapeutic targets and options for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Amir Zarrinpar
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA, USA
,Division of Epidemiology, Department of Family and Preventive Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
1254
|
Jespersen MJ, Knop FK, Christensen M. GLP-1 agonists for type 2 diabetes: pharmacokinetic and toxicological considerations. Expert Opin Drug Metab Toxicol 2012; 9:17-29. [PMID: 23094590 DOI: 10.1517/17425255.2013.731394] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Within recent years, glucagon-like peptide 1 receptor agonists (GLP-1-RA) have emerged as a new treatment option for type 2 diabetes. The GLP-1-RA are administered subcutaneously and differ substantially in pharmacokinetic profiles. AREAS COVERED This review describes the pharmacokinetics and safety aspects of the currently available GLP-1 receptor agonists, liraglutide (based on the structure of native GLP-1), exenatide twice daily and exenatide once weekly (based on exendin-4) in relation to the kinetics and toxicology of native GLP-1. The review is based on electronic literature searches and legal documents in the form of assessment reports from the European Medicines Agency and the United States Food and Drug Administration. EXPERT OPINION GLP-1-based therapy combines several unique mechanisms of action and have the potential to gain widespread use in the fight against diabetes and obesity. The difference in chemical structure have strong implications for key pharmacokinetic parameters such as absorption and clearance, and eventually the safety and efficacy of the individual GLP-1-RA. The main safety concerns are pancreatitis and neoplasms, for which there are no identifiable differences in risk between the available agents. Antibody formation and injection site reactions are more frequent with the exendin-4-based compounds. The efficacy with regard to Hb(A1c) reduction is superior with the longer-acting agonists, whereas the shorter-acting GLP-1-RA seems to provide greater postprandial glucose control and lower tolerability as a possible consequence of less induction of tachyphylaxis. The future place of these agents will depend on the added safety and efficacy data in the several ongoing cardiovascular outcome trials.
Collapse
Affiliation(s)
- Maria J Jespersen
- University of Copenhagen, Department of Clinical Pharmacology, Bispebjerg Hospital, Copenhagen, Denmark.
| | | | | |
Collapse
|
1255
|
Gioiello A, Rosatelli E, Nuti R, Macchiarulo A, Pellicciari R. Patented TGR5 modulators: a review (2006 - present). Expert Opin Ther Pat 2012; 22:1399-414. [PMID: 23039746 DOI: 10.1517/13543776.2012.733000] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The G protein-coupled receptor TGR5 is a key player of the bile acid signaling network, and its activation has been proved to increase the glycemic control, to enhance energy expenditure and to exert anti-inflammatory actions. Accordingly, TGR5 ligands have emerged in drug discovery and preclinical appraisals as promising agents for the treatment of liver diseases, metabolic syndrome and related disorders. AREAS COVERED Recent advances in the field of TGR5 modulators are reviewed, with a particular attention on patent applications and peer-reviewed publications in the past 6 years. EXPERT OPINION Activation of TGR5 showed to protect mice from diabesity and insulin resistance, to improve liver functions, as well as to attenuate the development of atherosclerosis. However, although the efficacy of TGR5 agonists in mice is encouraging, further studies are needed to determine their potential in humans and to evaluate carefully the balance between the therapeutic benefits and adverse effects associated with the target. The development of new TGR5 selective ligands to support studies in animal models will surely facilitate the understanding of the complexity of TGR5 signaling network.
Collapse
Affiliation(s)
- Antimo Gioiello
- Dipartimento di Chimica e Tecnologia del Farmaco, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | |
Collapse
|
1256
|
Aicher TD, Boyd SA, McVean M, Celeste A. Novel therapeutics and targets for the treatment of diabetes. Expert Rev Clin Pharmacol 2012; 3:209-29. [PMID: 22111568 DOI: 10.1586/ecp.10.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microvascular complications of insufficiently controlled diabetes (neuropathy, retinopathy and nephropathy) and the marked increased risk of macrovascular events (e.g., stroke and myocardial infarction) have a dire impact on society in both human and economic terms. In Type 1 diabetes total β-cell loss occurs. In Type 2 diabetes, partial β-cell loss occurs before diagnosis, and the progressive β-cell loss during the life of the patient increases the severity of the disease. In patients with diabetes, increased insulin resistance in the muscle and liver are key pathophysiologic defects. In addition, defects in metabolic processes in the fat, GI tract, brain, pancreatic α-cells and kidney are detrimental to the overall health of the patient. This review addresses novel therapies for these deficiencies in clinical and preclinical evaluation, emphasizing their potential to address glucose homeostasis, β-cell mass and function, and the comorbidities of cardiovascular disease and obesity.
Collapse
Affiliation(s)
- Thomas D Aicher
- Principal Research Investigator, Array BioPharma Inc., 3200 Walnut Street, Boulder, CO 80301, USA.
| | | | | | | |
Collapse
|
1257
|
Inoue T, Wang JH, Higashiyama M, Rudenkyy S, Higuchi K, Guth PH, Engel E, Kaunitz JD, Akiba Y. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum. Am J Physiol Gastrointest Liver Physiol 2012; 303:G810-6. [PMID: 22821947 PMCID: PMC3469594 DOI: 10.1152/ajpgi.00195.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.
Collapse
Affiliation(s)
- Takuya Inoue
- 2Department of Medicine, School of Medicine, University of California, Los Angeles, California; ,5The Second Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Joon-Ho Wang
- 2Department of Medicine, School of Medicine, University of California, Los Angeles, California;
| | - Masaaki Higashiyama
- 2Department of Medicine, School of Medicine, University of California, Los Angeles, California;
| | - Sergiy Rudenkyy
- 1Greater Los Angeles Veterans Affairs Healthcare System, University of California, Los Angeles, California;
| | - Kazuhide Higuchi
- 5The Second Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Paul H. Guth
- 1Greater Los Angeles Veterans Affairs Healthcare System, University of California, Los Angeles, California;
| | - Eli Engel
- 3Department of Biomathematics, University of California, Los Angeles, California;
| | - Jonathan D. Kaunitz
- 1Greater Los Angeles Veterans Affairs Healthcare System, University of California, Los Angeles, California; ,2Department of Medicine, School of Medicine, University of California, Los Angeles, California; ,4Brentwood Biomedical Research Institute, Los Angeles, California; and
| | - Yasutada Akiba
- 1Greater Los Angeles Veterans Affairs Healthcare System, University of California, Los Angeles, California; ,2Department of Medicine, School of Medicine, University of California, Los Angeles, California; ,4Brentwood Biomedical Research Institute, Los Angeles, California; and
| |
Collapse
|
1258
|
Nie B, Park HM, Kazantzis M, Lin M, Henkin A, Ng S, Song S, Chen Y, Tran H, Lai R, Her C, Maher JJ, Forman BM, Stahl A. Specific bile acids inhibit hepatic fatty acid uptake in mice. Hepatology 2012; 56:1300-10. [PMID: 22531947 PMCID: PMC3445775 DOI: 10.1002/hep.25797] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. We tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end, stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. CONCLUSION The data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease.
Collapse
Affiliation(s)
- Biao Nie
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Hyo Min Park
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Melissa Kazantzis
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Min Lin
- Diabetes Center, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Amy Henkin
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Stephanie Ng
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Sujin Song
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Yuli Chen
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Heather Tran
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Robin Lai
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| | - Chris Her
- Department of Medicine and Liver Center, University of California San Francisco, 1001 Potrero Ave., San Francisco, CA 94110
| | - Jacquelyn J. Maher
- Department of Medicine and Liver Center, University of California San Francisco, 1001 Potrero Ave., San Francisco, CA 94110
| | - Barry M. Forman
- Diabetes Center, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA 94720
| |
Collapse
|
1259
|
Poreba MA, Dong CX, Li SK, Stahl A, Miner JH, Brubaker PL. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells. Am J Physiol Endocrinol Metab 2012; 303:E899-907. [PMID: 22871340 PMCID: PMC3469616 DOI: 10.1152/ajpendo.00116.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The antidiabetic intestinal L cell hormone glucagon-like peptide-1 (GLP-1) enhances glucose-dependent insulin secretion and inhibits gastric emptying. GLP-1 secretion is stimulated by luminal oleic acid (OA), which crosses the cell membrane by an unknown mechanism. We hypothesized that L cell fatty acid transport proteins (FATPs) are essential for OA-induced GLP-1 release. Therefore, the murine GLUTag L cell model was used for immunoblotting, [(3)H]OA uptake assay, and GLP-1 secretion assay as determined by radioimmunoassay following treatment with OA ± phloretin, sulfo-N-succinimidyl oleate, or siRNA against FATP4. FATP4(-/-) and cluster-of-differentiation 36 (CD36)(-/-) mice received intraileal OA, and plasma GLP-1 was measured by sandwich immunoassay. GLUTag cells were found to express CD36, FATP1, FATP3, and FATP4. The cells demonstrated specific (3)H[OA] uptake that was dose-dependently inhibited by 500 and 1,000 μM unlabeled OA (P < 0.001). Cell viability was not altered by treatment with OA. Phloretin and sulfo-N-succinimidyl oleate, inhibitors of protein-mediated transport and CD36, respectively, also decreased [(3)H]OA uptake, as did knockdown of FATP4 by siRNA transfection (P < 0.05-0.001). OA dose-dependently increased GLP-1 secretion at 500 and 1,000 μM (P < 0.001), whereas phloretin, sulfo-N-succinimidyl oleate, and FATP4 knockdown decreased this response (P < 0.05-0.01). FATP4(-/-) mice displayed lower plasma GLP-1 at 60 min in response to intraileal OA (P < 0.05), whereas, unexpectedly, CD36(-/-) mice displayed higher basal GLP-1 levels (P < 0.01) but a normal response to intraileal OA. Together, these findings demonstrate a key role for FATP4 in OA-induced GLP-1 secretion from the murine L cell in vitro and in vivo, whereas the precise role of CD36 remains unclear.
Collapse
Affiliation(s)
- M A Poreba
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
1260
|
Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol 2012; 36:412-9. [PMID: 22521118 DOI: 10.1016/j.clinre.2012.03.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/02/2012] [Indexed: 02/06/2023]
Abstract
Bile acids are signaling molecules with diverse endocrine functions. Bile acid effects are mediated through the nuclear receptor farnesoid X receptor (FXR), the G-protein coupled receptor TGR5 (Gpbar-1) and various other bile acid sensing molecules. TGR5 is almost ubiquitously expressed and has been detected in different non-parenchymal cells of human and rodent liver. Here, TGR5 has anti-inflammatory, anti-apoptotic and choleretic functions. Mice with targeted deletion of TGR5 are protected from the development of cholesterol gallstones. Administration of specific TGR5 agonists lowers serum and liver triglyceride levels thereby reducing liver steatosis. Furthermore, activation of TGR5 promotes intestinal glucagon-like peptide-1 (GLP-1) release, thereby modulating glucose homeostasis and energy expenditure in brown adipose tissue and skeletal muscle. Additionally, TGR5 exerts anti-inflammatory actions resulting in decreased liver injury in animal models of sepsis. These beneficial effects make TGR5 an attractive therapeutic target for metabolic diseases, such as diabetes, obesity, atherosclerosis and steatohepatitis.
Collapse
|
1261
|
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489:242-9. [DOI: 10.1038/nature11552] [Citation(s) in RCA: 3051] [Impact Index Per Article: 234.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
1262
|
Düfer M, Hörth K, Krippeit-Drews P, Drews G. The significance of the nuclear farnesoid X receptor (FXR) in β cell function. Islets 2012; 4:333-8. [PMID: 23073079 PMCID: PMC3524139 DOI: 10.4161/isl.22383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bile acids (BAs) are important signaling molecules that are involved in the regulation of their own metabolism, lipid metabolism, energy expenditure and glucose homeostasis. The nuclear farnesoid X receptor (FXR) and the G-protein-coupled TGR-5 are the most prominent BA receptors. FXR is highly expressed in liver and activation of liver FXR profoundly affects glucose homeostasis. Strikingly, the effect of FXR activation on glucose metabolism seems to depend on the nutritional status of the organism, i.e., slimness or obesity. Recently, it became evident that FXR is present in pancreatic β cells and that activation of β cell FXR contributes to the regulation of glucose homeostasis. Interestingly, FXR activation increases glucose-induced insulin secretion by non-genomic effects on stimulus-secretion coupling. The first chapter of this review shortly introduces the role of liver FXR in glucose metabolism, the second part focuses on the impact of FXR in lean and obese animals, and the third chapter highlights the significance of FXR in β cells.
Collapse
Affiliation(s)
- Martina Düfer
- Institute of Pharmacy; Department of Pharmacology; University of Tübingen; Tübingen, Germany
- Institute of Pharmaceutical and Medical Chemistry; Department of Pharmacology; University of Münster; Münster, Germany
| | - Katrin Hörth
- Institute of Pharmacy; Department of Pharmacology; University of Tübingen; Tübingen, Germany
| | - Peter Krippeit-Drews
- Institute of Pharmacy; Department of Pharmacology; University of Tübingen; Tübingen, Germany
| | - Gisela Drews
- Institute of Pharmacy; Department of Pharmacology; University of Tübingen; Tübingen, Germany
- Correspondence to: Gisela Drews,
| |
Collapse
|
1263
|
Abstract
Non-alcoholic steatohepatitis (NASH) has a prevalence of 1% in Western countries. Its causes as well as its medical treatment are, to date, still debated. Recently, studies of agents suggested to have antiapoptotic, insulin-sensitizing or anti-inflammatory effects in patients with NASH have been conducted, one of which is ursodeoxycholic acid (UDCA), a tertiary bile acid. Between 1994 and 2008, four prospective randomized, double-blind, placebo-controlled studies of the treatment of NASH with UDCA were conducted. The first study, by Lindor et al., compared the impact of 13-15 mg/kg/day of UDCA to a placebo. The second study by Dufour et al. had an additional third arm that administered combination therapy with UDCA and vitamin E. The third and fourth studies by Leuschner et al. and by Ratziu et al. evaluated high doses of UDCA at 25-35 mg/kg/day, and used liver biopsies and serum liver enzyme levels to evaluate the impact of UDCA. With the exception of Ratziu et al.'s study, which was lacking a second liver biopsy, none of these studies showed any significant differences in the treatment of NASH with UDCA compared with a placebo. However, Dufour et al. did observe a significant improvement of NASH with the combination (UDCA/VitE) vs placebo therapy, whereas UDCA monotherapy was not effective in the treatment of NASH. Nevertheless, the effects of other bile acids and combination therapies need to be explored.
Collapse
Affiliation(s)
- Fabia Liechti
- University Clinic for Visceral Surgery and Medicine, Inselspital, University of Berne, 3010 Bern Switzerland
| | | |
Collapse
|
1264
|
Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF, Henry H, Schoonjans K, Williams RW, Auwerx J. Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 2012; 150:1287-99. [PMID: 22939713 DOI: 10.1016/j.cell.2012.08.012] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/06/2012] [Accepted: 08/03/2012] [Indexed: 01/22/2023]
Abstract
Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.
Collapse
Affiliation(s)
- Pénélope A Andreux
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
1265
|
Watanabe M, Morimoto K, Houten SM, Kaneko-Iwasaki N, Sugizaki T, Horai Y, Mataki C, Sato H, Murahashi K, Arita E, Schoonjans K, Suzuki T, Itoh H, Auwerx J. Bile acid binding resin improves metabolic control through the induction of energy expenditure. PLoS One 2012; 7:e38286. [PMID: 22952571 PMCID: PMC3430641 DOI: 10.1371/journal.pone.0038286] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 05/03/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Besides well-established roles of bile acids (BA) in dietary lipid absorption and cholesterol homeostasis, it has recently become clear that BA is also a biological signaling molecule. We have shown that strategies aimed at activating TGR5 by increasing the BA pool size with BA administration may constitute a significant therapeutic advance to combat the metabolic syndrome and suggest that such strategies are worth testing in a clinical setting. Bile acid binding resin (BABR) is known not only to reduce serum cholesterol levels but also to improve glucose tolerance and insulin resistance in animal models and humans. However, the mechanisms by which BABR affects glucose homeostasis have not been established. We investigated how BABR affects glycemic control in diet-induced obesity models. METHODS AND FINDINGS We evaluated the metabolic effect of BABR by administrating colestimide to animal models for the metabolic syndrome. Administration of BABR increased energy expenditure, translating into significant weight reduction and insulin sensitization. The metabolic effects of BABR coincide with activation of cholesterol and BA synthesis in liver and thermogenesis in brown adipose tissue. Interestingly, these effects of BABR occur despite normal food intake and triglyceride absorption. Administration of BABR and BA had similar effects on BA composition and thermogenesis, suggesting that they both are mediated via TGR5 activation. CONCLUSION Our data hence suggest that BABR could be useful for the management of the impaired glucose tolerance of the metabolic syndrome, since they not only lower cholesterol levels, but also reduce obesity and improve insulin resistance.
Collapse
Affiliation(s)
- Mitsuhiro Watanabe
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa-shi, Kanagawa, Japan
| | - Kohkichi Morimoto
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Sander M. Houten
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Nao Kaneko-Iwasaki
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Taichi Sugizaki
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yasushi Horai
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Chikage Mataki
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hiroyuki Sato
- Department of Bioscience, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Karin Murahashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Eri Arita
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Johan Auwerx
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
1266
|
Watanabe M, Morimoto K, Houten SM, Kaneko-Iwasaki N, Sugizaki T, Horai Y, Mataki C, Sato H, Murahashi K, Arita E, Schoonjans K, Suzuki T, Itoh H, Auwerx J. Bile acid binding resin improves metabolic control through the induction of energy expenditure. PLoS One 2012. [PMID: 22952571 DOI: 10.1371/journal.pone.0038286pone-d-11-16446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Besides well-established roles of bile acids (BA) in dietary lipid absorption and cholesterol homeostasis, it has recently become clear that BA is also a biological signaling molecule. We have shown that strategies aimed at activating TGR5 by increasing the BA pool size with BA administration may constitute a significant therapeutic advance to combat the metabolic syndrome and suggest that such strategies are worth testing in a clinical setting. Bile acid binding resin (BABR) is known not only to reduce serum cholesterol levels but also to improve glucose tolerance and insulin resistance in animal models and humans. However, the mechanisms by which BABR affects glucose homeostasis have not been established. We investigated how BABR affects glycemic control in diet-induced obesity models. METHODS AND FINDINGS We evaluated the metabolic effect of BABR by administrating colestimide to animal models for the metabolic syndrome. Administration of BABR increased energy expenditure, translating into significant weight reduction and insulin sensitization. The metabolic effects of BABR coincide with activation of cholesterol and BA synthesis in liver and thermogenesis in brown adipose tissue. Interestingly, these effects of BABR occur despite normal food intake and triglyceride absorption. Administration of BABR and BA had similar effects on BA composition and thermogenesis, suggesting that they both are mediated via TGR5 activation. CONCLUSION Our data hence suggest that BABR could be useful for the management of the impaired glucose tolerance of the metabolic syndrome, since they not only lower cholesterol levels, but also reduce obesity and improve insulin resistance.
Collapse
Affiliation(s)
- Mitsuhiro Watanabe
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1267
|
Fu S, Fan J, Blanco J, Gimenez-Cassina A, Danial NN, Watkins SM, Hotamisligil GS. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting. PLoS Genet 2012; 8:e1002902. [PMID: 22927828 PMCID: PMC3426552 DOI: 10.1371/journal.pgen.1002902] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/02/2012] [Indexed: 01/12/2023] Open
Abstract
Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)–associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity. Chronic diseases including obesity and associated metabolic abnormalities have become the greatest threat to human health worldwide. How metabolic organs and organelles adapt to nutritional fluctuations, or fail to do so, remains incompletely understood. To explore these issues, we developed a new platform to explore translational responses in the liver, a critical organ for metabolic homeostasis. In this translatomic platform, we integrated polysome profiling and global analysis of polysome-associated mRNAs to systematically quantify protein synthesis on each transcript in obesity and during fasting. Our analysis demonstrated for the first time that protein synthesis is progressively suppressed in the obese liver and that the overall translatome profile of obese liver markedly resembles that of fasting lean mice, particularly in mitochondrial function and bile metabolism. We also examined the physiological impact of some of these alterations and concluded that aberrant bile acid metabolism in the obese liver represents a novel mechanism contributing to hyperglycemia and continuous weight gain. Together, our work reveals abnormal translational regulation as a novel aspect of obesity that could impact future directions in metabolic disease treatment, and we believe translatome profiling represents a new approach to unravel complex mechanisms regulating cellular function and disease pathology.
Collapse
Affiliation(s)
- Suneng Fu
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
1268
|
Stefater MA, Wilson-Pérez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev 2012; 33:595-622. [PMID: 22550271 PMCID: PMC3410227 DOI: 10.1210/er.2011-1044] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite considerable scientific progress on the biological systems that regulate energy balance, we have made precious little headway in providing new treatments to curb the obesity epidemic. Diet and exercise are the most popular treatment options for obesity, but rarely are they sufficient to produce long-term weight loss. Bariatric surgery, on the other hand, results in dramatic, sustained weight loss and for this reason has gained increasing popularity as a treatment modality for obesity. At least some surgical approaches also reduce obesity-related comorbidities including type 2 diabetes and hyperlipidemia. This success puts a premium on understanding how these surgeries exert their effects. This review focuses on the growing human and animal model literature addressing the underlying mechanisms. We compare three common procedures: Roux-en-Y Gastric Bypass (RYGB), vertical sleeve gastrectomy (VSG), and adjustable gastric banding (AGB). Although many would group together VSG and AGB as restrictive procedures of the stomach, VSG is more like RYGB than AGB in its effects on a host of endpoints including intake, food choice, glucose regulation, lipids and gut hormone secretion. Our strong belief is that to advance our understanding of these procedures, it is necessary to group bariatric procedures not on the basis of surgical similarity but rather on how they affect key physiological variables. This will allow for greater mechanistic insight into how bariatric surgery works, making it possible to help patients better choose the best possible procedure and to develop new therapeutic strategies that can help a larger portion of the obese population.
Collapse
Affiliation(s)
- Margaret A Stefater
- Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
1269
|
Wang P, Yan Z, Zhong J, Chen J, Ni Y, Li L, Ma L, Zhao Z, Liu D, Zhu Z. Transient receptor potential vanilloid 1 activation enhances gut glucagon-like peptide-1 secretion and improves glucose homeostasis. Diabetes 2012; 61:2155-65. [PMID: 22664955 PMCID: PMC3402317 DOI: 10.2337/db11-1503] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is rapidly prevailing as a serious global health problem. Current treatments for T2DM may cause side effects, thus highlighting the need for newer and safer therapies. We tested the hypothesis that dietary capsaicin regulates glucose homeostasis through the activation of transient receptor potential vanilloid 1 (TRPV1)-mediated glucagon-like peptide-1 (GLP-1) secretion in the intestinal cells and tissues. Wild-type (WT) and TRPV1 knockout (TRPV1(-/-)) mice were fed dietary capsaicin for 24 weeks. TRPV1 was localized in secretin tumor cell-1 (STC-1) cells and ileum. Capsaicin stimulated GLP-1 secretion from STC-1 cells in a calcium-dependent manner through TRPV1 activation. Acute capsaicin administration by gastric gavage increased GLP-1 and insulin secretion in vivo in WT but not in TRPV1(-/-) mice. Furthermore, chronic dietary capsaicin not only improved glucose tolerance and increased insulin levels but also lowered daily blood glucose profiles and increased plasma GLP-1 levels in WT mice. However, this effect was absent in TRPV1(-/-) mice. In db/db mice, TRPV1 activation by dietary capsaicin ameliorated abnormal glucose homeostasis and increased GLP-1 levels in the plasma and ileum. The present findings suggest that TRPV1 activation-stimulated GLP-1 secretion could be a promising approach for the intervention of diabetes.
Collapse
|
1270
|
Zema MJ. Colesevelam hydrochloride: evidence for its use in the treatment of hypercholesterolemia and type 2 diabetes mellitus with insights into mechanism of action. CORE EVIDENCE 2012; 7:61-75. [PMID: 22936894 PMCID: PMC3426253 DOI: 10.2147/ce.s26725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Colesevelam hydrochloride is a molecularly engineered, second-generation bile acid sequestrant demonstrating enhanced specificity for bile acids which has been approved for use as adjunctive therapy to diet and exercise as monotherapy or in combination with a β-hydroxymethylglutaryl-coenzyme A reductase inhibitor for the reduction of elevated low-density lipoprotein cholesterol in patients with primary hypercholesterolemia. It is also the only lipid-lowering agent currently available in the United States which has been approved for use as adjunctive therapy in patients with type 2 diabetes mellitus whose glycemia remains inadequately controlled on therapy with metformin, sulfonylurea, or insulin. With the recent emphasis upon drug safety by the Food and Drug Administration and various consumer agencies, it is fitting that the role of nonsystemic lipid-lowering therapies such as bile acid sequestrants – with nearly 90 years of in-class, clinically safe experience – should be reexamined. This paper presents information on the major pharmacologic effects of colesevelam, including a discussion of recent data derived from both in vitro and in vivo rodent and human studies, which shed light on the putative mechanisms involved.
Collapse
|
1271
|
Baptissart M, Vega A, Maqdasy S, Caira F, Baron S, Lobaccaro JMA, Volle DH. Bile acids: from digestion to cancers. Biochimie 2012; 95:504-17. [PMID: 22766017 DOI: 10.1016/j.biochi.2012.06.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/21/2012] [Indexed: 02/07/2023]
Abstract
Bile acids (BAs) are cholesterol metabolites that have been extensively studied these last decades. BAs have been classified in two groups. Primary BAs are synthesized in liver, when secondary BAs are produced by intestinal bacteria. Recently, next to their ancestral roles in digestion and fat solubilization, BAs have been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor FXRα or of the G-protein-coupled receptor TGR5. These two receptors have selective affinity to different types of BAs and show different expression patterns, leading to different described roles of BAs. It has been suggested for long that BAs could be molecules linked to tumor processes. Indeed, as many other molecules, regarding analyzed tissues, BAs could have either protective or pro-carcinogen activities. However, the molecular mechanisms responsible for these effects have not been characterized yet. It involves either chemical properties or their capacities to activate their specific receptors FXRα or TGR5. This review highlights and discusses the potential links between BAs and cancer diseases and the perspectives of using BAs as potential therapeutic targets in several pathologies.
Collapse
Affiliation(s)
- Marine Baptissart
- INSERM U 1103, Génétique Reproduction et Développement, Aubiere, France
| | | | | | | | | | | | | |
Collapse
|
1272
|
Hansen HS, Rosenkilde MM, Holst JJ, Schwartz TW. GPR119 as a fat sensor. Trends Pharmacol Sci 2012; 33:374-81. [DOI: 10.1016/j.tips.2012.03.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/02/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
|
1273
|
Ahlkvist L, Vikman J, Pacini G, Ahrén B. Synergism by individual macronutrients explains the marked early GLP-1 and islet hormone responses to mixed meal challenge in mice. ACTA ACUST UNITED AC 2012; 178:29-35. [PMID: 22750278 DOI: 10.1016/j.regpep.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/01/2012] [Accepted: 06/20/2012] [Indexed: 01/22/2023]
Abstract
Apart from glucose, proteins and lipids also stimulate incretin and islet hormone secretion. However, the glucoregulatory effect of macronutrients in combination is poorly understood. We therefore developed an oral mixed meal model in mice to 1) explore the glucagon-like peptide-1 (GLP-1) and islet hormone responses to mixed meal versus isocaloric glucose, and 2) characterize the relative contribution of individual macronutrients to these responses. Anesthetized C57BL/6J female mice were orally gavaged with 1) a mixed meal (0.285 kcal; glucose, whey protein and peanut oil; 60/20/20% kcal) versus an isocaloric glucose load (0.285 kcal), and 2) a mixed meal (0.285 kcal) versus glucose, whey protein or peanut oil administered individually in their mixed meal caloric quantity, i.e., 0.171, 0.055 and 0.055 kcal, respectively. Plasma was analyzed for glucose, insulin and intact GLP-1 before and during oral challenges. Plasma glucose was lower after mixed meal versus after isocaloric glucose ingestion. In spite of this, the peak insulin response (P=0.02), the peak intact GLP-1 levels (P=0.006) and the estimated β-cell function (P=0.005) were higher. Furthermore, the peak insulin (P=0.004) and intact GLP-1 (P=0.006) levels were higher after mixed meal ingestion than the sum of responses to individual macronutrients. Compared to glucose alone, we conclude that there is a marked early insulin response to mixed meal ingestion, which emanates from a synergistic, rather than an additive, effect of the individual macronutrients in the mixed meal and is in part likely caused by increased levels of GLP-1.
Collapse
Affiliation(s)
- L Ahlkvist
- Department of Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
1274
|
Cyphert HA, Ge X, Kohan AB, Salati LM, Zhang Y, Hillgartner FB. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem 2012; 287:25123-38. [PMID: 22661717 DOI: 10.1074/jbc.m112.375907] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that starvation or consumption of a high fat, low carbohydrate (HF-LC) ketogenic diet induces hepatic fibroblast growth factor 21 (FGF21) gene expression in part by activating the peroxisome proliferator-activated receptor-α (PPARα). Using primary hepatocyte cultures to screen for endogenous signals that mediate the nutritional regulation of FGF21 expression, we identified two sources of PPARα activators (i.e. nonesterified unsaturated fatty acids and chylomicron remnants) that induced FGF21 gene expression. In addition, we discovered that natural (i.e. bile acids) and synthetic (i.e. GW4064) activators of the farnesoid X receptor (FXR) increased FGF21 gene expression and secretion. The effects of bile acids were additive with the effects of nonesterified unsaturated fatty acids in regulating FGF21 expression. FXR activation of FGF21 gene transcription was mediated by an FXR/retinoid X receptor binding site in the 5'-flanking region of the FGF21 gene. FGF19, a gut hormone whose expression and secretion is induced by intestinal bile acids, also increased hepatic FGF21 secretion. Deletion of FXR in mice suppressed the ability of an HF-LC ketogenic diet to induce hepatic FGF21 gene expression. The results of this study identify FXR as a new signaling pathway activating FGF21 expression and provide evidence that FXR activators work in combination with PPARα activators to mediate the stimulatory effect of an HF-LC ketogenic diet on FGF21 expression. We propose that the enhanced enterohepatic flux of bile acids during HF-LC consumption leads to activation of hepatic FXR and FGF19 signaling activity and an increase in FGF21 gene expression and secretion.
Collapse
Affiliation(s)
- Holly A Cyphert
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
1275
|
Harach T, Pols TWH, Nomura M, Maida A, Watanabe M, Auwerx J, Schoonjans K. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep 2012; 2:430. [PMID: 22666533 PMCID: PMC3362799 DOI: 10.1038/srep00430] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022] Open
Abstract
Anionic exchange resins are bona fide cholesterol-lowering agents with glycemia lowering actions in diabetic patients. Potentiation of intestinal GLP-1 secretion has been proposed to contribute to the glycemia lowering effect of these non-systemic drugs. Here, we show that resin exposure enhances GLP-1 secretion and improves glycemic control in diet-induced animal models of “diabesity”, effects which are critically dependent on TGR5, a G protein-coupled receptor that is activated by bile acids. We identified the colon as a major source of GLP-1 secretion after resin treatment. Furthermore, we demonstrate that the boost in GLP-1 release by resins is due to both enhanced TGR5-dependent production of the precursor transcript of GLP-1 as well as to the local enrichment of TGR5 agonists in the colon. Thus, TGR5 represents an essential component in the pathway mediating the enhanced GLP-1 release in response to anionic exchange resins.
Collapse
Affiliation(s)
- Taoufiq Harach
- Laboratory of Integrative and Systems Physiology-LISP, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
1276
|
Porez G, Prawitt J, Gross B, Staels B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 2012; 53:1723-37. [PMID: 22550135 DOI: 10.1194/jlr.r024794] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and atherosclerosis. When dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose intolerance, defined as the metabolic syndrome (MS), individuals present an elevated risk to develop type 2 diabetes (T2D) as well as CVD. Because the MS epidemic represents a growing public health problem worldwide, the development of therapies remains a major challenge. Alterations of bile acid pool regulation in T2D have revealed a link between bile acid and metabolic homeostasis. The bile acid receptors farnesoid X receptor (FXR) and TGR5 both regulate lipid, glucose, and energy metabolism, rendering them potential pharmacological targets for MS therapy. This review discusses the mechanisms of metabolic regulation by FXR and TGR5 and the utility relevance of natural and synthetic modulators of FXR and TGR5 activity, including bile acid sequestrants, in the treatment of the MS.
Collapse
|
1277
|
Shang Q, Liu MK, Saumoy M, Holst JJ, Salen G, Xu G. The combination of colesevelam with sitagliptin enhances glycemic control in diabetic ZDF rat model. Am J Physiol Gastrointest Liver Physiol 2012; 302:G815-23. [PMID: 22281473 DOI: 10.1152/ajpgi.00295.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acid sequestrants have been shown to reduce glucose levels in patients with type 2 diabetes. We previously reported that the bile acid sequestrant colesevelam HCl (Welchol) (COL) induced the release of glucagon-like peptide (GLP)-1 and improved glycemic control in insulin-resistant rats. In the present study, we tested whether adding sitagliptin (Januvia) (SIT), which prolongs bioactive GLP-1 half life, to COL would further enhance glycemic control. Male Zucker diabetic fatty (ZDF) rats were assigned to four groups: diabetic model without treatment (the model), the model treated with 2% COL or 0.4% (120 mg/day) SIT alone, or with the combination (COL+SIT). After 4 wk of treatment, the glucose area under the curve (AUC) was reduced more in the COL+SIT than the COL although both groups showed decreased glucose AUC with increased AUC of bioactive GLP-1 (GLP-1A) compared with the model group. The above changes were not observed after 8 wk. Increasing the SIT dose by 50% (180 mg SIT/day) in the diet reduced the glucose AUC in the COL+SIT group even after 8 wk but still not in the SIT alone group compared with the model. It was noteworthy that, after 8 wk, insulin levels in the SIT group declined to levels similar to the model. Histological examination of the pancreatic β-cell islets showed that islet sizes were larger, proliferation enhanced, and cell apoptosis reduced in the COL+SIT but not the SIT alone group compared with the model. We hypothesize that the combination of COL with SIT extends the half life of COL-induced GLP-1A and benefits preservation of the islets that delay the development of diabetes and improve glycemic control. This study suggests that the combined therapy (COL+SIT) is more effective than either drug alone for reducing glucose levels in diabetes.
Collapse
Affiliation(s)
- Quan Shang
- Department of Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
1278
|
Pellicciari R, Gioiello A, Sabbatini P, Venturoni F, Nuti R, Colliva C, Rizzo G, Adorini L, Pruzanski M, Roda A, Macchiarulo A. Avicholic Acid: A Lead Compound from Birds on the Route to Potent TGR5 Modulators. ACS Med Chem Lett 2012; 3:273-7. [PMID: 24900463 DOI: 10.1021/ml200256d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/06/2012] [Indexed: 02/08/2023] Open
Abstract
Grounding on our former 3D QSAR studies, a knowledge-based screen of natural bile acids from diverse animal species has led to the identification of avicholic acid as a selective but weak TGR5 agonist. Chemical modifications of this compound resulted in the disclosure of 6α-ethyl-16-epi-avicholic acid that shows enhanced potency at TGR5 and FXR receptors. The synthesis, biological appraisals, and structure-activity relationships of this series of compounds are herein described. Moreover, a thorough physicochemical characterization of 6α-ethyl-16-epi-avicholic acid as compared to naturally occurring bile acids is reported and discussed.
Collapse
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Antimo Gioiello
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Paola Sabbatini
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Francesco Venturoni
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Roberto Nuti
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Carolina Colliva
- Dipartimento di Scienze Farmaceutiche, Alma Mater
Studiorum, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giovanni Rizzo
- Intercept Pharmaceuticals, New York, New York 10013, United States
| | - Luciano Adorini
- Intercept Pharmaceuticals, New York, New York 10013, United States
| | - Mark Pruzanski
- Intercept Pharmaceuticals, New York, New York 10013, United States
| | - Aldo Roda
- Dipartimento di Scienze Farmaceutiche, Alma Mater
Studiorum, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
1279
|
The expanding universe of bile acid physiology: delving into the mysteries of dark (green) matter. J Surg Res 2012; 182:207-9. [PMID: 22502870 DOI: 10.1016/j.jss.2012.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 03/12/2012] [Accepted: 03/21/2012] [Indexed: 12/31/2022]
|
1280
|
Reimann F, Tolhurst G, Gribble FM. G-protein-coupled receptors in intestinal chemosensation. Cell Metab 2012; 15:421-31. [PMID: 22482725 DOI: 10.1016/j.cmet.2011.12.019] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/21/2011] [Accepted: 12/15/2011] [Indexed: 12/25/2022]
Abstract
Food intake is detected by the chemical senses of taste and smell and subsequently by chemosensory cells in the gastrointestinal tract that link the composition of ingested foods to feedback circuits controlling gut motility/secretion, appetite, and peripheral nutrient disposal. G-protein-coupled receptors responsive to a range of nutrients and other food components have been identified, and many are localized to intestinal chemosensory cells, eliciting hormonal and neuronal signaling to the brain and periphery. This review examines the role of G-protein-coupled receptors as signaling molecules in the gut, with a particular focus on pathways relevant to appetite and glucose homeostasis.
Collapse
Affiliation(s)
- Frank Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | | | | |
Collapse
|
1281
|
Holst JJ, McGill MA. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes mellitus: focus on bile acid sequestrants. Clin Drug Investig 2012; 32:1-14. [PMID: 21958333 DOI: 10.2165/11595370-000000000-00000] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes mellitus is associated with a progressive decline in insulin-producing pancreatic β-cells, an increase in hepatic glucose production, and a decrease in insulin sensitivity. The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) stimulate glucose-induced insulin secretion; however, in patients with type 2 diabetes, the incretin system is impaired by loss of the insulinotropic effects of GIP as well as a possible reduction in secretion of GLP-1. Agents that modify GLP-1 secretion may have a role in the management of type 2 diabetes. The currently available incretin-based therapies, GLP-1 receptor agonists (incretin mimetics) and dipeptidyl peptidase-4 (DPP-4) inhibitors (CD26 antigen inhibitors) [incretin enhancers], are safe and effective in the treatment of type 2 diabetes. However, they may be unable to halt the progression of type 2 diabetes, perhaps because they do not increase secretion of endogenous GLP-1. Therapies that directly target intestinal L cells to stimulate secretion of endogenous GLP-1 could possibly prove more effective than treatment with GLP-1 receptor agonists and DPP-4 inhibitors. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes include G-protein-coupled receptor (GPCR) agonists, α-glucosidase inhibitors, peroxisome proliferator-activated receptor (PPAR) agonists, metformin, bile acid mimetics and bile acid sequestrants. Both the GPCR agonist AR231453 and the novel bile acid mimetic INT-777 have been shown to stimulate GLP-1 release, leading to increased insulin secretion and improved glucose tolerance in mice. Similarly, a study in insulin-resistant rats demonstrated that the bile acid sequestrant colesevelam increased GLP-1 secretion and improved glucose levels and insulin resistance. In addition, the bile acid sequestrant colestimide (colestilan) has been shown to increase GLP-1 secretion and decrease glucose levels in patients with type 2 diabetes; these results suggest that the glucose-lowering effects of bile acid sequestrants may be partly due to their ability to increase endogenous GLP-1 levels. Evidence suggests that GPCR agonists, α-glucosidase inhibitors, PPAR agonists, metformin, bile acid mimetics and bile acid sequestrants may represent a new approach to management of type 2 diabetes via modification of endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
| | | |
Collapse
|
1282
|
Rhee NA, Vilsbøll T, Knop FK. Current evidence for a role of GLP-1 in Roux-en-Y gastric bypass-induced remission of type 2 diabetes. Diabetes Obes Metab 2012; 14:291-8. [PMID: 21951387 DOI: 10.1111/j.1463-1326.2011.01505.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Weight-reducing surgical procedures such as Roux-en-Y gastric bypass (RYGB) have proven efficient as means of decreasing excess body weight. Furthermore, some studies report that up to 80% of patients with type 2 diabetes mellitus (T2DM) undergoing RYGB experience complete remission of their T2DM. Interestingly, the majority of remissions occur almost immediately following the operation and long before significant weight loss has taken place. Following RYGB, dramatic increases in postprandial plasma concentrations of the incretin hormone glucagon-like peptide-1 (GLP-1) have been recorded, and the known antidiabetic effects of GLP-1 are thought to be key mediators in RYGB-induced remission of T2DM. However, the published studies on the impact of RYGB on GLP-1 secretion are few, small and often not controlled properly. Furthermore, mechanistic studies delineating the role of endogenous GLP-1 secretion in RYGB-induced remission of T2DM are lacking. This article critically evaluates the current evidence for a role of GLP-1 in RYGB-induced remission of T2DM.
Collapse
Affiliation(s)
- N A Rhee
- Diabetes Research Division, Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, Hellerup, Denmark
| | | | | |
Collapse
|
1283
|
Abstract
The migrating motor complex (MMC) is a cyclic, recurring motility pattern that occurs in the stomach and small bowel during fasting; it is interrupted by feeding. The MMC is present in the gastrointestinal tract of many species, including humans. The complex can be subdivided into four phases, of which phase III is the most active, with a burst of contractions originating from the antrum or duodenum and migrating distally. Control of the MMC is complex. Phase III of the MMC with an antral origin can be induced in humans through intravenous administration of motilin, erythromycin or ghrelin, whereas administration of serotonin or somatostatin induces phase III activity with duodenal origin. The role of the vagus nerve in control of the MMC seems to be restricted to the stomach, as vagotomy abolishes the motor activity in the stomach, but leaves the periodic activity in the small bowel intact. The physiological role of the MMC is incompletely understood, but its absence has been associated with gastroparesis, intestinal pseudo-obstruction and small intestinal bacterial overgrowth. Measuring the motility of the gastrointestinal tract can be important for the diagnosis of gastrointestinal disorders. In this Review we summarize current knowledge of the MMC, especially its role in health and disease.
Collapse
|
1284
|
|
1285
|
Lee HK, Lee KH, Cho ES. Bile Acid Inhibition of N-type Calcium Channel Currents from Sympathetic Ganglion Neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:25-30. [PMID: 22416216 PMCID: PMC3298822 DOI: 10.4196/kjpp.2012.16.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/30/2011] [Accepted: 01/08/2012] [Indexed: 12/17/2022]
Abstract
Under some pathological conditions as bile flow obstruction or liver diseases with the enterohepatic circulation being disrupted, regurgitation of bile acids into the systemic circulation occurs and the plasma level of bile acids increases. Bile acids in circulation may affect the nervous system. We examined this possibility by studying the effects of bile acids on gating of neuronal (N)-type Ca2+ channel that is essential for neurotransmitter release at synapses of the peripheral and central nervous system. N-type Ca2+ channel currents were recorded from bullfrog sympathetic neuron under a cell-attached mode using 100 mM Ba2+ as a charge carrier. Cholic acid (CA, 10-6 M) that is relatively hydrophilic thus less cytotoxic was included in the pipette solution. CA suppressed the open probability of N-type Ca2+ channel, which appeared to be due to an increase in null (no activity) sweeps. For example, the proportion of null sweep in the presence of CA was ~40% at +40 mV as compared with ~8% in the control recorded without CA. Other single channel properties including slope conductance, single channel current amplitude, open and shut times were not significantly affected by CA being present. The results suggest that CA could modulate N-type Ca2+ channel gating at a concentration as low as 10-6 M. Bile acids have been shown to activate nonselective cation conductance and depolarize the cell membrane. Under pathological conditions with increased circulating bile acids, CA suppression of N-type Ca2+ channel function may be beneficial against overexcitation of the synapses.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | |
Collapse
|
1286
|
Abstract
PURPOSE OF REVIEW Bile acid sequestrants (BAS) have been used for more than 50 years in the treatment of hypercholesterolemia. The last decade, bile acids are emerging as integrated regulators of metabolism via induction of various signal transduction pathways. Consequently, BAS treatment may exert unexpected side-effects. We discuss a selection of recently published studies that evaluated BAS in several metabolic diseases. RECENT FINDINGS Recently, an increasing body of evidence has shown that BAS in addition to ameliorating hypercholesterolemia are also effective in improving glycemic control in patients with type 2 diabetes, although the mechanism is not completely understood. Furthermore, some reports suggested using these compounds to modulate energy expenditure. Many of these effects have been related to the local effects of BAS in the intestine by directly binding bile acids in the intestine or indirectly by interfering with signaling processes. SUMMARY A substantial effort is being made by researchers to fully define the mechanism by which BAS improve glycemic control in type 2 diabetic patients. A new challenge will be to confirm in clinical trials the recent discoveries coming from animal experiments suggesting a role for bile acids in energy metabolism.
Collapse
Affiliation(s)
- Carolien Out
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
1287
|
Sangle GV, Lauffer LM, Grieco A, Trivedi S, Iakoubov R, Brubaker PL. Novel biological action of the dipeptidylpeptidase-IV inhibitor, sitagliptin, as a glucagon-like peptide-1 secretagogue. Endocrinology 2012; 153:564-73. [PMID: 22186413 DOI: 10.1210/en.2011-1732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted into the circulation by the intestinal L cell. The dipeptidylpeptidase-IV (DPP-IV) inhibitor, sitagliptin, prevents GLP-1 degradation and is used in the clinic to treat patients with type 2 diabetes mellitus, leading to improved glycated hemoglobin levels. When the effect of sitagliptin on GLP-1 levels was examined in neonatal streptozotocin rats, a model of type 2 diabetes mellitus, a 4.9 ± 0.9-fold increase in basal and 3.6 ± 0.4-fold increase in oral glucose-stimulated plasma levels of active GLP-1 was observed (P < 0.001), in association with a 1.5 ± 0.1-fold increase in the total number of intestinal L cells (P < 0.01). The direct effects of sitagliptin on GLP-1 secretion and L cell signaling were therefore examined in murine GLUTag (mGLUTag) and human hNCI-H716 intestinal L cells in vitro. Sitagliptin (0.1-2 μM) increased total GLP-1 secretion by mGLUTag and hNCI-H716 cells (P < 0.01-0.001). However, MK0626 (1-50 μM), a structurally unrelated inhibitor of DPP-IV, did not affect GLP-1 secretion in either model. Treatment of mGLUTag cells with the GLP-1 receptor agonist, exendin-4, did not modulate GLP-1 release, indicating the absence of feedback effects of GLP-1 on the L cell. Sitagliptin increased cAMP levels (P < 0.01) and ERK1/2 phosphorylation (P < 0.05) in both mGLUTag and hNCI-H716 cells but did not alter either intracellular calcium or phospho-Akt levels. Pretreatment of mGLUTag cells with protein kinase A (H89 and protein kinase inhibitor) or MAPK kinase-ERK1/2 (PD98059 and U0126) inhibitors prevented sitagliptin-induced GLP-1 secretion (P < 0.05-0.01). These studies demonstrate, for the first time, that sitagliptin exerts direct, DPP-IV-independent effects on intestinal L cells, activating cAMP and ERK1/2 signaling and stimulating total GLP-1 secretion.
Collapse
Affiliation(s)
- Ganesh V Sangle
- Department of Physiology, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8 Canada
| | | | | | | | | | | |
Collapse
|
1288
|
Kootte RS, Vrieze A, Holleman F, Dallinga-Thie GM, Zoetendal EG, de Vos WM, Groen AK, Hoekstra JBL, Stroes ES, Nieuwdorp M. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 2012; 14:112-20. [PMID: 21812894 DOI: 10.1111/j.1463-1326.2011.01483.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are attributed to a combination of genetic susceptibility and lifestyle factors. Their increasing prevalence necessitates further studies on modifiable causative factors and novel treatment options. The gut microbiota has emerged as an important contributor to the obesity--and T2DM--epidemic proposed to act by increasing energy harvest from the diet. Although obesity is associated with substantial changes in the composition and metabolic function of the gut microbiota, the pathophysiological processes remain only partly understood. In this review we will describe the development of the adult human microbiome and discuss how the composition of the gut microbiota changes in response to modulating factors. The influence of short-chain fatty acids, bile acids, prebiotics, probiotics, antibiotics and microbial transplantation is discussed from studies using animal and human models. Ultimately, we aim to translate these findings into therapeutic pathways for obesity and T2DM in humans.
Collapse
Affiliation(s)
- R S Kootte
- Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1289
|
Neda T, Inukai K, Kurihara S, Ono H, Hosaka T, Nakamoto H, Katayama S, Awata T. Hypoglycemic effects of colestimide on type 2 diabetic patients with obesity. Endocr J 2012; 59:239-46. [PMID: 22230809 DOI: 10.1507/endocrj.ej11-0378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent studies have shown colestimide, a bile acid-binding resin, to also exert a glucose-lowering effect via amelioration of insulin resistance. To evaluate the effects of colestimide on glucose metabolism and to elucidate the underlying mechanism, we conducted a 6-month, open-label pilot study on 43 type 2 diabetic patients with obesity (BMI ≥ 25). The subjects were randomized to either treatment with colestimide 4g/day (T group, n=23) or continuation of their current therapy (C group, n=20). In the T group patients, mean HbA1c and fasting glucose improved markedly (from 7.71 ± 0.32% to 6.97 ± 0.20%; from 147.4 ± 7.3mg/dL to 127.0 ± 5.0mg/dL, respectively), while obesity-related parameters, i.e. body weight, waist circumference, and visceral fat and subcutaneous fat as determined by umbilical slice abdominal CT, showed no significant changes. Fractionation analyses of serum bile acids revealed significantly increased cholic acids (CA) and decreased chenodeoxycholic acids (CDCA) in the T group patients. However, no correlation was observed between these changes and ΔHbA1c. According to logistic regression analysis, baseline HbA1c was the only variable predicting the decrease of HbA1c (>0.5%) among sex, age, BMI, total cholesterol, ΔCA and ΔCDCA. The index of insulin resistance, i.e. HOMA-R, did not improve, and the index of β cell function, i.e. HOMA-β, actually increased significantly. These results suggests that, in obese patients with type 2 diabetes, the mechanism underlying improved glycemic control with colestimide treatment involves enhanced β cell activity rather than improved insulin resistance.
Collapse
Affiliation(s)
- Tamotsu Neda
- Department of Endocrinology and Diabetes, School of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1290
|
Hansen M, Sonne DP, Mikkelsen KH, Gluud LL, Vilsbøll T, Knop FK. Effect of bile acid sequestrants on glycaemic control: protocol for a systematic review with meta-analysis of randomised controlled trials. BMJ Open 2012; 2:bmjopen-2012-001803. [PMID: 23148345 PMCID: PMC3533035 DOI: 10.1136/bmjopen-2012-001803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION In addition to the lipid-lowering effect of bile acid sequestrants (BASs), they also lower blood glucose and, therefore, could be beneficial in the treatment of patients with type 2 diabetes mellitus (T2DM). Three oral BASs are approved by the US Food and Drug Administration (FDA) for the treatment of hypercholesterolaemia: colestipol, cholestyramine and colesevelam. The BAS colestimide/colestilan is used in Japan. Colesevelam was recently approved by the FDA for the treatment of T2DM. We plan to provide a systematic review with meta-analysis of the glucose-lowering effect of BASs with the aim to evaluate their potential as glucose-lowering agents in patients with T2DM. METHODS AND ANALYSIS In accordance with the preferred reporting items for systematic reviews and meta-analyses statement, a systematic review with meta-analysis of randomised clinical trials of BASs (vs placebo, oral antidiabetes drugs or insulin), reporting measures of glycaemic control in adult patients with T2DM, will be performed. Change in glycated haemoglobin constitutes the primary endpoint, and secondary endpoints include changes in fasting plasma glucose, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triglycerides, body weight and body mass index and adverse events. Electronic searches will be performed in The Cochrane Library, MEDLINE and EMBASE, along with manual searches in the reference lists of relevant papers. The analyses will be performed based on individual patient data and summarised data. The primary meta-analysis will be performed using random effects models owing to expected intertrial heterogeneity. Dichotomous data will be analysed using risk difference and continuous data using weighted mean differences, both with 95% CIs. ETHICS AND DISSEMINATION The study will evaluate the potential of BASs as glucose-lowering agents and possibly contribute to the clinical management of patients with T2DM. RESULTS The study will be disseminated by peer-review publication and conference presentation. PROTOCOL REGISTRATION PROSPERO CRD42012002552.
Collapse
Affiliation(s)
- Morten Hansen
- Diabetes Research Division, Department of Internal Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | | | | | | |
Collapse
|
1291
|
Venturoni F, Gioiello A, Sardella R, Natalini B, Pellicciari R. Continuous flow synthesis and scale-up of glycine- and taurine-conjugated bile salts. Org Biomol Chem 2012; 10:4109-15. [DOI: 10.1039/c2ob25528f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
1292
|
Jain AK, Stoll B, Burrin DG, Holst JJ, Moore DD. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am J Physiol Gastrointest Liver Physiol 2012; 302:G218-24. [PMID: 22094603 PMCID: PMC3341112 DOI: 10.1152/ajpgi.00280.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Total parenteral nutrition (TPN) is essential for patients with impaired gut function but leads to parenteral nutrition-associated liver disease (PNALD). TPN disrupts the normal enterohepatic circulation of bile acids, and we hypothesized that it would decrease intestinal expression of the newly described metabolic hormone fibroblast growth factor-19 (FGF19) and also glucagon-like peptides-1 and -2 (GLP-1 and GLP-2). We tested the effects of restoring bile acids by treating a neonatal piglet PNALD model with chenodeoxycholic acid (CDCA). Neonatal pigs received enteral feeding (EN), TPN, or TPN + CDCA for 14 days, and responses were assessed by serum markers, histology, and levels of key regulatory peptides. Cholestasis and steatosis were demonstrated in the TPN group relative to EN controls by elevated levels of serum total and direct bilirubin and also bile acids and liver triglyceride (TG) content. CDCA treatment improved direct bilirubin levels by almost fourfold compared with the TPN group and also normalized serum bile acids and liver TG. FGF19, GLP-1, and GLP-2 were decreased in plasma of the TPN group compared with the EN group but were all induced by CDCA treatment. Intestinal mucosal growth marked by weight and villus/crypt ratio was significantly reduced in the TPN group compared with the EN group, and CDCA treatment increased both parameters. These results suggest that decreased circulating FGF19 during TPN may contribute to PNALD. Moreover, we show that enteral CDCA not only resolves PNALD but acts as a potent intestinal trophic agent and secretagogue for GLP-2.
Collapse
Affiliation(s)
- Ajay Kumar Jain
- 1Section of Pediatric Gastroenterology, Hepatology, and Nutrition,
| | - Barbara Stoll
- 2USDA/ARS Children's Nutrition Research Center, Department of Pediatrics,
| | - Douglas G. Burrin
- 1Section of Pediatric Gastroenterology, Hepatology, and Nutrition, ,2USDA/ARS Children's Nutrition Research Center, Department of Pediatrics,
| | - Jens J. Holst
- 4Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David D. Moore
- 3Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
1293
|
Chen L, Yao X, Young A, McNulty J, Anderson D, Liu Y, Nystrom C, Croom D, Ross S, Collins J, Rajpal D, Hamlet K, Smith C, Gedulin B. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol Endocrinol Metab 2012; 302:E68-76. [PMID: 21934041 DOI: 10.1152/ajpendo.00323.2011] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/analysis
- Bile Acids and Salts/blood
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Dose-Response Relationship, Drug
- Feces/chemistry
- Gastrointestinal Agents/therapeutic use
- Gene Expression Regulation/drug effects
- Glucagon-Like Peptide 1/blood
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/therapeutic use
- Intestinal Absorption/drug effects
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Isoxazoles/administration & dosage
- Isoxazoles/therapeutic use
- Liver/drug effects
- Liver/metabolism
- Male
- Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors
- RNA, Messenger/metabolism
- Random Allocation
- Rats
- Rats, Zucker
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Symporters/antagonists & inhibitors
- Thiazepines/administration & dosage
- Thiazepines/therapeutic use
Collapse
Affiliation(s)
- Lihong Chen
- Department of Biology, Quantitative Science, Metabolic Drug Discovery, GlaxoSmithKline Inc., Five Moore Dr., Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1294
|
Andújar-Plata P, Pi-Sunyer X, Laferrère B. Metformin effects revisited. Diabetes Res Clin Pract 2012; 95:1-9. [PMID: 22000494 PMCID: PMC5209790 DOI: 10.1016/j.diabres.2011.09.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 01/22/2023]
Abstract
Metformin is a cornerstone in the treatment of type 2 diabetes. Although its mechanism of action is not well understood, there is new evidence about its possible role in cancer. A Pubmed search from 1990 to 2011 was done using the terms metformin, cancer, mechanism of action, diabetes treatment and prevention. We found more than one thousand articles and reviewed studies that had assessed the efficacy of metformin in treatment and prevention of type 2 diabetes and its mechanisms of actions, as well as articles on its antitumoral effects. We found that the United Kingdom Prospective Diabetes Study and the Diabetes Prevention Program have demonstrated the efficacy of metformin in terms of treatment and prevention of type 2 diabetes; metformin is safe, cost effective and remains the first line of diabetes therapy with diet and exercise. The mechanisms of action include a decrease of hepatic insulin resistance, change in bile acids metabolism, incretins release and decreased amyloid deposits. The AMP-activated protein kinase seems to be an important target for these effects. Epidemiological retrospective studies point out a possible association between metformin and decreased cancer risk, data supported by in vitro and animal studies. These data should trigger randomized controlled trials to prove or disprove this additional benefit of metformin.
Collapse
Affiliation(s)
- P Andújar-Plata
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
1295
|
Parker HE, Wallis K, le Roux CW, Wong KY, Reimann F, Gribble FM. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br J Pharmacol 2012; 165:414-23. [PMID: 21718300 PMCID: PMC3268195 DOI: 10.1111/j.1476-5381.2011.01561.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/31/2011] [Accepted: 06/02/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The glucagon-like peptides GLP-1 and GLP-2 are secreted from enteroendocrine L-cells following nutrient ingestion. Drugs that increase activity of the GLP-1 axis are highly successful therapies for type 2 diabetes, and boosting L-cell secretion is a potential strategy for future diabetes treatment. The aim of the present study was to further our understanding of the bile acid receptor GPBA (TGR5), an L-cell target currently under therapeutic exploration. EXPERIMENTAL APPROACH GLUTag cells and mixed primary murine intestinal cultures were exposed to bile acids and a specific agonist, GPBAR-A. Secretion was measured using hormone assays and intracellular calcium and cAMP responses were monitored using real-time imaging techniques. KEY RESULTS Bile acid-triggered GLP-1 secretion from GLUTag cells was GPBA-dependent, as demonstrated by its abolition following tgr5 siRNA transfection. Bile acids and GPBAR-A increased GLP-1 secretion from intestinal cultures, with evidence for synergy between the effects of glucose and GPBA activation. Elevation of cAMP was observed following GPBA activation in individual GLUTag cells. Direct calcium responses to GPBAR-A were small, but in the presence of the agonist, a subpopulation of cells that was previously poorly glucose-responsive exhibited robust glucose responses. In vivo, increased delivery of bile to more distal regions of the ileum augmented L-cell stimulation. CONCLUSIONS AND IMPLICATIONS GPBA signalling in L-cells involves rapid elevation of cAMP, and enhanced calcium and secretory responses to glucose. Modulation of this receptor therapeutically may be an attractive strategy to enhance GLP-1 secretion and achieve better glycaemic control in diabetic patients.
Collapse
Affiliation(s)
- HE Parker
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's HospitalCambridge, UK
| | - K Wallis
- Department of Metabolic Medicine, Imperial College LondonHammersmith Campus, London, UK
| | - CW le Roux
- Department of Metabolic Medicine, Imperial College LondonHammersmith Campus, London, UK
| | - KY Wong
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's HospitalCambridge, UK
| | - F Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's HospitalCambridge, UK
| | - FM Gribble
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's HospitalCambridge, UK
| |
Collapse
|
1296
|
Pols TWH, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, Gioiello A, Adorini L, Pellicciari R, Auwerx J, Schoonjans K. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 2011; 14:747-57. [PMID: 22152303 PMCID: PMC3627293 DOI: 10.1016/j.cmet.2011.11.006] [Citation(s) in RCA: 456] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/06/2011] [Accepted: 11/14/2011] [Indexed: 12/13/2022]
Abstract
The G protein-coupled receptor TGR5 has been identified as an important component of the bile acid signaling network, and its activation has been linked to enhanced energy expenditure and improved glycemic control. Here, we demonstrate that activation of TGR5 in macrophages by 6α-ethyl-23(S)-methylcholic acid (6-EMCA, INT-777), a semisynthetic BA, inhibits proinflammatory cytokine production, an effect mediated by TGR5-induced cAMP signaling and subsequent NF-κB inhibition. TGR5 activation attenuated atherosclerosis in Ldlr(-/-)Tgr5(+/+) mice but not in Ldlr(-/-)Tgr5(-/-) double-knockout mice. The inhibition of lesion formation was associated with decreased intraplaque inflammation and less plaque macrophage content. Furthermore, Ldlr(-/-) animals transplanted with Tgr5(-/-) bone marrow did not show an inhibition of atherosclerosis by INT-777, further establishing an important role of leukocytes in INT-777-mediated inhibition of vascular lesion formation. Taken together, these data attribute a significant immune modulating function to TGR5 activation in the prevention of atherosclerosis, an important facet of the metabolic syndrome.
Collapse
Affiliation(s)
- Thijs W H Pols
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1297
|
Li T, Francl JM, Boehme S, Ochoa A, Zhang Y, Klaassen CD, Erickson SK, Chiang JYL. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J Biol Chem 2011; 287:1861-73. [PMID: 22144677 DOI: 10.1074/jbc.m111.305789] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bile acids facilitate postprandial absorption of nutrients. Bile acids also activate the farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5 and play a major role in regulating lipid, glucose, and energy metabolism. Transgenic expression of cholesterol 7α-hydroxylase (CYP7A1) prevented high fat diet-induced diabetes and obesity in mice. In this study, we investigated the nutrient effects on bile acid synthesis. Refeeding of a chow diet to fasted mice increased CYP7A1 expression, bile acid pool size, and serum bile acids in wild type and humanized CYP7A1-transgenic mice. Chromatin immunoprecipitation assays showed that glucose increased histone acetylation and decreased histone methylation on the CYP7A1 gene promoter. Refeeding also induced CYP7A1 in fxr-deficient mice, indicating that FXR signaling did not play a role in postprandial regulation of bile acid synthesis. In streptozocin-induced type I diabetic mice and genetically obese type II diabetic ob/ob mice, hyperglycemia increased histone acetylation status on the CYP7A1 gene promoter, leading to elevated basal Cyp7a1 expression and an enlarged bile acid pool with altered bile acid composition. However, refeeding did not further increase CYP7A1 expression in diabetic mice. In summary, this study demonstrates that glucose and insulin are major postprandial factors that induce CYP7A1 gene expression and bile acid synthesis. Glucose induces CYP7A1 gene expression mainly by epigenetic mechanisms. In diabetic mice, CYP7A1 chromatin is hyperacetylated, and fasting to refeeding response is impaired and may exacerbate metabolic disorders in diabetes.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272, USA
| | | | | | | | | | | | | | | |
Collapse
|
1298
|
Hohenester S, Beuers U. Phosphatidylcholines as regulators of glucose and lipid homeostasis: promises and potential risks. Hepatology 2011; 54:2265-7. [PMID: 22139705 DOI: 10.1002/hep.24697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Simon Hohenester
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology & Hepatology, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
1299
|
Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 2011; 152:4610-9. [PMID: 21971158 DOI: 10.1210/en.2011-1485] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1(7-36NH2) (GLP-1) is secreted by the intestinal L cell in response to both nutrient and neural stimulation, resulting in enhanced glucose-dependent insulin secretion. GLP-1 is therefore an attractive therapeutic for the treatment of type 2 diabetes. The antidiabetic drug, metformin, is known to increase circulating GLP-1 levels, although its mechanism of action is unknown. Direct effects of metformin (5-2000 μm) or another AMP kinase activator, aminoimidazole carboxamide ribonucleotide (100-1000 μm) on GLP-1 secretion were assessed in murine human NCI-H716, and rat FRIC L cells. Neither agent stimulated GLP-1 secretion in any model, despite increasing AMP kinase phosphorylation (P < 0.05-0.01). Treatment of rats with metformin (300 mg/kg, per os) or aminoimidazole carboxamide ribonucleotide (250 mg/kg, sc) increased plasma total GLP-1 over 2 h, reaching 37 ± 9 and 29 ± 9 pg/ml (P < 0.001), respectively, compared with basal (7 ± 1 pg/ml). Plasma activity of the GLP-1-degrading enzyme, dipeptidylpeptidase-IV, was not affected by metformin treatment. Pretreatment with the nonspecific muscarinic antagonist, atropine (1 mg/kg, iv), decreased metformin-induced GLP-1 secretion by 55 ± 11% (P < 0.05). Pretreatment with the muscarinic (M) 3 receptor antagonist, 1-1-dimethyl-4-diphenylacetoxypiperidinium iodide (500 μg/kg, iv), also decreased the GLP-1 area under curve, by 48 ± 8% (P < 0.05), whereas the antagonists pirenzepine (M1) and gallamine (M2) had no effect. Furthermore, chronic bilateral subdiaphragmatic vagotomy decreased basal secretion compared with sham-operated animals (7 ± 1 vs. 13 ± 1 pg/ml, P < 0.001) but did not alter the GLP-1 response to metformin. In contrast, pretreatment with the gastrin-releasing peptide antagonist, RC-3095 (100 μg/kg, sc), reduced the GLP-1 response to metformin, by 55 ± 6% (P < 0.01) at 30 min. These studies elucidate the mechanism underlying metformin-induced GLP-1 secretion and highlight the benefits of using metformin with dipeptidylpeptidase-IV inhibitors in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Andrew J Mulherin
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
1300
|
Wong BS, Camilleri M, McKinzie S, Burton D, Graffner H, Zinsmeister AR. Effects of A3309, an ileal bile acid transporter inhibitor, on colonic transit and symptoms in females with functional constipation. Am J Gastroenterol 2011; 106:2154-64. [PMID: 21876564 DOI: 10.1038/ajg.2011.285] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Delivery of bile acid (BA) to the colon stimulates propulsive motility and fluid secretion. The objective of this study was to examine gastrointestinal (GI) transit effects of A3309, a small molecule inhibitor of the ileal BA transporter, in patients with functional constipation (FC). METHODS In a double-blind, placebo-controlled study of 36 female FC patients randomized to placebo, 15 mg A3309, or 20 mg A3309 administered orally once daily for 14 consecutive days, we assessed GI and colonic transit, stool characteristics, symptoms of constipation, fasting serum C4 (7α-hydroxy-4-cholesten-3-one) (surrogate of BA synthesis and malabsorption), and fasting serum total and low-density lipoprotein (LDL) cholesterol (surrogates of inhibition of BA absorption). Following the intention-to-treat paradigm, we used analysis of covariance to assess the overall treatment effects and Dunnett's test for pairwise comparisons. RESULTS Overall colonic transit (geometric center at 24 h) was significantly accelerated with 20 mg A3309 compared with placebo (overall effect, P=0.059; A3309 15 mg, P=0.18; and A3309 20 mg, P=0.04). Colonic transit at 48 h was significantly accelerated with both A3309 dosages (overall effect, P<0.001; A3309 15 mg, P=0.002; and A3309 20 mg, P<0.001). Significantly looser stool consistency was noted with both A3309 dosages compared with placebo (P<0.005). Significant effects of A3309 on constipation rating, ease of stool passage, and reduction of straining were also detected. The most common side effect was lower abdominal cramping/pain. A3309 treatment significantly and reversibly increased fasting C4 (A3309 15 mg, P=0.05; A3309 20 mg, P<0.01) but did not affect fasting total and LDL cholesterol. CONCLUSIONS A3309 accelerates colonic transit and loosens stool consistency in FC patients.
Collapse
Affiliation(s)
- Banny S Wong
- Clinical Enteric Neuroscience Translational and Epidemiological Research, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|