1401
|
Abe K, Saito H. Both oxidative stress-dependent and independent effects of amyloid beta protein are detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction assay. Brain Res 1999; 830:146-54. [PMID: 10350568 DOI: 10.1016/s0006-8993(99)01421-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay has been widely used for evaluating amyloid beta protein (Abeta) toxicity. However, the potency of Abeta in inhibiting cellular MTT reduction and the underlying mechanism have been reported with some discrepancies among researchers. To understand what makes such discrepancies, the effect of Abeta detected by MTT reduction assay was re-examined in detail by using cultured rat hippocampal neurons. Micromolar concentrations (>10 microM) of Abeta caused a decrease in cell viability, which resulted in a decrease in MTT reduction per well regardless of assay time. The micromolar Abeta-induced decrease of cellular MTT reduction was significantly attenuated by antioxidants (catalase, propyl gallate or Trolox). On the other hand, nanomolar Abeta did not affect cellular MTT reduction activity at an initial stage of assay (<1 h), and decreased the total production of MTT formazan by accelerating the exocytosis of MTT formazan when MTT assay was performed for a longer time (>2 h). The assay time-dependent, nanomolar Abeta-induced decrease of cellular MTT reduction was not at all affected by antioxidants. Furthermore, subtoxic concentration of H2O2 failed to mimic the effect of nanomolar Abeta on MTT reduction. These results indicate that micromolar Abeta-induced, oxidative cell death is detected by MTT assay regardless of assay time, whereas nanomolar Abeta-induced acceleration of MTT formazan exocytosis is not mediated by oxidative stress and detected only when MTT assay is performed for a longer time. The time of MTT assay should be properly chosen depending on the purpose of the study.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
1402
|
Bianca VD, Dusi S, Bianchini E, Dal Prà I, Rossi F. beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease. J Biol Chem 1999; 274:15493-9. [PMID: 10336441 DOI: 10.1074/jbc.274.22.15493] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deposition of beta-amyloid in the brain is the key pathogenetic event in Alzheimer's disease. Among the various mechanisms proposed to explain the neurotoxicity of beta-amyloid deposits, a new one, recently identified in our and other laboratories, suggests that beta-amyloid is indirectly neurotoxic by activating microglia to produce toxic inflammatory mediators such as cytokines, nitric oxide, and oxygen free radicals. Three findings presented here support this mechanism, showing that beta-amyloid peptides (25-35), (1-39), and (1-42) activated the classical NADPH oxidase in rat primary culture of microglial cells and human phagocytes: 1) The exposure of the cells to beta-amyloid peptides stimulates the production of reactive oxygen intermediates; 2) the stimulation is associated with the assembly of the cytosolic components of NADPH oxidase on the plasma membrane, the process that corresponds to the activation of the enzyme; 3) neutrophils and monocytes of chronic granulomatous disease patients do not respond to beta-amyloid peptides with the stimulation of reactive oxygen intermediate production. Data are also presented that the activation of NADPH oxidase requires that beta-amyloid peptides be in fibrillary state, is inhibited by inhibitors of tyrosine kinases or phosphatidylinositol 3-kinase and by dibutyryl cyclic AMP, and is potentiated by interferon-gamma or tumor necrosis factor-alpha.
Collapse
Affiliation(s)
- V D Bianca
- Institute of General Pathology, University of Verona, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
1403
|
Kane MD, Schwarz RD, St Pierre L, Watson MD, Emmerling MR, Boxer PA, Walker GK. Inhibitors of V-type ATPases, bafilomycin A1 and concanamycin A, protect against beta-amyloid-mediated effects on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 1999; 72:1939-47. [PMID: 10217271 DOI: 10.1046/j.1471-4159.1999.0721939.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functional viability of cells can be evaluated using a number of different assay determinants. One common assay involves exposing cells to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which is converted intracellularly to a colored formazan precipitate and often used to assess amyloid peptide-induced cytotoxic effects. The MTT assay was employed to evaluate the role of endosomal uptake and lysosomal acidification in amyloid peptide-treated differentiated PC12 cell cultures using selective vacuolar-type (V-type) ATPase inhibitors. The macrolides bafilomycin A1 (BAF) and concanamycin A (CON) block lysosomal acidification through selective inhibition of the V-type ATPase. Treating nerve growth factor-differentiated PC12 cells with nanomolar concentrations of BAF or CON provides complete protection against the effects of beta-amyloid peptides Abeta(1-42), Abeta(1-40), and Abeta(25-35) and of amylin on MTT dye conversion. These macrolides do not inhibit peptide aggregation, act as antioxidants, or inhibit Abeta uptake by cells. Measurements of lysosomal acidification reveal that the concentrations of BAF and CON effective in reversing Abeta-mediated MTT dye conversion also reverse lysosomal pH. These results suggest that lysosomal acidification is necessary for Abeta effects on MTT dye conversion.
Collapse
Affiliation(s)
- M D Kane
- Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | |
Collapse
|
1404
|
Esler WP, Stimson ER, Fishman JB, Ghilardi JR, Vinters HV, Mantyh PW, Maggio JE. Stereochemical specificity of Alzheimer's disease beta-peptide assembly. Biopolymers 1999; 49:505-14. [PMID: 10193196 DOI: 10.1002/(sici)1097-0282(199905)49:6<505::aid-bip8>3.0.co;2-i] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The formation and growth of insoluble amyloid deposits composed primarily of the human beta-amyloid peptide (A beta) in brain is an essentially invariant feature of Alzheimer's disease (AD) and is widely believed to contribute to the progressive neurodegeneration of the disorder. To probe the specificity of amyloid formation and growth, we synthesized and examined the self-assembly of D- and L-stereoisomers of A beta in vitro. While both enantiomers formed insoluble aggregates at similar rates with amyloid-like fibrillar morphology, deposition of soluble A beta peptide onto preexisting A beta aggregates was stereospecific. Although the L-peptide deposited readily onto immobilized L-A beta aggregates with first-order kinetic dependence on soluble peptide concentration, essentially no association between the D-peptide and L-template was observed. Similarly, the D-peptide deposited with first-order kinetics onto a D-A beta aggregate template but did not deposit onto a similar template composed of aggregates of the L-enantiomer. Furthermore, although the L-A beta isomer deposited onto authentic AD amyloid in preparations of unfixed AD brain, no focal association between the D-peptide and brain amyloid was detected. These results establish that deposition of soluble A beta onto preexisting amyloid template is stereospecific, likely involving direct docking interactions between peptide backbone and/or side chains rather than simple hydrophobic association.
Collapse
Affiliation(s)
- W P Esler
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
1405
|
Gahtan E, Overmier JB. Inflammatory pathogenesis in Alzheimer's disease: biological mechanisms and cognitive sequeli. Neurosci Biobehav Rev 1999; 23:615-33. [PMID: 10392655 DOI: 10.1016/s0149-7634(98)00058-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Experimental evidence from molecular biology, biochemistry, epidemiology and behavioral research support the conclusion that brain inflammation contributes to the pathogenesis of Alzheimer's disease and other types of human dementias. Aspects of neuroimmunology relating to the pathogenesis of Alzheimer's disease are briefly reviewed. The effects of brain inflammation, mediated through cytokines and other secretory products of activated glial cells, on neurotransmission (specifically, nitric oxide, glutamate, and acetylcholine), amyloidogenesis, proteolysis, and oxidative stress are discussed within the context of the pathogenesis of learning and memory dysfunction in Alzheimer's disease. Alzheimer's disease is proposed to be an etiologically heterogeneous syndrome with the common elements of amyloid deposition and inflammatory neuronal damage.
Collapse
Affiliation(s)
- E Gahtan
- Department of Psychology, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
1406
|
Liu Y. Understanding the biological activity of amyloid proteins in vitro: from inhibited cellular MTT reduction to altered cellular cholesterol homeostatis. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:377-95. [PMID: 10378224 DOI: 10.1016/s0278-5846(99)00003-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. MTT is taken into the cell through endocytosis and is reduced and accumulated in a population of acidic vesicles. Reduced MTT formazan is exocytosed to form needle-like formazan crystals at the cell surface. Mitochondria are unlikely to play a significant role in cellular MTT reduction. 2. Amyloid fibrils inhibit cellular MTT reduction indirectly by enhancing MTT formazan exocytosis. All protein fibrils with beta-pleated sheet structure which have been examined enhance MTT formazan exocytosis and induce neurotoxicity. 3. Cellular free cholesterol regulates the exocytosis of the intracellular MTT formazan-transporting vesicles and these vesicles may be involved in cellular cholesterol homeostasis. 4. Amyloid fibrils inhibit cholesterol esterification and alter the distribution of free cholesterol in neurons. 5. Amyloid fibril-induced alterations in cellular cholesterol metabolism and vesicle trafficking may contribute to neurodegeneration in vivo.
Collapse
Affiliation(s)
- Y Liu
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, USA
| |
Collapse
|
1407
|
Storey E, Cappai R. The amyloid precursor protein of Alzheimer's disease and the Abeta peptide. Neuropathol Appl Neurobiol 1999; 25:81-97. [PMID: 10215996 DOI: 10.1046/j.1365-2990.1999.00164.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease is characterized by the accumulation of beta amyloid peptides in plaques and vessel walls and by the intraneuronal accumulation of paired helical filaments composed of hyperphosphorylated tau. In this review, we concentrate on the biology of amyloid precursor protein, and on the central role of amyloid in the pathogenesis of Alzheimer's disease. Amyloid precursor protein (APP) is part of a super-family of transmembrane and secreted proteins. It appears to have a number of roles, including regulation of haemostasis and mediation of neuroprotection. APP also has potentially important metal and heparin-binding properties, and the current challenge is to synthesize all these varied activities into a coherent view of its function. Cleavage of amyloid precursor protein by beta-and gamma-secretases results in the generation of the Abeta (betaA4) peptide, whereas alpha-secretase cleaves within the Abeta sequence and prevents formation from APP. Recent findings indicate that the site of gamma-secretase cleavage is critical to the development of amyloid deposits; Abeta1-42 is much more amyloidogenic than Abeta1-40. Abeta1-42 formation is favoured by mutations in the two presenilin genes (PS1 and PS2), and by the commonest amyloid precursor protein mutations. Transgenic mouse models of Alzheimer's disease incorporating various mutations in the presenilin gene now exist, and have shown amyloid accumulation and cognitive impairment. Neurofibrillary tangles have not been reproduced in these models, however. While aggregated Abeta is neurotoxic, perhaps via an oxidative mechanism, the relationship between such toxicity and neurofibrillary tangle formation remains a subject of ongoing research.
Collapse
Affiliation(s)
- E Storey
- Van Cleef/Roet Centre for Nervous Diseases, Monash University (Alfred Hospital Campus), Prahran, Victoria, Australia
| | | |
Collapse
|
1408
|
Van Muiswinkel FL, Raupp SF, de Vos NM, Smits HA, Verhoef J, Eikelenboom P, Nottet HS. The amino-terminus of the amyloid-beta protein is critical for the cellular binding and consequent activation of the respiratory burst of human macrophages. J Neuroimmunol 1999; 96:121-30. [PMID: 10227431 DOI: 10.1016/s0165-5728(99)00019-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here, we show that amyloid-beta (Abeta) is capable to prime and activate the respiratory burst of human macrophages. Previously, the N-terminus of Abeta(1-42) has been shown to contain a cell binding domain that is implicated in eliciting neuropathogenic microglia in vitro. To evaluate the role of this domain in the Abeta(1-42)-induced respiratory burst activity, the effect of Abeta subfragments on the Abeta(1-42)-induced superoxide release were studied. On the basis of the antagonistic properties of Abeta(1-16), it is concluded that the N-terminal region of Abeta is critical for the cellular binding and consequent activation of the respiratory burst of human phagocytes.
Collapse
Affiliation(s)
- F L Van Muiswinkel
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences, Vrije Universiteit, Faculty of Medicine, Department of Pharmacology, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
1409
|
Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 1999; 84:489-97. [PMID: 10082470 DOI: 10.1161/01.res.84.5.489] [Citation(s) in RCA: 553] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules and engages diverse ligands relevant to distinct pathological processes. One class of RAGE ligands includes glycoxidation products, termed advanced glycation end products, which occur in diabetes, at sites of oxidant stress in tissues, and in renal failure and amyloidoses. RAGE also functions as a signal transduction receptor for amyloid beta peptide, known to accumulate in Alzheimer disease in both affected brain parenchyma and cerebral vasculature. Interaction of RAGE with these ligands enhances receptor expression and initiates a positive feedback loop whereby receptor occupancy triggers increased RAGE expression, thereby perpetuating another wave of cellular activation. Sustained expression of RAGE by critical target cells, including endothelium, smooth muscle cells, mononuclear phagocytes, and neurons, in proximity to these ligands, sets the stage for chronic cellular activation and tissue damage. In a model of accelerated atherosclerosis associated with diabetes in genetically manipulated mice, blockade of cell surface RAGE by infusion of a soluble, truncated form of the receptor completely suppressed enhanced formation of vascular lesions. Amelioration of atherosclerosis in these diabetic/atherosclerotic animals by soluble RAGE occurred in the absence of changes in plasma lipids or glycemia, emphasizing the contribution of a lipid- and glycemia-independent mechanism(s) to atherogenesis, which we postulate to be interaction of RAGE with its ligands. Future studies using mice in which RAGE expression has been genetically manipulated and with selective low molecular weight RAGE inhibitors will be required to definitively assign a critical role for RAGE activation in diabetic vasculopathy. However, sustained receptor expression in a microenvironment with a plethora of ligand makes possible prolonged receptor stimulation, suggesting that interaction of cellular RAGE with its ligands could be a factor contributing to a range of important chronic disorders.
Collapse
Affiliation(s)
- A M Schmidt
- Division of Surgical Science, Department of Surgery, College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
1410
|
Sano H, Nagai R, Matsumoto K, Horiuchi S. Receptors for proteins modified by advanced glycation endproducts (AGE)--their functional role in atherosclerosis. Mech Ageing Dev 1999; 107:333-46. [PMID: 10360686 DOI: 10.1016/s0047-6374(99)00011-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term incubation of proteins with glucose leads, through the formation of early stage products such as Schiff base and Amadori rearrangement products, to the formation of advanced glycation end products (AGE). Recent studies of AGE-structures as well as the receptor for AGE-proteins (AGE-receptors) have emphasized the involvement of protein modification by AGE in aging and age-enhanced disease processes. Immunohistochemical analyses of human atherosclerotic lesions using a monoclonal anti-AGE antibody have demonstrated diffuse extracellular AGE-deposition as well as dense intracellular AGE-deposition in macrophage- and vascular smooth muscle cell (SMC)-derived foam cells. In vitro experiments using both CHO cells overexpressing macrophage scavenger receptor-A (MSR-A) and peritoneal macrophages from MSR-A-knockout mice have shown that the MSR-A plays a major role in endocytic uptake of AGE-proteins by macrophages. Furthermore, in vitro experiments with rabbit arterial SMCs demonstrated a novel AGE-receptor mediating endocytosis of AGE-proteins. These in vivo and in vitro experiments suggest that AGE-proteins formed extracellularly in atherosclerotic lesions are endocytosed by macrophages through MSR-A in the early stage, and by SMCs through the novel AGE-receptor in the advanced stage, implicating functional contribution of the AGE-receptor-mediated interaction of AGE-proteins with these cells to atherosclerotic processes in arterial walls.
Collapse
Affiliation(s)
- H Sano
- Department of Biochemistry, Kumamoto University School of Medicine, Japan
| | | | | | | |
Collapse
|
1411
|
Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan SS, Potter H, Nilsson LN. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences. J Biol Chem 1999; 274:6421-31. [PMID: 10037734 DOI: 10.1074/jbc.274.10.6421] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) has been associated with Alzheimer's disease (AD) because APP is processed into the beta-peptide that accumulates in amyloid plaques, and APP gene mutations can cause early onset AD. Inflammation is also associated with AD as exemplified by increased expression of interleukin-1 (IL-1) in microglia in affected areas of the AD brain. Here we demonstrate that IL-1alpha and IL-1beta increase APP synthesis by up to 6-fold in primary human astrocytes and by 15-fold in human astrocytoma cells without changing the steady-state levels of APP mRNA. A 90-nucleotide sequence in the APP gene 5'-untranslated region (5'-UTR) conferred translational regulation by IL-1alpha and IL-1beta to a chloramphenicol acetyltransferase (CAT) reporter gene. Steady-state levels of transfected APP(5'-UTR)/CAT mRNAs were unchanged, whereas both base-line and IL-1-dependent CAT protein synthesis were increased. This APP mRNA translational enhancer maps from +55 to +144 nucleotides from the 5'-cap site and is homologous to related translational control elements in the 5'-UTR of the light and and heavy ferritin genes. Enhanced translation of APP mRNA provides a mechanism by which IL-1 influences the pathogenesis of AD.
Collapse
Affiliation(s)
- J T Rogers
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
1412
|
Nakai M, Hojo K, Yagi K, Saito N, Taniguchi T, Terashima A, Kawamata T, Hashimoto T, Maeda K, Gschwendt M, Yamamoto H, Miyamoto E, Tanaka C. Amyloid beta protein (25-35) phosphorylates MARCKS through tyrosine kinase-activated protein kinase C signaling pathway in microglia. J Neurochem 1999; 72:1179-86. [PMID: 10037491 DOI: 10.1046/j.1471-4159.1999.0721179.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.
Collapse
Affiliation(s)
- M Nakai
- Hyogo Institute for Aging Brain and Cognitive Disorders, Himeji, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1413
|
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder characterized by loss of cognitive skills and progressive dementia. The pathological hallmark of AD is the presence of numerous senile plaques throughout the hippocampus and cerebral cortex associated with degenerating axons, neurofibrillary tangles, and gliosis. The core of the senile plaque primarily is composed of the 39-43 amino acid beta-amyloid peptide (Abeta), which forms fibrils of beta-pleated sheets. Although considerable genetic evidence implicates Abeta in the pathogenesis of AD, a direct causal link remains to be established. Senile plaques are foci of local inflammatory processes, as evidenced by the presence of numerous activated microglia and acute phase proteins. Abeta has been shown to elicit inflammatory responses in microglia; however, the intracellular events mediating these effects are largely unknown. We report that exposure of microglia and THP1 monocytes to fibrillar Abeta led to time- and dose-dependent increases in protein tyrosine phosphorylation of a population of proteins similar to that elicited by classical immune stimuli such as immune complexes. The tyrosine kinases Lyn, Syk, and FAK were activated on exposure of microglia and THP1 monocytes to Abeta, resulting in the tyrosine kinase-dependent generation of superoxide radicals. The present data support a role for oxidative damage in the pathogenesis of AD, provide an important mechanistic link between Abeta and the generation of reactive oxygen intermediates, and identify molecular targets for therapeutic intervention in AD.
Collapse
|
1414
|
Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y. Decrease with age in methylcytosines in the promoter region of receptor for advanced glycated end products (RAGE) gene in autopsy human cortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:124-8. [PMID: 10036314 DOI: 10.1016/s0169-328x(98)00351-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Changes with age in the methylation status of cytosines in the promoter region of the receptor for advanced glycated end products (RAGE) in autopsy human cortex were investigated, using the bisulfite method, polymerase chain reaction (PCR), and direct sequencing of PCR products. The total number of methylcytosines significantly decreased with age. While the number of methylated cytosines at CpG dinucleotides was stable throughout adult life, that at sites other than CpG dinucleotides significantly decreased with age in cases >/=70 years old. Of 13 transcription factor binding sites, cytosines in CpG doublets in NF-IL6 and SP-1 binding sites were methylated in all cases, suggesting that these sites are repressed throughout adulthood. In contrast, the number of methylcytosines in AP-2 or SP-1 binding sites located at CpC, CpA, or CTG was significantly lower or at least tended to be lower in cases >/=70 years than <70 years old. These reductions in the number of methylcytosines at transcription factor binding sites may increase expression of RAGE, which may in turn play a role in aging of the brain.
Collapse
Affiliation(s)
- H Tohgi
- Department of Neurology, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-8505, Japan
| | | | | | | | | | | |
Collapse
|
1415
|
Su GC, Arendash GW, Kalaria RN, Bjugstad KB, Mullan M. Intravascular infusions of soluble beta-amyloid compromise the blood-brain barrier, activate CNS glial cells and induce peripheral hemorrhage. Brain Res 1999; 818:105-17. [PMID: 9914443 DOI: 10.1016/s0006-8993(98)01143-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vascular wall levels of soluble beta-amyloid1-40 (Abeta1-40) are elevated in Alzheimer's disease (AD). Moreover, plasma Abeta levels are increased in familial AD, as well as in some cases of sporadic AD. To determine the histopathologic and behavioral consequences of elevated vascular Abeta levels, Abeta1-40 (50 micrograms in distilled water) or vehicle was intravenously infused twice daily into 3-month old male Sprague-Dawley rats for 2 weeks. Intravenous Abeta infusions impaired blood-brain barrier integrity, as indicated by substantial perivascular and parenchyma IgG immunostaining within the brain. Also evident in Abeta-infused animals was an increase in GFAP immunostaining around cerebral blood vessels, and an enhancement of OX-42 microglial immunostaining in brain white matter. Gross pulmonary hemorrhage was noted in most Abeta-infused animals. All the observed changes occurred in the absence of Congo red birefringence. No significant cognitive deficits were present in Abeta-infused animals during water maze acquisition and retention testing, which was conducted during the second week of treatment. These results indicate that circulating Abeta can: (1) induce vessel dysfunction/damage in both the brain and the periphery without complex Abeta fibril formation/deposition, and (2) induce an activation of brain astrocytes and microglia. Taken together, our results suggest that if circulating Abeta is elevated in AD, it is likely to have a pathophysiologic role.
Collapse
Affiliation(s)
- G C Su
- Alzheimer's Research Laboratory, Department of Biology, SCA 110, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | |
Collapse
|
1416
|
Price P, Witt C, Allcock R, Sayer D, Garlepp M, Kok CC, French M, Mallal S, Christiansen F. The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol Rev 1999; 167:257-74. [PMID: 10319267 DOI: 10.1111/j.1600-065x.1999.tb01398.x] [Citation(s) in RCA: 392] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An individual's major histocompatibility complex (MHC) ancestral haplotype (AH) is the clearest single determinant of susceptibility to MHC associated immunopathological disease, as it defines the alleles carried at all loci in the MHC. However, the direct effects of any of the 150-200 genes that constitute the MHC are difficult to determine since recombination only occurs at defined hotspots. This review concerns the 8.1 AH (HLA-A1, C7, B8, C4AQ0, C4B1, DR3, DQ2), which is carried by most Caucasians with HLA-B8. It is associated with accelerated human immunodeficiency virus (HIV) disease, and susceptibility to insulin-dependent diabetes mellitus (IDDM), systemic lupus erythematosus, dermatitis herpetiformis, common variable immunodeficiency and IgA deficiency, myasthenia gravis and several other conditions. We have mapped susceptibility genes for HIV, IDDM and myasthenia gravis to the central MHC between HLA-B and the tumour necrosis factor or complement genes. Here we consider which of the remaining 8.1-associated diseases are more closely associated with HLA-DR3 and/or DQ2. Several candidate genes in the central MHC have the potential to modulate immune or inflammatory responses in an antigen-independent manner, as is seen in studies of cultured cells from healthy carriers of the 8.1 AH. Hence these genes may act as a common co-factor in the diverse immunopathological conditions associated with the 8.1 AH.
Collapse
Affiliation(s)
- P Price
- Department of Clinical Immunology, Royal Perth Hospital, Western Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
1417
|
Abstract
AIMS We set out to examine the evidence for an association between cognitive impairment or dementia and the presence of Type 2 diabetes mellitus (DM). We also sought evidence of potential mechanisms for such an association. METHODS A literature search of three databases was performed and the reference lists of the papers so identified were examined, using English language papers only. RESULTS We found evidence of cross-sectional and prospective associations between Type 2 DM and cognitive impairment, probably both for memory and executive function. There is also evidence for an elevated risk of both vascular dementia and Alzheimer's disease in Type 2 DM albeit with strong interaction of other factors such as hypertension, dyslipidaemia and apolipoprotein E phenotype. Both vascular and non-vascular factors are likely to play a role in dementia in diabetes. CONCLUSIONS Current classification structures for dementia may not be adequate in diabetes, where mixed pathogenesis is likely. Further research into the mechanisms of cognitive impairment in Type 2 DM may allow us to challenge the concept of dementia, at least in these patients, as an irremediable disease.
Collapse
Affiliation(s)
- R Stewart
- Section of Old Age Psychiatry, Institute of Psychiatry, London, UK
| | | |
Collapse
|
1418
|
Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E, Younkin S, Borchelt DR, Hsiao KK, Carlson GA. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 1999; 2:157-61. [PMID: 10195200 DOI: 10.1038/5715] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peptides derived from proteolytic processing of the beta-amyloid precursor protein (APP), including the amyloid-beta peptide, are important for the pathogenesis of Alzheimer's dementia. We found that transgenic mice overexpressing APP have a profound and selective impairment in endothelium-dependent regulation of the neocortical microcirculation. Such endothelial dysfunction was not found in transgenic mice expressing both APP and superoxide dismutase-1 (SOD1) or in APP transgenics in which SOD was topically applied to the cerebral cortex. These cerebrovascular effects of peptides derived from APP processing may contribute to the alterations in cerebral blood flow and to neuronal dysfunction in Alzheimer's dementia.
Collapse
Affiliation(s)
- C Iadecola
- Department of Neurology, University of Minnesota, Minneapolis 55455, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1419
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a deadly outcome. AD is the leading cause of senile dementia and although the pathogenesis of this disorder is not known, various hypotheses have been developed based on experimental data accumulated since the initial description of this disease by Alois Alzheimer about 90 years ago. Most approaches to explain the pathogenesis of AD focus on its two histopathological hallmarks, the amyloid beta protein- (A(beta)-) loaded senile plaques and the neurofibrillary tangles, which consist of the filament protein tau. Various lines of genetic evidence support a central role of A(beta) in the pathogenesis of AD and an increasing number of studies show that oxidation reactions occur in AD and that A(beta) may be one molecular link between oxidative stress and AD-associated neuronal cell death. A(beta) itself can be neurotoxic and can induce oxidative stress in cultivated neurons. A(beta) is, therefore, one player in the concert of oxidative reactions that challenge neurons besides inflammatory reactions which are also associated with the AD pathology. Consequently, antioxidant approaches for the prevention and therapy of AD are of central interest. Experimental as well as clinical data show that lipophilic antioxidants, such as vitamin E and estrogens, are neuroprotective and may help patients suffering from AD. While an additional intensive elucidation of the cellular and molecular events of neuronal cell death in AD will, ultimately, lead to novel drug targets, various antioxidants are already available for a further exploitation of their preventive and therapeutic potential. reserved
Collapse
Affiliation(s)
- C Behl
- Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
1420
|
Yan SD, Shi Y, Zhu A, Fu J, Zhu H, Zhu Y, Gibson L, Stern E, Collison K, Al-Mohanna F, Ogawa S, Roher A, Clarke SG, Stern DM. Role of ERAB/L-3-hydroxyacyl-coenzyme A dehydrogenase type II activity in Abeta-induced cytotoxicity. J Biol Chem 1999; 274:2145-56. [PMID: 9890977 DOI: 10.1074/jbc.274.4.2145] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum-associated amyloid beta-peptide (Abeta)-binding protein (ERAB)/L-3-hydroxyacyl-CoA dehydrogenase type II (HADH II) is expressed at high levels in Alzheimer's disease (AD)-affected brain, binds Abeta, and contributes to Abeta-induced cytotoxicity. Purified recombinant ERAB/HADH II catalyzed the NADH-dependent reduction of S-acetoacetyl-CoA with a Km of approximately 68 microM and a Vmax of approximately 430 micromol/min/mg. The contribution of ERAB/HADH II enzymatic activity to Abeta-mediated cellular dysfunction was studied by site-directed mutagenesis in the catalytic domain (Y168G/K172G). Although COS cells cotransfected to overexpress wild-type ERAB/HADH II and variant beta-amyloid precursor protein (betaAPP(V717G)) showed DNA fragmentation, cotransfection with Y168G/K172G-altered ERAB and betaAPP(V717G) was without effect. We thus asked whether the enzyme might recognize alcohol substrates of which the aldehyde products could be cytotoxic; ERAB/HADH II catalyzed oxidation of a variety of simple alcohols (C2-C10) to their respective aldehydes in the presence of NAD+ and NAD-dependent oxidation of 17beta-estradiol. Addition of micromolar levels of synthetic Abeta(1-40) to purified ERAB/HADH II inhibited, in parallel, reduction of S-acetoacetyl-CoA (Ki approximately 1.6 microM), as well as oxidation of 17beta-estradiol (Ki approximately 3.2 microM) and (-)-2-octanol (Ki approximately 2.6 microM). Because micromolar levels of Abeta were required to inhibit ERAB/HADH II activity, whereas Abeta binding to ERAB/HADH II occurred at much lower concentrations (Km approximately 40-70 nM), the latter more closely simulating Abeta levels within cells, Abeta perturbation of ERAB/HADH II was likely to result from mechanisms other than the direct modulation of enzymatic activity. Cells cotransfected to overexpress ERAB/HADH II and betaAPP(V717G) generated malondialdehyde-protein and 4-hydroxynonenal-protein epitopes, which were detectable only at the lowest levels in cells overexpressing either ERAB/HADH II or betaAPP(V717G) alone. Generation of such toxic aldehydes was not observed in cells contransfected to overexpress Y168G/K172G-altered ERAB and betaAPP(V717G). We conclude that the generalized alcohol dehydrogenase activity of ERAB/HADH II is central to the cytotoxicity observed in an Abeta-rich environment.
Collapse
Affiliation(s)
- S D Yan
- Departments of Pathology, Physiology and Surgery, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1421
|
Nawroth PP, Bierhaus A, Vogel GE, Hofmann MA, Zumbach M, Wahl P, Ziegler R. [Non-enzymatic glycation and oxidative stress in chronic illnesses and diabetes mellitus]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1999; 94:29-38. [PMID: 10081287 DOI: 10.1007/bf03044692] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
UNLABELLED New approaches in biochemistry and molecular biology have increased the knowledge on the pathophysiology of chronic diseases as late diabetic complications, Alzheimer's disease, arteriosclerosis and vascular disease by defining the concept of "AGE-formation and oxidative stress." Nonenzymatic glycation, in which reducing sugars are covalently bound to free aminogroups of macromolecules, results in the formation of Advanced Glycation End products (AGEs) which accumulate during aging and at accelerated rate during the course of diabetes. Glycation accompanying oxidation processes support AGE-formation. AGE-formation changes the physicochemical properties of proteins, lipids and nucleic acids. In addition, binding of AGEs to specific surface receptors induces cellular signalling and cell activation. Interaction of AGEs with one of the receptors, RAGE, generates intracellular oxidative stress, which results in activation of the transcription factor NF-kappa B and subsequent gene expression, which might be relevant in late diabetic complications. CONCLUSION Knowledge of the basis molecular mechanisms allows to understand the interplay of different inducers such as redicals, cytokines, AGE-proteins and amyloid-beta-peptids and to define oxidative stress as a "common endpoint" of cell dysfunction. With respect to therapeutic options it is now possible not only to optimize blood glycemic control, but also to design drugs such as AGE-inhibitors and AGE-"cross-link" breakers. In addition patients with chronic disease associated with increased oxidative stress ay benefit from an antioxidant rich (and AGE protein poor?) nutrition.
Collapse
Affiliation(s)
- P P Nawroth
- Abteilung Innere Medizin I, Endokrinologie und Stoffwechsel, Universität Heidelberg.
| | | | | | | | | | | | | |
Collapse
|
1422
|
McShea A, Zelasko DA, Gerst JL, Smith MA. Signal transduction abnormalities in Alzheimer's disease: evidence of a pathogenic stimuli. Brain Res 1999; 815:237-42. [PMID: 9878757 DOI: 10.1016/s0006-8993(98)01135-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hippocampal and select cortical neuronal populations in Alzheimer's disease exhibit phenotypic changes characteristic of cells re-entering the cell division cycle. Therefore, in this study, we investigated whether components, known to trigger cellular proliferation and differentiation, upstream of the ras/mitogen-activated kinase pathway, could contribute to the activation of a signal transduction cascade in Alzheimer's disease. We found that proteins implicated in signal transduction from cell surface receptors via the ras pathway, namely Grb2 and SOS-1, were altered in cases of Alzheimer's disease in comparison to age-matched controls. SOS is increased in susceptible pyramidal neurons, while Grb2 shows more subtle alterations in subcellular distribution. Importantly, both SOS-1 and Grb2 show considerable overlap with early cytoskeletal abnormalities suggesting that the alteration in signal transduction molecules is a concurrent, if not preceding, event in the pathogenesis of Alzheimer's disease. Taken together with the cell cycle abnormalities previously reported, these findings suggest that a signal derived from the cell surface contributes to a stimulus for neurons in Alzheimer's disease to re-enter the cell cycle.
Collapse
Affiliation(s)
- A McShea
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
1423
|
Johnstone M, Gearing AJ, Miller KM. A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 1999; 93:182-93. [PMID: 10378882 DOI: 10.1016/s0165-5728(98)00226-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the commonest form of adult onset dementia and is characterised neuropathologically by the accumulation of plaques containing beta-amyloid (A beta) fibrils, reactive astrocytes, activated microglia, and leukocytes. A beta plays a role in the pathology of AD by directly causing neuronal cytotoxicity and stimulating microglia to secrete cytokines and reactive oxygen species (ROS) which also damage neurons. Here, we demonstrate that A beta activates astrocytes and oligodendrocytes (the most common cell types in the brain) to produce chemokines, in particular MCP-1 and RANTES, which serve as potent in vitro microglial and macrophage chemoattractants. Furthermore, we have shown that A beta activates astrocytes to upregulate pro-inflammatory cytokine expression and enhances the production of ROS. We propose therefore that A beta-mediated astrocyte activation initiates an inflammatory cascade which could be targeted for therapeutic intervention in AD.
Collapse
Affiliation(s)
- M Johnstone
- British Biotech Pharmaceuticals, Oxford, UK.
| | | | | |
Collapse
|
1424
|
Abstract
Extracellular stimuli elicit a variety of responses, such as cell proliferation and differentiation, through the cellular signalling system. Binding of growth factors to the respective receptor leads to the activation of receptor tyrosine kinases, which in turn stimulate downstream signalling systems such as mitogen-activated protein (MAP) kinases, phospholipase Cgamma (PLCgamma) and phosphatidylinositol 3-kinase. These biochemical reactions finally reach the nucleus, resulting in gene expression mediated by the activation of several transcription factors. Recent studies have revealed that cellular signalling pathways are regulated by the intracellular redox state. Generation of reactive oxygen species (ROS), such as H2O2, leads to the activation of protein tyrosine kinases followed by the stimulation of downstream signalling systems including MAP kinase and PLCgamma. The activation of PLCgamma by oxidative radical stress elevates the cellular Ca2+ levels by flux from the intracellular Ca2+ pool and from the extracellular space. Such reactions in the upstream signalling cascade, in concert, result in the activation of several transcription factors. On the other hand, reductants generally suppress the upstream signalling cascade resulting in the suppression of transcription factors. However, it is well known that cysteine residues in a reduced state are essential for the activity of many transcription factors. In fact, in vitro, oxidation of NFkappaB results in its activation, whereas reductants promote its activity. Thus, cellular signalling pathways are generally subjected to dual redox regulation in which redox has opposite effects on upstream signalling systems and downstream transcription factors. Not only are the cellular signalling pathways subjected to redox regulation, but also the signalling systems regulate the cellular redox state. When cells are activated by extracellular stimuli, the cells produce ROS, which in turn stimulate other cellular signalling pathways, indicating that ROS act as second messengers. It is thus evident that there is cross talk between the cellular signalling system and the cellular redox state. Cell death and life also are subjected to such dual redox regulation and cross talk. Death signals induce apoptosis through the activation of caspases in the cells. Oxidative radical stress induces the activation of caspases, whereas the oxidation of caspases results in their inactivation. Furthermore, some cell-death signals induce the production of ROS in the cells, and the ROS produced in turn stimulate the cell-death machinery. All this evidence shows that the cell's fate is determined by cross talk between the cellular signalling pathways and the cellular redox state through a complicated regulation mechanism.
Collapse
Affiliation(s)
- H Kamata
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Hyogo, Japan.
| | | |
Collapse
|
1425
|
Abstract
Microglia play a major role in the cellular response associated with the pathological lesions of Alzheimer's disease. As brain-resident macrophages, microglia elaborate and operate under several guises that seem reminiscent of circulating and tissue monocytes of the leucocyte repertoire. Although microglia bear the capacity to synthesize amyloid beta, current evidence is most consistent with their phagocytic role. This largely involves the removal of cerebral amyloid and possibly the transformation of amyloid beta into fibrils. The phagocytic functions also encompass the generation of cytokines, reactive oxygen and nitrogen species, and various proteolytic enzymes, events that may exacerbate neuronal damage rather than incite outgrowth or repair mechanisms. Microglia do not appear to function as true antigen-presenting cells. However, there is circumstantial evidence that suggests functional heterogeneity within microglia. Pharmacological agents that suppress microglial activation or reduce microglial-mediated oxidative damage may prove useful strategies to slow the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- R N Kalaria
- CBV Path Group, MRC Unit, Newcastle General Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
1426
|
|
1427
|
Smith MA, Hirai K, Nunomura A, Perry G. Mitochondrial abnormalities: A primary basis for oxidative damage in Alzheimer's disease. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199901)46:1<26::aid-ddr5>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
1428
|
Bendik I, Schraml P, Ludwig CU. Simple and fast method to test the receptor for advanced glycosylated endproducts (RAGE) for its tumor suppressive potential using the Tet-On system. J Recept Signal Transduct Res 1999; 19:717-28. [PMID: 10071795 DOI: 10.3109/10799899909036682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Tet gene expression system, that allows tightly controlled gene expression in response to doxycycline, was applied to analyze the influence of the receptor for advanced glycosylation endproducts (RAGE) on the growth of 293 cells in semi-solid medium. Establishing a Tet-On gene expression system involves two consecutive stable transfections. Here, we describe an alternative procedure to obtain a Tet-On gene expression system in a single transfection step for the use in tumor biology. The plasmids necessary for the regulated expression of RAGE together with the selectable marker plasmid were cotransfected in a molar ratio of 6:1. After aminoglycoside selection, 29 clones were analyzed using PCR revealing 8 colonies to be double stably transformed. Subsequent Western blot analysis showed inducible expression in 7 cell lines. Applying the one step protocol, the entire Tet-On expression system could be completed in half of the time required for the original two step method. The generated 293 double stable cells were used in the clonogenic assay for the testing of the tumor suppressive potential of RAGE.
Collapse
Affiliation(s)
- I Bendik
- Department of Research, University Hospital Basel, Switzerland.
| | | | | |
Collapse
|
1429
|
Abstract
There is increasing evidence that free radical damage to brain lipids, carbohydrates, proteins, and DNA is involved in neuron death in neurodegenerative disorders. The largest number of studies have been performed in Alzheimer's disease (AD) where there is considerable support for the oxidative stress hypothesis in the pathogenesis of neuron degeneration. In autopsied brain there is an increase in lipid peroxidation, a decline in polyunsaturated fatty acids (PUFA) and an increase in 4-hydroxynonenal (HNE), a neurotoxic aldehyde product of PUFA oxidation. Increased protein oxidation and a marked decline in oxidative-sensitive enzymes, glutamine synthetase and creatinine kinase, are found in the brain in AD. Increased DNA oxidation, especially 8-hydroxy-2'-deoxyguanosine (8-OHdG) is present in the brain in AD. Immunohistochemical studies show the presence of oxidative stress products in neurofibrillary tangles and senile plaques in AD. Markers of lipid peroxidation (HNE, isoprostanes) and DNA (8-OHdG) are increased in CSF in AD. In addition, inflammatory response markers (the complement cascade, cytokines, acute phase reactants and proteases) are present in the brain in AD. These findings, coupled with epidemiologic studies showing that anti-inflammatory agents slow the progression or delay the onset of AD, suggest that inflammation plays a role in AD. Overall these studies indicate that oxidative stress and the inflammatory cascade, working in concert, are important in the pathogenetic cascade of neurodegeneration in AD, suggesting that therapeutic efforts aimed at both of these mechanisms may be beneficial.
Collapse
Affiliation(s)
- W R Markesbery
- Sanders-Brown Center on Aging and Alzheimer's Disease Research Center, Department of Pathology, University of Kentucky Medical Center, Lexington, USA.
| | | |
Collapse
|
1430
|
Cacabelos R, Takeda M, Winblad B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer's disease. Int J Geriatr Psychiatry 1999; 14:3-47. [PMID: 10029935 DOI: 10.1002/(sici)1099-1166(199901)14:1<3::aid-gps897>3.0.co;2-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Cacabelos
- Institute for CNS Disorders, EuroEspes Biomedical Research Center, La Coruña, Spain.
| | | | | |
Collapse
|
1431
|
Grilli M, Memo M. Nuclear factor-kappaB/Rel proteins: a point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem Pharmacol 1999; 57:1-7. [PMID: 9920279 DOI: 10.1016/s0006-2952(98)00214-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB)/Rel designates a family of transcription factors participating in the activation of a wide range of genes crucially involved in immune and inflammatory function. NF-kappaB/Rel proteins have been demonstrated recently in primary neurons and in several brain areas. Functional significance of these proteins is still not understood completely, but since certain subsets of neurons appear to contain constitutively active DNA-binding activity, it seems likely that they may participate in normal brain function. A growing body of evidence is accumulating for a specific activation of NF-kappaB/Rel proteins in the CNS, and in particular in neuronal cells, during neurodegenerative processes associated to etiologically unrelated conditions. Whether NF-kappaB activation is part of the neurodegenerative process or of protective mechanisms is a matter of debate. This issue will be reviewed here with particular attention to the available reports on the activity of NF-kappaB/Rel proteins in both experimental paradigms of neurodegeneration and post-mortem brain tissue of patients affected by various neurological diseases. We hypothesize that NF-kappaB/Rel proteins may represent the point of convergence of several signalling pathways relevant for initiating or accelerating the process of neuronal dysfunction and degeneration in many neurological diseases, including Parkinson's disease, Alzheimer's disease, CNS viral infections, and possibly others. If NF-kappaB/Rel proteins represent an integrating point of several pathways potentially contributing to neuronal degeneration, molecules that finely modulate their activity could represent a novel pharmacological approach to several neurological diseases.
Collapse
Affiliation(s)
- M Grilli
- Schering-Plough Research Institute, San Raffaele Science Park, Milan, Italy.
| | | |
Collapse
|
1432
|
Retz W, Gsell W, Münch G, Rösler M, Riederer P. Free radicals in Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 54:221-36. [PMID: 9850931 DOI: 10.1007/978-3-7091-7508-8_22] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder comprising multisystem atrophies probably caused by multifactorial processes. The disease is characterized by typical neuropathology, impaired synaptic function and massive cell loss. The pathobiochemistry of this disorder involves oxidative stress, which accumulates free radicals leading to excessive lipid peroxidation and neuronal degeneration in certain brain regions. Moreover, radical induced disturbances of DNA, proteins and lipid membranes have been measured. The hypothesis has been proposed that cellular events involving oxidative stress may be one basic pathway leading to neurodegeneration in Alzheimer's disease. In this work we report evidence for increased oxidative stress and disturbed defense mechanisms in Alzheimer's disease, which may result in a self-propagating cascade of neurodegenerative events. Furthermore it is evident from experimental data, that aggregation of beta-amyloid and beta-amyloid toxicity is favourably caused by oxidative stress. Therefore, oxidative stress plays a key role in the conversion of soluble to unsoluble beta-amyloid, suggesting that oxidative stress is primary to the beta-amyloid cascade.
Collapse
Affiliation(s)
- W Retz
- Department of Psychiatry, University of Würzburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
1433
|
Hoyer S. Risk factors for Alzheimer's disease during aging. Impacts of glucose/energy metabolism. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 54:187-94. [PMID: 9850927 DOI: 10.1007/978-3-7091-7508-8_18] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The majority of Alzheimer patients is of late onset and with unknown etiology. However, several risk factors have been discussed among which age is a most important one with respect to sporadic Alzheimer type dementia (SDAT). Age includes changes in brain glucose/energy metabolism, in both insulin and acetylcholine signal transduction and in membrane function to name the functionally most important ones. Variations in these parameters can form the basis for ongoing changes in terms of the principle of self-organized critically inducing catastrophic i.e. disease processes. Subsequent abnormalities at the cellular and molecular levels may develop including the formation of both amyloid plaques and neurofibrillary tangles.
Collapse
Affiliation(s)
- S Hoyer
- Department of Pathochemistry and General Neurochemistry, University of Heidelberg, Federal Republic of Germany
| |
Collapse
|
1434
|
Abstract
Alzheimer's disease is a multifactor pathology, some of whose causes have been inferred from genetic studies, primarily of associated early-onset cases. Much evidence implicates the A beta amyloid peptide as a neurotoxic agent, with chronic inflammation as an accompanying physiological contributor to the disease. The two central questions of how A beta kills neurons and of the autogenic basis of disease remain unanswered. We hypothesize that specific interactions of A beta with the inflammatory serpin, alpha 1-antichymotrypsin, abolish the serpin proteinase inhibitor activity and stimulate formation of the neurotoxic fibrillar form of A beta. Further, the fibrillar A beta interacts with specific cell surface receptors, prompting its own biosynthesis and disrupting cellular cholesterol metabolism. These molecular and cellular interactions autogenically sustain the processes of A beta formation, fibrillization, and receptor interaction, the last of which culminates in neuronal death through disruption of cholesterol metabolism.
Collapse
Affiliation(s)
- S Janciauskiene
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond 23298-0133, USA
| | | |
Collapse
|
1435
|
Li J, Qu X, Schmidt AM. Sp1-binding elements in the promoter of RAGE are essential for amphoterin-mediated gene expression in cultured neuroblastoma cells. J Biol Chem 1998; 273:30870-8. [PMID: 9812979 DOI: 10.1074/jbc.273.47.30870] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor for AGE (RAGE) and the polypeptide amphoterin are highly expressed and co-localized in neurons of the developing central nervous system of the rat. In vitro, the interaction of amphoterin with neuronal RAGE induces neurite outgrowth. We tested the hypothesis that interaction of amphoterin with neuronal cells enhances RAGE expression, thereby providing a mechanism by which amphoterin-mediated regulation of RAGE might contribute to promotion of neurite growth and spreading. Incubation of cultured neuroblastoma cells with amphoterin resulted in increased transcription and translation of RAGE, a process largely inhibited in the presence of anti-RAGE IgG but not by nonimmune IgG. To begin to delineate molecular mechanisms underlying these findings, we identified multiple putative binding elements within the 5'-flanking region of the RAGE gene for Sp1, a transcription factor that has been critically linked to the process of normal development. DNase I footprinting and electrophoretic mobility shift assays demonstrated multiple functional Sp1-binding sites within the region -245 to -40 of the RAGE promoter. Transient transfection of cultured SK-N-SH neuroblastoma cells with chimeric 5'-deletion constructs linked to luciferase reporter revealed that the region containing Sp1-binding elements did not contribute uniquely to basal expression of the RAGE gene. Simultaneous mutation of the multiple Sp1-binding elements in this region did not affect basal promoter function; however, promoter responsiveness to amphoterin was markedly attenuated. These results point to Sp1-dependent mechanisms underlying amphoterin-mediated increases in RAGE expression in neuroblastoma cells and further link amphoterin-RAGE interaction to development of the nervous system.
Collapse
Affiliation(s)
- J Li
- Division of Surgical Science, Department of Surgery, and Departments of Physiology and Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
1436
|
Klunk WE, Debnath ML, Koros AM, Pettegrew JW. Chrysamine-G, a lipophilic analogue of Congo red, inhibits A beta-induced toxicity in PC12 cells. Life Sci 1998; 63:1807-14. [PMID: 9820124 DOI: 10.1016/s0024-3205(98)00454-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Increasing evidence suggests that deposition of amyloid-beta (A beta) peptide leads to neurodegeneration in Alzheimer's disease. Congo red, a histologic dye that binds to amyloid has previously been shown to diminish the toxic effects of A beta in cell culture. Since Congo red is too highly charged to enter the brain in significant quantities, a lipophilic derivative, Chrysamine-G, was tested for the ability to attenuate A beta[25-35]-induced toxicity in PC12 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Chrysamine-G showed a concentration-dependent inhibition of A beta[25-35]-induced toxicity. This protective effect became significant at 0.2 microM, a concentration very close to the Ki for Chrysamine-G binding to synthetic A beta (0.37 microM). A decarboxy derivative of Chrysamine-G, which does not bind to A beta, also did not protect against A beta-induced toxicity. The protective effects of Chrysamine-G may relate to its ability to bind directly to A beta and may involve other post-binding effects as well.
Collapse
Affiliation(s)
- W E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine and Infectious Diseases, PA 15261, USA.
| | | | | | | |
Collapse
|
1437
|
Velez-Pardo C, Jimenez Del Rio M, Lopera F. Familial Alzheimer's disease: oxidative stress, beta-amyloid, presenilins, and cell death. GENERAL PHARMACOLOGY 1998; 31:675-81. [PMID: 9809462 DOI: 10.1016/s0306-3623(98)00189-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The basic etiology of Alzheimer's disease remains unknown, although four genes have so far been involved: beta-amyloid precursor protein, presenilin-1, presenilin-2 and apolipoprotein E genes. 2. The largest familial Alzheimer's disease (FAD) kindred so far reported belong to a point mutation in codon 280 that results in a glutamic acid-to-alanine substitution in presenilin-1 characterized in Antioquia, Colombia. 3. A hypothetical unified molecular mechanism model of cell death in FAD mediated by presenilin-1, beta-amyloid, and oxidative stress is proposed as an attempt to explain the mechanisms of neuronal loss in this neurodegenerative disorder.
Collapse
Affiliation(s)
- C Velez-Pardo
- Department of Neurology, University Hospital, Medellin, Colombia
| | | | | |
Collapse
|
1438
|
Gridley KE, Green PS, Simpkins JW. A novel, synergistic interaction between 17 beta-estradiol and glutathione in the protection of neurons against beta-amyloid 25-35-induced toxicity in vitro. Mol Pharmacol 1998; 54:874-80. [PMID: 9804622 DOI: 10.1124/mol.54.5.874] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present studies were undertaken to investigate the possibility of an interaction between 17 beta-estradiol (E2) and glutathione in protecting cells against the presence of beta-amyloid 25-35 (betaAP 25-35). We demonstrate that when evaluated individually, supraphysiological concentrations of either E2 (200 nM) or of reduced glutathione (GSH; 325 microM) can protect SK-N-SH human neuroblastoma cells from betaAP 25-35 (20 microM) toxicity. This dose of betaAP 25-35 was chosen based on the LD50 (28.9 microM) obtained in our earlier work. However, in the presence of 3.25 microM GSH, the neuroprotective EC50 of E2 was shifted from 126 +/- 89 nM to 0.033 +/- 0.031 nM, approximately 4000-fold. Similarly, in primary rat cortical neurons, the addition of GSH (3.25 microM) increased the potency of E2 against betaAP 25-35 (10 microM) toxicity, as evidenced by a shift in the EC50 values of E2 from 68 +/- 79 nM in the absence of GSH to 4 +/- 6 nM in its presence. The synergy between E2 and GSH was not antagonized by the addition of the estrogen receptor antagonist, ICI 182,780. Other thiol-containing compounds did not interact synergistically with E2, nor were any synergistic interactions observed between E2 and ascorbic acid or alpha-tocopherol. Based on these data, we propose an estrogen-receptor independent synergistic interaction between glutathione and E2 that dramatically increases the neuroprotective potency of the steroid and may provide insight for the development of new treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- K E Gridley
- Department of Pharmacodynamics and Center for Neurobiology of Aging, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
1439
|
Walton M, Saura J, Young D, MacGibbon G, Hansen W, Lawlor P, Sirimanne E, Gluckman P, Dragunow M. CCAAT-enhancer binding protein alpha is expressed in activated microglial cells after brain injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 61:11-22. [PMID: 9795105 DOI: 10.1016/s0169-328x(98)00169-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Microglial cells play important roles in brain injury and repair and are implicated in diseases such as Alzheimer's disease, Creutzfeldt-Jacob disease, multiple sclerosis, the Aids Dementia Complex and stroke. Despite their importance in neuropathology, the underlying molecular basis for the activation of microglia after brain injury is not understood. We show, using RT-PCR, in situ hybridisation, immunocytochemistry, and electrophoretic mobility shift assay, that the CCAAT-enhancer binding protein alpha (C/EBP alpha), a sequence specific DNA-binding protein, is induced in microglial cells, but not astrocytes or neurons, after hypoxic-ischemic brain injury. These results suggest that C/EBP alpha might regulate gene expression and consequentially have a role in the activation and/or proliferation of microglia following brain injury.
Collapse
Affiliation(s)
- M Walton
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
1440
|
Huang SS, Huang FW, Xu J, Chen S, Hsu CY, Huang JS. Amyloid beta-peptide possesses a transforming growth factor-beta activity. J Biol Chem 1998; 273:27640-4. [PMID: 9765299 DOI: 10.1074/jbc.273.42.27640] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid beta-peptide (Abeta) of 39-42 amino acid residues is a major constituent of Alzheimer's disease neurite plaques. Abeta aggregates (fibrils) are believed to be responsible for neuronal damage and dysfunction, as well as microglia and astrocyte activation in disease lesions by multiple mechanisms. Since Abeta aggregates possess the multiple valencies of an FAED motif (20th to 23rd amino acid residues), which resembles the putative transforming growth factor-beta (TGF-beta) active site motif, we hypothesize that Abeta monomers and Abeta aggregates may function as TGF-beta antagonists and partial agonists, analogous to previously described monovalent and multivalent TGF-beta peptide antagonists and agonists (Huang, S. S., Liu, Q., Johnson, F. E., Konish, Y., and Huang, J. S. (1997) J. Biol. Chem. 272, 27155-27159). Here, we report that the Abeta monomer, Abeta-(1-40) and its fragment, containing the motif inhibit radiolabeled TGF-beta binding to cell-surface TGF-beta receptors in mink lung epithelial cells (Mv1Lu cells). Abeta-(1-40)-bovine serum albumin conjugate (Abeta-(1-40)-BSA), a multivalent synthetic analogue of Abeta aggregates, exhibited cytotoxicity toward bovine cerebral endothelial cells and rat post-mitotic differentiated hippocampal neuronal cells (H19-7 cells) and inhibitory activities of radiolabeled TGF-beta binding to TGF-beta receptors and TGF-beta-induced plasminogen activator inhibitor-1 expression, that were approximately 100-670 times more potent than those of Abeta-(1-40) monomers. At less than micromolar concentrations, Abeta-(1-40)-BSA but not Abeta-(1-40) monomers inhibited proliferation of Mv1Lu cells. Since TGF-beta is an organizer of responses to neurodegeneration and is also found in neurite plaques, the TGF-beta antagonist and partial agonist activities of Abeta monomers and aggregates may play an important role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- S S Huang
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | |
Collapse
|
1441
|
Singh IN, Sorrentino G, Kanfer JN. Activation of LA-N-2 cell phospholipase D by amyloid beta protein (25-35). Neurochem Res 1998; 23:1225-32. [PMID: 9804277 DOI: 10.1023/a:1020731813973] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amyloid beta protein is the major protein component of neuritic plaques found in the brain of Alzheimer's disease. The activation of phospholipase D by amyloid beta protein (25-35), quisqualate and phorbol 12, 13-dibutyrate was investigated in LA-N-2 cells by measuring phosphatidylethanol formation. The activation of phospholipase D by quisqualate and APP (25-35) was calcium-independent. The AbetaP (25-35) and quisqualate activation of phospholipase D appeared to be mediated through a pertussis toxin-sensitive GTP-binding protein. Phospholipase D activation by AbetaP (25-35), quisqualate and phorbol dibutyrate was not blunted by the protein kinase C inhibitors, staurosporine, H-7 and RO-31-8220. However, it was abolished by overnight exposure to phorbol dibutyrate. This activation of phospholipase D was prevented by the tyrosine kinase inhibitor, genistein but not by tyrophostin A. Several excitatory amino acid antagonists were tested for their ability to prevent the phospholipase D activation by quisqualate and AbetaP (25-35). Only NBQX was effective with an IC50 of 75 microM for AbetaP (25-35) and quisqualate. Activation of phospholipase D by AbetaP or quisqualate was absent in LA-N-2 cells previously desensitized by quisqualate or AbetaP (25-35), but the activation by phorbol dibutyrate was unaltered. The responsiveness to AbetaP and quisqualate in previously desensitized cells reappeared subsequent to a period of resensitization. The observations with the antagonist NBQX, and the desensitization and resensitization experiments, are consistent with a receptor occupancy mediated activation of phospholipase D by quisqualate and by AbetaP (25-35).
Collapse
Affiliation(s)
- I N Singh
- Department of Biochemistry and Molecular Biology, University of Manitoba, Faculty of Medicine, Winnipeg, Canada
| | | | | |
Collapse
|
1442
|
Farkas I, Baranyi L, Liposits ZS, Yamamoto T, Okada H. Complement C5a anaphylatoxin fragment causes apoptosis in TGW neuroblastoma cells. Neuroscience 1998; 86:903-11. [PMID: 9692726 DOI: 10.1016/s0306-4522(98)00108-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human neuroblastoma TGW cells express a C5a anaphylatoxin receptor-like molecule termed neuronal C5a receptor. A C5a-receptor fragment peptide (termed PR226-multiple antigenic peptide) can induce rapid apoptosis in TGW cells via neuronal C5a receptor-associated signal transduction pathways. In order to analyse role of activated complement system in neurodegeneration, TGW cells were exposed to an oligomer form of a C5a fragment (amino acids: 37-53) peptide termed PL37-multiple antigenic peptide. Upon treatment with PL37-multiple antigenic peptide, an increased nuclear c-fos expression was shown within 30 min. DNA fragmentation, a hallmark of apoptosis, was noted within 4 h. Extracellular administration of 100 nM PL37-multiple antigenic peptide evoked inward calcium current pulses. At higher doses (0.5 microM-1 microM), PL37-multiple antigenic peptide evoked higher current pulses, followed by an irreversible, high inward current. To exert its apoptotic effect, PL37-multiple antigenic peptide utilizes a pertussis toxin-sensitive signal transduction pathway associated with the neuronal C5a receptor. Activation of the complement system and therefore release of C5a has already been reported in Alzheimer's disease. In addition, the presence of the Kunitz-type proteinase inhibitors indicates an impaired protease function and a possible abnormal fragmentation of C5a anaphylatoxin. Our data suggest that neurons expressing neuronal C5a receptor are more vulnerable to the apoptosis associated with the neuronal C5a receptor and the possibility that abnormal activation of C5a receptor and C5a anaphylatoxin fragments might be involved in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- I Farkas
- Department of Molecular Biology, Nagoya City University School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
1443
|
Survival of cultured neurons from amyloid precursor protein knock-out mice against Alzheimer's amyloid-beta toxicity and oxidative stress. J Neurosci 1998. [PMID: 9698314 DOI: 10.1523/jneurosci.18-16-06207.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on the amyloid precursor protein (APP) have suggested that it may be neuroprotective against amyloid-beta (Abeta) toxicity and oxidative stress. However, these findings have been obtained from either transfection of cell lines and mice that overexpress human APP isoforms or pretreatment of APP-expressing primary neurons with exogenous soluble APP. The neuroprotective role of endogenously expressed APP in neurons exposed to Abeta or oxidative stress has not been determined. This was investigated using primary cortical and cerebellar neuronal cultures established from APP knock-out (APP-/-) and wild-type (APP+/+) mice. Differences in susceptibility to Abeta toxicity or oxidative stress were not found between APP-/- and APP+/+ neurons. This observation may reflect the expression of the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2) molecules and supports the theory that APP and the APLPs may have similar functional activities. Increased expression of cell-associated APLP2, but not APLP1, was detected in Abeta-treated APP-/- and APP+/+ cultures but not in H2O2-treated cultures. This suggests that the Abeta toxicity pathway differs from other general forms of oxidative stress. These findings show that Abeta toxicity does not require an interaction of the Abeta peptide with the parental molecule (APP) and is therefore distinct from prion protein neurotoxicity that is dependent on the expression of the parental cellular prion protein.
Collapse
|
1444
|
Mackic JB, Stins M, McComb JG, Calero M, Ghiso J, Kim KS, Yan SD, Stern D, Schmidt AM, Frangione B, Zlokovic BV. Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 1998; 102:734-43. [PMID: 9710442 PMCID: PMC508936 DOI: 10.1172/jci2029] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A soluble monomeric form of Alzheimer's amyloid-beta (1-40) peptide (sAbeta1-40) is present in the circulation and could contribute to neurotoxicity if it crosses the brain capillary endothelium, which comprises the blood-brain barrier (BBB) in vivo. This study characterizes endothelial binding and transcytosis of a synthetic peptide homologous to human sAbeta1-40 using an in vitro model of human BBB. 125I-sAbeta1-40 binding to the brain microvascular endothelial cell monolayer was time dependent, polarized to the apical side, and saturable with high- and low-affinity dissociation constants of 7.8+/-1.2 and 52.8+/-6.2 nM, respectively. Binding of 125I-sAbeta1-40 was inhibited by anti-RAGE (receptor for advanced glycation end products) antibody (63%) and by acetylated low density lipoproteins (33%). Consistent with these data, transfected cultured cells overexpressing RAGE or macrophage scavenger receptor (SR), type A, displayed binding and internalization of 125I-sAbeta1-40. The internalized peptide remains intact > 94%. Transcytosis of 125I-sAbeta1-40 was time and temperature dependent, asymmetrical from the apical to basolateral side, saturable with a Michaelis constant of 45+/-9 nM, and partially sensitive to RAGE blockade (36%) but not to SR blockade. We conclude that RAGE and SR mediate binding of sAbeta1-40 at the apical side of human BBB, and that RAGE is also involved in sAbeta1-40 transcytosis.
Collapse
Affiliation(s)
- J B Mackic
- Department of Neurological Surgery, USC School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1445
|
Murphy GM, Yang L, Cordell B. Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J Biol Chem 1998; 273:20967-71. [PMID: 9694846 DOI: 10.1074/jbc.273.33.20967] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease (AD), a chronic cerebral inflammatory state is thought to lead to neuronal injury. Microglia, intrinsic cerebral immune effector cells, are likely to be key in the pathophysiology of this inflammatory state. We showed that macrophage colony-stimulating factor, a microglial activator found at increased levels in the central nervous system in AD, dramatically augments beta-amyloid peptide (betaAP)-induced microglial production of interleukin-1, interleukin-6, and nitric oxide. In contrast, granulocyte macrophage colony-stimulating factor, another hematopoietic cytokine found in the AD brain, did not augment betaAP-induced microglial secretory activity. These results indicate that increased macrophage colony-stimulating factor levels in AD could magnify betaAP-induced microglial inflammatory cytokine and nitric oxide production, which in turn could intensify the cerebral inflammatory state by activating astrocytes and additional microglia, as well as directly injuring neurons.
Collapse
Affiliation(s)
- G M Murphy
- Neuroscience Research Laboratories, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305-5485, USA.
| | | | | |
Collapse
|
1446
|
Abe K, Saito H. Amyloid beta protein inhibits cellular MTT reduction not by suppression of mitochondrial succinate dehydrogenase but by acceleration of MTT formazan exocytosis in cultured rat cortical astrocytes. Neurosci Res 1998; 31:295-305. [PMID: 9809588 DOI: 10.1016/s0168-0102(98)00055-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease amyloid beta protein (Abeta) inhibits cellular reduction of the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Kaneko et al. have previously hypothesized that Abeta works by suppressing mitochondrial succinate dehydrogenase (SDH), but Liu and Schubert have recently demonstrated that Abeta decreases cellular MTT reduction by accelerating the exocytosis of MTT formazan in neuronal cells. To ask which is the case in astrocytes, we compared the effects of Abeta and 3-nitropropionic acid (3-NP), a specific SDH inhibitor, on MTT reduction in cultured rat cortical astrocytes. Treatment with 3-NP (10 mM) decreased cellular activity of MTT reduction, regardless of the time of incubation with MTT. On the other hand. Abeta-induced inhibition of cellular MTT reduction was dependent on the time of incubation with MTT. The cells treated with Abeta (0.1-1000 nM) exhibited normal capacity for MTT reduction at an early stage of incubation ( < 30 min), but ceased to reduce MTT at the late stage (> 1 h). Microscopic examination revealed that Abeta treatment accelerated the appearance of needle-like MTT formazan crystals at the cell surface. These observations support that Abeta accelerates the exocytosis of MTT formazan in astrocytes. In addition to inhibition of MTT reduction, Abeta is known to induce morphological changes in astrocytes. Following addition of Abeta (20 microM), polygonal astrocytes changed into process-bearing stellate cells. To explore a possible linkage between these two effects of Abeta, we tested if astrocyte stellation is induced by agents that mimic the effect of Abeta on MTT reduction. Cholesterol (5 5000 nM) and lysophosphatidic acid (0.2-20 microg/ml) were found to accelerate the exocytosis of MTT formazan in a similar manner to Abeta, but failed to induce astrocyte stellation. Therefore, Abeta-induced inhibition of MTT reduction is unlikely to be directly linked to its effect on astrocyte morphology.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | |
Collapse
|
1447
|
Hangaishi M, Taguchi J, Miyata T, Ikari Y, Togo M, Hashimoto Y, Watanabe T, Kimura S, Kurokawa K, Ohno M. Increased aggregation of human platelets produced by advanced glycation end products in vitro. Biochem Biophys Res Commun 1998; 248:285-92. [PMID: 9675128 DOI: 10.1006/bbrc.1998.8945] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced glyco-oxidation end products (AGEs) generate oxygen free radicals that potentiate the development of atherosclerosis. Thus, AGEs may potentiate the aggregation of human platelets through oxidative stress. AGE-bovine serum albumin (BSA) and AGE-poly-L-lysine were evaluated for aggregation of human platelets. Superoxide in platelet-rich plasma (PRP) was measured using lucigenin-derived chemiluminescence. The platelet aggregation induced by ADP or U46619 was potentiated by preincubation with AGE-BSA, by 40% and by 59%, P < .05, respectively, vs BSA. Aggregation was increased by AGEs in a dose-dependent manner. The production of superoxide was significantly greater in PRP incubated with AGE-BSA vs BSA. The other Maillard reaction products, such as Amadori-, pentosidine-, and carboxymethyl lysine (CML)-BSA had no effect. Superoxide dismutase or indomethacin abolished the enhancing effect of AGEs on the platelet aggregation. AGEs potentiate platelet aggregation possibly with superoxide anions and prostanoids. AGE-induced potentiation of platelet aggregation may be involved in the development of atherosclerosis.
Collapse
Affiliation(s)
- M Hangaishi
- Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1448
|
Styren SD, Kamboh MI, Dekosky ST. Expression of differential immune factors in temporal cortex and cerebellum: The role of ?-1-antichymotrypsin, apolipoprotein E, and reactive glia in the progression of Alzheimer's disease. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980713)396:4<511::aid-cne7>3.0.co;2-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
1449
|
Hipkiss AR, Chana H. Carnosine protects proteins against methylglyoxal-mediated modifications. Biochem Biophys Res Commun 1998; 248:28-32. [PMID: 9675080 DOI: 10.1006/bbrc.1998.8806] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylglyoxal (MG) (pyruvaldehyde) is an endogenous metabolite which is present in increased concentrations in diabetics and implicated in formation of advanced glycosylation end-products (AGEs) and secondary diabetic complications. Carnosine (beta-alanyl-L-histidine) is normally present in long-lived tissues at concentrations up to 20 mM in humans. Previous studies showed that carnosine can protect proteins against aldehyde-containing cross-linking agents such as aldose and ketose hexose and triose sugars, and malon-dialdehyde, the lipid peroxidation product. Here we examine whether carnosine can protect protein exposed to MG. Our results show that carnosine readily reacts with MG thereby inhibiting MG-mediated protein modification as revealed electrophoretically. We also investigated whether carnosine could intervene when proteins were exposed to an MG-induced AGE (i.e. lysine incubated with MG). Our results show that carnosine can inhibit protein modification induced by a lysine-MG-AGE; this suggests a second intervention site for carnosine and emphasizes its potential as a possible non-toxic modulator of diabetic complications.
Collapse
Affiliation(s)
- A R Hipkiss
- Molecular Biology and Biophysics Group, King's College London, United Kingdom.
| | | |
Collapse
|
1450
|
beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci 1998. [PMID: 9614222 DOI: 10.1523/jneurosci.18-12-04451.1998] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The senile plaques of Alzheimer's disease are foci of local inflammatory responses, as evidenced by the presence of acute phase proteins and oxidative damage. Fibrillar forms of beta-amyloid (Abeta), which are the primary constituents of senile plaques, have been shown to activate tyrosine kinase-dependent signal transduction cascades, resulting in inflammatory responses in microglia. However, the downstream signaling pathways mediating Abeta-induced inflammatory events are not well characterized. We report that exposure of primary rat microglia and human THP1 monocytes to fibrillar Abeta results in the tyrosine kinase-dependent activation of two parallel signal transduction cascades involving members of the mitogen-activated protein kinase (MAPK) superfamily. Abeta stimulated the rapid, transient activation of extracellular signal-regulated kinase 1 (ERK1) and ERK2 in microglia and ERK2 in THP1 monocytes. A second superfamily member, p38 MAPK, was also activated with similar kinetics. Scavenger receptor and receptor for advanced glycated end products (RAGE) ligands failed to activate ERK and p38 MAPK in the absence of significant increases in protein tyrosine phosphorylation, demonstrating that scavenger receptors and RAGE are not linked to these pathways. Importantly, the stress-activated protein kinases (SAPKs) were not significantly activated in response to Abeta. Downstream effectors of the MAPK signal transduction cascades include MAPKAP kinases, such as RSK1 and RSK2, as well as transcription factors. Exposure of microglia and THP1 monocytes to Abeta resulted in the activation of RSK1 and RSK2 and phosphorylation of cAMP response element-binding protein at Ser133, providing a mechanism for Abeta-induced changes in gene expression.
Collapse
|