1251
|
Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect 2006; 9:78-86. [PMID: 17198762 PMCID: PMC1832075 DOI: 10.1016/j.micinf.2006.10.012] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 09/12/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
IL-23 induces IL-17 production in activated CD4+ T cells and participates in host defense against many encapsulated bacteria. However, whether the IL-23/IL-17 axis contributes to a Mycoplasma pneumoniae (Mp)-induced lung inflammation (e.g., neutrophils) has not been addressed. Using an acute respiratory Mp infection murine model, we found significantly up-regulated lung IL-23p19 mRNA in the early phase of infection (4h), and alveolar macrophages were an important cell source of Mp-induced IL-23. We further showed that Mp significantly increased IL-17 protein levels in bronchoalveolar lavage (BAL). Lung gene expression of IL-17, IL-17C and IL-17F was also markedly up-regulated by Mp in vivo. IL-17 and IL-17F were found to be derived mainly from lung CD4+ T cells, and were increased upon IL-23 stimulation in vitro. In vivo blocking of IL-23p19 alone or in combination with IL-23/IL-12p40 resulted in a significant reduction of Mp-induced IL-17 protein and IL-17/IL-17F mRNA expression, which was accompanied by a trend toward reduced lung neutrophil recruitment, BAL neutrophil activity, and Mp clearance. However, IL-23 neutralization had no effect on Mp-induced lung IL-17C mRNA expression. These results demonstrate that IL-17/IL-17F production is IL-23-dependent in an acute Mp infection, and contributes to neutrophil recruitment and activity in the lung defense against the infection.
Collapse
Affiliation(s)
- Qun Wu
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - Richard J. Martin
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - John G. Rino
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - Rachel Breed
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - Raul M. Torres
- Department of Immunology, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
| | - Hong Wei Chu
- Department of Medicine, National Jewish Medical and Research Center and the University of Colorado Health Sciences Center, Denver, Colorado
- Corresponding author: Dr. Hong Wei Chu, National Jewish Medical and Research Center, 1400 Jackson Street, Room D104, Denver, CO 80206. Tel: 1-303-398-1689; fax: 1-303-270-2319. E-mail address:
| |
Collapse
|
1252
|
McKinley L, Logar AJ, McAllister F, Zheng M, Steele C, Kolls JK. Regulatory T cells dampen pulmonary inflammation and lung injury in an animal model of pneumocystis pneumonia. THE JOURNAL OF IMMUNOLOGY 2006; 177:6215-26. [PMID: 17056551 PMCID: PMC3912571 DOI: 10.4049/jimmunol.177.9.6215] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CD4+CD25+FoxP3+ regulatory T cells are decreased in patients infected with HIV and have been shown to be critical in mediating Ag tolerance in the lung. Because a subset of Pneumocystis-infected individuals develop substantial lung injury, which can be modeled in immune reconstituted scid mice, we used mouse models of Pneumocystis carinii to investigate the role of regulatory T cells in opportunistic infection and immune reconstitution. In this study, we show that CD4+CD25+FoxP3+ cells are part of the host response to Pneumocystis in CD4+ T cell-intact mice. Moreover, lung injury and proinflammatory Th1 and Th2 cytokine levels in the bronchoalveolar lavage fluid and lung homogenate were increased following CD4+CD25- immune reconstitution in Pneumocystis-infected SCID mice but not in CD4+CD25+ T cell-reconstituted animals. The ability of CD4+CD25+ T cells to control inflammation and injury during the course of Pneumocystis was confirmed by treatment of wild-type C57BL/6 mice with anti-CD25 mAb. These data show that CD4+CD25+ T cells control pulmonary inflammation and lung injury associated with Pneumocystis infection both in the setting of immune reconstitution as well as new acquisition of infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Jay K. Kolls
- Address correspondence and reprint requests to Dr. Jay K. Kolls, Children’s Hospital of Pittsburgh, Suite 3765, 3705 Fifth Avenue, Pittsburgh, PA 15213.
| |
Collapse
|
1253
|
Ivanov S, Bozinovski S, Bossios A, Valadi H, Vlahos R, Malmhäll C, Sjöstrand M, Kolls JK, Anderson GP, Lindén A. Functional relevance of the IL-23-IL-17 axis in lungs in vivo. Am J Respir Cell Mol Biol 2006; 36:442-51. [PMID: 17142310 DOI: 10.1165/rcmb.2006-0020oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is known that interleukin (IL)-23, an IL-12-family cytokine, can be released by certain antigen-presenting cells in response to bacterial pathogens. Recent in vitro studies indicate that this cytokine stimulates a unique subset of CD4 cells, the T helper cell (Th)17 subset, to produce and release the proinflammatory cytokine IL-17. However, it has not been known whether this is an action of IL-23 per se that has bearing for the early innate response in lungs in vivo and whether there is an IL-23-responsive population of IL-17-producing CD4 cells in the bronchoalveolar space. We now present evidence that IL-23 can be involved in the early innate response to both gram-negative and gram-positive bacterial products in the lungs: Recombinant IL-23 protein per se accumulates inflammatory cells in the bronchoalveolar space in part via endogenous production of IL-17, and this IL-17 production occurs locally in IL-23-responsive CD4 cells. This IL-17 response to IL-23 occurs without any pronounced impact on Th1/Th2 polarization. Moreover, recombinant IL-23 protein increases the local MMP-9 activity, which is generated by neutrophils mainly. CD4 cells in the lungs may thus respond to IL-23 from antigen-presenting cells exposed to gram-negative and gram-positive pathogens and thereby reinforce the early innate response. These findings support that IL-23 and IL-17 form a functionally relevant "immunological axis" in the lungs in vivo.
Collapse
Affiliation(s)
- Stefan Ivanov
- Lung Pharmacology & Immunology Groups, Department of Internal Medicine/Respiratory Medicine and Allergology, Institute of Medicine, Sahlgrenska Academy at Göteborg University, Guldhedsgatan 10A, S-413 46 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1254
|
Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314:1461-3. [PMID: 17068223 PMCID: PMC4410764 DOI: 10.1126/science.1135245] [Citation(s) in RCA: 2297] [Impact Index Per Article: 120.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inflammatory bowel diseases Crohn's disease and ulcerative colitis are common, chronic disorders that cause abdominal pain, diarrhea, and gastrointestinal bleeding. To identify genetic factors that might contribute to these disorders, we performed a genome-wide association study. We found a highly significant association between Crohn's disease and the IL23R gene on chromosome 1p31, which encodes a subunit of the receptor for the proinflammatory cytokine interleukin-23. An uncommon coding variant (rs11209026, c.1142G>A, p.Arg381Gln) confers strong protection against Crohn's disease, and additional noncoding IL23R variants are independently associated. Replication studies confirmed IL23R associations in independent cohorts of patients with Crohn's disease or ulcerative colitis. These results and previous studies on the proinflammatory role of IL-23 prioritize this signaling pathway as a therapeutic target in inflammatory bowel disease.
Collapse
Affiliation(s)
- Richard H. Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian, Mezzanine Level, C-Wing, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Crabtree A300, 130 Desoto Street, Pittsburgh, PA 15261, USA
| | - Kent D. Taylor
- Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- IBD Center, Division of Gastroenterology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Steven R. Brant
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, B136, 1503 East Jefferson Street, Baltimore, MD 21231, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - John D. Rioux
- Université de Montréal and the Montreal Heart Institute, S-6400, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Mark S. Silverberg
- Mount Sinai Hospital IBD Centre, University of Toronto, 441–600 University Avenue, Toronto, Ontario M5G 1×5, Canada
| | - Mark J. Daly
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - A. Hillary Steinhart
- Mount Sinai Hospital IBD Centre, University of Toronto, 441–600 University Avenue, Toronto, Ontario M5G 1×5, Canada
| | - Clara Abraham
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Miguel Regueiro
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian, Mezzanine Level, C-Wing, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Anne Griffiths
- Department of Pediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1×8, Canada
| | - Themistocles Dassopoulos
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, B136, 1503 East Jefferson Street, Baltimore, MD 21231, USA
| | - Alain Bitton
- Royal Victoria Hospital, McGill University Health Centre, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada
| | - Huiying Yang
- Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- IBD Center, Division of Gastroenterology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Stephan Targan
- IBD Center, Division of Gastroenterology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- Immunobiology Research Institute, Cedars-Sinai Medical Center, Davis 4063, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Lisa Wu Datta
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, B136, 1503 East Jefferson Street, Baltimore, MD 21231, USA
| | - Emily O. Kistner
- Department of Health Studies, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - L. Philip Schumm
- Department of Health Studies, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Annette T. Lee
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Peter K. Gregersen
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - M. Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Crabtree A300, 130 Desoto Street, Pittsburgh, PA 15261, USA
| | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- IBD Center, Division of Gastroenterology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Dan L. Nicolae
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
- Department of Statistics, University of Chicago, 5734 South University Avenue, Chicago, IL 60637, USA
| | - Judy H. Cho
- IBD Center, Section of Digestive Diseases, Departments of Medicine and Genetics, Yale University, S155A, 300 Cedar Street, New Haven, CT 06519, USA
| |
Collapse
|
1255
|
He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:6852-8. [PMID: 17082599 PMCID: PMC3179908 DOI: 10.4049/jimmunol.177.10.6852] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allergen-induced contact hypersensitivity (CHS) is a T cell-mediated delayed-type immune response which has been considered to be primarily mediated by CD8+ T cytotoxic type I (Tc1) cells. IFN-gamma, the prototype Tc1 (Th1) cytokine, has been implicated as the primary inflammatory cytokine for CHS. In this study, we demonstrate that neutralization of IL-17 rather than IFN-gamma suppresses the elicitation of CHS. The suppression does not result from inhibition of the proliferation of allergen-activated T cells. Allergen sensitization induces the development of distinct CD8+ T cell subpopulations that produce IFN-gamma or IL-17. Although CD8+ IL-17-producing cells are stimulated by IL-23, they are inhibited by IL-12, a prototypical stimulator of IFN-gamma-producing Tc1 cells. This indicates that CD8+ IL-17-producing cells are distinct from Tc1 cells and are important in effector functions at the elicitation of CHS. These studies provide insights into a novel mechanism for CHS.
Collapse
Affiliation(s)
- Donggou He
- Department of Dermatology, VH564, 1670 University Blvd, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Lizhi Wu
- Department of Dermatology, VH564, 1670 University Blvd, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Hee Kyung Kim
- Department of Dermatology, VH564, 1670 University Blvd, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Hui Li
- Department of Dermatology, VH564, 1670 University Blvd, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Craig A. Elmets
- Department of Dermatology, VH564, 1670 University Blvd, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Hui Xu
- Department of Dermatology, VH564, 1670 University Blvd, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
1256
|
Furuzawa-Carballeda J, Vargas-Rojas MI, Cabral AR. Autoimmune inflammation from the Th17 perspective. Autoimmun Rev 2006; 6:169-75. [PMID: 17289553 DOI: 10.1016/j.autrev.2006.10.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2006] [Indexed: 11/25/2022]
Abstract
Recent studies demonstrated an IL-17-producer CD4+ T cell subpopulation, termed Th17, distinct from Th1 and Th2. It represents a different pro-inflammatory Th-cell lineage. This notion is supported by gene-targeted mice studies. Mice lacking IL-23 (p19-/-) do not develop experimental autoimmune encephalomyelitis (EAE) or collagen-induced arthritis (CIA), while knockout mice for the Th1 cytokine IL-12 (p35-/-) strongly develop both autoimmune diseases. Disease resistance by IL-23 knockout mice correlates well with the absence of IL-17-producing CD4(+) T lymphocytes in target organs despite normal presence of antigen-specific-IFN-gamma-producing Th1 cells. This finding may thus explain previous contradictory reports showing that anti-IFN-gamma-treated mice, IFN-gamma- or IFNR-deficient mice develop CIA or EAE. TGF-beta, IL-6 and IL-1 are the differentiation factors of Th17 cells. IL-23 is dispensable for this function, but necessary for Th17 expansion and survival. The master regulator that directs the differentiation program of Th17 cells is the orphan nuclear receptor RORgammat. IL-27, a member of the IL-12/IL-23 family, potently inhibits Th17 development. Evidence suggesting rheumatoid arthritis and multiple sclerosis as primarily IL-17 autoimmune inflammatory-mediated diseases is rapidly accumulating. The IL-17/23 axis of inflammation and related molecules may rise as therapeutic targets for treating these and perhaps other autoimmune diseases.
Collapse
Affiliation(s)
- Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15 Tlalpan, Mexico City 14000, Mexico
| | | | | |
Collapse
|
1257
|
Mitchell P, Germain C, Fiori PL, Khamri W, Foster GR, Ghosh S, Lechler RI, Bamford KB, Lombardi G. Chronic exposure to Helicobacter pylori impairs dendritic cell function and inhibits Th1 development. Infect Immun 2006; 75:810-9. [PMID: 17101659 PMCID: PMC1828488 DOI: 10.1128/iai.00228-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori causes chronic gastric infection that affects the majority of the world's population. Despite generating an inflammatory response, the immune system usually fails to clear the infection. Since dendritic cells (DCs) play a pivotal role in shaping the immune response, we investigated the effects of H. pylori on DC function. We have demonstrated that H. pylori increased the expression of activation markers on DCs while upregulating the inhibitory B7 family molecule, PD-L1. Functionally, H. pylori-treated DCs resulted in the production of interleukin-10 (IL-10) and IL-23 but not of alpha interferon (IFN-alpha). While very little or no IL-12 was produced to H. pylori alone, simultaneous ligation of CD40 on DCs induced IL-12 release. We also demonstrated that DCs treated with H. pylori-induced IFN-gamma production by allogeneic naive T cells. However, stimulation of DCs with H. pylori for an extended period of time impaired their ability to produce cytokines after CD40 ligation and limited their ability to promote IFN-gamma release, suggesting that the DCs had become exhausted by the prolonged stimulation. The effect of chronic infection with H. pylori on DC function was further investigated by focusing on DC development. Demonstrating that monocytes differentiated into DCs in the presence of H. pylori exhibited an exhausted phenotype with an impaired ability to produce IL-12 and a downregulation of CD1a. Our results raise the possibility that in chronic H. pylori infection DCs become exhausted after prolonged antigen exposure leading to suboptimal Th1 development. This effect may contribute to persistence of H. pylori infection.
Collapse
Affiliation(s)
- Peter Mitchell
- Department of Immunology, Division of Medicine, Faculty of Medicine, Imperial College at Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
1258
|
Abstract
Psoriasis is a common inflammatory skin disease characterized by infiltration of inflammatory cells into the epidermis and altered keratinocyte differentiation. Psoriasis is currently thought of as a T-cell mediated 'Type-1' autoimmune disease. Gene expression changes in psoriasis lesions have been well documented, and strongly support an important role for tumor necrosis factor and interferon gamma signal pathways in its pathogenesis. The strongest genetic determinant of psoriasis identified to date lies within the class I region of the multiple histocompatibility locus antigen cluster, although its low penetrance implicates a requirement for other genetic risk factors. Multiple genome-wide linkage and an increasing number of association studies have been carried out, leading to multiple linkage peaks, and the identification of potential low risk variants. A number of these variants lie within genes encoding components of the immune system. However, the functional relationships between predisposing genetic variation is unclear, and presumably involves genetic susceptibility factors affecting both immune cell activation and keratinocyte differentiation. The interaction of environmental trigger factors with genetic effects is also not understood, but provide further evidence for the complex basis of this disease.
Collapse
Affiliation(s)
- Y Liu
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
1259
|
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126:1121-33. [PMID: 16990136 DOI: 10.1016/j.cell.2006.07.035] [Citation(s) in RCA: 4108] [Impact Index Per Article: 216.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/30/2006] [Accepted: 07/24/2006] [Indexed: 11/24/2022]
Abstract
IL-17-producing T lymphocytes have been recently shown to comprise a distinct lineage of proinflammatory T helper cells, termed Th17 cells, that are major contributors to autoimmune disease. We show here that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage. RORgammat induces transcription of the genes encoding IL-17 and the related cytokine IL-17F in naïve CD4(+) T helper cells and is required for their expression in response to IL-6 and TGF-beta, the cytokines known to induce IL-17. Th17 cells are constitutively present throughout the intestinal lamina propria, express RORgammat, and are absent in mice deficient for RORgammat or IL-6. Mice with RORgammat-deficient T cells have attenuated autoimmune disease and lack tissue-infiltrating Th17 cells. Together, these studies suggest that RORgammat is a key regulator of immune homeostasis and highlight its potential as a therapeutic target in inflammatory diseases.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Disease Models, Animal
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Homeostasis/genetics
- Homeostasis/immunology
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Ivaylo I Ivanov
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
1260
|
|
1261
|
Hao JS, Shan BE. Immune enhancement and anti-tumour activity of IL-23. Cancer Immunol Immunother 2006; 55:1426-31. [PMID: 16676182 PMCID: PMC11031071 DOI: 10.1007/s00262-006-0171-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/29/2006] [Indexed: 11/28/2022]
Abstract
Immunotherapy, including the use of cytokines and/or modified tumour cells immune stimulatory cytokines, can enhance the host anti-tumour immune responses. Interleukin-23 (IL-23) is a relative novel cytokine, which consists of a heterodimer of the IL-12p40 subunit and a novel p19 subunit. IL-23 has biological activities similar to but distinct from IL-12. IL-23 can enhance the proliferation of memory T cells and the production of IFN-gamma, IL-12 and TNF-alpha from activated T cells. IL-23 activates macrophages to produce TNF-alpha and nitric oxide. IL-23 can also act directly on dendritic cells and possesses potent anti-tumour and anti-metastatic activity in murine models of cancer. IL-23 can also induce a lower level of IFN-gamma production compared with that induced by IL-12. This may make IL-23 an alternative and safer therapeutic agent for cancer, as IL-12 administration can lead to severe toxic side effects because of the extremely high levels of IFN-gamma it induces.
Collapse
Affiliation(s)
- Jing-Sheng Hao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei China
| | - Bao-En Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei China
| |
Collapse
|
1262
|
Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB, Gorman DM, Smith K, de Waal Malefyt R, Kastelein RA, McClanahan TK, Bowman EP. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. ACTA ACUST UNITED AC 2006; 203:2577-87. [PMID: 17074928 PMCID: PMC2118145 DOI: 10.1084/jem.20060244] [Citation(s) in RCA: 545] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant cytokine expression has been proposed as an underlying cause of psoriasis, although it is unclear which cytokines play critical roles. Interleukin (IL)-23 is expressed in human psoriasis and may be a master regulator cytokine. Direct intradermal administration of IL-23 in mouse skin, but not IL-12, initiates a tumor necrosis factor-dependent, but IL-17A-independent, cascade of events resulting in erythema, mixed dermal infiltrate, and epidermal hyperplasia associated with parakeratosis. IL-23 induced IL-19 and IL-24 expression in mouse skin, and both genes were also elevated in human psoriasis. IL-23-dependent epidermal hyperplasia was observed in IL-19-/- and IL-24-/- mice, but was inhibited in IL-20R2-/- mice. These data implicate IL-23 in the pathogenesis of psoriasis and support IL-20R2 as a novel therapeutic target.
Collapse
Affiliation(s)
- Jason R Chan
- Discovery Research, Schering-Plough Biopharma (formerly DNAX Research, Inc.), Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1263
|
Kullberg MC, Jankovic D, Feng CG, Hue S, Gorelick PL, McKenzie BS, Cua DJ, Powrie F, Cheever AW, Maloy KJ, Sher A. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med 2006; 203:2485-94. [PMID: 17030948 PMCID: PMC2118119 DOI: 10.1084/jem.20061082] [Citation(s) in RCA: 472] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 09/15/2006] [Indexed: 12/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that is caused in part by a dysregulated immune response to the intestinal flora. The common interleukin (IL)-12/IL-23p40 subunit is thought to be critical for the pathogenesis of IBD. We have analyzed the role of IL-12 versus IL-23 in two models of Helicobacter hepaticus-triggered T cell-dependent colitis, one involving anti-IL-10R monoclonal antibody treatment of infected T cell-sufficient hosts, and the other involving CD4+ T cell transfer into infected Rag-/- recipients. Our data demonstrate that IL-23 and not IL-12 is essential for the development of maximal intestinal disease. Although IL-23 has been implicated in the differentiation of IL-17-producing CD4+ T cells that alone are sufficient to induce autoimmune tissue reactivity, our results instead support a model in which IL-23 drives both interferon gamma and IL-17 responses that together synergize to trigger severe intestinal inflammation.
Collapse
Affiliation(s)
- Marika C Kullberg
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1264
|
Hue S, Ahern P, Buonocore S, Kullberg MC, Cua DJ, McKenzie BS, Powrie F, Maloy KJ. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 2006; 203:2473-83. [PMID: 17030949 PMCID: PMC2118132 DOI: 10.1084/jem.20061099] [Citation(s) in RCA: 647] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 09/13/2006] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract involving aberrant activation of innate and adaptive immune responses. We have used two complementary models of IBD to examine the roles of interleukin (IL)-12 family cytokines in bacterially induced intestinal inflammation. Our results clearly show that IL-23, but not IL-12, is essential for the induction of chronic intestinal inflammation mediated by innate or adaptive immune mechanisms. Depletion of IL-23 was associated with decreased proinflammatory responses in the intestine but had little impact on systemic T cell inflammatory responses. These results newly identify IL-23 as a driver of innate immune pathology in the intestine and suggest that selective targeting of IL-23 represents an attractive therapeutic approach in human IBD.
Collapse
Affiliation(s)
- Sophie Hue
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
1265
|
Alber G, Al-Robaiy S, Kleinschek M, Knauer J, Krumbholz P, Richter J, Schoeneberger S, Schuetze N, Schulz S, Toepfer K, Voigtlaender R, Lehmann J, Mueller U. Induction of immunity and inflammation by interleukin-12 family members. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:107-27. [PMID: 16329649 DOI: 10.1007/3-540-37673-9_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The interleukin (IL)-12 family is composed of three heterodimeric cytokines, IL-12 (p40p35), IL-23 (p40p19), and IL-27 (EBI3p28), and of monomeric and homodimeric p40. This review focuses on the three heterodimeric members of the IL-12 family. The p40 and p40-like (EBI3) subunits have homology to the IL-6R, the other subunits (p35, p19, and p28) are homologous to each other and to members of the IL-6 superfamily. On the basis of their structural similarity, it was expected that the members of the IL-12 family have overlapping pro-inflammatory and immunoregulatory functions. However, it was surprising that they also show very distinct activities. IL- 12 has a central role as a Th1-inducing and -maintaining cytokine, which is essential in cell-mediated immunity in nonviral infections and in tumor control. IL-23 recently emerged as an end-stage effector cytokine responsible for autoimmune chronic inflammation through induction of IL-17 and direct activation of macrophages. Very recently, IL-27 was found to exert not only a pro-inflammatory Thl-enhancing but also a significant anti-inflammatory function.
Collapse
Affiliation(s)
- G Alber
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1266
|
Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2006; 177:4662-9. [PMID: 16982905 DOI: 10.4049/jimmunol.177.7.4662] [Citation(s) in RCA: 599] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-17 is a cytokine produced by T cells in response to IL-23. Recent data support a new subset of CD4 Th cells distinct from Th1 or Th2 cells that produce IL-17 and may contribute to inflammation. In this study, we demonstrate that, in naive mice, as well as during Mycobacterium tuberculosis infection, IL-17 production is primarily from gammadelta T cells and other non-CD4(+)CD8(+) cells, rather than CD4 T cells. The production of IL-17 by these cells is stimulated by IL-23 alone, and strongly induced by the cytokines, including IL-23, produced by M. tuberculosis-infected dendritic cells. IL-23 is present in the lungs early in infection and the IL-17-producing cells, such as gammadelta T cells, may represent a central innate protective response to pulmonary infection.
Collapse
Affiliation(s)
- Euan Lockhart
- Department of Molecular Genetics and Biochemistry, Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
1267
|
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease characterised by abnormal keratinocyte differentiation and proliferation. The immunopathogenesis is complex and novel evidence shows the involvement of both innate and adaptive immune response. Type 1 T cells and their effector cytokines play a pivotal role. Several drugs under preclinical and clinical development for psoriasis are directed against the immune response, targeting activation or proliferation of T cells, their trafficking and skin-homing, or effector cytokines. Among these, great attention has been given to TNF-alpha, following the demonstration of effectiveness of anti-TNF-alpha biologicals, and to IFN-gamma inducers. Another appealing approach concerns drugs capable of inducing immunological tolerance. Progress made in the recognition of intracellular events has prompted the development of small molecules and oligonucleotides that can inhibit specific molecular targets. There is, however, a plethora of other emerging drugs, clearly suggestive of the current interest for psoriasis, which are briefly described in this paper.
Collapse
Affiliation(s)
- Gino A Vena
- 2nd Dermatology Clinic, University of Bari, Bari, Italy.
| | | |
Collapse
|
1268
|
Wada Y, Lu R, Zhou D, Chu J, Przewloka T, Zhang S, Li L, Wu Y, Qin J, Balasubramanyam V, Barsoum J, Ono M. Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood 2006; 109:1156-64. [PMID: 17053051 DOI: 10.1182/blood-2006-04-019398] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The interleukin-12 (IL-12) cytokine induces the differentiation of naive T cells to the T helper cell type 1 (Th1) phenotype and is integral to the pathogenesis of Th1-mediated immunologic disorders. A more recently discovered IL-12 family member, IL-23, shares the p40 protein subunit with IL-12 and plays a critical role in the generation of effector memory T cells and IL-17-producing T cells. We introduce a novel compound, STA-5326, that down-regulates both IL-12 p35 and IL-12/IL-23 p40 at the transcriptional level, and inhibits the production of both IL-12 and IL-23 cytokines. Oral administration of STA-5326 led to a suppression of the Th1 but not Th2 immune response in mice. In vivo studies using a CD4+CD45Rbhigh T-cell transfer severe combined immunodeficiency (SCID) mouse inflammatory bowel disease model demonstrated that oral administration of STA-5326 markedly reduced inflammatory histopathologic changes in the colon. A striking decrease in interferon-gamma (IFN-gamma) production was observed in ex vivo culture of lamina propria cells harvested from animals treated with STA-5326, indicating a down-regulation of the Th1 response by STA-5326. These results suggest that STA-5326 has potential for use in the treatment of Th1-related autoimmune or immunologic disorders. STA-5326 currently is being evaluated in phase 2 clinical trials in patients with Crohn disease and rheumatoid arthritis.
Collapse
Affiliation(s)
- Yumiko Wada
- Synta Pharmaceuticals Corp, Lexington, MA 02421, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1269
|
Meyers JA, Mangini AJ, Nagai T, Roff CF, Sehy D, van Seventer GA, van Seventer JM. Blockade of TLR9 agonist-induced type I interferons promotes inflammatory cytokine IFN-gamma and IL-17 secretion by activated human PBMC. Cytokine 2006; 35:235-46. [PMID: 17052915 DOI: 10.1016/j.cyto.2006.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/25/2006] [Accepted: 09/06/2006] [Indexed: 01/01/2023]
Abstract
Type I interferons (IFN) (IFN-alpha/beta) are recognized as both inhibitors and effectors of autoimmune disease. In multiple sclerosis, IFN-beta therapy appears beneficial, in part, due to its suppression of autoimmune inflammatory Th cell responses. In contrast, in systemic lupus erythematosus (SLE) triggering of plasmacytoid DC (pDC) Toll-like receptors (TLRs) by autoimmune complexes (autoICs) results in circulating type I IFN that appear to promote disease by driving autoantigen presentation and autoantibody production. To investigate how pDC-derived type I IFN might regulate Th cells in SLE, we examined a model in which sustained pDC stimulation by autoICs is mimicked by pretreating normal human PBMC with TLR9 agonist, CpG-A. Subsequently, PBMC Th cells are activated with superantigen, and APC are activated with CD40L. The role of CpG-A/TLR9-induced type I IFN in regulating PBMC is determined by blocking with virus-derived soluble type I IFN receptor, B18R. In summary, pretreatment with either rhIFN-alpha/beta or CpG-A inhibits PBMC secretion of superantigen-induced IFN-gamma and IL-17, and CD40L-induced IL-12p70 and IL-23. B18R prevents these effects. Data indicate that CpG-A-induced type I IFN inhibit IL-12p70-dependent PBMC IFN-gamma secretion by enhancing IL-10. Our results suggest that in SLE, circulating type I IFN may potentially act to inhibit inflammatory cytokine secretion.
Collapse
Affiliation(s)
- John A Meyers
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
1270
|
Happel KI, Odden AR, Zhang P, Shellito JE, Bagby GJ, Nelson S. Acute alcohol intoxication suppresses the interleukin 23 response to Klebsiella pneumoniae infection. Alcohol Clin Exp Res 2006; 30:1200-7. [PMID: 16792568 DOI: 10.1111/j.1530-0277.2006.00144.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bacterial pneumonia is a widely recognized infection in the alcohol-abusing patient. Interleukin 23 (IL-23) is a recently described cytokine critical for IL-17 induction and host survival during Klebsiella pneumoniae infection, a pulmonary pathogen commonly seen in alcoholics. We investigated the effect of acute alcohol intoxication on the IL-23 response to this infection. METHODS Male C57BL/6 mice were given an intraperitoneal injection of ethanol (3.0 g/kg) or phosphate-buffered saline (PBS) 30 minutes before infection. Alveolar macrophages (AM) were cultured with bacteria in ethanol (0, 50, and 100 mM) to determine alcohol's effect on AM IL-23 expression, the bioactivity of which was determined by splenocyte IL-17 inducing activity. The role of IL-10 in alcohol-mediated suppression of AM IL-23 p19 mRNA expression was assessed using wild-type (WT) and IL-10 knock-out (KO) mice. Efficacy of AM pretreatment with interferon gamma (IFN-gamma) on IL-23 expression before ethanol exposure and infection was evaluated. RESULTS In vivo, acute intoxication suppresses the lung and bronchoalveolar lavage cell IL-23 response to pathogen. This effect was confirmed in vitro as ethanol dose-dependently inhibits AM IL-23 during infection. Acute intoxication increases lung and BAL cell IL-10 mRNA expression 2 hours after in vivo infection and, in vitro, recombinant IL-10 inhibits AM IL-23 expression. However, alcohol impairs IL-23 similarly in AM harvested from both WT and IL-10 KO mice. Interferon gamma pretreatment strongly inhibits AM IL-23 production in both the presence and absence of alcohol. CONCLUSIONS Acute alcohol intoxication inhibits the pulmonary IL-23 response to K. pneumoniae infection both in vivo and in vitro, an effect independent of IL-10 induction. Interferon gamma priming antagonizes IL-23 and is, therefore, not likely to be a useful adjuvant therapy in restoring IL-23/IL-17 responses during infection and intoxication.
Collapse
Affiliation(s)
- Kyle I Happel
- Section of Pulmonary/Critical Care Medicine, Lousiana State University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | | | |
Collapse
|
1271
|
Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203:2271-9. [PMID: 16982811 PMCID: PMC2118116 DOI: 10.1084/jem.20061308] [Citation(s) in RCA: 1827] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/21/2006] [Indexed: 12/16/2022] Open
Abstract
Th17 cells are a distinct lineage of effector CD4(+) T cells characterized by their production of interleukin (IL)-17. We demonstrate that Th17 cells also expressed IL-22, an IL-10 family member, at substantially higher amounts than T helper (Th)1 or Th2 cells. Similar to IL-17A, IL-22 expression was initiated by transforming growth factor beta signaling in the context of IL-6 and other proinflammatory cytokines. The subsequent expansion of IL-22-producing cells was dependent on IL-23. We further demonstrate that IL-22 was coexpressed in vitro and in vivo with both IL-17A and IL-17F. To study a functional relationship among these cytokines, we examined the expression of antimicrobial peptides by primary keratinocytes treated with combinations of IL-22, IL-17A, and IL-17F. IL-22 in conjunction with IL-17A or IL-17F synergistically induced the expression of beta-defensin 2 and S100A9 and additively enhanced the expression of S100A7 and S100A8. Collectively, we have identified IL-22 as a new cytokine expressed by Th17 cells that synergizes with IL-17A or IL-17F to regulate genes associated with skin innate immunity.
Collapse
|
1272
|
Miljkovic D, Stosic-Grujicic S, Markovic M, Momcilovic M, Ramic Z, Maksimovic-Ivanic D, Mijatovic S, Popadic D, Cvetkovic I, Mostarica-Stojkovic M. Strain difference in susceptibility to experimental autoimmune encephalomyelitis between Albino Oxford and Dark Agouti rats correlates with disparity in production of IL-17, but not nitric oxide. J Neurosci Res 2006; 84:379-88. [PMID: 16676327 DOI: 10.1002/jnr.20883] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Albino Oxford (AO) rats, unlike Dark Agouti (DA) rats are resistant to the induction of experimental autoimmune encephalomyelitis (EAE). The reason for the resistance could be some restraining mechanism preventing auto-aggressive cell activation at the level of draining lymph nodes (DLN) during the induction phase of the disease. Such a mechanism could be anti-proliferative action of nitric oxide (NO), which has already been shown of importance for the resistance of several rat strains to the induction of the disease. Importantly, number of AO DLN cells (DLNC) is markedly lower and with lower proliferative response to myelin basic protein (MBP) ex vivo in comparison to DA DLNC in the inductive phase of EAE, thus implying that in AO rats DLNC do not proliferate as extensively as in DA rats. We show that AO rats do not produce larger quantities of NO than DA rats after immunization. Further, DLNC of immunized AO rats have significantly lower mRNA expression and synthesis of interferon (IFN)-gamma and interleukin (IL)-17 compared to DLNC of DA rats. Collectively, these results suggest that there is a substantial difference between EAE-resistant AO rats and EAE-prone DA rats in the initiation of autoimmune response. This difference seems to be independent of anti-proliferative actions of NO, but correlates with impaired IL-17 production in AO rats.
Collapse
Affiliation(s)
- Djordje Miljkovic
- Institute for Biological Research Sinisa Stankovic, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1273
|
Ley K, Smith E, Stark MA. IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res 2006; 34:229-42. [PMID: 16891673 DOI: 10.1385/ir:34:3:229] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
The proinflammatory cytokine IL-17A, mainly produced by specialized T cells, plays an important homeostatic role in regulating neutrophil production and blood neutrophil counts. This review will assemble and discuss the evidence for this function of IL-17A-producing cells, which are collectively called neutrophil-regulatory T cells or Tn cells. IL-17A-producing lymphocytes are most abundant in the mesenteric lymph node, where they account for 0.15% of all lymphocytes. About 60% of the Tn cells are gammadelta T cells, about 25% NKTlike cells, and less than 15% are CD4 T cells. These latter cells are also known as T-17 or ThIL-17 cells, a subset of Tn cells that also plays an important role in autoimmune diseases. IL-17A produced by Tn cells regulates the production of G-CSF, which in turn promotes the proliferation of promyelocytes and maturation of neutrophils. This homeostatic mechanism plays an important role in normal physiology and in host defense against bacterial infections. This review is aimed at highlighting the important role of IL-17A-producing T cells at the interface between the adaptive and innate immune system.
Collapse
Affiliation(s)
- Klaus Ley
- Robert M. Berne Cardiovascular Research Center, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
1274
|
Toichi E, Torres G, McCormick TS, Chang T, Mascelli MA, Kauffman CL, Aria N, Gottlieb AB, Everitt DE, Frederick B, Pendley CE, Cooper KD. An Anti-IL-12p40 Antibody Down-Regulates Type 1 Cytokines, Chemokines, and IL-12/IL-23 in Psoriasis. THE JOURNAL OF IMMUNOLOGY 2006; 177:4917-26. [PMID: 16982934 DOI: 10.4049/jimmunol.177.7.4917] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Psoriasis is characterized by activation of T cells with a type 1 cytokine profile. IL-12 and IL-23 produced by APCs are essential for inducing Th1 effector cells. Promising clinical results of administration of an Ab specific for the p40 subunit of IL-12 and IL-23 (anti-IL-12p40) have been reported recently. This study evaluated histological changes and mRNA expression of relevant cytokines and chemokines in psoriatic skin lesions following a single administration of anti-IL-12p40, using immunohistochemistry and real-time RT-PCR. Expression levels of type 1 cytokine (IFN-gamma) and chemokines (IL-8, IFN-gamma-inducible protein-10, and MCP-1) were significantly reduced at 2 wk posttreatment. The rapid decrease of these expression levels preceded clinical response and histologic changes. Interestingly, the level of an anti-inflammatory cytokine, IL-10, was also significantly reduced. Significant reductions in TNF-alpha levels and infiltrating T cells were observed in high responders (improvement in clinical score, > or =75% at 16 wk), but not in low responders. Of importance, the levels of APC cytokines, IL-12p40 and IL-23p19, were significantly decreased in both responder populations, with larger decreases in high responders. In addition, baseline levels of TNF-alpha significantly correlated with the clinical improvement at 16 wk, suggesting that these levels may predict therapeutic responsiveness to anti-IL-12p40. Thus, in a human Th1-mediated disease, blockade of APC cytokines by anti-IL-12p40 down-regulates expression of type 1 cytokines and chemokines that are downstream of IL-12/IL-23, and also IL-12/IL-23 themselves, with a pattern indicative of coordinated deactivation of APCs and Th1 cells.
Collapse
Affiliation(s)
- Eiko Toichi
- Department of Dermatology, Case Western Reserve University and University Hospitals of Cleveland, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1275
|
He R, Shepard LW, Chen J, Pan ZK, Ye RD. Serum amyloid A is an endogenous ligand that differentially induces IL-12 and IL-23. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:4072-9. [PMID: 16951371 DOI: 10.4049/jimmunol.177.6.4072] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The acute-phase proteins, C-reactive protein and serum amyloid A (SAA), are biomarkers of infection and inflammation. However, their precise role in immunity and inflammation remains undefined. We report in this study a novel property of SAA in the differential induction of Th1-type immunomodulatory cytokines IL-12 and IL-23. In peripheral blood monocytes and the THP-1 monocytic cell line, SAA induces the expression of IL-12p40, a subunit shared by IL-12 and IL-23. SAA-stimulated expression of IL-12p40 was rapid (< or = 4 h), sustainable (> or = 20 h), potent (up to 3380 pg/ml/10(6) cells in 24 h), and insensitive to polymyxin B treatment. The SAA-stimulated IL-12p40 secretion required de novo protein synthesis and was accompanied by activation of the transcription factors NF-kappaB and C/EBP. Expression of IL-12p40 required activation of the p38 MAPK and PI3K. Interestingly, the SAA-induced IL-12p40 production was accompanied by a sustained expression of IL-23p19, but not IL-12p35, resulting in preferential secretion of IL-23, but not IL-12. These results identify SAA as an endogenous ligand that potentially activates the IL-23/IL-17 pathway and present a novel mechanism for regulation of inflammation and immunity by an acute-phase protein.
Collapse
Affiliation(s)
- Rong He
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
1276
|
Li Y, Chu N, Rostami A, Zhang GX. Dendritic cells transduced with SOCS-3 exhibit a tolerogenic/DC2 phenotype that directs type 2 Th cell differentiation in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2006; 177:1679-88. [PMID: 16849477 DOI: 10.4049/jimmunol.177.3.1679] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) have been suggested to direct a type of Th differentiation through their cytokine profile, e.g., high IL-12/IL-23 for Th1 (named DC1/immunogenic DCs) and IL-10 for Th2 (DC2/tolerogenic DCs). Suppressor of cytokine signaling (SOCS)-3 is a potent inhibitor of Stat3 and Stat4 transduction pathways for IL-23 and IL-12, respectively. We thus hypothesize that an enhanced SOCS-3 expression in DCs may block the autocrine response of IL-12/IL-23 in these cells, causing them to become a DC2-type phenotype that will subsequently promote Th2 polarization of naive T cells. Indeed, in the present study we found that bone marrow-derived DCs transduced with SOCS-3 significantly inhibited IL-12-induced activation of Stat4 and IL-23-induced activation of Stat3. These SOCS-3-transduced DCs expressed a low level of MHC class II and CD86 on their surface, produced a high level of IL-10 but low levels of IL-12 and IFN-gamma, and expressed a low level of IL-23 p19 mRNA. Functionally, SOCS-3-transduced DCs drove naive myelin oligodendrocyte glycoprotein-specific T cells to a strong Th2 differentiation in vitro and in vivo. Injection of SOCS-3-transduced DCs significantly suppressed experimental autoimmune encephalomyelitis, a Th1 cell-mediated autoimmune disorder of the CNS and an animal model of multiple sclerosis. These results indicate that transduction of SOCS-3 in DCs is an effective approach to generating tolerogenic/DC2 cells that then skew immune response toward Th2, thus possessing therapeutic potential in Th1-dominant autoimmune disorders such as multiple sclerosis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Coculture Techniques
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Gene Expression Regulation/immunology
- Immune Tolerance/genetics
- Immunophenotyping
- Interleukin-12/antagonists & inhibitors
- Interleukin-12/physiology
- Interleukin-23
- Interleukin-23 Subunit p19
- Interleukins/antagonists & inhibitors
- Interleukins/physiology
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- STAT4 Transcription Factor/antagonists & inhibitors
- STAT4 Transcription Factor/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins/biosynthesis
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/physiology
- Th2 Cells/cytology
- Th2 Cells/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- Yonghai Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
1277
|
Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL, Black KL, Yu JS. Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 2006; 66:8887-96. [PMID: 16951206 DOI: 10.1158/0008-5472.can-05-3448] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in priming immune responses to tumor. Interleukin (IL)-23 can act directly on DC to promote immunogenic presentation of tumor peptide in vitro. Here, we evaluated the combination of bone marrow-derived DC and IL-23 on the induction of antitumor immunity in a mouse intracranial glioma model. DCs can be transduced by an adenoviral vector coding single-chain mouse IL-23 to express high levels of bioactive IL-23. Intratumoral implantation of IL-23-expressing DCs produced a protective effect on intracranial tumor-bearing mice. The mice consequently gained systemic immunity against the same tumor rechallenge. The protective effect of IL-23-expressing DCs was comparable with or even better than that of IL-12-expressing DCs. IL-23-transduced DC (DC-IL-23) treatment resulted in robust intratumoral CD8(+) and CD4(+) T-cell infiltration and induced a specific TH1-type response to the tumor in regional lymph nodes and spleen at levels greater than those of nontransduced DCs. Moreover, splenocytes from animals treated with DC-IL-23 showed heightened levels of specific CTL activity. In vivo lymphocyte depletion experiments showed that the antitumor immunity induced by DC-IL-23 was mainly dependent on CD8(+) T cells and that CD4(+) T cells and natural killer cells were also involved. In summary, i.t. injection of DC-IL-23 resulted in significant and effective systemic antitumor immunity in intracranial tumor-bearing mice. These findings suggest a new approach to induce potent tumor-specific immunity to intracranial tumors. This approach may have therapeutic potential for treating human glioma.
Collapse
Affiliation(s)
- Jinwei Hu
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
1278
|
Eaton KA, Benson LH, Haeger J, Gray BM. Role of transcription factor T-bet expression by CD4+ cells in gastritis due to Helicobacter pylori in mice. Infect Immun 2006; 74:4673-84. [PMID: 16861655 PMCID: PMC1539619 DOI: 10.1128/iai.01887-05] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastritis due to Helicobacter pylori is induced by a Th1-mediated response that is CD4 cell and gamma interferon (IFN-gamma) dependent. T-bet is a transcription factor that directs differentiation of and IFN-gamma secretion by CD4+ Th1 T cells. The goal of this study was to use two mouse models to elucidate the role of T-bet in gastritis due to H. pylori. C57BL/6J mice, congenic T-bet knockout (KO) mutants, or congenic SCID (severe, combined immunodeficient) mutants were given live H. pylori by oral inoculation. SCID mice were given CD4+ splenocytes from C57BL/6J or T-bet KO mice by intraperitoneal injection. Twelve or 24 weeks after bacterial inoculation, C57BL/6J mice developed moderate gastritis but T-bet KO mice and SCID mice did not. In contrast, SCID recipients of either C57BL/6J T cells or T-bet KO T cells developed gastritis 4 or 8 weeks after adoptive transfer. In recipients of C57BL/6J CD4+ cells but not recipients of T-bet KO cells, gastritis was associated with a delayed-type hypersensitivity response to H. pylori antigen and elevated gastric and serum IFN-gamma, interleukin 6, and tumor necrosis factor alpha. In spite of the absence of IFN-gamma expression, indicating failure of Th1 differentiation, CD4+ T cells from T-bet KO mice induce gastritis in H. pylori-infected recipient SCID mice. This indicates that Th1-independent mechanisms can cause gastric inflammation and disease due to H. pylori.
Collapse
|
1279
|
Chackerian AA, Chen SJ, Brodie SJ, Mattson JD, McClanahan TK, Kastelein RA, Bowman EP. Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect Immun 2006; 74:6092-9. [PMID: 16923792 PMCID: PMC1695481 DOI: 10.1128/iai.00621-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine that is composed of the p40 subunit of IL-12 plus a unique p19 subunit. IL-23 is critical for autoimmune inflammation, in part due to its stimulation of the proinflammatory cytokine IL-17A. It is less clear, however, if IL-23 is required during the immune response to pathogens. We examined the role of IL-23 during Mycobacterium bovis BCG infection. We found that IL-23 reduces the bacterial burden and promotes granuloma formation when IL-12 is absent. However, IL-23 does not contribute substantially to host resistance when IL-12 is present, as the ability to control bacterial growth and form granulomata is not affected in IL-23p19-deficient mice and mice treated with a specific anti-IL-23p19 antibody. IL-23p19-deficient mice are also able to mount an effective memory response to secondary infection with BCG. While IL-23p19-deficient mice do not produce IL-17A, this cytokine is not necessary for effective control of infection, and antibody blocking of IL-17A in both wild-type and IL-12-deficient mice also has little effect on the bacterial burden. These data suggest that IL-23 by itself does not play an essential role in the protective immune response to BCG infection; however, the presence of IL-23 can partially compensate for the absence of IL-12. Furthermore, neutralization of IL-23 or IL-17A does not increase susceptibility to mycobacterial BCG infection.
Collapse
Affiliation(s)
- Alissa A Chackerian
- Discovery Research and Experimental Pathology and Pharmacology, Schering-Plough Biopharma, 901 California Ave., Palo Alto, CA 94304-1104, USA
| | | | | | | | | | | | | |
Collapse
|
1280
|
Gutcher I, Urich E, Wolter K, Prinz M, Becher B. Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat Immunol 2006; 7:946-53. [PMID: 16906165 DOI: 10.1038/ni1377] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 07/17/2006] [Indexed: 11/09/2022]
Abstract
T helper type 1 (T(H)1) lymphocytes are considered to be the main pathogenic cell type responsible for organ-specific autoimmune inflammation. As interleukin 18 (IL-18) is a cofactor with IL-12 in promoting T(H)1 cell development, we examined the function of IL-18 and its receptor, IL-18R, in autoimmune central nervous system inflammation. Similar to IL-12-deficient mice, IL-18-deficient mice were susceptible to experimental autoimmune encephalomyelitis. In contrast, IL-18R alpha-deficient mice were resistant to experimental autoimmune encephalomyelitis, indicating involvement of an IL-18R alpha ligand other than IL-18 with encephalitogenic properties. Moreover, engagement of IL-18R alpha on antigen-presenting cells was required for the generation of pathogenic IL-17-producing T helper cells. Thus, IL-18 and T(H)1 cells are dispensable, whereas IL-18R alpha and IL-17-producing T helper cells are required, for autoimmune central nervous system inflammation.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/chemistry
- Antigen-Presenting Cells/immunology
- Antigens/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Interleukin-12/metabolism
- Interleukin-17/metabolism
- Interleukin-18/genetics
- Interleukin-18/physiology
- Interleukin-23/metabolism
- Mice
- Mice, Knockout
- Mitogens/immunology
- Receptors, Interleukin-18/analysis
- Receptors, Interleukin-18/genetics
- Receptors, Interleukin-18/physiology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Ilona Gutcher
- Neuroimmunology Unit, Neurology Clinic, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
1281
|
Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM, Villarino AV, Huang Q, Yoshimura A, Sehy D, Saris CJM, O'Shea JJ, Hennighausen L, Ernst M, Hunter CA. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006; 7:937-45. [PMID: 16906166 DOI: 10.1038/ni1376] [Citation(s) in RCA: 758] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/17/2006] [Indexed: 11/08/2022]
Abstract
Studies have focused on the events that influence the development of interleukin 17 (IL-17)-producing T helper cells (T(H)-17 cells) associated with autoimmunity, such as experimental autoimmune encephalitis, but relatively little is known about the cytokines that antagonize T(H)-17 cell effector responses. Here we show that IL-27 receptor-deficient mice chronically infected with Toxoplasma gondii developed severe neuroinflammation that was CD4+ T cell dependent and was associated with a prominent IL-17 response. In vitro, treatment of naive primary T cells with IL-27 suppressed the development T(H)-17 cells induced by IL-6 and transforming growth factor-beta, which was dependent on the intracellular signaling molecule STAT1 but was independent of inhibition of IL-6 signaling mediated by the suppressor protein SOCS3. Thus IL-27, a potent inhibitor of T(H)-17 cell development, may be a useful target for treating inflammatory diseases mediated by these cells.
Collapse
Affiliation(s)
- Jason S Stumhofer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6008, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1282
|
Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, Lucas S, Lee J, de Sauvage FJ, Ghilardi N. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 2006; 7:929-36. [PMID: 16906167 DOI: 10.1038/ni1375] [Citation(s) in RCA: 670] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 07/12/2006] [Indexed: 11/09/2022]
Abstract
Interleukin 27 (IL-27) was first characterized as a proinflammatory cytokine with T helper type 1-inducing activity. However, subsequent work has demonstrated that mice deficient in IL-27 receptor (IL-27R alpha) show exacerbated inflammatory responses to a variety of challenges, suggesting that IL-27 has important immunoregulatory functions in vivo. Here we demonstrate that IL-27R alpha-deficient mice were hypersusceptible to experimental autoimmune encephalomyelitis and generated more IL-17-producing T helper cells. IL-27 acted directly on effector T cells to suppress the development of IL-17-producing T helper cells mediated by IL-6 and transforming growth factor-beta. This suppressive activity was dependent on the transcription factor STAT1 and was independent of interferon-gamma. Finally, IL-27 suppressed IL-6-mediated T cell proliferation. These data provide a mechanistic explanation for the IL-27-mediated immune suppression noted in several in vivo models of inflammation.
Collapse
MESH Headings
- Animals
- Central Nervous System/immunology
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Interferon-gamma/metabolism
- Interleukin-17/biosynthesis
- Interleukin-17/genetics
- Interleukin-6/pharmacology
- Interleukins/pharmacology
- Interleukins/physiology
- Lymph Nodes/immunology
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Receptors, Cytokine/genetics
- Receptors, Interleukin
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Marcel Batten
- Department of Molecular Biology, Genentech, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1283
|
Abstract
CD4(+) T cells have been subdivided into different subsets, largely on the basis of the cytokines they produce. These subsets include Th1, Th2 and regulatory T cells. Recently, another population of T cells have been described, namely Th17, which are characterized by their production of IL-17. Two other important cytokines, which are related to each other, are associated with the development of Th cells, namely IL-12 and IL-23. While IL-12 plays a key role in the differentiation of naïve T cells to Th1 cells, IL-23 promotes the expansion of Th17 cells. IL-12 and IL-23 are heterodimers with a shared subunit, p40. They furthermore bind to receptors which have unique and shared subunits. Several previous studies have evaluated the role of IL-12 in inflammatory diseases on the basis of p40. Therefore a reevaluation of the role of IL-12 and Th1 cells in a range of inflammatory conditions has been carried out. This new wave of studies has resulted in the recognition of the role of IL-23 and Th17 cells in inflammatory conditions, such as arthritis and inflammatory bowel disease. There is also the speculation about a possible role in type 1 diabetes.
Collapse
Affiliation(s)
- Anne Cooke
- Department of Pathology, University of Cambridge, Tennis Court Rd., Cambridge CB21QP, United Kingdom.
| |
Collapse
|
1284
|
Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2006; 177:566-73. [PMID: 16785554 DOI: 10.4049/jimmunol.177.1.566] [Citation(s) in RCA: 1228] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-17 is a proinflammatory cytokine that activates T cells and other immune cells to produce a variety of cytokines, chemokines, and cell adhesion molecules. This cytokine is augmented in the sera and/or tissues of patients with contact dermatitis, asthma, and rheumatoid arthritis. We previously demonstrated that IL-17 is involved in the development of autoimmune arthritis and contact, delayed, and airway hypersensitivity in mice. As the expression of IL-17 is also augmented in multiple sclerosis, we examined the involvement of this cytokine in these diseases using IL-17(-/-) murine disease models. We found that the development of experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis, was significantly suppressed in IL-17(-/-) mice; these animals exhibited delayed onset, reduced maximum severity scores, ameliorated histological changes, and early recovery. T cell sensitization against myelin oligodendrocyte glycoprotein was reduced in IL-17(-/-) mice upon sensitization. The major producer of IL-17 upon treatment with myelin digodendrocyte glycopritein was CD4+ T cells rather than CD8+ T cells, and adoptive transfer of IL-17(-/-) CD4+ T cells inefficiently induced EAE in recipient mice. Notably, IL-17-producing T cells were increased in IFN-gamma(-/-) cells, while IFN-gamma-producing cells were increased in IL-17(-/-) cells, suggesting that IL-17 and IFN-gamma mutually regulate IFN-gamma and IL-17 production. These observations indicate that IL-17 rather than IFN-gamma plays a crucial role in the development of EAE.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Autoantibodies/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD4-Positive T-Lymphocytes/transplantation
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Interferon-gamma/biosynthesis
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interleukin-17/biosynthesis
- Interleukin-17/deficiency
- Interleukin-17/genetics
- Interleukin-17/physiology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Yutaka Komiyama
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1285
|
Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24:677-688. [PMID: 16782025 DOI: 10.1016/j.immuni.2006.06.002] [Citation(s) in RCA: 1045] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The naive CD4 T cell is a multipotential precursor with defined antigen recognition specificity but substantial plasticity for development down distinct effector or regulatory lineages, contingent upon signals from cells of the innate immune system. The range of identified effector CD4 T cell lineages has recently expanded with description of an IL-17-producing subset, called Th17, which develops via cytokine signals distinct from, and antagonized by, products of the Th1 and Th2 lineages. Remarkably, Th17 development depends on the pleiotropic cytokine TGF-beta, which is also linked to regulatory T cell development and function, providing a unique mechanism for matching CD4 T cell effector and regulatory lineage specification. Here, we review Th17 lineage development, emphasizing similarities and differences with established effector and regulatory T cell developmental programs that have important implications for immune regulation, immune pathogenesis, and host defense.
Collapse
Affiliation(s)
- Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294; Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294.
| | - Laurie E Harrington
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Paul R Mangan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Maya Gavrieli
- Department of Pathology and Center for Immunology, Washington University School of Medicine, St. Louis, Missouri 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kenneth M Murphy
- Department of Pathology and Center for Immunology, Washington University School of Medicine, St. Louis, Missouri 63110; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
1286
|
Kleinschnitz C, Hofstetter HH, Meuth SG, Braeuninger S, Sommer C, Stoll G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp Neurol 2006; 200:480-5. [PMID: 16674943 DOI: 10.1016/j.expneurol.2006.03.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/21/2006] [Accepted: 03/04/2006] [Indexed: 10/24/2022]
Abstract
Interleukin (IL)-17A, a recently described novel T cell cytokine, orchestrates inflammation in a variety of immune-mediated diseases. In the present investigation, we analyzed the temporal gene expression pattern of IL-17A and its main regulators IL-23 and IL-15 after chronic constriction injury (CCI) of the sciatic nerve, a lesion paradigm inducing neuropathic pain, by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in mice. IL-17A displayed a monophasic expression in degenerating nerves at day 7 after CCI while transcripts for the IL-17A regulatory cytokines IL-23 and IL-15 peaked earlier. Accordingly, IL-17A positive T cells were detectable within the endoneurium of the injured nerves by immunocytochemistry. In support of a crucial role of T cell inflammation, RAG-1 knockout mice lacking functional T lymphocytes did not express IL-17A mRNA in distal nerve segments following CCI. Interestingly, T cell deficiency was associated with less thermal hyperalgesia and reduced mRNA levels for the macrophage marker molecule F4/80 and the chemokine macrophage chemoattractant protein-1 (MCP-1) after CCI. Our study supports the notion that T cells and T-cell-derived cytokines contribute to the inflammatory response after peripheral nerve injury.
Collapse
Affiliation(s)
- Christoph Kleinschnitz
- Department of Neurology, Julius-Maximilians-Universität, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
1287
|
Rangachari M, Mauermann N, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, Penninger JM, Eriksson U. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. ACTA ACUST UNITED AC 2006; 203:2009-19. [PMID: 16880257 PMCID: PMC2118365 DOI: 10.1084/jem.20052222] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Experimental autoimmune myocarditis (EAM) appears after infectious heart disease, the most common cause of dilated cardiomyopathy in humans. Here we report that mice lacking T-bet, a T-box transcription factor required for T helper (Th)1 cell differentiation and interferon (IFN)-γ production, develop severe autoimmune heart disease compared to T-bet−/− control mice. Experiments in T-bet−/−IL-4−/− and T-bet−/− IL-4Rα−/− mice, as well as transfer of heart-specific Th1 and Th2 cell lines, showed that autoimmune heart disease develops independently of Th1 or Th2 polarization. Analysis of T-bet−/−IL-12Rβ1−/− and T-bet−/− IL-12p35−/− mice then identified interleukin (IL)-23 as critical for EAM pathogenesis. In addition, T-bet−/− mice showed a marked increase in production of the IL-23–dependent cytokine IL-17 by heart-infiltrating lymphocytes, and in vivo IL-17 depletion markedly reduced EAM severity in T-bet−/− mice. Heart-infiltrating T-bet−/− CD8+ but not CD8− T cells secrete IFN-γ, which inhibits IL-17 production and protects against severe EAM. In contrast, T-bet−/− CD8+ lymphocytes completely lost their capacity to release IFN-γ within the heart. Collectively, these data show that severe IL-17–mediated EAM can develop in the absence of T-bet, and that T-bet can regulate autoimmunity via the control of nonspecific CD8+ T cell bystander functions in the inflamed target organ.
Collapse
Affiliation(s)
- Manu Rangachari
- Institute for Molecular Biotechnology of the Austrian Academy of Sciences, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
1288
|
Dunford PJ, O'Donnell N, Riley JP, Williams KN, Karlsson L, Thurmond RL. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:7062-70. [PMID: 16709868 DOI: 10.4049/jimmunol.176.11.7062] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histamine is an important inflammatory mediator that is released in airways during an asthmatic response. However, current antihistamine drugs are not effective in controlling the disease. The discovery of the histamine H4 receptor (H4R) prompted us to reinvestigate the role of histamine in pulmonary allergic responses. H4R-deficient mice and mice treated with H4R antagonists exhibited decreased allergic lung inflammation, with decreases in infiltrating lung eosinophils and lymphocytes and decreases in Th2 responses. Ex vivo restimulation of T cells showed decreases in IL-4, IL-5, IL-13, IL-6, and IL-17 levels, suggesting that T cell functions were disrupted. In vitro studies indicated that blockade of the H4R on dendritic cells leads to decreases in cytokine and chemokine production and limits their ability to induce Th2 responses in T cells. This work suggests that the H4R can modulate allergic responses via its influence on T cell activation. The study expands the known influences of histamine on the immune system and highlights the therapeutic potential of H4R antagonists in allergic conditions.
Collapse
MESH Headings
- Allergens/administration & dosage
- Animals
- Benzimidazoles/administration & dosage
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Disease Models, Animal
- Female
- Indoles/administration & dosage
- Inflammation/immunology
- Inflammation/metabolism
- Lung/immunology
- Lung/pathology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Ovalbumin/administration & dosage
- Piperazines/administration & dosage
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Histamine/deficiency
- Receptors, Histamine/genetics
- Receptors, Histamine/physiology
- Receptors, Histamine H4
- Respiratory Hypersensitivity/genetics
- Respiratory Hypersensitivity/immunology
- Respiratory Hypersensitivity/metabolism
Collapse
Affiliation(s)
- Paul J Dunford
- Johnson & Johnson Pharmaceutical Research and Development, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
1289
|
Vaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. THE JOURNAL OF IMMUNOLOGY 2006; 176:7768-74. [PMID: 16751425 DOI: 10.4049/jimmunol.176.12.7768] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-23 is a heterodimeric cytokine comprising a p19 subunit associated with the IL-12/23p40 subunit. Like IL-12, IL-23 is expressed predominantly by activated dendritic cells (DCs) and phagocytic cells, and both cytokines induce IFN-gamma secretion by T cells. The induction of experimental autoimmune encephalitis, the animal model of multiple sclerosis (MS), occurs in mice lacking IL-12, but not in mice with targeted disruption of IL-23 or both IL-12 and IL-23. Thus, IL-23 expression in DCs may play an important role in the pathogenesis of human autoimmune diseases such as MS. We quantified the expression of IL-23 in monocyte-derived DCs in MS patients and healthy donors and found that DCs from MS patients secrete elevated amounts of IL-23 and express increased levels of IL-23p19 mRNA. Consistent with this abnormality, we found increased IL-17 production by T cells from MS patients. We then transfected monocyte-derived DCs from healthy donors with antisense oligonucleotides specific for the IL-23p19 and IL-12p35 genes and found potent suppression of gene expression and blockade of bioactive IL-23 and IL-12 production without affecting cellular viability or DCs maturation. Inhibition of IL-23 and IL-12 was associated with increased IL-10 and decreased TNF-alpha production. Furthermore, transfected DCs were poor allostimulators in the MLR. Our results demonstrate that an abnormal Th1 bias in DCs from MS patients related to IL-23 exists, and that antisense oligonucleotides specific to IL-23 can be used for immune modulation by targeting DC gene expression.
Collapse
Affiliation(s)
- Adi Vaknin-Dembinsky
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
1290
|
Hofstetter HH, Lühder F, Toyka KV, Gold R. IL-17 production by thymocytes upon CD3 stimulation and costimulation with microbial factors. Cytokine 2006; 34:184-97. [PMID: 16815032 DOI: 10.1016/j.cyto.2006.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
IL-17 is a potent proinflammatory cytokine produced by activated memory T cells. Recent studies in both human autoimmune diseases and in their animal models have indicated that IL-17 rather than IFN-gamma might be the essential T-cell effector cytokine in the T-cell mediated autoimmune process. Since the thymus has a central role in maintaining T-cell self-tolerance and disturbance of thymic self-tolerance is implied in various autoimmune diseases, we here investigated the capability of murine thymocytes to produce IL-17. Our results indicate that thymocytes are a potent source of IL-17 in response to CD3 stimulation and various microbial immune stimuli and thereby show different patterns in the expression of the proinflammatory cytokines IFN-gamma and IL-17. In addition, strong differences between thymocytes and splenocytes were detected. Altered IL-17 production by thymocytes upon contact with foreign pathogens might be a key regulator in the education of adaptive immunity.
Collapse
Affiliation(s)
- Harald H Hofstetter
- Clinical Research Group for Multiple Sclerosis, Department of Neurology, University of Würzburg, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
1291
|
Sutton C, Brereton C, Keogh B, Mills KHG, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2006; 203:1685-91. [PMID: 16818675 PMCID: PMC2118338 DOI: 10.1084/jem.20060285] [Citation(s) in RCA: 809] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It was recently demonstrated that interleukin (IL)-23–driven IL-17–producing (ThIL-17) T cells mediate inflammatory pathology in certain autoimmune diseases. We show that the induction of antigen-specific ThIL-17 cells, but not T helper (Th)1 or Th2 cells, by immunization with antigens and adjuvants is abrogated in IL-1 receptor type I–deficient (IL-1RI−/−) mice. Furthermore, the incidence of experimental autoimmune encephalomyelitis (EAE) was significantly lower in IL-1RI−/− compared with wild-type mice, and this correlated with a failure to induce autoantigen-specific ThIL-17 cells, whereas induction of Th1 and Th2 responses was not substantially different. However, EAE was induced in IL-1RI−/− mice by adoptive transfer of autoantigen-specific cells from wild-type mice with EAE. IL-23 alone did not induce IL-17 production by T cells from IL-1RI−/− mice, and IL-23–induced IL-17 production was substantially enhanced by IL-1α or IL-1β, even in the absence of T cell receptor stimulation. We demonstrate essential roles for phosphatidylinositol 3-kinase, nuclear factor κB, and novel protein kinase C isoforms in IL-1– and IL-23–mediated IL-17 production. Tumor necrosis factor α also synergized with IL-23 to enhance IL-17 production, and this was IL-1 dependent. Our findings demonstrate that IL-1 functions upstream of IL-17 to promote pathogenic ThIL-17 cells in EAE.
Collapse
Affiliation(s)
- Caroline Sutton
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
1292
|
Bowman EP, Chackerian AA, Cua DJ. Rationale and safety of anti-interleukin-23 and anti-interleukin-17A therapy. Curr Opin Infect Dis 2006; 19:245-52. [PMID: 16645485 DOI: 10.1097/01.qco.0000224818.42729.67] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Interleukin-12 is a heterodimeric cytokine and an important mediator of the cellular immune response. The recent discovery of the novel cytokine interleukin-23 has led to a re-evaluation of interleukin-12 biology, as both cytokines use a common p40 subunit. This review discusses understanding of what distinguishes these related cytokines and the infection risks associated with targeting these cytokine pathways during treatment of inflammatory diseases. RECENT FINDINGS Recent work has shown that interleukin-23 stimulates the development of a distinct subset of effector T cells that produce interleukin-17A. These interleukin-17A-producing cells are critical mediators of the inflammatory response in several mouse models of autoimmunity. Although it is well established that interleukin-12 is a critical mediator of host defense, the role of the interleukin-23/interleukin-17A axis during infections has only recently been evaluated. SUMMARY Interleukin-12 and interleukin-23 have distinct roles in mediating host defense and autoimmune inflammation. Although targeting interleukin-12 and interleukin-23 simultaneously against the common p40 subunit is efficacious in clinical trials for human autoimmune diseases, targeting of interleukin-23 alone or the downstream effector cytokine interleukin-17A may be an effective treatment strategy for organ-specific autoimmune diseases. It is likely that targeting interleukin-23 or interleukin-17A alone, as opposed to targeting interleukin-12 and interleukin-23 together, will reduce the patients' risk of developing treatment-related infections.
Collapse
Affiliation(s)
- Edward P Bowman
- Discovery Research, Schering-Plough Biopharma, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
1293
|
Kreymborg K, Böhlmann U, Becher B. IL-23: changing the verdict on IL-12 function in inflammation and autoimmunity. Expert Opin Ther Targets 2006; 9:1123-36. [PMID: 16300465 DOI: 10.1517/14728222.9.6.1123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IL-12 and IL-23 are molecules mainly produced by activated accessory and antigen-presenting cells. The tools for studying the biology of IL-12 in man and laboratory rodents have greatly advanced our appreciation of the central role of this molecule in cell-mediated immunity and inflammation. In particular, IL-12 is thought to be the prime-regulator of TH1 development. Targeting what was thought to be IL-12 function in vivo, resulted in drastic amelioration of inflammation and autoimmunity firmly linking TH1 polarisation to autoimmune development. Upon discovery of IL-23 and the fact that the large subunit of IL-23 is shared by IL-12, the research community only begins to grasp that the features attributed to IL-12 and TH1 development in inflammation are, in fact, dependent on IL-23 and not on IL-12. Hence, the perception of IL-12 biology is, to a large extent, based on a mistaken identity. In this review, the authors provide an overview of their current understanding of IL-12 and IL-23 biology in inflammation and autoimmunity, and how this viewpoint has been readjusted over the past 15 years.
Collapse
Affiliation(s)
- Katharina Kreymborg
- Department of Neurology, Universitätsspital/University of Zürich, Frauenklinikstrasse 10, CH-8091 Zurich, Switzerland
| | | | | |
Collapse
|
1294
|
Tan W, Huang W, Zhong Q, Schwarzenberger P. IL-17 receptor knockout mice have enhanced myelotoxicity and impaired hemopoietic recovery following gamma irradiation. THE JOURNAL OF IMMUNOLOGY 2006; 176:6186-93. [PMID: 16670328 DOI: 10.4049/jimmunol.176.10.6186] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-17A is a T cell-derived proinflammatory cytokine required for microbial host defense. In vivo expression profoundly stimulates granulopoiesis. At baseline, the hemopoietic system of IL-17R knockout mice (IL-17Ra(-/-)) is, with the exception of increased splenic progenitor numbers, indistinguishable from normal control mice. However, when challenged with gamma irradiation, hemopoietic toxicity is significantly more pronounced in IL-17Ra(-/-) animals, with the gamma irradiation-associated LD(50) being reduced by 150 rad. In spleen-derived T cells, gamma irradiation induces significant murine IL-17A expression in vivo but not in vitro. After sublethal radiation injury (500 rad), the infusion of purified CD4(+) T cells enhances hemopoietic recovery. This recovery is significantly impaired in IL-17Ra(-/-) animals or after in vivo blockade of IL-17Ra in normal mice, resulting in a reduction of hemopoietic precursors by 50% and of neutrophils by 43%. Following sublethal radiation-induced myelosuppression, in vivo overexpression of murine IL-17A in normal mice substantially enhanced granulopoietic restoration in mice with a 4-fold increase in neutrophils and splenic precursors on day 8 (CFU-granulocyte-macrophage/granulocyte-erythrocyte-megakaryocyte-monocyte, CFU-high proliferative potential), as well as 2- and 3-fold increases of bone marrow precursors, respectively. This establishes IL-17A as a hemopoietic response cytokine to radiation injury in mice and an inducible mechanism that is required for recovery of granulopoiesis after radiation injury.
Collapse
Affiliation(s)
- Weihong Tan
- Department of Microbiology and Immunology, University of South Alabama, 301 University Boulevard, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
1295
|
Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J. Cutting Edge: Interleukin 17 Signals through a Heteromeric Receptor Complex. THE JOURNAL OF IMMUNOLOGY 2006; 177:36-9. [PMID: 16785495 DOI: 10.4049/jimmunol.177.1.36] [Citation(s) in RCA: 443] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-17 is an inflammatory cytokine produced primarily by a unique lineage of CD4 T cells that plays critical roles in the pathogenesis of multiple autoimmune diseases. IL-17RA is a ubiquitously expressed receptor that is essential for IL-17 biologic activity. Despite widespread receptor expression, the activity of IL-17 is most classically defined by its ability to induce the expression of inflammatory cytokines, chemokines, and other mediators by stromal cells. The lack of IL-17 responsiveness in mouse stromal cells genetically deficient in IL-17RA is poorly complemented by human IL-17RA, suggesting the presence of an obligate ancillary component whose activity is species specific. This component is IL-17RC, a distinct member of the IL-17R family. Thus, the biologic activity of IL-17 is dependent on a complex composed of IL-17RA and IL-17RC, suggesting a new paradigm for understanding the interactions between the expanded family of IL-17 ligands and their receptors.
Collapse
Affiliation(s)
- Dean Toy
- Department of Inflammation, Amgen, 1201 Amgen Court West, Seattle, WA 98119, USA
| | | | | | | | | | | | | | | |
Collapse
|
1296
|
Wheeler RD, Zehntner SP, Kelly LM, Bourbonnière L, Owens T. Elevated interferon gamma expression in the central nervous system of tumour necrosis factor receptor 1-deficient mice with experimental autoimmune encephalomyelitis. Immunology 2006; 118:527-38. [PMID: 16780563 PMCID: PMC1782311 DOI: 10.1111/j.1365-2567.2006.02395.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Inflammation in the central nervous system (CNS) can be studied in experimental autoimmune encephalomyelitis (EAE). The proinflammatory cytokines interferon-gamma (IFN-gamma) and tumour necrosis factor (TNF) are implicated in EAE pathogenesis. Signals through the type 1 TNF receptor (TNFR1) are required for severe EAE to develop, whereas deficiency in IFN-gamma or its receptor result in more severe EAE. We investigated IFN-gamma expression in TNFR1-deficient (TNFR1-/-) mice. We describe here that there were more IFN-gamma-secreting T cells present in the CNS of TNFR1-/- mice during EAE compared to wild-type (WT) mice, despite that clinical symptoms were mild, with delayed onset. There was greater expression of IL-12/23p40 by antigen-presenting cells in these mice, and in vitro, TNFR1-/- antigen-presenting cells induced greater secretion of IFN-gamma but not interleukin (IL)-17 when cultured with primed T cells than did WT antigen presenting cells. TNFR1-/- mice with EAE had significantly higher expression of CXCL10 mRNA (but not CCL5 mRNA) in the CNS compared to WT mice with EAE. These data demonstrate that IFN-gamma expression is enhanced in the CNS of TNFR1-/- mice with EAE and suggest that IFN-gamma levels do not necessarily correlate with EAE severity.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Gene Expression Regulation
- Interferon-gamma/analysis
- Interferon-gamma/genetics
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Type I/analysis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spinal Cord/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Rachel D Wheeler
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
| | - Simone P Zehntner
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
| | - Lisa M Kelly
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
| | - Lyne Bourbonnière
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
| | - Trevor Owens
- Neuroimmunology Unit, Montreal Neurological InstituteMontreal, Quebec, Canada
- Medical Biotechnology Centre, University of Southern DenmarkOdense C, Denmark
| |
Collapse
|
1297
|
Abstract
IL-23 induces the differentiation of naive CD4(+) T cells into highly pathogenic helper T cells (Th17/Th(IL-17)) that produce IL-17, IL-17F, IL-6, and TNF-alpha, but not IFN-gamma and IL-4. Two studies in this issue of the JCI demonstrate that blocking IL-23 or its downstream factors IL-17 and IL-6, but not the IL-12/IFN-gamma pathways, can significantly suppress disease development in animal models of inflammatory bowel disease and MS (see the related articles beginning on pages 1310 and 1317). These studies suggest that the IL-23/IL-17 pathway may be a novel therapeutic target for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yoichiro Iwakura
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
1298
|
Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, Mckenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116:1310-6. [PMID: 16670770 PMCID: PMC1451201 DOI: 10.1172/jci21404] [Citation(s) in RCA: 1231] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 02/07/2006] [Indexed: 12/11/2022] Open
Abstract
Uncontrolled mucosal immunity in the gastrointestinal tract of humans results in chronic inflammatory bowel disease (IBD), such as Crohn disease and ulcerative colitis. In early clinical trials as well as in animal models, IL-12 has been implicated as a major mediator of these diseases based on the ability of anti-p40 mAb treatment to reverse intestinal inflammation. The cytokine IL-23 shares the same p40 subunit with IL-12, and the anti-p40 mAbs used in human and mouse IBD studies neutralized the activities of both IL-12 and IL-23. IL-10-deficient mice spontaneously develop enterocolitis. To determine how IL-23 contributes to intestinal inflammation, we studied the disease susceptibility in the absence of either IL-23 or IL-12 in this model, as well as the ability of recombinant IL-23 to exacerbate IBD induced by T cell transfer. Our study shows that in these models, IL-23 is essential for manifestation of chronic intestinal inflammation, whereas IL-12 is not. A critical target of IL-23 is a unique subset of tissue-homing memory T cells, which are specifically activated by IL-23 to produce the proinflammatory mediators IL-17 and IL-6. This pathway may be responsible for chronic intestinal inflammation as well as other chronic autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- David Yen
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Jeanne Cheung
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Heleen Scheerens
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Frédérique Poulet
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Terrill McClanahan
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Brent Mckenzie
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Melanie A. Kleinschek
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Alex Owyang
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Jeanine Mattson
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Wendy Blumenschein
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Erin Murphy
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Manjiri Sathe
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Daniel J. Cua
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Robert A. Kastelein
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | - Donna Rennick
- Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, California, USA.
Schering-Plough Research Institute, Lafayette, New Jersey, USA.
Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| |
Collapse
|
1299
|
Belladonna ML, Vacca C, Volpi C, Giampietri A, Fioretti MC, Puccetti P, Grohmann U, Campanile F. IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine 2006; 34:161-9. [PMID: 16759878 DOI: 10.1016/j.cyto.2006.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 04/18/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Excessive production of proinflammatory cytokines, including TNF-alpha, IL-1, IL-6, IL-12, and IFN-gamma is thought to contribute significantly to lethality in septic shock syndromes. IL-23 is a heterodimeric cytokine that combines the p40 subunit of IL-12 with a specific p19 subunit. Similar to IL-12, IL-23 is considered to be a key immunoregulator in the response to pathogenic organisms but its contribution to Gram-negative endotoxic shock is as yet unclear. Using an established shock model with Pseudomonas aeruginosa, we found early and sustained expression of IL-23 p19 transcripts in the spleens of mice undergoing lethal challenge with the bacterium. Administration of p19-neutralizing antibody reduced mortality in a dose-dependent fashion. Survival in P. aeruginosa-challenged mice was associated with a dramatic decrease in circulating levels of the pathogenetic cytokines, TNF-alpha and IFN-gamma. Hence, IL-23 may represent a new therapeutic target in Gram-negative endotoxic shock.
Collapse
Affiliation(s)
- Maria Laura Belladonna
- Department of Experimental Medicine and Biochemical Sciences, Section of Pharmacology, University of Perugia, Via del Giochetto, Perugia 06126, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
1300
|
Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB, Jin HT, Min SY, Ju JH, Park KS, Cho YG, Yoon CH, Park SH, Sung YC, Kim HY. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:5652-61. [PMID: 16622035 DOI: 10.4049/jimmunol.176.9.5652] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.
Collapse
Affiliation(s)
- Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, 137-040 Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|