13601
|
Affiliation(s)
- Marc Fisher
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
13602
|
Mazurová Y, Látr I, Osterreicher J, Guncová I. Progressive reparative gliosis in aged hosts and interferences with neural grafts in an animal model of Huntington's disease. Cell Mol Neurobiol 2006; 26:1423-41. [PMID: 16773446 DOI: 10.1007/s10571-006-9051-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 03/08/2006] [Indexed: 01/19/2023]
Abstract
1. Neural transplantation in Huntington's diseased patients is currently the only approach in the treatment of this neurodegenerative disorder. The clinical trial, unfortunately, includes only a small number of patients until now, since many important questions have not been answered yet. One of them is only mild to moderate improvement of the state in most of grafted patients. 2. We examined the morphological correlates in the response to intrastriatal grafting of fragments of foetal rat ventral mesencephalic tissue 1 month after transplantation in male Wistar rats within varying durations (from 2 to 38 weeks) of experimentally induced neurodegenerative process of the striatum (used as a model of Huntington's disease). Our goal was to determine the impact of advanced striatal damage and gliosis on the graft viability and host-graft integration. 3. The findings can be summarized as follows: The progressive reactive gliosis, which is not able to compensate continual reduction of the grey matter leading to an extensive atrophy of the striatum in a long-term lesions, results in formation of the compact glial network. This tissue cannot be considered the suitable terrain for successful graft development and formation of host-graft interconnections. 4. The progression of irreversible morphological changes in long-lasting neurodegenerative process within the striatum can be supposed one of the important factors, which may decrease our prospect of distinct improvement after neural grafting in patients in advanced stage of Huntington's disease, who still remain the leading group in clinical trials.
Collapse
Affiliation(s)
- Yvona Mazurová
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
13603
|
Wen R, Wu V, Dmitrienko S, Yu A, Balshaw R, Keown PA. Biomarkers in transplantation: Prospective, blinded measurement of predictive value for the flow cytometry crossmatch after negative antiglobulin crossmatch in kidney transplantation. Kidney Int 2006; 70:1474-81. [PMID: 16941026 DOI: 10.1038/sj.ki.5001785] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This prospective, blinded observational study was conducted to measure the predictive value the of flow cytometric crossmatch for biopsy-proven acute rejection, graft loss, or death following kidney transplantation. Patients were selected for renal transplantation on the basis of a conventional antihuman globulin cytotoxic T-cell crossmatch. Flow crossmatch was performed simultaneously, but the results were not disclosed to the transplant team. A total of 257 kidney transplant recipients were enrolled in the study; 78 patients experienced biopsy-proven rejection in the first post-transplant year, and 41 patients lost their graft or died during the period of follow-up (mean: 2046 days). Kaplan-Meier estimates of rejection, graft loss, or patient death did not differ between subjects with a positive or negative flow crossmatch. Cox analyses showed no influence of the flow crossmatch on the risk of biopsy-proven acute rejection (P = 0.987). The sensitivity and specificity of the flow crossmatch for prediction of biopsy-proven rejection were 0.128 and 0.883, and the positive and negative post-test probabilities were 0.323 and 0.301, respectively. The magnitude of the channel shift did not influence the multivariate Cox regression model. The area under the receiver operating characteristic curve of the flow crossmatch was 0.483 (P = 0.71) and 0.572 (P = 0.38), respectively for the living and cadaver transplant recipients, indicating no discriminative value in this study population. Flow crossmatch appears to have no significant incremental value in predicting biopsy-proven acute rejection, graft loss, or death following kidney transplantation in patients who have a negative antihuman globulin cytotoxic T-cell crossmatch against their donor.
Collapse
Affiliation(s)
- R Wen
- Immunology Laboratory, Vancouver Hospital, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
13604
|
Behrman AL, Bowden MG, Nair PM. Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery. Phys Ther 2006; 86:1406-25. [PMID: 17012645 DOI: 10.2522/ptj.20050212] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Physical rehabilitation after spinal cord injury has been based on the premise that the nervous system is hard-wired and irreparable. Upon this assumption, clinicians have compensated for irremediable sensorimotor deficits using braces, assistive devices, and wheelchairs to achieve upright and seated mobility. Evidence from basic science, however, demonstrates that the central nervous system after injury is malleable and can learn, and this evidence has challenged our current assumptions. The evidence is especially compelling concerning locomotion. The purpose of this perspective article is to summarize the evidence supporting an impending paradigm shift from compensation for deficits to rehabilitation as an agent for walking recovery. A physiologically based approach for the rehabilitation of walking has developed, translating evidence for activity-dependent neuroplasticity after spinal cord injury and the neurobiological control of walking. Advanced by partnerships among neuroscientists, clinicians, and researchers, critical rehabilitation concepts are emerging for activity-based therapy to improve walking recovery, with promising clinical findings.
Collapse
Affiliation(s)
- Andrea L Behrman
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, PO Box 100154, UFHSC, Gainesville, FL 32610-0154, USA.
| | | | | |
Collapse
|
13605
|
Terashvili M, Pratt PF, Gebremedhin D, Narayanan J, Harder DR. Reactive oxygen species cerebral autoregulation in health and disease. Pediatr Clin North Am 2006; 53:1029-37, xi. [PMID: 17027622 PMCID: PMC2533262 DOI: 10.1016/j.pcl.2006.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-) and hydrogen peroxide (H2O2), act as cellular signaling molecules within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. This article focuses on the actions of ROS, such as O2.- and H2O2, and how they influence mechanisms responsible for the modulation of pressure-induced myogenic tone in the cerebral circulation and blood flow autoregulation in response to elevated arterial pressure. ROS may be a key target for therapeutic interventions in pediatric patients who have hypoxic injury or altered cerebral metabolism induced by trauma or infection.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Phillip F. Pratt
- Department of Anesthesiology and Pharmacology and Toxicology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Debebe Gebremedhin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - David R. Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
13606
|
Abstract
As populations benefit from increasing lifespans, neurodegenerative diseases have emerged as a critical health concern. How can the fruit fly, Drosophila melanogaster, contribute to curing human diseases of the nervous system? A growing number of neurodegenerative diseases, as well as other human diseases, are being modeled in Drosophila and used as a platform to identify and validate cellular pathways that contribute to neurodegeneration and to identify promising therapeutic targets by using a variety of approaches from screens to target validation. The unique properties and tools available in the Drosophila system, coupled with the fact that testing in vivo has proven highly productive, have accelerated the progress of testing therapeutic strategies in mice and, ultimately, humans. This review highlights selected recent applications to illustrate the use of Drosophila in studying neurodegenerative diseases.
Collapse
Affiliation(s)
- J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300, USA
| | | |
Collapse
|
13607
|
Dhib-Jalbut S, Arnold DL, Cleveland DW, Fisher M, Friedlander RM, Mouradian MM, Przedborski S, Trapp BD, Wyss-Coray T, Yong VW. Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol 2006; 176:198-215. [PMID: 16983747 DOI: 10.1016/j.jneuroim.2006.03.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis is considered a disease of myelin destruction; Parkinson's disease (PD), one of dopaminergic neuron depletion; ALS, a disease of motor neuron death; and Alzheimer's, a disease of plaques and tangles. Although these disorders differ in important ways, they also have common pathogenic features, including inflammation, genetic mutations, inappropriate protein aggregates (e.g., Lewy bodies, amyloid plaques), and biochemical defects leading to apoptosis, such as oxidative stress and mitochondrial dysfunction. In most disorders, it remains uncertain whether inflammation and protein aggregation are neurotoxic or neuroprotective. Elucidating the mechanisms that orchestrate neuronal diseases should facilitate development of neuroprotective and neurorestorative strategies.
Collapse
Affiliation(s)
- Suhayl Dhib-Jalbut
- UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, and The Cleveland Clinic, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13608
|
Sailor KA, Ming GL, Song H. Neurogenesis as a potential therapeutic strategy for neurodegenerative diseases. Expert Opin Biol Ther 2006; 6:879-90. [PMID: 16918255 PMCID: PMC5458419 DOI: 10.1517/14712598.6.9.879] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the adult mammalian brain, new neurons are continuously generated from a proliferating population of neural progenitor/stem cells and become incorporated into the existing neuronal circuitry via a process termed adult neurogenesis. The existence of active functional adult neurogenesis raises the exciting possibility that manipulating endogenous neural progenitors, or transplanting the progeny of exogenously expanded neural progenitors, may lead to successful cell replacement therapies for various degenerative neurological diseases. Significant effort is being made to decipher the mechanisms regulating adult neurogenesis, which may allow us to translate this endogenous neuronal replacement system into therapeutic interventions for neurodegenerative diseases. This review focuses on adult neurogenesis as a strategy to derive potential therapies, and discusses future directions in the field.
Collapse
|
13609
|
Alsberg E, von Recum HA, Mahoney MJ. Environmental cues to guide stem cell fate decision for tissue engineering applications. Expert Opin Biol Ther 2006; 6:847-66. [PMID: 16918253 DOI: 10.1517/14712598.6.9.847] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human body contains a variety of stem cells capable of both repeated self-renewal and production of specialised, differentiated progeny. Critical to the implementation of these cells in tissue engineering strategies is a thorough understanding of which external signals in the stem cell microenvironment provide cues to control their fate decision in terms of proliferation or differentiation into a desired, specific phenotype. These signals must then be incorporated into tissue regeneration approaches for regulated exposure to stem cells. The precise spatial and temporal presentation of factors directing stem cell behaviour is extremely important during embryogenesis, development and natural healing events, and it is possible that this level of control will be vital to the success of many regenerative therapies. This review covers existing tissue engineering approaches to guide the differentiation of three disparate stem cell populations: mesenchymal, neural and endothelial. These progenitor cells will be of central importance in many future connective, neural and vascular tissue regeneration technologies.
Collapse
Affiliation(s)
- Eben Alsberg
- Case Western Reserve University, Department of Biomedical Engineering, 10900 Euclid Avenue, Wickenden Building, Room 204, Cleveland, OH 44106-7207, USA.
| | | | | |
Collapse
|
13610
|
Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JF. GABA(B(1)) receptor isoforms differentially mediate the acquisition and extinction of aversive taste memories. J Neurosci 2006; 26:8800-3. [PMID: 16928868 PMCID: PMC6674388 DOI: 10.1523/jneurosci.2076-06.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conditioned taste aversion (CTA) is a form of aversive memory in which an association is made between a consumed substance and a subsequent malaise. CTA is a critical mechanism for the successful survival, and hence evolution, of most animal species. The role of excitatory neurotransmitters in the neurochemical mechanisms of CTA is well recognized; however, less is known about the involvement of inhibitory receptor systems. In particular, the potential functions of metabotropic GABA(B) receptors in CTA have not yet been fully explored. GABA(B) receptors are metabotropic GABA receptors that are comprised of two subunits, GABA(B(1)) and GABA(B(2)), which form heterodimers. The Gabbr1 gene is transcribed into two predominant isoforms, GABA(B(1a)) and GABA(B(1b)), which differ in sequence primarily by the inclusion of a pair of sushi domains (also known as short consensus repeats) in the GABA(B(1a)) N terminus. The behavioral function of mammalian GABA(B(1)) receptor isoforms is currently unknown. Here, using a point mutation strategy in mice, we demonstrate that these two GABA(B(1)) receptor isoforms are differentially involved in critical components of CTA. In contrast to GABA(B(1b))-/- and wild-type mice, GABA(B(1a))-/- mice failed to acquire CTA. In contrast, GABA(B(1b))-/- mice robustly acquired CTA but failed to show any extinction of this aversion. The data demonstrate that GABA(B) receptors are involved in both the acquisition and extinction of CTA; however, receptors containing the GABA(B(1a)) or the GABA(B(1b)) isoform differentially contribute to the mechanisms used to learn and remember the salience of aversive stimuli.
Collapse
Affiliation(s)
- Laura H. Jacobson
- Novartis Institutes for BioMedical Research, Novartis Pharma, CH-4002 Basel, Switzerland
| | - Peter H. Kelly
- Novartis Institutes for BioMedical Research, Novartis Pharma, CH-4002 Basel, Switzerland
| | - Bernhard Bettler
- Institute of Physiology, Department of Clinical-Biological Sciences, Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland, and
| | - Klemens Kaupmann
- Novartis Institutes for BioMedical Research, Novartis Pharma, CH-4002 Basel, Switzerland
| | - John F. Cryan
- Novartis Institutes for BioMedical Research, Novartis Pharma, CH-4002 Basel, Switzerland
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
13611
|
Nebert DW, Vesell ES. Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends Pharmacol Sci 2006; 27:580-6. [PMID: 17005258 DOI: 10.1016/j.tips.2006.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/31/2006] [Accepted: 09/14/2006] [Indexed: 11/26/2022]
Abstract
Between 1930 and 1990, several dozen high-penetrance, predominantly monogenic disorders were identified and characterized, which led some investigators to speculate that individualized drug treatment was just around the corner. Informative DNA tests were sought to determine genetic predisposition to toxicity and cancer, thereby identifying individuals in which a drug was likely to be effective and those at increased risk of drug toxicity. These assays represent the leading edge of phenotype-genotype association studies, which are a major goal of clinical pharmacology and pharmacogenomics. Because of the complexity of the genome, however, the task is more challenging than anticipated originally. In the past decade we have come to appreciate how difficult it is to determine unequivocally either an exact phenotype or genotype. In the near future it seems unlikely that, by themselves, either transcriptomics or proteomics will be particularly helpful in achieving individualized drug therapy. However, recent advances in metabonomics are exciting and show promise. In the future, and perhaps in combination with proteomics, metabonomics might complement genomics in achieving personalized drug therapy.
Collapse
Affiliation(s)
- Daniel W Nebert
- Division of Human Genetics, Department of Pediatrics and Molecular Developmental Biology, Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | |
Collapse
|
13612
|
Rodríguez-Gabriel MA, Watt S, Bähler J, Russell P. Upf1, an RNA helicase required for nonsense-mediated mRNA decay, modulates the transcriptional response to oxidative stress in fission yeast. Mol Cell Biol 2006; 26:6347-56. [PMID: 16914721 PMCID: PMC1592850 DOI: 10.1128/mcb.00286-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, oxidative stress triggers the activation of the Spc1/Sty1 mitogen-activated protein kinase, which in turn phosphorylates the Atf1/Pcr1 heterodimeric transcription factor to effect global changes in the patterns of gene expression. This transcriptional response is also controlled by Csx1, an RNA-binding protein that directly associates with and stabilizes atf1(+) mRNA. Here we report the surprising observation that this response also requires Upf1, a component of the nonsense-mediated mRNA decay (NMD) system. Accordingly, upf1Delta and csx1Delta strains are similarly sensitive to oxidative stress, and the effects of the mutations are not additive, suggesting that Upf1 and Csx1 work in the same pathway to stabilize atf1(+) mRNA during oxidative stress. Consistent with these observations, whole-genome expression profiling studies have shown that Upf1 controls the expression of more than 100 genes that are transcriptionally induced in response to oxidative stress, the large majority of which are also controlled by Atf1 and Csx1. The unexpected connection between an NMD factor and the oxidative stress response in fission yeast may provide important new clues about the physiological function of NMD in other species.
Collapse
Affiliation(s)
- Miguel A Rodríguez-Gabriel
- Department of Molecular Biology, MB-3, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
13613
|
Smith PM, Jeffery ND. Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury. Brain Pathol 2006; 16:99-109. [PMID: 16768749 PMCID: PMC8095982 DOI: 10.1111/j.1750-3639.2006.00001.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Detailed analysis of the structural changes that follow human clinical spinal cord injury is limited by difficulties in achieving adequate tissue fixation. This study bypasses this obstacle by examining the spinal cord from paraplegic domestic animals, enabling us to document the ultrastructural changes at different times following injury. In all but one case, injury resulted from a combination of contusion and compression. There was infarction and hemorrhage, followed by gray matter destruction and the rapid development of a variety of white matter changes including axon swelling and myelin degeneration. Axons greater than 5 microm in diameter were more susceptible to degenerative changes, whereas smaller axons, particularly those in the subpial region, were relatively well preserved. Demyelinated axons were seen within 2 weeks after injury and, at later time points, both Schwann cell and oligodendrocyte remyelination was common. More subtle white matter abnormalities were identified by examining sagittal sections, including focal accumulation of organelles in the axoplasm and partial and paranodal myelin abnormalities. These observations serve to validate observations from experimental models of spinal contusion but also highlight the complexity of naturally occurring (ie, clinical) spinal injury. They also raise the possibility that focal abnormalities such as paranodal demyelination may contribute to early axonal dysfunction and possibly to progressive tissue damage.
Collapse
Affiliation(s)
- Peter M. Smith
- Neurosciences Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nick D. Jeffery
- Neurosciences Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
13614
|
Abstract
Stem cell biology has provided constant alteration if not reversal of dogma related to the understanding of the behaviors of primitive and dynamic cells. This review summarizes recent findings on dynamic changes of phenotype that accompany the in vitro growth and differentiation of not only stem and progenitor cells, but also differentiated cells derived from a variety of normal and pathological tissues. As there are examples of apparent dedifferentiation and transdifferentiation of neural cells that appear to be terminally differentiated, there is a need to reconsider elements of cellular fate choice that have relevance to neurooncology and neural repair. Recent findings of dynamic behaviors and mixed phenotype of both normal and cancer stem cells suggest that some of the diverse lineage attributes of different solid tumors may owe their existence to dynamic cellular phenotypy gone awry.
Collapse
Affiliation(s)
- Dennis A Steindler
- The Evelyn F. and William L. McKnight Brain Institute, The University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
13615
|
Smith R, Chung H, Rundquist S, Maat-Schieman MLC, Colgan L, Englund E, Liu YJ, Roos RAC, Faull RLM, Brundin P, Li JY. Cholinergic neuronal defect without cell loss in Huntington's disease. Hum Mol Genet 2006; 15:3119-31. [PMID: 16987871 DOI: 10.1093/hmg/ddl252] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG-repeat expansion in the huntingtin (IT15) gene. The striatum is one of the regions most affected by neurodegeneration, resulting in the loss of the medium-sized spiny neurons. Traditionally, the large cholinergic striatal interneurons are believed to be spared. Recent studies demonstrate that neuronal dysfunction without cell death also plays an important role in early and mid-stages of the disease. Here, we report that cholinergic transmission is affected in a HD transgenic mouse model (R6/1) and in tissues from HD patients. Stereological analysis shows no loss of cholinergic neurons in the striatum or septum in R6/1 mice. In contrast, the levels of mRNA and protein for vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) are decreased in the striatum and cortex, and acetylcholine esterase activity is lowered in the striatum of R6/1 mice already at young ages. Accordingly, VAChT is also reduced in striatal tissue from patients with HD. The decrease of VAChT in the patient samples studied is restricted to the striatum and does not occur in the hippocampus or the spinal cord. The expression and localization of REST/NRSF, a transcriptional regulator for the VAChT and ChAT genes, are not altered in cholinergic neurons. We show that the R6/1 mice exhibit severe deficits in learning and reference memory. Taken together, our data show that the cholinergic system is dysfunctional in R6/1 and HD patients. Consequently, they provide a rationale for testing of pro-cholinergic drugs in this disease.
Collapse
Affiliation(s)
- Ruben Smith
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13616
|
Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 2006; 15:3132-45. [PMID: 16984965 PMCID: PMC2799943 DOI: 10.1093/hmg/ddl253] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The variability in phenotypic presentations and the lack of consistency of genetic associations in mental illnesses remain a major challenge in molecular psychiatry. Recently, it has become increasingly clear that altered promoter DNA methylation could play a critical role in mediating differential regulation of genes and in facilitating short-term adaptation in response to the environment. Here, we report the investigation of the differential activity of membrane-bound catechol-O-methyltransferase (MB-COMT) due to altered promoter methylation and the nature of the contribution of COMT Val158Met polymorphism as risk factors for schizophrenia and bipolar disorder by analyzing 115 post-mortem brain samples from the frontal lobe. These studies are the first to reveal that the MB-COMT promoter DNA is frequently hypomethylated in schizophrenia and bipolar disorder patients, compared with the controls (methylation rate: 26 and 29 versus 60%; P=0.004 and 0.008, respectively), particularly in the left frontal lobes (methylation rate: 29 and 30 versus 81%; P=0.003 and 0.002, respectively). Quantitative gene-expression analyses showed a corresponding increase in transcript levels of MB-COMT in schizophrenia and bipolar disorder patients compared with the controls (P=0.02) with an accompanying inverse correlation between MB-COMT and DRD1 expression. Furthermore, there was a tendency for the enrichment of the Val allele of the COMT Val158Met polymorphism with MB-COMT hypomethylation in the patients. These findings suggest that MB-COMT over-expression due to promoter hypomethylation and/or hyperactive allele of COMT may increase dopamine degradation in the frontal lobe providing a molecular basis for the shared symptoms of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Psychiatry at Massachusetts Mental Health Center and Harvard Institute of Psychiatric Epidemiology and Genetics, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13617
|
Fujita T, Kambe N, Uchiyama T, Hori T. Type I Interferons Attenuate T Cell Activating Functions of Human Mast Cells by Decreasing TNF-α Production and OX40 Ligand Expression While Increasing IL-10 Production. J Clin Immunol 2006; 26:512-8. [PMID: 16988887 DOI: 10.1007/s10875-006-9043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/22/2006] [Indexed: 11/29/2022]
Abstract
Recent studies have demonstrated that mast cells not only mediate inflammatory reactions in type I allergy but also play an important role in adaptive immunity. In the present study, we investigated the effects of interferon-alpha, which shares the same receptor as IFN-beta, on human cord blood-derived mast cells. Mast cells produced TNF-alpha, and IL-10, and expressed OX40 ligand upon activation by crosslinking of FcepsilonRI. When treated with interferon-alpha, TNF-alpha production was decreased while IL-10 and TGF-beta productions were increased. Furthermore, flow cytometric analysis revealed that interferon-alpha downregulated expression OX40 ligand on mast cells which is crucial for mast cell-T cell interaction. We confirmed that the viability of mast cells was not affected by interferon-alpha treatment. Accordingly, interferon-alpha-treated mast cells induced lower levels of CD4+ T cell proliferation compared with those without interferon-alpha treatment. These results suggest that type I interferons suppress T cell immune responses through their regulatory effects on mast cells.
Collapse
Affiliation(s)
- Tomoko Fujita
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
13618
|
Ryan AB, Zeitlin SO, Scrable H. Genetic interaction between expanded murine Hdh alleles and p53 reveal deleterious effects of p53 on Huntington's disease pathogenesis. Neurobiol Dis 2006; 24:419-27. [PMID: 16978870 PMCID: PMC1803079 DOI: 10.1016/j.nbd.2006.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/17/2006] [Accepted: 08/02/2006] [Indexed: 11/16/2022] Open
Abstract
Huntingtin, the protein product of the Huntington's disease (HD) gene, is known to interact with the tumor suppressor p53. It has recently been shown that activation of p53 upregulates the level of huntingtin, both in vitro and in vivo, whereas p53 deficiency in HD-transgenic flies and mice has been found to be beneficial. To explore further the involvement of p53 in HD pathogenesis, we generated mice homozygous for a mutant allele of Hdh (HdhQ140) and with zero, one, or two functional alleles of p53. p53 deficiency resulted in a reduction of mutant huntingtin expression in brain and testis, an increase in proenkephalin mRNA expression and a significant increase in nuclear aggregate formation in the striatum. Because aggregation of mutant huntingtin is suggested to be a protective mechanism, both the increase in aggregate load and the restoration of proenkephalin expression suggest a functional rescue of at least several aspects of the HD phenotype by a deficiency in p53.
Collapse
Affiliation(s)
- Amy B Ryan
- Department of Neuroscience, University of Virginia School of Medicine, P.O. Box 801392, Charlottesville, VA 22908-1392, USA
| | | | | |
Collapse
|
13619
|
Milakovic T, Quintanilla RA, Johnson GVW. Mutant huntingtin expression induces mitochondrial calcium handling defects in clonal striatal cells: functional consequences. J Biol Chem 2006; 281:34785-95. [PMID: 16973623 DOI: 10.1074/jbc.m603845200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Huntington disease (HD) is caused by a pathological elongation of CAG repeats in the huntingtin protein gene and is characterized by atrophy and neuronal loss primarily in the striatum. Mitochondrial dysfunction and impaired Ca2+ homeostasis in HD have been suggested previously. Here, we elucidate the effects of Ca2+ on mitochondria from the wild type (STHdhQ7/Q7) and mutant (STHdhQ111/Q111) huntingtin-expressing cells of striatal origin. When treated with increasing Ca2+ concentrations, mitochondria from mutant huntingtin-expressing cells showed enhanced sensitivity to Ca2+, as they were more sensitive to Ca2+-induced decreases in state 3 respiration and DeltaPsim, than mitochondria from wild type cells. Further, mutant huntingtin-expressing cells had a reduced mitochondrial Ca2+ uptake capacity in comparison with wild type cells. Decreases in state 3 respiration were associated with increased mitochondrial membrane permeability. The DeltaPsim defect was attenuated in the presence of ADP and the decreases in Ca2+ uptake capacity were abolished in the presence of Permeability Transition Pore (PTP) inhibitors. These findings clearly indicate that mutant huntingtin-expressing cells have mitochondrial Ca2+ handling defects that result in respiratory deficits and that the increased sensitivity to Ca2+ induced mitochondrial permeabilization maybe a contributing mechanism to the mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Tamara Milakovic
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | | | |
Collapse
|
13620
|
Grunkemeier GL, Jin R, Starr A. Prosthetic heart valves: Objective Performance Criteria versus randomized clinical trial. Ann Thorac Surg 2006; 82:776-80. [PMID: 16928482 DOI: 10.1016/j.athoracsur.2006.06.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 11/21/2022]
Abstract
The current Food and Drug Administration (FDA) heart valve guidance document uses an objective performance criteria (OPC) methodology to evaluate the clinical performance of prosthetic heart valves. OPC are essentially historical controls, but they have turned out to be an adequate, and perhaps optimal, study design in this situation. Heart valves have a simple open-and-close mechanism, device effectiveness is easy to document, and the common complications (thromboembolism, thrombosis, bleeding, leak, and infection) are well known and easily detected. Thus, randomized clinical trials (RCTs) have not been deemed necessary for the regulatory approval of prosthetic heart valves. The OPC are derived from the average complication rates of all approved heart valves. Studies based on OPC have been shown to work well; many different valve models have gained FDA market approval based on this methodology. Although heart valve RCTs are not required by the FDA, they have been done to compare valves or treatment regimens after approval. Recently, the Artificial Valve Endocarditis Reduction Trial (AVERT) was designed to compare a new Silzone sewing ring, designed to reduce infection, with the Standard sewing ring on a St. Jude Medical heart valve. This was the largest heart valve RCT ever proposed (4,400 valve patients, followed for as long as 4 years), but it was stopped prematurely because of a high leak rate associated with the Silzone valve. Examining the results showed that a much smaller, OPC-based study with 800 patient-years would have been sufficient to disclose this complication of the Silzone valve.
Collapse
|
13621
|
de Vries NA, Beijnen JH, Boogerd W, van Tellingen O. Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 2006; 6:1199-209. [PMID: 16893347 DOI: 10.1586/14737175.6.8.1199] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The blood-brain barrier (BBB) is of pivotal importance to maintain homeostasis of the CNS, as it closely regulates the composition of the interstitial fluid in the brain. Unfortunately, malignancies that grow within the CNS may evade chemotherapeutic drugs using the same barrier, making this disease refractory to most chemotherapy regimens. This review will outline the impact of the BBB in brain cancer and discuss the efforts that have been made to enhance the drug exposure of brain tumors. Although this review will focus on the role of the BBB in primary brain cancer (malignant glioma), its impact on brain metastases will also be briefly discussed.
Collapse
Affiliation(s)
- Nienke A de Vries
- The Netherlands Cancer Institute, Department of Clinical Chemistry, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
13622
|
Liu-Snyder P, Borgens RB, Shi R. Hydralazine rescues PC12 cells from acrolein-mediated death. J Neurosci Res 2006; 84:219-27. [PMID: 16619236 DOI: 10.1002/jnr.20862] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acrolein, a major lipid peroxidation product, has been associated with both CNS trauma and neurodegenerative diseases. Because of its long half-life, acrolein is a potent endogenous toxin capable of killing healthy cells during the secondary injury process. Traditionally, attempts to intervene in the process of progressive cell death after the primary injury have included scavenging reactive oxygen species (so-called free radicals). The animal data supporting such an approach have generally been positive, but all human clinical trials attempting a similar outcome in human CNS injury have failed. New drugs that might reduce toxicity by scavenging the products of lipid peroxidation present a promising, and little investigated, therapeutic approach. Hydralazine, a well-known treatment for hypertension, has been reported to react with acrolein, forming hydrazone in cell-free systems. In the companion paper, we have established an acrolein-mediated cell injury model using PC12 cells in vitro. Here we test the hypothesis that the formation of hydrazone adducts with acrolein is able to reduce acrolein toxicity and spare a significant percentage of the population of PC12 cells from death. Concentrations of approximately 1 mM of this aldehyde scavenger can rescue over 80% of the population of PC12 cells. This study provides a basis for a new pharmacological treatment to reduce the effects of secondary injury in the damaged and/or diseased nervous system. In particular, we describe the need for new drugs that possess aldehyde scavenging properties but do not interfere with the regulation of blood pressure.
Collapse
Affiliation(s)
- Peishan Liu-Snyder
- Center for Paralysis Research, Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907-2096, USA
| | | | | |
Collapse
|
13623
|
Dydak U, Schär M. MR spectroscopy and spectroscopic imaging: comparing 3.0 T versus 1.5 T. Neuroimaging Clin N Am 2006; 16:269-83, x. [PMID: 16731366 DOI: 10.1016/j.nic.2006.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vivo magnetic resonance spectroscopy (MR spectroscopy) offers the unique possibility to monitor human brain metabolism in a noninvasive way. At 3.0 T, MR spectroscopy not only profits from higher available signal compared with 1.5 T, but from increased chemical shift dispersion as well. These gains may be exchanged into increased spatial resolution or speed in MR spectroscopic imaging. However, some adverse effects related to the higher field strength, such as increased field inhomogeneities and sequence restrictions caused by safety limitations need to be considered. These require protocol adaptations and technical advances that have not yet fully found their way onto the clinical platform. If neglected, effects such as chemical shift misregistration at higher field strength can lead to wrong localizations or loss of signals of certain metabolites, which can intervene with the diagnostic value of a spectrum. This article tries to give an understanding of the potentials and challenges of MR spectroscopy at the higher field strength of 3.0 T, and to give insight into new techniques that hopefully soon will become available in daily clinical routine to fully exploit all benefits of the higher field strength.
Collapse
Affiliation(s)
- Ulrike Dydak
- Institute for Biomedical Engineering, University and ETH Zurich, CH-8092 Zurich, Switzerland.
| | | |
Collapse
|
13624
|
Ates O, Cayli S, Gurses I, Yucel N, Iraz M, Altinoz E, Kocak A, Yologlu S. Effect of pinealectomy and melatonin replacement on morphological and biochemical recovery after traumatic brain injury. Int J Dev Neurosci 2006; 24:357-63. [PMID: 16959465 DOI: 10.1016/j.ijdevneu.2006.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/26/2006] [Accepted: 08/01/2006] [Indexed: 12/18/2022] Open
Abstract
Numerous studies showed that melatonin, a free radical scavenger, is neuroprotective. In this study, we investigated the effect of pinealectomy and administration of exogenous melatonin on oxidative stress and morphological changes after experimental brain injury. The animals were divided into six groups, each having 12 rats. Group 1 underwent craniotomy alone. Group 2 underwent craniotomy followed by brain trauma and received no medication. Group 3 underwent craniotomy followed by brain trauma and received melatonin. Group 4 underwent pinealectomy and craniotomy alone. Group 5 underwent pinealectomy and craniotomy followed by brain injury and received no medication. Group 6 underwent pinealectomy and craniotomy followed by brain trauma and received melatonin. Melatonin (100 mg/kg) was given intraperitoneally immediately after trauma to the rats in Groups 3 and 6. Pinealectomy caused a significant increase in the malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), and xanthine oxidase (XO) levels, and a decrease in GSH levels as compared to the control group. Trauma to pinealectomized rats causes significantly higher oxidative stress. Exogeneous melatonin administration significantly reduced MDA, XO and NO levels, increased GSH levels, and attenuated tissue lesion area. These findings suggest that reduction in endogenous melatonin after pinealectomy makes the rats more vulnerable to trauma, and exogenous melatonin administration has an important neuroprotective effect.
Collapse
Affiliation(s)
- Ozkan Ates
- Inonu University, School of Medicine, Department of Neurosurgery, Turgut Ozal Medical Center, 44069 Malatya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
13625
|
Miao ZH, Rao VA, Agama K, Antony S, Kohn KW, Pommier Y. 4-nitroquinoline-1-oxide induces the formation of cellular topoisomerase I-DNA cleavage complexes. Cancer Res 2006; 66:6540-5. [PMID: 16818625 DOI: 10.1158/0008-5472.can-05-4471] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RecQ helicase BLM-deficient cells are characteristically hypersensitive to 4-nitroquinoline-1-oxide (4NQO). We recently reported that isogenic BLM-deficient cells (PNSG13) are more sensitive than BLM-complemented cells (PNSF5) to camptothecin, which specifically traps topoisomerase I cleavage complexes (Top1cc). We now report that PNSG13 are also 3.5-fold more sensitive to 4NQO compared with PNSF5 and that 4NQO induces higher levels of Top1cc and reduced histone gamma-H2AX in PSNG13 than in PNSF5. Similarly, 4NQO induces more Top1cc in primary fibroblasts from a patient with Bloom syndrome than in normal human fibroblasts. 4NQO also induces Top1cc in colon cancer HCT116 and HT29 cells in a time- and concentration-dependent fashion. Of note, distinct from camptothecin, the Top1cc produced by 4NQO accumulate progressively after 4NQO addition and persist following 4NQO removal. The Top1cc induced by 4NQO are detectable by alkaline elution. To examine the functional relevance of the Top1cc induced by 4NQO, we used two stable topoisomerase I small interfering RNA (siRNA) cell lines derived from HCT116 and MCF7 cells. Both topoisomerase I siRNA cell lines are resistant to 4NQO, indicating that Top1cc contribute to the cellular activity of 4NQO. Collectively, these data show that 4NQO is an effective inducer of cellular Top1cc. Because 4NQO does not directly trap Top1cc in biochemical assays, we propose that active metabolites of 4NQO trap Top1cc by forming DNA adducts. Induction of Top1cc and histone gamma-H2AX by 4NQO may contribute to the cellular effects of 4NQO, including its selective activity toward RecQ helicase BLM-deficient cells.
Collapse
Affiliation(s)
- Ze-Hong Miao
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
13626
|
Jomura S, Uy M, Mitchell K, Dallasen R, Bode CJ, Xu Y. Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells. Stem Cells 2006; 25:98-106. [PMID: 16960128 DOI: 10.1634/stemcells.2006-0055] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Potential therapeutic effects of Oct-4-positive rat umbilical cord matrix (RUCM) cells in treating cerebral global ischemia were evaluated using a reproducible model of cardiac arrest (CA) and resuscitation in rats. Animals were randomly assigned to four groups: A, sham-operated; B, 8-minute CA without pretreatment; C, 8-minute CA pretreated with defined media; and D, 8-minute CA pretreated with Oct-4(+) RUCM cells. Pretreatment was done 3 days before CA by 2.5-microl microinjection of defined media or approximately 10(4) Oct-4(+) RUCM cells in left thalamic nucleus, hippocampus, corpus callosum, and cortex. Damage was assessed histologically 7 days after CA and was quantified by the percentage of injured neurons in hippocampal CA1 regions. Little damage (approximately 3%-4%) was found in the sham group, whereas 50%-68% CA1 pyramidal neurons were injured in groups B and C. Pretreatment with Oct-4(+) RUCM cells significantly (p < .001) reduced neuronal loss to 25%-32%. Although the transplanted cells were found to have survived in the brain with significant migration, few were found directly in CA1. Therefore, transdifferentiation and fusion with host cells cannot be the predominant mechanisms for the observed protection. The Oct-4(+) RUCM cells might repair nonfocal tissue damage by an extracellular signaling mechanism. Treating cerebral global ischemia with umbilical cord matrix cells seems promising and worthy of further investigation.
Collapse
Affiliation(s)
- Sachiko Jomura
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
13627
|
Abstract
Neurological disease (ND) is one of the greatest challenges facing our population, from medical, financial, and social perspectives. The application of new research approaches to understand the underlying pathogenesis of ND is critical. In this article, we review the use of microarray analysis in Parkinson's disease (PD). Microarrays have tremendous power, simultaneously querying the expression of tens of thousands of genes from a given biological sample. Coupled with impressive advances in statistical tools for analyzing large, complex data sets, well-designed microarray experiments are poised to make a big impact in the field of ND. Parkinson's disease is a devastating neurodegenerative disease well suited to a systems-based microarray analysis. Genetic and environmental rodent models of PD emulate many of the cardinal features of human PD, providing the unique opportunity to compare gene expression profiles from different etiologies of the same disease. The elucidation of important gene expression patterns during disease will make possible identification of genetic susceptibility markers, biomarkers of disease progression, and new therapeutic targets.
Collapse
Affiliation(s)
- Renee M. Miller
- />Center for Aging and Developmental Biology, University of Rochester, 601 Elmwood Ave, Box 645, 14642 Rochester, NY
| | - Howard J. Federoff
- />Center for Aging and Developmental Biology, University of Rochester, 601 Elmwood Ave, Box 645, 14642 Rochester, NY
- />Department of Neurology, University of Rochester, Rochester, New York
| |
Collapse
|
13628
|
Montine TJ, Woltjer RL, Pan C, Montine KS, Zhang J. Liquid chromatography with tandem mass spectrometry-based proteomic discovery in aging and Alzheimer's disease. NeuroRx 2006; 3:336-43. [PMID: 16815217 PMCID: PMC3593378 DOI: 10.1016/j.nurx.2006.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systems biology offers enormous potential to understand the complexity of human brain aging and neurodegenerative diseases. Proteomics has an important role in these investigations because of its unique strengths and because of the potential central pathogenic contribution of pathological protein to several of these diseases. Here we have reviewed the methods and presented some examples of liquid chromatography-electrospray ionization-tandem mass spectrometry-based proteomics, with and without quantification using isotope-coded affinity tags, in the investigation of aging and Alzheimer's disease. As protocols and methods for improved quantitative high-throughput proteomics constantly improve, this approach will likely continue to provide deeper insight into human brain aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas J Montine
- Department of Pathology, University of Washington, Harborview Medical Center, Seattle, Washington 98104, USA.
| | | | | | | | | |
Collapse
|
13629
|
Abstract
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
13630
|
Abstract
Spinal cord injury (SCI) can lead to paraplegia or quadriplegia. Although there are no fully restorative treatments for SCI, various rehabilitative, cellular and molecular therapies have been tested in animal models. Many of these have reached, or are approaching, clinical trials. Here, we review these potential therapies, with an emphasis on the need for reproducible evidence of safety and efficacy. Individual therapies are unlikely to provide a panacea. Rather, we predict that combinations of strategies will lead to improvements in outcome after SCI. Basic scientific research should provide a rational basis for tailoring specific combinations of clinical therapies to different types of SCI.
Collapse
Affiliation(s)
- Sandrine Thuret
- Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King's College London, P.O. Box 39, 1-2 WW Ground, Denmark Hill, London SE5 8AF, UK
| | | | | |
Collapse
|
13631
|
Bjerre D, Madsen LB, Bendixen C, Larsen K. Porcine Parkin: Molecular cloning of PARK2 cDNA, expression analysis, and identification of a splicing variant. Biochem Biophys Res Commun 2006; 347:803-13. [PMID: 16844087 DOI: 10.1016/j.bbrc.2006.06.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 06/28/2006] [Indexed: 01/11/2023]
Abstract
Parkin, encoded by the PARK2 gene, is an E3 ligase which functions as an integral component of the cytoplasmic ubiquitin/proteasomal protein degradation pathway. Mutations in the PARK2 gene, resulting in the loss of parkin function, leads to autosomal recessive juvenile Parkinsonism (AR-JP). This work reports the cloning and characterization of the porcine (Sus scrofa) PARK2 cDNA (SsPARK2) and splicing variants hereof. The PARK2 cDNA was amplified by the reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The porcine PARK2 cDNA codes for a protein of 461 amino acids which shows a high similarity to orangutan (91%), human (86%), and to rat (82%) parkin. A splicing variant of the porcine PARK2 with a complete deletion of exon 9 was also identified. Expression analysis by quantitative real-time RT-PCR revealed presence of PARK2 transcript in all examined organs and tissues. Differential expression was observed, with very high levels of PARK2 mRNA in cerebellum, heart, and kidney. In addition, expression analysis showed that porcine PARK2 transcripts could be detected early in embryo development in different brain regions. The porcine PARK2 orthologue was mapped to chromosome 1p24-25. Single nucleotide polymorphism (SNP) analysis revealed seven SNPs in the porcine PARK2 gene, one missense and one silent mutation in exon 7 and five SNPs in intron 7.
Collapse
Affiliation(s)
- Ditte Bjerre
- Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, Tjele, Denmark
| | | | | | | |
Collapse
|
13632
|
Qiao F, Atkinson C, Song H, Pannu R, Singh I, Tomlinson S. Complement plays an important role in spinal cord injury and represents a therapeutic target for improving recovery following trauma. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1039-47. [PMID: 16936276 PMCID: PMC1698827 DOI: 10.2353/ajpath.2006.060248] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2006] [Indexed: 11/20/2022]
Abstract
Initiation of an inflammatory cascade following traumatic spinal cord injury (SCI) is thought to cause secondary injury and to adversely impact functional recovery, although the mechanisms involved are not well defined. We report on the dynamics of complement activation and deposition in the mouse spinal cord following traumatic injury, the role of complement in the development of SCI, and the characterization of a novel targeted complement inhibitor. Following traumatic injury, mice deficient in C3 had a significantly improved locomotor score when compared with wild-type controls, and analysis of their spinal cords revealed significantly more tissue sparing, with significantly less necrosis, demyelination, and neutrophil infiltration. Wild-type mice were also treated with CR2-Crry, a novel inhibitor of complement activation that targets to sites of C3 deposition. A single intravenous injection of CR2-Crry 1 hour after traumatic injury improved functional outcome and pathology to an extent similar to that seen in C3-deficient animals. CR2-Crry specifically targeted to the injured spinal cord in a distribution pattern corresponding to that seen for deposited C3. As immunosuppression is undesirable in patients following SCI, targeted CR2-Crry may provide appropriate bioavailability to treat SCI at a dose that does not significantly affect systemic levels of serum complement activity.
Collapse
Affiliation(s)
- Fei Qiao
- Department of Microbiology and Immunology, Children's Research Institute, BSB 203, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
13633
|
Scherwath A. Reply to ‘Promotion of neurogenesis by human stem cells in high-risk breast cancer survivals after stem-cell supported high-dose therapy’ by K. Altundag et al. (Ann Oncol 2006; 17: 1465). Ann Oncol 2006. [DOI: 10.1093/annonc/mdl051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13634
|
Jiang W, Tucci FC, Chen CW, Arellano M, Tran JA, White NS, Marinkovic D, Pontillo J, Fleck BA, Wen J, Saunders J, Madan A, Foster AC, Chen C. Arylpropionylpiperazines as antagonists of the human melanocortin-4 receptor. Bioorg Med Chem Lett 2006; 16:4674-8. [PMID: 16777413 DOI: 10.1016/j.bmcl.2006.05.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 05/23/2006] [Accepted: 05/30/2006] [Indexed: 11/20/2022]
Abstract
A series of 3-arylpropionylpiperazines were synthesized as antagonists of the melanocortin-4 receptor. Their potency was found to be increased by replacing the alpha-methyl substituent of the initial lead 11 with a larger s-Bu or i-Bu group. Further potency enhancement was observed when a glycine or beta-alanine was incorporated onto the benzylamine. Some compounds demonstrated good potency, moderate selectivity, and oral bioavailability.
Collapse
Affiliation(s)
- Wanlong Jiang
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., San Diego, CA 92130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13635
|
Chen CW, Tran JA, Jiang W, Tucci FC, Arellano M, Wen J, Fleck BA, Marinkovic D, White NS, Pontillo J, Saunders J, Madan A, Foster AC, Chen C. Propionylpiperazines as human melanocortin-4 receptor ligands. Bioorg Med Chem Lett 2006; 16:4800-3. [PMID: 16824757 DOI: 10.1016/j.bmcl.2006.06.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 11/22/2022]
Abstract
A series of alpha-benzylpropionylpiperazines were synthesized and tested as antagonists of the melanocortin-4 receptor. In addition to its high potency and selectivity, R-11a had desirable pharmacokinetic properties including high brain penetration in mice.
Collapse
Affiliation(s)
- Caroline W Chen
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13636
|
Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 2006; 7:697-709. [PMID: 16924259 DOI: 10.1038/nrn1970] [Citation(s) in RCA: 1223] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Behavioural, cellular and molecular studies have revealed significant effects of enriched environments on rodents and other species, and provided new insights into mechanisms of experience-dependent plasticity, including adult neurogenesis and synaptic plasticity. The demonstration that the onset and progression of Huntington's disease in transgenic mice is delayed by environmental enrichment has emphasized the importance of understanding both genetic and environmental factors in nervous system disorders, including those with Mendelian inheritance patterns. A range of rodent models of other brain disorders, including Alzheimer's disease and Parkinson's disease, fragile X and Down syndrome, as well as various forms of brain injury, have now been compared under enriched and standard housing conditions. Here, we review these findings on the environmental modulators of pathogenesis and gene-environment interactions in CNS disorders, and discuss their therapeutic implications.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, National Neuroscience Facility, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
13637
|
Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L. Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: A permeability study. Brain Res 2006; 1109:1-13. [PMID: 16857178 DOI: 10.1016/j.brainres.2006.06.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/12/2006] [Accepted: 06/11/2006] [Indexed: 11/15/2022]
Abstract
Endothelial cells in vivo are continuously exposed to shear stress, a tangential force generated by the flow of blood across their apical surfaces that affects endothelial cell structure and function. By contrast, the Transwell apparatus cannot reproduce the presence of intraluminal blood flow that is essential for the formation and differentiation of the BBB. In contrast, the dynamic in vitro model of the BBB (DIV-BBB) mimics both functionally and anatomically the brain microvasculature, creating quasi-physiological conditions for co-culturing human and non-human endothelial cells and astrocytes in a capillary-like structure. We used intraluminal bovine aortic endothelial cells (BAEC) co-cultured with extraluminal glial cells (C6) to obtain elevated trans-endothelial electrical resistance (TEER) and selective permeability to sucrose and phenytoin. The experiments were performed in parallel using Transwell systems DIV-BBB models and data were then cross compared. By contrast with Transwell, C6 and BAEC co-cultured in the DIV-BBB demonstrated predominantly aerobic metabolism evidenced by a robust increase in glucose consumption that was paralleled by a similar change in lactate production. BAEC exposed to glia under dynamic conditions grow in a monolayer fashion and developed a more stringent barrier as demonstrated by high TEER values and a selective permeability to [14C] phenytoin and the well-known paracellular marker [3H] sucrose. In conclusion, these data demonstrate that the exposure to intraluminal flow plays an essential role in promoting endothelial cell differentiation and increasing BBB tightness, thus making the use of the DIV-BBB well suited for pharmacological studies.
Collapse
Affiliation(s)
- Stefano Santaguida
- Division of Cerebrovascular Research, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
13638
|
Siuciak JA, Chapin DS, McCarthy SA, Guanowsky V, Brown J, Chiang P, Marala R, Patterson T, Seymour PA, Swick A, Iredale PA. CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 2006; 52:279-90. [PMID: 16949622 DOI: 10.1016/j.neuropharm.2006.07.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 07/12/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
CP-809,101 is a potent, functionally selective 5-HT(2C) agonist that displays approximately 100% efficacy in vitro. The aim of the present studies was to assess the efficacy of a selective 5-HT(2C) agonist in animal models predictive of antipsychotic-like efficacy and side-effect liability. Similar to currently available antipsychotic drugs, CP-809,101 dose-dependently inhibited conditioned avoidance responding (CAR, ED(50)=4.8 mg/kg, sc). The efficacy of CP-809,101 in CAR was completely antagonized by the concurrent administration of the 5-HT(2C) receptor antagonist, SB-224,282. CP-809,101 antagonized both PCP- and d-amphetamine-induced hyperactivity with ED(50) values of 2.4 and 2.9 mg/kg (sc), respectively and also reversed an apomorphine induced-deficit in prepulse inhibition. At doses up to 56 mg/kg, CP-809,101 did not produce catalepsy. Thus, the present results demonstrate that the 5-HT(2C) agonist, CP-809,101, has a pharmacological profile similar to that of the atypical antipsychotics with low extrapyramidal symptom liability. CP-809,101 was inactive in two animal models of antidepressant-like activity, the forced swim test and learned helplessness. However, CP-809,101 was active in novel object recognition, an animal model of cognitive function. These data suggest that 5-HT(2C) agonists may be a novel approach in the treatment of psychosis as well as for the improvement of cognitive dysfunction associated with schizophrenia.
Collapse
Affiliation(s)
- Judith A Siuciak
- CNS Discovery, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13639
|
Zhang Z, Andersen AH, Ai Y, Loveland A, Hardy PA, Gerhardt GA, Gash DM. Assessing nigrostriatal dysfunctions by pharmacological MRI in parkinsonian rhesus macaques. Neuroimage 2006; 33:636-43. [PMID: 16949305 DOI: 10.1016/j.neuroimage.2006.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/07/2006] [Accepted: 07/07/2006] [Indexed: 11/23/2022] Open
Abstract
New imaging techniques are needed to longitudinally monitor the development, progression and treatment of Parkinson's disease. The present study was designed to test whether the blood oxygenation level-dependent (BOLD) response to dopaminergic stimulation as measured by pharmacological MRI (phMRI) correlated to specific histological and behavioral features of the parkinsonian state. Nine adult rhesus monkeys were rendered hemiparkinsonian by intracarotid administration of MPTP. Three months after MPTP treatment, the trained, MRI-adapted awake animals were scanned with a phMRI technique while being administered a presynaptic (D-amphetamine) or postsynaptic (apomorphine) dopamine stimulating agents. The primary findings were (1) the putamen and substantia nigra (SN) but not the caudate nucleus displayed significant BOLD responses to these dopaminergic drugs; (2) a significant relationship was found between amphetamine-evoked activation and the number of surviving dopamine neurons in the SN, which was also correlated with bradykinesia; and (3) inverse relationships were seen in response to apomorphine and amphetamine stimulation between the MPTP-lesioned and unlesioned putamen and SN. The results suggest that phMRI may prove useful for longitudinally monitoring the progression and treatment of PD.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
13640
|
Wang ZJ, Wang LX. Phosphorylation: A molecular switch in opioid tolerance. Life Sci 2006; 79:1681-91. [PMID: 16831450 DOI: 10.1016/j.lfs.2006.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 04/26/2006] [Accepted: 05/24/2006] [Indexed: 02/07/2023]
Abstract
Protein phosphorylation is a key posttranslational modification mechanism controlling the conformation and activity of many proteins. Increasing evidence has implicated an essential role of phosphorylation by several major protein kinases in promoting and maintaining opioid tolerance. We review some of the most recent studies on protein kinase C (PKC), cyclic AMP dependent protein kinase A (PKA), calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase G (PKG), and G protein receptor kinase (GRK). These kinases act as the molecular switches to modulate opioid tolerance. Pharmacological interventions at one or more of the protein kinases and phosphatases may provide valuable strategies to improve opioid analgesia by attenuating tolerance to these drugs.
Collapse
Affiliation(s)
- Zaijie Jim Wang
- Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, IL 60612, USA.
| | | |
Collapse
|
13641
|
Yang SH, Shetty RA, Liu R, Sumien N, Heinrich KR, Rutledge M, Thangthaeng N, Brun-Zinkernagel AM, Forster MJ. Endovascular middle cerebral artery occlusion in rats as a model for studying vascular dementia. AGE (DORDRECHT, NETHERLANDS) 2006; 28:297-307. [PMID: 22253496 PMCID: PMC3259150 DOI: 10.1007/s11357-006-9026-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 05/31/2023]
Abstract
Vascular dementia (VaD), incorporating cognitive dysfunction with vascular disease, ranks as the second leading cause of dementia in the United States, yet no effective treatment is currently available. The challenge of defining the pathological substrates of VaD is complicated by the heterogeneous nature of cerebrovascular disease and coexistence of other pathologies, including Alzheimer's disease (AD) types of lesion. The use of rodent models of ischemic stroke may help to elucidate the type of lesions that are responsible for cognitive impairment in humans. Endovascular middle cerebral artery (MCA) occlusion in rats is considered to be a convenient and reliable model of human cerebral ischemia. Both sensorimotor and cognitive dysfunction can be induced in the rat endovascular MCA occlusion model, yet sensorimotor deficits induced by endovascular MCA occlusion may improve with time, whereas data presented in this review suggest that in rats this model can result in a progressive course of cognitive impairment that is consistent with the clinical progression of VaD. Thus far, experimental studies using this model have demonstrated a direct interaction of cerebral ischemic damage and AD-type neuropathologies in the primary ischemic area. Further, coincident to the progressive decline of cognitive function, a delayed neurodegeneration in a remote area, distal to the primary ischemic area, the hippocampus, has been demonstrated in a rat endovascular MCA occlusion model. We argue that this model could be employed to study VaD and provide insight into some of the pathophysiological mechanisms of VaD.
Collapse
Affiliation(s)
- Shao-Hua Yang
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Ritu A. Shetty
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Ran Liu
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Kevin R. Heinrich
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Margaret Rutledge
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Nopporn Thangthaeng
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Anne-Marie Brun-Zinkernagel
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Michael J. Forster
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| |
Collapse
|
13642
|
Sun SW, Liang HF, Le TQ, Armstrong RC, Cross AH, Song SK. Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage 2006; 32:1195-204. [PMID: 16797189 DOI: 10.1016/j.neuroimage.2006.04.212] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/22/2006] [Accepted: 04/28/2006] [Indexed: 11/21/2022] Open
Abstract
Decreased axial (lambda(||)) and increased radial (lambda( perpendicular)) diffusivity have been shown to reflect axonal and myelin injury respectively. In the present study, evolving white matter injury within the optic nerves of mice with retinal ischemia was examined by in vivo and ex vivo measurements of lambda(||) and lambda( perpendicular). The results show that at 3 days after retinal ischemia, a 33% decrease in vivo and a 38% decrease ex vivo in lambda(||) without change in lambda( perpendicular) was observed in the injured optic nerve compared to the control, suggestive of axonal damage without myelin injury. At 14 days, both in vivo and ex vivo measured lambda( perpendicular) increased significantly to 220-240% of the control level in the injured optic nerve suggestive of myelin damage. In contrast, the axonal injury that was clearly detected in vivo as a significantly decreased lambda(||) (33% decrease) was not as clearly detected by ex vivo lambda(||) (17% decrease). The current findings suggest that ex vivo lambda( perpendicular) is comparable to in vivo lambda( perpendicular) in detecting myelin injury. However, the structural changes resulting from axonal damage causing the decreased in vivo lambda(||) may not be preserved ex vivo in the fixed tissues. Despite the accurate depiction of the pathology using lambda(||) and lambda( perpendicular) in vivo, the use of ex vivo lambda(||) to extrapolate the status of axonal injury in vivo would require further investigation.
Collapse
Affiliation(s)
- Shu-Wei Sun
- Department of Radiology, Biomedical MR Laboratory, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
13643
|
Stephenson D, Ramirez A, Long J, Barrezueta N, Hajos-Korcsok E, Matherne C, Gallagher D, Ryan A, Ochoa R, Menniti F, Yan J. Quantification of MPTP-induced dopaminergic neurodegeneration in the mouse substantia nigra by laser capture microdissection. J Neurosci Methods 2006; 159:291-9. [PMID: 16949674 DOI: 10.1016/j.jneumeth.2006.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 07/03/2006] [Accepted: 07/25/2006] [Indexed: 11/29/2022]
Abstract
The neurotoxin MPTP is widely used to cause damage to the dopaminergic system in rodents and non-human primates to model various aspects of Parkinson's disease. In mice, depletion of striatal dopamine is the commonly used endpoint to assess neuronal damage. However, it has proved technically challenging to quantify dopaminergic cell bodies as an index of neuronal integrity. To meet this challenge, we applied laser pressure catapult microdissection (LCM) of the substantia nigra in combination with quantitative Western blot to provide an index of dopamine neurodegeneration in mice treated with MPTP. Seven days following initiation of MPTP treatment, striatal dopamine depletion was maximal and there was histological evidence of neuronal degeneration in the substantia nigra. To index the integrity of dopamine cell bodies, tyrosine hydroxylase (TH) and beta-actin were quantified by Western blot in LCM extracts. In untreated mice, TH was detected in LCM extracts of substantia nigra but was undetectable in equivalently sized extracts of cortex from the same animals. In MPTP-treated mice, there was a significant 70% reduction in TH relative to beta-actin in LCM extracts as compared to vehicle-injected controls. This reduction corresponded to decreases in striatal dopamine and loss of immunocytochemically detected TH but not beta-actin in the substantia nigra (SN). Thus, this method provides a quantitative means to measure dopamine neuron toxicity in the substantia nigra and, as such has potential application in evaluating regimens that may be neuroprotective or neurorestorative for dopaminergic neurons.
Collapse
Affiliation(s)
- Diane Stephenson
- Pfizer Global Research and Development, Worldwide Safety Sciences and CNS Discovery, MS8274-1348, Eastern Point Road, Groton, CT 06340, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13644
|
Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 2006; 26:1114-21. [PMID: 16736038 DOI: 10.1038/sj.jcbfm.9600348] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral ischemic preconditioning protects against stroke, but is clinically feasible only when the occurrence of stroke is predictable. Reperfusion plays a critical role in cerebral injury after stroke; we tested the hypothesis that interrupting reperfusion lessens ischemic injury. We found for the first time that such postconditioning with a series of mechanical interruptions of reperfusion significantly reduces ischemic damage. Focal ischemia was generated by permanent distal middle cerebral artery (MCA) occlusion plus transient bilateral common carotid artery (CCA) occlusion. After 30 secs of CCA reperfusion, ischemic postconditioning was performed by occluding CCAs for 10 secs, and then allowing for another two cycles of 30 secs of reperfusion and 10 secs of CCA occlusion. Infarct size was measured 2 days later. Cerebral blood flow (CBF) was measured in animals subjected to permanent MCA occlusion plus 15 mins of bilateral CCA occlusion, which demonstrates that postconditioning disturbed the early hyperemia immediately after reperfusion. Postconditioning dose dependently reduced infarct size in animals subjected to permanent MCA occlusion combined with 15, 30, and 60 mins of bilateral CCA occlusion, by reducing infarct size approximately 80%, 51%, and 17%, respectively. In addition, postconditioning blocked terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling-positive staining, a marker of apoptosis, in the penumbra 2 days after stroke. Furthermore, in situ superoxide detection using hydroethidine suggested that postconditioning attenuated superoxide products during early reperfusion after stroke. In conclusion, postconditioning reduced infarct size, most plausibly by blocking apoptosis and free radical generation. With further study it may eventually be clinically applicable for stroke treatment.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, California 94305-5327, USA.
| | | | | |
Collapse
|
13645
|
Fever and Confusion. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2006. [DOI: 10.1097/01.idc.0000228071.82778.fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13646
|
Ross AP, Christian SL, Zhao HW, Drew KL. Persistent tolerance to oxygen and nutrient deprivation and N-methyl-D-aspartate in cultured hippocampal slices from hibernating Arctic ground squirrel. J Cereb Blood Flow Metab 2006; 26:1148-56. [PMID: 16395285 DOI: 10.1038/sj.jcbfm.9600271] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hibernating Arctic ground squirrel (hAGS), Spermophilus parryii, survive profound decreases in cerebral perfusion during torpor and return to normal blood flow during intermittent rewarming periods without neurologic damage. Hibernating AGS tolerate traumatic brain injury in vivo, and acute hippocampal slices from hibernating animals tolerate oxygen and glucose deprivation. It remains unclear, however, if neuroprotection results from intrinsic tissue properties or from differences in response to acute trauma associated with slice preparation. The goal of this work was therefore to determine whether an intrinsic tissue tolerance persists in chronic culture of AGS hippocampal slices at 37 degrees C. A second goal was to address N-methyl-D-aspartate (NMDA) receptor involvement and channel arrest as potential mechanisms of intrinsic tissue tolerance. Baseline neuronal survival and tolerance to oxygen and nutrient deprivation (OND), an in vitro model of ischemia-reperfusion, were assessed in the CA1 region of hippocampal slices from juvenile, hAGS and interbout euthermic AGS (ibeAGS). Early in culture (insult onset at 3 h), slices from both hAGS and ibeAGS tolerate OND (4 h deprivation followed by 20 h recovery) and 500 micromol/L NMDA plus 20 mmol/L KCl. Later in culture (insult onset at 24 h), tolerance persists in slices from hAGS but not in slices from ibeAGS. Ouabain (Na(+)K(+)ATPase inhibitor) administered 24 h in culture enhances survival of slices from hAGS (assessed 24 h later). Thus, tolerance to OND in slices from hAGS is due to intrinsic tissue properties likely involving NMDA receptors and ion channel arrest.
Collapse
Affiliation(s)
- Austin P Ross
- Alaskan Basic Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, 99775-7000, USA
| | | | | | | |
Collapse
|
13647
|
Monien BH, Apostolova LG, Bitan G. Early diagnostics and therapeutics for Alzheimer's disease--how early can we get there? Expert Rev Neurother 2006; 6:1293-306. [PMID: 17009917 PMCID: PMC2715564 DOI: 10.1586/14737175.6.9.1293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is a major threat for the rapidly aging world population. AD is the leading cause of dementia and a major cause of death in developed countries. The disease puts a tremendous practical, emotional and financial burden on individuals and governments. Clinicians and researchers in the AD field face great challenges: the pathophysiological processes that cause AD are not well understood, definite diagnosis of AD requires autopsy, and therapeutic options are limited to treating the symptoms rather than the cause of the disease. Nevertheless, new insights into the earliest events that lead to development of AD increase hope that reliable diagnostics and efficacious therapies may emerge.
Collapse
Affiliation(s)
- Bernhard H Monien
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Neuroscience Research Building 1, Room 455, 635 Charles E. Young Drive South, Los Angeles, CA 90095-7334, USA, Tel.: +1 310 206 2300, Fax: +1 310 206 1700,
| | - Liana G Apostolova
- Tichi Wilkerson-Kassel Dementia Scholar, UCLA Alzheimer’s Disease Center, 10911 Weyburn Ave., 2nd Floor, Los Angeles, CA 90095-7226, USA, Tel.: +1 310 794 2551, Fax: +1 310 794 3148,
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Neuroscience Research Building 1, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA 90095-7334, USA, Tel.: +1 310 206 2082, Fax: +1 310 206 1700,
| |
Collapse
|
13648
|
Farr TD, Carswell HVO, Gallagher L, Condon B, Fagan AJ, Mullin J, Macrae IM. 17β-Estradiol treatment following permanent focal ischemia does not influence recovery of sensorimotor function. Neurobiol Dis 2006; 23:552-62. [PMID: 16759876 DOI: 10.1016/j.nbd.2006.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/07/2006] [Accepted: 04/24/2006] [Indexed: 11/23/2022] Open
Abstract
The development of therapy to aid poststroke recovery is essential. The female hormone 17beta-estradiol has been shown to promote synaptogenesis; the purpose of this study was to attempt to harness these mechanisms to promote repair and recovery in the peri-infarct zone. Rats were ovariectomized, tested for sensorimotor function, and the middle cerebral artery permanently occluded (MCAO). Infarct volumes were calculated using MRI, and damage was equivalent in all animals prior to implantation of either 17beta-estradiol or placebo pellets. Animals were tested for functional recovery for 28 days and tissue processed for synaptic marker syntaxin immunohistochemistry. The stroke induced a significant behavioral deficit, which persisted out to 28 days, and was not significantly different between 17beta-estradiol and placebo treatment groups. There was no difference in syntaxin immunostaining between groups in either the peri-infarct cortex or in the dendritic CA1 reference region. In conclusion, 17beta-estradiol treatment, delivered poststroke, did not influence recovery of function or synaptogenesis.
Collapse
Affiliation(s)
- Tracy D Farr
- 7TMRI Facility and Wellcome Surgical Institute, Division of Clinical Neuroscience, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, Scotland G61 1QH, UK.
| | | | | | | | | | | | | |
Collapse
|
13649
|
Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller JN. Protein oxidation and cellular homeostasis: Emphasis on metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:93-104. [PMID: 17023064 DOI: 10.1016/j.bbamcr.2006.08.039] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) are generated as the result of a number of physiological and pathological processes. Once formed ROS can promote multiple forms of oxidative damage, including protein oxidation, and thereby influence the function of a diverse array of cellular processes. This review summarizes the mechanisms by which ROS are generated in a variety of cell types, outlines the mechanisms which control the levels of ROS, and describes specific proteins which are common targets of ROS. Additionally, this review outlines cellular processes which can degrade or repair oxidized proteins, and ultimately describes the potential outcomes of protein oxidation on cellular homeostasis. In particular, this review focuses on the relationship between elevations in protein oxidation and multiple aspects of cellular metabolism. Together, this review describes a potential role for elevated levels of protein oxidation contributing to cellular dysfunction and oxidative stress via impacts on cellular metabolism.
Collapse
Affiliation(s)
- Valentina Cecarini
- Post Graduate School of Clinical Biochemistry, Departments of Molecular and Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
13650
|
Kim JH, Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, Kim KW. Blood-neural barrier: intercellular communication at glio-vascular interface. BMB Rep 2006; 39:339-45. [PMID: 16889675 DOI: 10.5483/bmbrep.2006.39.4.339] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The blood-neural barrier (BNB), including blood-brain barrier (BBB) and blood-retinal barrier (BRB), is an endothelial barrier constructed by an extensive network of endothelial cells, astrocytes and neurons to form functional "neurovascular units", which has an important role in maintaining a precisely regulated microenvironment for reliable neuronal activity. Although failure of the BNB may be a precipitating event or a consequence, the breakdown of BNB is closely related with the development and progression of CNS diseases. Therefore, BNB is most essential in the regulation of microenvironment of the CNS. The BNB is a selective diffusion barrier characterized by tight junctions between endothelial cells, lack of fenestrations, and specific BNB transporters. The BNB have been shown to be astrocyte dependent, for it is formed by the CNS capillary endothelial cells, surrounded by astrocytic end-foot processes. Given the anatomical associations with endothelial cells, it could be supposed that astrocytes play a role in the development, maintenance, and breakdown of the BNB. Therefore, astrocytes-endothelial cells interaction influences the BNB in both physiological and pathological conditions. If we better understand mutual interactions between astrocytes and endothelial cells, in the near future, we could provide a critical solution to the BNB problems and create new opportunities for future success of treating CNS diseases. Here, we focused astrocyte-endothelial cell interaction in the formation and function of the BNB.
Collapse
Affiliation(s)
- Jung Hun Kim
- Neurovascular Coordination Research Center, Division of Pharmaceutical Bioscience, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|