1401
|
Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 2010; 10:159-69. [PMID: 20182457 DOI: 10.1038/nri2710] [Citation(s) in RCA: 1006] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans harbour nearly 100 trillion intestinal bacteria that are essential for health. Millions of years of co-evolution have moulded this human-microorganism interaction into a symbiotic relationship in which gut bacteria make essential contributions to human nutrient metabolism and in return occupy a nutrient-rich environment. Although intestinal microorganisms carry out essential functions for their hosts, they pose a constant threat of invasion owing to their sheer numbers and the large intestinal surface area. In this Review, we discuss the unique adaptations of the intestinal immune system that maintain homeostatic interactions with a diverse resident microbiota.
Collapse
Affiliation(s)
- Lora V Hooper
- The Howard Hughes Medical Institute and The Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| | | |
Collapse
|
1402
|
Hu Y, Ota N, Peng I, Refino CJ, Danilenko DM, Caplazi P, Ouyang W. IL-17RC Is Required for IL-17A– and IL-17F–Dependent Signaling and the Pathogenesis of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2010; 184:4307-16. [DOI: 10.4049/jimmunol.0903614] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
1403
|
Arias JF, Nishihara R, Bala M, Ikuta K. High systemic levels of interleukin-10, interleukin-22 and C-reactive protein in Indian patients are associated with low in vitro replication of HIV-1 subtype C viruses. Retrovirology 2010; 7:15. [PMID: 20211031 PMCID: PMC2841095 DOI: 10.1186/1742-4690-7-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/09/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND HIV-1 subtype C (HIV-1C) accounts for almost 50% of all HIV-1 infections worldwide and predominates in countries with the highest case-loads globally. Functional studies suggest that HIV-1C is unique in its biological properties, and there are contradicting reports about its replicative characteristics. The present study was conducted to evaluate whether the host cytokine environment modulates the in vitro replication capacity of HIV-1C viruses. METHODS A small subset of HIV-1C isolates showing efficient replication in peripheral blood mononuclear cells (PBMC) is described, and the association of in vitro replication capacity with disease progression markers and the host cytokine response was evaluated. Viruses were isolated from patient samples, and the corresponding in vitro growth kinetics were determined by monitoring for p24 production. Genotype, phenotype and co-receptor usage were determined for all isolates, while clinical category, CD4 cell counts and viral loads were recorded for all patients. Plasmatic concentrations of cytokines and, acute-phase response, and microbial translocation markers were determined; and the effect of cytokine treatment on in vitro replication rates was also measured. RESULTS We identified a small number of viral isolates showing high in vitro replication capacity in healthy-donor PBMC. HIV-1C usage of CXCR4 co-receptor was rare; therefore, it did not account for the differences in replication potential observed. There was also no correlation between the in vitro replication capacity of HIV-1C isolates and patients' disease status. Efficient virus growth was significantly associated with low interleukin-10 (IL-10), interleukin-22 (IL-22), and C-reactive protein (CRP) levels in plasma (p < .0001). In vitro, pretreatment of virus cultures with IL-10 and CRP resulted in a significant reduction of virus production, whereas IL-22, which lacks action on immune cells appears to mediate its anti-HIV effect through interaction with both IL-10 and CRP, and its own protective effect on mucosal membranes. CONCLUSIONS These results indicate that high systemic levels of IL-10, CRP and IL-22 in HIV-1C-infected Indian patients are associated with low viral replication in vitro, and that the former two have direct inhibitory effects whereas the latter acts through downstream mechanisms that remain uncertain.
Collapse
Affiliation(s)
- Juan F Arias
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Viral Emergent Diseases Research Group (VIREM), Universidad del Valle, Cali, Colombia
| | - Reiko Nishihara
- Department of Health Promotion Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manju Bala
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Regional STD Teaching, Training and Research Center, VM Medical College & Safdarjang Hospital, New Delhi, India
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
1404
|
Sekikawa A, Fukui H, Suzuki K, Karibe T, Fujii S, Ichikawa K, Tomita S, Imura J, Shiratori K, Chiba T, Fujimori T. Involvement of the IL-22/REG Ialpha axis in ulcerative colitis. J Transl Med 2010; 90:496-505. [PMID: 20065946 DOI: 10.1038/labinvest.2009.147] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Regenerating gene (REG) Ialpha protein, a trophic and/or anti-apoptotic factor, is important in the pathophysiology of gastrointestinal inflammation. Interleukin (IL)-22 is a recently identified cytokine that is suggested to have pivotal roles in inflammatory bowel diseases. We therefore investigated the involvement of the IL-22/REG Ialpha axis and examined the mechanism of regulation of REG Ialpha expression by IL-22 stimulation in ulcerative colitis (UC) mucosa. Expression of IL-22, IL-22 receptor 1 (IL-22R1), and REG Ialpha in UC mucosa was analyzed by real-time RT-PCR and immunohistochemistry. The effects of IL-22 on REG Ialpha protein expression were examined using a small-interfering RNA for STAT3, an MAPK inhibitor or a PI3K inhibitor. The element responsible for IL-22-induced REG Ialpha promoter activation was determined by a promoter deletion and electrophoretic mobility shift assay. The expression of IL-22 was enhanced in infiltrating inflammatory cells, and that of IL-22R1 and REG Ialpha was concurrently enhanced in the inflamed epithelium in UC mucosa. The levels of REG Ialpha and IL-22 mRNA expression were strongly correlated, and the distributions of REG Ialpha- and IL-22R1-positive epithelial cells were very similar. IL-22 simulation enhanced the expression of REG Ialpha protein through STAT3 tyrosine phosphorylation in colon cancer cells. The IL-22-responsive element was located between -142 and -134 in the REG Ialpha promoter region. REG Ialpha protein may have a pathophysiological role as a biological mediator for immune cell-derived IL-22 in the UC mucosa.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1405
|
Abstract
Mammals are superorganisms, being a composite of mammalian and microbial cells existing in symbiosis. Although the microbiota is not essential for life, commensal and intestinal epithelial cell interactions are critical for the maturation of the immune system. Antibiotic treatment alters this delicate balance by causing compositional changes in the intestinal microbiota, and may lead to a homeostatic imbalance through alterations in expression of IEC tight junction proteins, mucin, antimicrobial peptides, and cytokines. Dysregulation of the homeostasis between mammals and their intestinal symbionts has been shown to predispose the host to enteric infection, and may lead to development of inflammatory bowel diseases.
Collapse
|
1406
|
Wolk K, Witte E, Witte K, Warszawska K, Sabat R. Biology of interleukin-22. Semin Immunopathol 2010; 32:17-31. [PMID: 20127093 DOI: 10.1007/s00281-009-0188-x] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/21/2009] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines and represents an important effector molecule of activated Th22, Th1, and Th17 cells, as well as Tc-cell subsets, gammadelta T cells, natural killer (NK), and NKT cells. IL-22 mediates its effects via a heterodimeric transmembrane receptor complex consisting of IL-22R1 and IL-10R2 and subsequent Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathways including Jak1, Tyk2, and STAT3. Whereas in some aspects, IL-22 acts synergistically with tumor necrosis factor-alpha, IL-1beta, or IL-17, most functions of IL-22 are unique. Importantly, IL-22 does not serve the communication between immune cells. It mainly acts on epithelial cells and hepatocytes, where it favors the antimicrobial defense, regeneration, and protection against damage and induces acute phase reactants and some chemokines. This chapter illuminates in detail the properties of IL-22 with respect to its gene, protein structure, cellular sources, receptors, target cells, biological effects, and, finally, its role in chronic inflammatory diseases, tumors, and infection.
Collapse
|
1407
|
Abstract
PURPOSE OF REVIEW Coordination of innate and adaptive immunity is central to effective mucosal immune defense and homeostasis. The review discusses recent findings on two cytokines, IL-22 and IL-6, and their common signaling pathway, which bridge innate and adaptive immunity in the intestinal tract. RECENT FINDINGS IL-22, a signature product of Th17 cells, is also secreted at functionally significant levels by innate immune cells, especially NKp44/NKp46-expressing natural killer (NK) cells and lymphoid tissue inducer cells after IL-23 stimulation. IL-22 acts primarily on epithelial cells and is overall protective, as its inhibition or loss exacerbates intestinal inflammation. Similarly, IL-6, secreted by macrophages, dendritic cells, epithelial cells, and T cells protects against mucosal damage, but it is also key in the development of Th17 cells, which mediate inflammatory and defensive responses in the intestine. Both cytokines activate STAT3 signaling, whose intestinal activities depend on the specific cell types involved. STAT3 in epithelial and myeloid cells mediates mucosa-protective and anti-inflammatory functions, whereas STAT3 in T cells promotes inflammation. SUMMARY IL-22 and IL-6 are prime examples of cytokines that coordinate innate and adaptive immune responses in the intestine. They and their common signaling pathway, STAT3 can promote or protect against inflammation indicating that pharmacological manipulation for therapeutic purposes in intestinal inflammatory conditions may present special challenges.
Collapse
Affiliation(s)
- Petr Hruz
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0063, USA
| | | | | |
Collapse
|
1408
|
Abstract
Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, gammadelta T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections.
Collapse
Affiliation(s)
- Christoph Blaschitz
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697 USA
- Institute of Immunology, University of California Irvine, Irvine, CA 92697 USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697 USA
- Institute of Immunology, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
1409
|
Abstract
PURPOSE OF REVIEW Compelling evidence suggests that the Th17 lineage and other IL-17-producing cells play critical roles in host defense against pathogens at mucosal sites. However, IL-17 can also contribute to inflammatory responses at mucosal sites. In this review, we will discuss the recent progress in our understanding of the role of Th17 and other IL-17-producing cells in defining the fine balance between immunity and inflammation at different mucosal sites. RECENT FNDINGS: Recent findings have highlighted that Th17 cytokines are important for the induction of innate and adaptive host responses and contribute to host defense against pathogens at mucosal sites. More recent developments have probed how the Th17 responses are generated in vivo in response to infections and their requirement in maintaining barrier function at mucosal sites. Most importantly, it is becoming apparent that there is a fine balance between protective and pathological manifestation of Th17 responses at mucosal sites that defines immunity or inflammation. SUMMARY In this review, we have summarized the recent advances in our understanding of Th17 cytokines and how they contribute to immunity versus inflammation at mucosal sites.
Collapse
Affiliation(s)
- Lokesh Guglani
- Division of Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Shabaana A. Khader
- Division of Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| |
Collapse
|
1410
|
Lin Y, Slight SR, Khader SA. Th17 cytokines and vaccine-induced immunity. Semin Immunopathol 2010; 32:79-90. [PMID: 20112107 PMCID: PMC2855296 DOI: 10.1007/s00281-009-0191-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 12/21/2009] [Indexed: 12/15/2022]
Abstract
T helper type 17 (Th17) cells are a distinct lineage of T cells that produce the effector molecules IL-17, IL-17F, IL-21, and IL-22. Although the role of Th17 cells in primary immune responses against infections is well documented, there is growing evidence that the Th17 lineage maybe critical for vaccine-induced memory immune responses against infectious diseases. Here, we summarize recent progress in our understanding of the role of IL-17 in vaccine-induced immunity.
Collapse
Affiliation(s)
- Yinyao Lin
- Department of Pediatrics and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Samantha R. Slight
- Department of Pediatrics and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Shabaana A. Khader
- Department of Pediatrics and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| |
Collapse
|
1411
|
Yao S, Huang D, Chen CY, Halliday L, Zeng G, Wang RC, Chen ZW. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis. PLoS Pathog 2010; 6:e1000789. [PMID: 20195465 PMCID: PMC2829073 DOI: 10.1371/journal.ppat.1000789] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 01/25/2010] [Indexed: 12/13/2022] Open
Abstract
Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB) granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.
Collapse
Affiliation(s)
- Shuyu Yao
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Dan Huang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Crystal Y. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Lisa Halliday
- Biologic Resources Laboratory, University of Illinois, Chicago, Illinois, United States of America
| | - Gucheng Zeng
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Richard C. Wang
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Zheng W. Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
1412
|
Pappu R, Ramirez-Carrozzi V, Ota N, Ouyang W, Hu Y. The IL-17 family cytokines in immunity and disease. J Clin Immunol 2010; 30:185-95. [PMID: 20177959 DOI: 10.1007/s10875-010-9369-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 01/07/2010] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Accumulating evidence suggests that the interleukin (IL)-17 cytokines are major players in the immune response to foreign pathogens. In addition, the pathogeneses of a number of inflammatory diseases have been linked to uncontrolled expression of these cytokine pathways. DISCUSSION Genetic and biochemical analyses have elucidated the cellular and molecular events triggered by these proteins during an inflammatory response. While significant efforts have been placed on understanding the functions of IL-17A, IL-17F, and IL-17E, the significance of the other family members, IL-17B-D, in inflammation remains to be determined. CONCLUSION This review will focus on the cellular sources, target cell/receptors that are utilized by these cytokines to control pathogenesis, and the therapeutic potential of targeting these pathways to treat inflammatory disorders.
Collapse
Affiliation(s)
- Rajita Pappu
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | |
Collapse
|
1413
|
Hirata Y, Egea L, Dann SM, Eckmann L, Kagnoff MF. GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe 2010; 7:151-63. [PMID: 20159620 PMCID: PMC2919780 DOI: 10.1016/j.chom.2010.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/17/2009] [Accepted: 01/19/2010] [Indexed: 11/22/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes dendritic cell (DC) differentiation and survival in vitro. However, its role in host defense at the intestinal mucosa is unknown. We report that infection with the mouse enteric pathogen, Citrobacter rodentium, increased colonic GM-CSF production and CD11c(+) DC recruitment. After infection, GM-CSF(-/-) mice had fewer mucosal CD11c(+) DCs, greater bacterial burden, increased mucosal inflammation and systemic spread of infection, decreased antibody responses, and delayed pathogen clearance. This defective mucosal response was rescued by GM-CSF administration to GM-CSF(-/-) mice and mimicked by CD11c(+) DC depletion in wild-type animals. Diminished mucosal DC numbers in infected GM-CSF(-/-) mice reflected decreased DC recruitment and survival, with the recruitment defect being related to a failure to upregulate epithelial cell production of the DC chemoattractant, CCL22. Thus, GM-CSF produced in the intestinal mucosa acts to enhance host protection against an enteric bacterial pathogen through regulating recruitment and survival of DCs.
Collapse
Affiliation(s)
- Yoshihiro Hirata
- Department of Medicine, University of California, San Diego, La Jolla, 92093-0623, USA
| | | | | | | | | |
Collapse
|
1414
|
Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 2010; 201:534-43. [PMID: 20064069 PMCID: PMC2811237 DOI: 10.1086/650203] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treatment of vancomycin-resistant Enterococcus (VRE) infections is limited by the paucity of effective antibiotics. Administration of broad-spectrum antibiotics promotes VRE colonization by down-regulating homeostatic innate immune defenses. Intestinal epithelial cells and Paneth cells express antimicrobial factors on direct or indirect stimulation of the Toll-like receptor (TLR)-myeloid differentiation factor 88-mediated pathway by microbe-derived molecules. Here, we demonstrate that the TLR5 agonist flagellin restores antibiotic-impaired innate immune defenses and restricts colonization with VRE. Flagellin stimulates the expression of RegIIIgamma, a secreted C-type lectin that kills gram-positive bacteria, including VRE. Systemic administration of flagellin induces RegIIIgamma expression in intestinal epithelial cells and Paneth cells along the entire length of the small intestine. Induction of RegIIIgamma requires TLR5 expression in hematopoietic cells and is dependent on interleukin 22 expression. Systemic administration of flagellin to antibiotic-treated mice dramatically reduces VRE colonization. By enhancing mucosal resistance to multidrug-resistant organisms, flagellin administration may provide a clinically useful approach to prevent infections in patients treated with broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Melissa A. Kinnebrew
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Carles Ubeda
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Lauren A. Zenewicz
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nichole Smith
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, USA
| | - Eric G. Pamer
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
1415
|
Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med 2010; 207:281-90. [PMID: 20142432 PMCID: PMC2822607 DOI: 10.1084/jem.20091509] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/21/2009] [Indexed: 01/14/2023] Open
Abstract
Lymphoid tissue inducer (LTi) cells are required for lymph node formation during fetal development, and recent evidence implies a role in mucosal immunity in the adult. LTi cells share some phenotypic features of conventional natural killer (NK; cNK) cells; however, little is known to date about the relationship between these two cell types. We show that lineage(-) (Lin(-)) CD127(+)RORC(+) LTi-like cells in human tonsil are precursors to CD56(+)CD127(+)RORC(+)NKp46(+) cells, which together comprise a stable RORC(+) lineage. We find that LTi-like cells and their CD56(+) progeny can be expanded and cloned ex vivo without loss of function and without conversion into cNK cells. Clonal analysis reveals heterogeneity of cytokine production within the CD127(+) LTi-like population. Furthermore, we identify within the tonsil a cNK precursor population that is characterized as Lin(-)CD117(+)CD161(+)CD127(-) cells. Overall, we propose that CD127(+)RORC(+) cells, although they share some characteristics with cNK cells, represent a functionally and developmentally distinct lineage.
Collapse
Affiliation(s)
- Natasha K Crellin
- Department of Immunology, Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
1416
|
Meeks KD, Sieve AN, Kolls JK, Ghilardi N, Berg RE. IL-23 is required for protection against systemic infection with Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2010; 183:8026-34. [PMID: 19923464 DOI: 10.4049/jimmunol.0901588] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Listeria monocytogenes (LM) is a Gram-positive, intracellular bacterium that can induce spontaneous abortion, septicemia, and meningitis. Although it is known that neutrophils are required for elimination of the bacteria and for survival of the host, the mechanisms governing the recruitment of neutrophils to LM-infected tissues are not fully understood. We demonstrate here that IL-23 and the IL-17 receptor A (IL-17RA), which mediates both IL-17A and IL-17F signaling, are necessary for resistance against systemic LM infection. LM-infected IL-23p19 knockout (KO) mice have decreased production of IL-17A and IL-17F, while IFN-gamma production is not altered by the lack of IL-23. LM induces the production of IL-17A from gammadelta T cells, but not CD4, CD8, or NK cells. Furthermore, a lack of efficient neutrophil recruitment to the liver is evident in both IL-23p19 KO and IL-17RA KO mice during LM infection. Immunocytochemical analysis of infected livers revealed that neutrophils were able to localize with LM in IL-23p19 KO and IL-17RA KO mice, indicating that IL-23 and IL-17RA do not regulate the precise localization of neutrophils with LM. The importance of IL-23-induced IL-17A was demonstrated by injecting IL-23p19 KO mice with recombinant IL-17A. These mice had reduced LM bacterial burdens compared with IL-23p19 KO mice that did not receive IL-17A. These results indicate that during LM infection, IL-23 regulates the production of IL-17A and IL-17F from gammadelta T cells, resulting in optimal liver neutrophil recruitment and enhanced bacterial clearance.
Collapse
Affiliation(s)
- Karen D Meeks
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
1417
|
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder caused by dysregulated immune responses in a genetically predisposed individual. Recent accumulating data, including genome-wide association studies, have identified more than 50 distinct genetic loci that confer susceptibility. We highlight the role of microbial-host interaction, particularly with respect to the overlap of common genetic and pathophysiologic mechanisms of CD and UC, interleukin-22-producing natural killer cells, autophagy, and TL1A, a member of the tumor necrosis factor (TNF) family, in gut homeostasis and IBD pathogenesis. This article focuses on the recent advances in understanding of IBD from the past year, including advances in genetics and immunobiology.
Collapse
|
1418
|
Khan MA, Steiner TS, Sham HP, Bergstrom KS, Huang JT, Assi K, Salh B, Tai IT, Li X, Vallance BA. The single IgG IL-1-related receptor controls TLR responses in differentiated human intestinal epithelial cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:2305-13. [PMID: 20130217 DOI: 10.4049/jimmunol.0900021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intestinal epithelial cells (IECs) are constantly exposed to enteric microbes. Although IECs express TLRs that recognize bacterial products, the activation of these TLRs is strictly controlled through poorly understood mechanisms, producing a state of hyporesponsiveness and preventing unwanted inflammation. The single IgG IL-1-related receptor (Sigirr) is a negative regulator of TLRs that is expressed by IECs and was recently shown to inhibit experimental colitis. However, the importance of Sigirr in IEC hyporesponsiveness and its distribution within the human colon is unknown. In this study, we investigated the role of Sigirr in regulating epithelial-specific TLR responses and characterized its expression in colonic biopsy specimens. Transformed and nontransformed human IECs were cultured as monolayers. Transient gene silencing and stable overexpression of Sigirr was performed to assess innate IEC responses. Sigirr expression in human colonic biopsy specimens was examined by immunohistochemistry. Bacterial infection of IECs and exposure to flagellin transiently decreased Sigirr protein expression, concurrent with secretion of the neutrophil chemokine IL-8. Sigirr gene silencing augmented chemokine responses to bacterial flagellin, Pam3Cys, and the cytokine IL-1beta. Conversely, stable overexpression of Sigirr diminished NF-kappaB-mediated IL-8 responses to TLR ligands. We also found that Sigirr expression increased as IECs differentiated in culture. This observation was confirmed in biopsy sections, in which Sigirr expression within colonic crypts was prominent in IECs at the apex and diminished at the base. Our findings show that Sigirr broadly regulates innate responses in differentiated human IECs; therefore, it may modulate epithelial involvement in infectious and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mohammed A Khan
- Division of Pediatric Gastroenterology, BC Children's Hospital, Vancouver, British Columbia V6H 3V4,Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1419
|
Ma SD, Lancto CA, Enomoto S, Abrahamsen MS, Rutherford MS. Expression and regulation of IL-22 by bovine peripheral blood gamma/delta T cells. Gene 2010; 451:6-14. [PMID: 19879340 DOI: 10.1016/j.gene.2009.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/20/2009] [Accepted: 08/28/2009] [Indexed: 12/26/2022]
Abstract
IL-22 is a novel T and NK cell cytokine that belongs to the IL-10 cytokine family. Here we report the identification of a bovine IL-22 ortholog that is expressed by mitogen activated bovine peripheral blood gamma/delta T cells. The full-length bovine IL-22 cDNA contained a 68 bp 5'-untranslated region (UTR), a 570-bp open reading frame, and a 480-bp 3'-UTR. The deduced pre-IL-22 has 190 amino acid residues containing a secretory signal peptide from amino acids 1-33 and several potential N-glycosylation sites. The mature protein is predicted to be a secreted, alpha-helical molecule. The bovine IL-22 gene is approximately 7.5 kb in length and is comprised of five introns and six exons, and the first exon is non-coding. Computer analysis and gel shift assay showed that the -1132 and -879 region in the 5' upstream gene sequence contained putative transcription factor binding sites for STATx, Sox-5/9, Sp1, Ik-1, and AREB6. Mutagenesis of STATx and Sox5/9 binding sites decreased promoter functionality by approximately 50%, suggesting their importance in transcription regulation of IL-22. Expression of IL-22 transcripts induced by various mitogens indicated existence of two regulatory control pathways in gamma/delta T cells; IL-2 or PMA treatment induced a slow accumulation of IL-22 mRNA without affecting the maximum induction pathway, whereas ConA treatment rapidly induced a limited amount of IL-22 transcripts. Similar maximal levels of IL-22 transcripts could be induced in gamma/delta T cells and alpha/beta T cells. We conclude that bovine gamma/delta T cells are important sources of IL-22 and suggest a role for this cytokine in regulating immune responses at mucosal surfaces, including the gut.
Collapse
Affiliation(s)
- Shi-Dong Ma
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1988 Fitch Avenue, Room 295 AS/VM, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
1420
|
Development, regulation and functional capacities of Th17 cells. Semin Immunopathol 2010; 32:3-16. [PMID: 20107806 DOI: 10.1007/s00281-009-0187-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 12/21/2009] [Indexed: 12/22/2022]
Abstract
T helper (Th) 17 cells have been classified as a new lineage, distinct from Th1, Th2 and Treg. Their development requires a unique combination of cytokines and depends on distinct intracellular events, resulting in the production of the signature cytokines interleukin (IL)-17A, IL-17F and IL-22. The differential cytokine expression patterns in Th cells suggest a division of labour in the response against a variety of pathogens. Th17 have an important function in the host-defense-response against extracellular pathogens, but they also have become notorious for their role in the pathogenesis of many autoimmune and allergic disorders. Animal models of autoimmune disorders have shown that Th17 effector molecules and transcription factors play a crucial role in both development and maintenance of the disease. The discovery of Th17 not only enhanced our insight into these disorders but also placed a Th subset at the interface between the innate and adoptive immune systems with the potential to regulate subsequent immunity against pathogens.
Collapse
|
1421
|
Sahoo A, Im SH. Interleukin and Interleukin Receptor Diversity: Role of Alternative Splicing. Int Rev Immunol 2010; 29:77-109. [PMID: 20100083 DOI: 10.3109/08830180903349651] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
1422
|
Niess JH, Adler G. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. THE JOURNAL OF IMMUNOLOGY 2010; 184:2026-37. [PMID: 20089703 DOI: 10.4049/jimmunol.0901936] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD103 or CX(3)CR1 surface expression defines distinct dendritic cells (DCs) and macrophages in the murine lamina propria of the colon (cLP). We investigated the surface marker and functional phenotype of CD103(+) and CX(3)CR1(+) cLP DCs and their role in transfer colitis. cLP CD11c(+) cells were isolated from specific pathogen-free or germ-free mice to elucidate the role of the commensal flora in their development. The cLP CD11c(+) cells are a heterogeneous cell population that includes 16% CX(3)CR1(+), 34% CD103(+), 30% CD103(-)CX(3)CR1(-) DCs, and 17% CD68(+/)F4/80(+)CX(3)CR1(+)CD11c(+) macrophages. All DCs expressed high levels of MHC II but low levels of costimulatory (CD40, CD86, and CD80) and coinhibitory (programmed death ligand-1) molecules. Ex vivo confocal microscopy demonstrated that CX(3)CR1(+)CD11c(+) cells, but not CD103(+) DCs, were reduced in the cLP of germ-free (CX(3)CR1-GFP) mice. The absence of the enteric flora prevents the formation of transepithelial processes by the CX(3)CR1(+) DCs. CX(3)CR1(+) DCs preferentially supported Th1/Th17 CD4 T cell differentiation. CD103(+) DCs preferentially induced the differentiation of Foxp3-expressing regulatory T cells. The stimulation of cLP DCs with fractalkine/CX(3)CL1 increased the release of IL-6 and TNF-alpha. In the absence of CX(3)CR1, the CD45RB(high) CD4 transfer colitis was suppressed and associated with reduced numbers of DCs in the mesenteric lymph nodes and a reduction in serum IFN-gamma and IL-17. The local bacteria-driven accumulation of CX(3)CR1(+) DCs seems to support inflammatory immune responses.
Collapse
|
1423
|
Sellge G, Magalhaes JG, Konradt C, Fritz JH, Salgado-Pabon W, Eberl G, Bandeira A, Di Santo JP, Sansonetti PJ, Phalipon A. Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity. THE JOURNAL OF IMMUNOLOGY 2010; 184:2076-85. [PMID: 20089698 DOI: 10.4049/jimmunol.0900978] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The T cell response to Shigella, the causative agent of bacillary dysentery, remains poorly understood. Using a murine model of infection, we report that Shigella flexneri primes predominately IL-17A- and IL-22-producing Th17 cells. Shigella-specific Th1 cells are only significantly induced on secondary infection, whereas specific Th2 and CD8(+) T cells are undetectable. Apart from Th17 cells that are primed in a MHC class II- and IL-6-dependent, but IL12/23p40-independent manner, we identified gammadelta T cells as an additional but minor source of IL-17A. Priming of IL-17A(+) gammadelta T cells is dependent on IL12/23p40, but independent of MHC-class II and IL-6. Th17 cells have emerged as important players in inflammatory, autoimmune, and infectious diseases. Among the yet unresolved questions is their role in long-term immunity to pathogens. In this study, we show that the elicited S. flexneri-specific Th17 pool gives rise to an enhanced recall response up to 12 mo after priming, suggesting the presence of a long-term memory state. The clearance of primary infection is impaired in the absence of T cells, but independently of IL-17A. However, after reinfection, IL-17A produced by S. flexneri-specific Th17 cells becomes important to ultimately restrict bacterial growth. These findings bring new insights into the adaptive immune response to Shigella infection and highlight the importance of pathogen-specific Th17 cell immunity for secondary immune protection.
Collapse
Affiliation(s)
- Gernot Sellge
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1424
|
Riol-Blanco L, Lazarevic V, Awasthi A, Mitsdoerffer M, Wilson BS, Croxford A, Waisman A, Kuchroo VK, Glimcher LH, Oukka M. IL-23 receptor regulates unconventional IL-17-producing T cells that control bacterial infections. THE JOURNAL OF IMMUNOLOGY 2010; 184:1710-20. [PMID: 20083652 DOI: 10.4049/jimmunol.0902796] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IL-23 plays an important role in autoimmune tissue inflammation and induces the generation of not fully characterized effector cells that mediate protection against pathogens. In this paper, we established the essential role of IL-23R in the host response against intracellular pathogens. IL-23 was critical for the expansion or maintenance of gammadelta and double negative (DN) alphabeta T cells. These cells were rapidly recruited to the site of infection and produced large amounts of IL-17, IFN-gamma, and TNF-alpha. Notably, DN T cells transferred into L. monocytogenes-infected RAG2(-/-) mice prevented bacterial growth, confirming their protective role against intracellular pathogens. Our results show that IL-23 regulates the function of IL-17-producing gammadelta and DN T cells, two essential components of the early protective immune response directed against intracellular pathogens.
Collapse
Affiliation(s)
- Lorena Riol-Blanco
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1425
|
Sanos SL, Diefenbach A. Isolation of NK cells and NK-like cells from the intestinal lamina propria. Methods Mol Biol 2010; 612:505-17. [PMID: 20033661 DOI: 10.1007/978-1-60761-362-6_32] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Being exposed to food products, pathogens and harmless commensal bacteria, the mucosal immune system faces a constant challenge. Therefore, maintenance of a homeostatic balance is required to achieve tolerance to harmless bacteria and their products and to induce potent immunity to infection with pathogenic bacteria. Until recently, the literature on mucosal natural killer (NK) cells residing in the intestinal lamina propria was scarce and phenotype and function of gut mucosal NK cells did not receive much attention. Recently, data have become available identifying two distinct subsets of mucosal NKp46(+) lymphocytes based on the expression of the orphan transcription factor RORgammat. In many ways, the RORgammat(-) subset resembled "classical" NK cells in that it was developmentally dependent on IL-15 but not on RORgammat and displayed NK cell function (e.g., cell-mediated cytotoxicity, IFN-gamma production). In contrast, the RORgammat(+) subset developed independent of IL-15 but required RORgammat, suggesting that this subset may be related to lymphoid tissue inducer (LTi) cells. Interestingly, these RORgammat(+) NKp46(+) NK-LTi cells constitutively produced large amounts of IL-22, a cytokine regulating antimicrobial protection and regeneration of epithelial cells. In this chapter, we provide experimental procedures to isolate "classical" NK cells from the intestinal lamina propria as well as the newly described lymphoid tissue inducer-like (LTi-like) cells producing IL-22 and co-expressing NK cell receptors.
Collapse
Affiliation(s)
- Stephanie L Sanos
- Institute of Medical Microbiology & Hygiene, University of Freiburg Medical Center, Freiburg, Germany
| | | |
Collapse
|
1426
|
Dasgupta S, Kasper DL. Novel tools for modulating immune responses in the host-polysaccharides from the capsule of commensal bacteria. Adv Immunol 2010; 106:61-91. [PMID: 20728024 DOI: 10.1016/s0065-2776(10)06003-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestinal microflora of mammals includes organisms with many unique molecules that enable them to modulate their immediate environment and thus to survive and reside successfully in the gut. Little is known about how individual molecules from these microbes affect the host's health and development, but the microbiome is considered a crucial factor in intestinal homeostasis. The literature highlights numerous ways in which the microflora stimulates the mammalian host's immune system, starting with its development and continuing to the initiation and resolution of inflammation. The influence of the microflora on the host's immune system is mediated principally by interactions with various antigen-presenting cells of the gut; these interactions result in substantial modulation of both the innate and the adaptive arms of the immune system. Certain polysaccharide antigens from the capsules of some commensal bacteria represent a functional class of molecules that exert profound immunomodulatory effects. Because of their unique structural features, including a zwitterionic charge motif, these polysaccharides can participate to a significant extent in the orchestration of host immune homeostasis. These molecules can be used to elucidate the basic biology of the mammalian intestine and have the potential for use in novel therapeutic regimens for various systemic or intestinal pathological conditions.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
1427
|
O'Brien K, Gran B, Rostami A. T-cell based immunotherapy in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunotherapy 2010; 2:99-115. [PMID: 20231863 PMCID: PMC2837464 DOI: 10.2217/imt.09.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
One of the reasons multiple sclerosis (MS) has been considered a T-cell mediated autoimmune disease is that a similar experimental disease can be induced in certain rodents and primates by immunization with myelin antigens, leading to T-cell-mediated inflammatory demyelination in the CNS. In addition, most if not all pharmacological treatments available for MS are biologically active on T cells. In this article we review the principles of T-cell-based immunotherapies and the specific actions of current and novel treatments on T-cell functions, when these are known. For both licensed and innovative agents, we also discuss biological actions on other immune cell types. Finally, we offer a brief perspective on expected changes in the use of MS immunotherapies in the near future.
Collapse
Affiliation(s)
- Kate O'Brien
- Division of Clinical Neurology, University of Nottingham, UK
| | - Bruno Gran
- Division of Clinical Neurology, University of Nottingham, UK
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
1428
|
Caselli M, Holton J, Boldrini P, Vaira D, Calò G. Morphology of segmented filamentous bacteria and their patterns of contact with the follicle-associated epithelium of the mouse terminal ileum: implications for the relationship with the immune system. Gut Microbes 2010; 1:367-72. [PMID: 21468217 PMCID: PMC3056100 DOI: 10.4161/gmic.1.6.14390] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/04/2010] [Accepted: 12/06/2010] [Indexed: 02/03/2023] Open
Abstract
Recent evidence indicates that segmented filamentous bacteria (SFB), "Candidatus Arthromitus", play a unique role in different aspects of the maturation of the immune system, including T cell responses. Thus, it seems particularly relevant in this moment to shortly review the information on these bacteria and their relationship with the immune system, and to actively investigate their morphological aspects. We distinguished a developmental form from a vegetative form of these organisms. These different forms have distinct roles in the life cycle: the developmental form permits a rapid growth of the organisms while the vegetative form permits the attachment of SFB to the follicular epithelium. We have also given special attention to the modes of contact between SFB and the epithelial cells of the terminal ileum to better understand the unique relationship between these bacteria and the immune system.
Collapse
Affiliation(s)
- Michele Caselli
- School of Gastroenterology; Department of Experimental and Clinical Medicine; University of Ferrara; Ferrara, Italy
| | - John Holton
- University of Middlesex; Windeyer Insitiute of Medical Sciences; London, UK
| | - Paola Boldrini
- Center of Electron Microscopy; University of Ferrara; Ferrara, Italy
| | - Dino Vaira
- University College Hospital Trust; Windeyer Insitiute of Medical Sciences; London, UK
| | - Girolamo Calò
- Section of Pharmacology; University of Ferrara; Ferrara, Italy
| |
Collapse
|
1429
|
|
1430
|
Abstract
Autoreactive effector CD4+ T cells have been associated with the pathogenesis of autoimmune disorders. Early studies implicated the interferon (IFN)-gamma-producing T helper (Th)1 subset of CD4+ cells as the causal agents in the pathogenesis of autoimmunity. However, further studies have suggested a more complex story. In models thought to be driven by Th1 cells, mice lacking the hallmark Th1 cytokine IFN-gamma were not protected but tended to have enhanced susceptibility to disease. Identification of the IL-17-producing CD4+ effector cell lineage (Th17) has helped shed light on this issue. Th17 effector cells are induced in parallel to Th1, and, like Th1, polarized Th17 cells have the capacity to cause inflammation and autoimmune disease. This, together with the finding that deficiency of the Th17-related cytokine IL-23 but not the Th1-related cytokine IL-12 causes resistance, led to the notion that Th17 cells are the chief contributors to autoimmune tissue inflammation. Nevertheless, mice lacking IL-17 are not protected from disease and display elevated numbers of IFN-gamma-producing CD4+ T cells, and, in some cases, lack of IFN-gamma does confer resistance. Recent studies report overlapping as well as differential roles of these cells in tissue inflammation, which suggests the existence of a more complex relationship between these two effector T-cell subsets than has hitherto been suspected. This review will attempt to bring together current information regarding interaction, balance, and collaborative potential between the Th1 and Th17 effector lineages.
Collapse
Affiliation(s)
- Jesse M Damsker
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1857, USA
| | | | | |
Collapse
|
1431
|
Steward-Tharp SM, Song YJ, Siegel RM, O'Shea JJ. New insights into T cell biology and T cell-directed therapy for autoimmunity, inflammation, and immunosuppression. Ann N Y Acad Sci 2010; 1183:123-48. [PMID: 20146712 PMCID: PMC2950114 DOI: 10.1111/j.1749-6632.2009.05124.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T cell-directed therapies have become mainstays in the management of various autoimmune diseases and organ transplantation. The understanding of T cell biology has expanded greatly since the development of most agents currently in use. Here we discuss important recent discoveries pertaining to T helper cell differentiation, lineage commitment, and function. Within this context, we examine existing T cell-directed therapies, including new agents being evaluated in clinical and preclinical studies. We also use recent findings to speculate on novel targets.
Collapse
Affiliation(s)
- Scott M Steward-Tharp
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
1432
|
Korn T, Mitsdoerffer M, Kuchroo VK. Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis. Results Probl Cell Differ 2010; 51:43-74. [PMID: 19513635 DOI: 10.1007/400_2008_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS) that has shaped our understanding of autoimmune tissue inflammation in the central nervous system (CNS). Major therapeutic approaches to MS have been first validated in EAE. Nevertheless, EAE in all its modifications is not able to recapitulate the full range of clinical and histopathogenic aspects of MS. Furthermore, autoimmune reactions in EAE-prone rodent strains and MS patients may differ in terms of the relative involvement of various subsets of immune cells. However, the role of specific molecules that play a role in skewing the immune response towards pathogenic autoreactivity is very similar in mice and humans. Thus, in this chapter, we will focus on the identification of a novel subset of inflammatory T cells, called Th17 cells, in EAE and their interplay with other immune cells including protective regulatory T cells (T-regs). It is likely that the discovery of Th17 cells and their relationship with T-regs will change our understanding of organ-specific autoimmune diseases in the years to come.
Collapse
Affiliation(s)
- Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany.
| | | | | |
Collapse
|
1433
|
Sonnenberg GF, Fouser LA, Artis D. Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv Immunol 2010; 107:1-29. [PMID: 21034969 DOI: 10.1016/b978-0-12-381300-8.00001-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Expression of interleukin (IL)-22, a member of the IL-10 cytokine family, has recently been reported in a number of human diseases, including mucosal-associated infections and inflammatory disorders of the intestine, skin, and joints. Both T cells and an emerging category of innate lymphoid cells are sources of IL-22, while the IL-22 receptor complex is reported to be restricted to cells of nonhematopoietic origin. The ligand-receptor distribution of IL-22-IL-22R permits immune cells to regulate responses of epithelial cells, endothelial cells, fibroblasts, and other tissue-resident stromal cells. This pathway appears to be critically important at barrier surfaces where epithelial cells play an active role in the initiation, regulation, and resolution of immune responses. Functional studies in murine model systems indicate that IL-22 has immunoregulatory properties in infection, inflammation, autoimmunity, and cancer. In these models, the functional consequences of IL-22 expression can be either pathologic or protective, depending on the context in which it is expressed. Therefore, advancing our understanding of the biology of IL-22-IL-22R may yield novel therapeutic targets in multiple human diseases. In this review, we discuss recent findings on the expression, regulation, and function of IL-22 at barrier surfaces, and offer insights into the next frontiers to be studied in this complex cytokine pathway.
Collapse
Affiliation(s)
- Gregory F Sonnenberg
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
1434
|
Lane PJL, McConnell FM, Withers D, Gaspal F, Saini M, Anderson G. Lymphoid tissue inducer cells and the evolution of CD4 dependent high-affinity antibody responses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:159-74. [PMID: 20800820 DOI: 10.1016/s1877-1173(10)92007-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Phylogeny indicates that in mammals memory CD4-dependent antibody responses evolved after monotremes split from the common ancestor of marsupial and eutherian mammals. This was strongly associated with the development of segregated B and T cell areas and the development of a linked lymph node network. The evolution of the lymphotoxin beta receptor in these higher mammals was key to the development of these new functions. Here, we argue that lymphoid tissue inducer cells played a pivotal role not only in the development of organized lymphoid structures but also in the subsequent genesis of the CD4-dependent class-switched memory antibody responses that depend on an organized infrastructure to work. In this review, we concentrate on the role of this cell type in the making of a tolerant CD4 T cell repertoire and in the sustenance of CD4 T cell responses for protective immunity.
Collapse
Affiliation(s)
- Peter J L Lane
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Birmingha Medical School, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
1435
|
Van De Veerdonk FL, Gresnigt MS, Kullberg BJ, Van Der Meer JW, Joosten LA, Netea MG. Th17 responses and host defense against microorganisms: an overview. BMB Rep 2009; 42:776-87. [DOI: 10.5483/bmbrep.2009.42.12.776] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
1436
|
Fujita H, Nograles KE, Kikuchi T, Gonzalez J, Carucci JA, Krueger JG. Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc Natl Acad Sci U S A 2009; 106:21795-800. [PMID: 19996179 PMCID: PMC2799849 DOI: 10.1073/pnas.0911472106] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Indexed: 12/28/2022] Open
Abstract
IL-22 is a cytokine that acts mainly on epithelial cells. In the skin, it mediates keratinocyte proliferation and epidermal hyperplasia and is thought to play a central role in inflammatory diseases with marked epidermal acanthosis, such as psoriasis. Although IL-22 was initially considered a Th17 cytokine, increasing evidence suggests that T helper cells can produce IL-22 even without IL-17 expression. In addition, we have shown the existence of this unique IL-22-producing T cell in normal skin and in the skin of psoriasis and atopic dermatitis patients. In the present study, we investigated the ability of cutaneous resident dendritic cells (DCs) to differentiate IL-22-producing cells. Using FACS, we isolated Langerhans cells (LCs; HLA-DR(+)CD207(+) cells) and dermal DCs (HLA-DR(hi)CD11c(+)BDCA-1(+) cells) from normal human epidermis and dermis, respectively. Both LCs and dermal DCs significantly induced IL-22-producing CD4(+) and CD8(+) T cells from peripheral blood T cells and naive CD4(+) T cells in mixed leukocyte reactions. LCs were more powerful in the induction of IL-22-producing cells than dermal DCs. Moreover, in vitro-generated LC-type DCs induced IL-22-producing cells more efficiently than monocyte-derived DCs. The induced IL-22 production was more correlated with IFN-gamma than IL-17. Surprisingly, the majority of IL-22-producing cells induced by LCs and dermal DCs lacked the expression of IL-17, IFN-gamma, and IL-4. Thus, LCs and dermal DCs preferentially induced helper T cells to produce only IL-22, possibly "Th22" cells. Our data indicate that cutaneous DCs, especially LCs, may control the generation of distinct IL-22 producing Th22 cells infiltrating into the skin.
Collapse
Affiliation(s)
| | | | | | - Juana Gonzalez
- Translational Immunomonitoring Resource Center, The Rockefeller University, New York, NY 10065; and
| | - John A. Carucci
- Department of Dermatology, Weill Medical College of Cornell University, New York, NY 10021
| | | |
Collapse
|
1437
|
Muñoz M, Heimesaat MM, Danker K, Struck D, Lohmann U, Plickert R, Bereswill S, Fischer A, Dunay IR, Wolk K, Loddenkemper C, Krell HW, Libert C, Lund LR, Frey O, Hölscher C, Iwakura Y, Ghilardi N, Ouyang W, Kamradt T, Sabat R, Liesenfeld O. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J Exp Med 2009; 206:3047-59. [PMID: 19995958 PMCID: PMC2806449 DOI: 10.1084/jem.20090900] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 11/03/2009] [Indexed: 01/01/2023] Open
Abstract
Peroral infection with Toxoplasma gondii leads to the development of small intestinal inflammation dependent on Th1 cytokines. The role of Th17 cells in ileitis is unknown. We report interleukin (IL)-23-mediated gelatinase A (matrixmetalloproteinase [MMP]-2) up-regulation in the ileum of infected mice. MMP-2 deficiency as well as therapeutic or prophylactic selective gelatinase blockage protected mice from the development of T. gondii-induced immunopathology. Moreover, IL-23-dependent up-regulation of IL-22 was essential for the development of ileitis, whereas IL-17 was down-regulated and dispensable. CD4(+) T cells were the main source of IL-22 in the small intestinal lamina propria. Thus, IL-23 regulates small intestinal inflammation via IL-22 but independent of IL-17. Gelatinases may be useful targets for treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Melba Muñoz
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Kerstin Danker
- Institute of Biochemistry and Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Campus Mitte, Charité Medical School, 10117 Berlin, Germany
| | - Daniela Struck
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Uwe Lohmann
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Rita Plickert
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - André Fischer
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | - Ildikò Rita Dunay
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
- Department of Neuropathology, University of Freiburg, 79106 Freiburg, Germany
| | - Kerstin Wolk
- Institute of Biochemistry and Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Campus Mitte, Charité Medical School, 10117 Berlin, Germany
| | - Christoph Loddenkemper
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| | | | - Claude Libert
- Molecular Mouse Genetics, Department for Molecular Biomedical Research, Flanders Institute for Biotechnology, Ghent University, 9052 Ghent, Belgium
| | - Leif R. Lund
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oliver Frey
- Institute of Immunology, School of Medicine, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Yoichiro Iwakura
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Nico Ghilardi
- Molecular Biology Department and Immunology Department, Genentech, Inc., South San Francisco, CA 94080
| | - Wenjun Ouyang
- Molecular Biology Department and Immunology Department, Genentech, Inc., South San Francisco, CA 94080
| | - Thomas Kamradt
- Institute of Immunology, School of Medicine, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Robert Sabat
- Institute of Biochemistry and Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Campus Mitte, Charité Medical School, 10117 Berlin, Germany
| | - Oliver Liesenfeld
- Institute of Microbiology and Hygiene and Department of Pathology/Research Center ImmunoSciences, Campus Benjamin Franklin, Charité Medical School, 12203 Berlin, Germany
| |
Collapse
|
1438
|
IL-17RC: a partner in IL-17 signaling and beyond. Semin Immunopathol 2009; 32:33-42. [PMID: 20012905 DOI: 10.1007/s00281-009-0185-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/11/2009] [Indexed: 12/15/2022]
Abstract
The interleukin (IL)-17 cytokine family members IL-17A and IL-17F mediate inflammatory activities via the IL-17 receptor (IL-17R) complex, comprised of the IL-17RA and IL-17RC subunits. Proper regulation of the IL-17 signaling axis results in effective host defense against extracellular pathogens, while aberrant signaling can drive autoimmune pathology. Elucidating the molecular mechanisms underlying IL-17 signal transduction can yield an enhanced understanding of inflammatory immune processes and also create an avenue for therapeutic intervention in the treatment of IL-17-dependent diseases. To date, the fundamental signaling mechanisms used by the IL-17R complex are still incompletely defined. While current structure-function studies have primarily focused on the IL-17RA subunit, recent research indicates that the IL-17RC subunit plays a key role in modulating IL-17 responses. This review will examine what is known regarding IL-17RC function and provide a framework for future work on this subunit and its impact on human health.
Collapse
|
1439
|
Daneman R, Rescigno M. The gut immune barrier and the blood-brain barrier: are they so different? Immunity 2009; 31:722-35. [PMID: 19836264 DOI: 10.1016/j.immuni.2009.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 09/29/2009] [Indexed: 12/18/2022]
Abstract
In order to protect itself from a diverse set of environmental pathogens and toxins, the body has developed a number of barrier mechanisms to limit the entry of potential hazards. Here, we compare two such barriers: the gut immune barrier, which is the primary barrier against pathogens and toxins ingested in food, and the blood-brain barrier, which protects the central nervous system from pathogens and toxins in the blood. Although each barrier provides defense in very different environments, there are many similarities in their mechanisms of action. In both cases, there is a physical barrier formed by a cellular layer that tightly regulates the movement of ions, molecules, and cells between two tissue spaces. These barrier cells interact with different cell types, which dynamically regulate their function, and with a different array of immune cells that survey the physical barrier and provide innate and adaptive immunity.
Collapse
Affiliation(s)
- Richard Daneman
- University of California, San Francisco, Department of Anatomy, San Francisco, CA 94143-0452, USA.
| | | |
Collapse
|
1440
|
Hagman R, Rönnberg E, Pejler G. Canine uterine bacterial infection induces upregulation of proteolysis-related genes and downregulation of homeobox and zinc finger factors. PLoS One 2009; 4:e8039. [PMID: 19956711 PMCID: PMC2777310 DOI: 10.1371/journal.pone.0008039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/02/2009] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Bacterial infection with the severe complication of sepsis is a frequent and serious condition, being a major cause of death worldwide. To cope with the plethora of occurring bacterial infections there is therefore an urgent need to identify molecular mechanisms operating during the host response, in order both to identify potential targets for therapeutic intervention and to identify biomarkers for disease. Here we addressed this issue by studying global gene expression in uteri from female dogs suffering from spontaneously occurring uterine bacterial infection. PRINCIPAL FINDINGS The analysis showed that almost 800 genes were significantly (p<0.05) upregulated (>2-fold) in the uteri of diseased animals. Among these were numerous chemokine and cytokine genes, as well as genes associated with inflammatory cell extravasation, anti-bacterial action, the complement system and innate immune responses, as well as proteoglycan-associated genes. There was also a striking representation of genes associated with proteolysis. Robust upregulation of immunoglobulin components and genes involved in antigen presentation was also evident, indicating elaboration of a strong adaptive immune response. The bacterial infection was also associated with a significant downregulation of almost 700 genes, of which various homeobox and zinc finger transcription factors were highly represented. CONCLUSIONS/SIGNIFICANCE Together, these finding outline the molecular patterns involved in bacterial infection of the uterus. The study identified altered expression of numerous genes not previously implicated in bacterial disease, and several of these may be evaluated for potential as biomarkers of disease or as therapeutic targets. Importantly, since humans and dogs show genetic similarity and develop diseases that share many characteristics, the molecular events identified here are likely to reflect the corresponding situation in humans afflicted by similar disease.
Collapse
Affiliation(s)
- Ragnvi Hagman
- Division of Small Animals, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail: (RH); (GP)
| | - Elin Rönnberg
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail: (RH); (GP)
| |
Collapse
|
1441
|
Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, Perro M, Diestelhorst J, Allroth A, Murugan D, Hätscher N, Pfeifer D, Sykora KW, Sauer M, Kreipe H, Lacher M, Nustede R, Woellner C, Baumann U, Salzer U, Koletzko S, Shah N, Segal AW, Sauerbrey A, Buderus S, Snapper SB, Grimbacher B, Klein C. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 2009; 361:2033-45. [PMID: 19890111 PMCID: PMC2787406 DOI: 10.1056/nejmoa0907206] [Citation(s) in RCA: 1083] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The molecular cause of inflammatory bowel disease is largely unknown. METHODS We performed genetic-linkage analysis and candidate-gene sequencing on samples from two unrelated consanguineous families with children who were affected by early-onset inflammatory bowel disease. We screened six additional patients with early-onset colitis for mutations in two candidate genes and carried out functional assays in patients' peripheral-blood mononuclear cells. We performed an allogeneic hematopoietic stem-cell transplantation in one patient. RESULTS In four of nine patients with early-onset colitis, we identified three distinct homozygous mutations in genes IL10RA and IL10RB, encoding the IL10R1 and IL10R2 proteins, respectively, which form a heterotetramer to make up the interleukin-10 receptor. The mutations abrogate interleukin-10-induced signaling, as shown by deficient STAT3 (signal transducer and activator of transcription 3) phosphorylation on stimulation with interleukin-10. Consistent with this observation was the increased secretion of tumor necrosis factor alpha and other proinflammatory cytokines from peripheral-blood mononuclear cells from patients who were deficient in IL10R subunit proteins, suggesting that interleukin-10-dependent "negative feedback" regulation is disrupted in these cells. The allogeneic stem-cell transplantation performed in one patient was successful. CONCLUSIONS Mutations in genes encoding the IL10R subunit proteins were found in patients with early-onset enterocolitis, involving hyperinflammatory immune responses in the intestine. Allogeneic stem-cell transplantation resulted in disease remission in one patient.
Collapse
Affiliation(s)
- Erik-Oliver Glocker
- Department of Immunology, Royal Free Hospital and University College London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1442
|
Dhiman R, Indramohan M, Barnes PF, Nayak RC, Paidipally P, Rao LVM, Vankayalapati R. IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:6639-45. [PMID: 19864591 DOI: 10.4049/jimmunol.0902587] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We determined whether human NK cells could contribute to immune defenses against Mycobacterium tuberculosis through production of IL-22. CD3(-)CD56(+) NK cells produced IL-22 when exposed to autologous monocytes and gamma-irradiated M. tuberculosis, and this depended on the presence of IL-15 and IL-23, but not IL-12 or IL-18. IL-15-stimulated NK cells expressed 10.6 times more DAP10 mRNA compared with control NK cells, and DAP10 siRNA inhibited IL-15-mediated IL-22 production by NK cells. Soluble factors produced by IL-15-activated NK cells inhibited growth of M. tuberculosis in macrophages, and this effect was reversed by anti-IL-22. Addition of rIL-22 to infected macrophages enhanced phagolysosomal fusion and reduced growth of M. tuberculosis. We conclude that NK cells can contribute to immune defenses against M. tuberculosis through production of IL-22, which inhibits intracellular mycobacterial growth by enhancing phagolysosomal fusion. IL-15 and DAP-10 elicit IL-22 production by NK cells in response to M. tuberculosis.
Collapse
MESH Headings
- Humans
- Interleukin-12/pharmacology
- Interleukin-15/pharmacology
- Interleukin-18/pharmacology
- Interleukin-23/pharmacology
- Interleukins/immunology
- Interleukins/metabolism
- Interleukins/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/microbiology
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Phagosomes/drug effects
- Phagosomes/immunology
- Phagosomes/metabolism
- Phagosomes/microbiology
- RNA, Messenger/agonists
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- RNA, Small Interfering/immunology
- RNA, Small Interfering/metabolism
- Receptors, Immunologic/agonists
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Recombinant Proteins/pharmacology
- Tuberculosis/immunology
- Tuberculosis/microbiology
- Interleukin-22
Collapse
Affiliation(s)
- Rohan Dhiman
- Center for Pulmonary and Infectious Disease Control, Department of Microbiology and Immunology, University of Texas Health Center, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | |
Collapse
|
1443
|
Satoh-Takayama N, Dumoutier L, Lesjean-Pottier S, Ribeiro VSG, Mandelboim O, Renauld JC, Vosshenrich CAJ, Di Santo JP. The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:6579-87. [PMID: 19846871 DOI: 10.4049/jimmunol.0901935] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural cytotoxicity receptors (including NKp30, NKp44, and NKp46 in humans and NKp46 in mice) are type I transmembrane proteins that signal NK cell activation via ITAM-containing adapter proteins in response to stress- and pathogen-induced ligands. Although murine NKp46 expression (encoded by Ncr1) was thought to be predominantly restricted to NK cells, the identification of distinct intestinal NKp46(+) cell subsets that express the transcription factor Rorc and produce IL-22 suggests a broader function for NKp46 that could involve intestinal homeostasis and immune defense. Using mice carrying a GFP-modified Ncr1 allele, we found normal numbers of gut CD3(-)GFP(+) cells with a similar cell surface phenotype and subset distribution in the absence of Ncr1. Splenic and intestinal CD3(-)NKp46(+) cell subsets showed distinct patterns of cytokine secretion (IFN-gamma, IL-22) following activation via NK1.1, NKp46, IL-12 plus IL-18, or IL-23. However, IL-22 production was sharply restricted to intestinal CD3(-)GFP(+) cells with the CD127(+)NK1.1(-) phenotype and could be induced in an Ncr1-independent fashion. Because NKp46 ligands can trigger immune activation in the context of infectious pathogens, we assessed the response of wild-type and Ncr-1-deficient Rag2(-/-) mice to the enteric pathogen Citrobacter rodentium. No differences in the survival or clinical score were observed in C. rodentium-infected Rag2(-/-) mice lacking Ncr1, indicating that NKp46 plays a redundant role in the differentiation of intestinal IL-22(+) cells that mediate innate defense against this pathogen. Our results provide further evidence for functional heterogeneity in intestinal NKp46(+) cells that contrast with splenic NK cells.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Citrobacter rodentium/immunology
- Cytokines/immunology
- Cytokines/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Enterobacteriaceae Infections/immunology
- Enterobacteriaceae Infections/microbiology
- Immunity, Innate
- Interleukins/immunology
- Interleukins/metabolism
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestine, Small/microbiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Natural Cytotoxicity Triggering Receptor 1/genetics
- Natural Cytotoxicity Triggering Receptor 1/immunology
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Spleen/microbiology
- Interleukin-22
Collapse
|
1444
|
Abstract
Lineage-specific responses from the effector T-cell repertoire form a critical component of adaptive immunity. The recent identification of Th17 cells-a third, distinct lineage of helper T cells-collapses the long-accepted paradigm in which Th1 and Th2 cells distinctly mediate cellular and humoral immunity, respectively. In this minireview, we discuss the involvement of the Th17 lineage during infection by extracellular bacteria, intracellular bacteria, and fungi. Emerging trends suggest that the Th17 population bridges innate and adaptive immunity to produce a robust antimicrobial inflammatory response. However, because Th17 cells mediate both host defense and pathological inflammation, elucidation of mechanisms that attenuate but do not completely abolish the Th17 response may have powerful implications for therapy.
Collapse
|
1445
|
Genetic deficiencies of innate immune signalling in human infectious disease. THE LANCET. INFECTIOUS DISEASES 2009; 9:688-98. [PMID: 19850227 DOI: 10.1016/s1473-3099(09)70255-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The type-1 cytokine (interleukin 12, interleukin 23, interferon gamma, interleukin 17) signalling pathway is triggered during infection by activation of phagocyte-expressed pattern-recognition receptors that recognise specific pathogen-associated molecular patterns. Triggering of this pathway results, among other things, in activation of microbicidal mechanisms in phagocytic cells. Individuals with a deficiency in one of the proteins in the pathway are unusually susceptible to otherwise poorly pathogenic, mostly environmental, mycobacteria and salmonellae. Individuals with deficiencies in other innate immune signalling proteins show unusual susceptibility to pathogens other than mycobacteria or salmonellae. We discuss recent insights into key molecules involved in type-1 cytokine signalling pathways and provide an update on the molecular genetic defects underlying mendelian susceptibility to mycobacterial disease. We also discuss deficiencies in the innate immune signalling proteins that lead to susceptibility to other pathogens. Knowledge of innate immune signalling has allowed the identification of defects in such patients. However, some patients have enhanced susceptibility to pathogens even though no mutations have been found in the candidate genes identified thus far. Whereas a few patients might have autoantibodies against type-1 cytokines, others might harbour mutations in new genes and pathways that still need to be identified.
Collapse
|
1446
|
Lymphoid tissue inducer cells: bridges between the ancient innate and the modern adaptive immune systems. Mucosal Immunol 2009; 2:472-7. [PMID: 19741599 DOI: 10.1038/mi.2009.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phylogeny indicates that adaptive immunity evolved first in diffusely distributed lymphoid tissues found in the lamina propria (LP) of the gut. B follicular structures appeared later, probably initially in isolated lymphoid follicles in the LP and then in organized lymphoid tissues such as lymph nodes and Peyer's patches. The development of these new lymphoid structures was enabled by gene duplication and evolution of new tumor necrosis family members. Here, we argue that lymphoid tissue inducer cells (LTis) had a pivotal role, not only in the development of organized lymphoid structures, but also in the subsequent genesis of the CD4-dependent class-switched memory antibody responses. In this review, we concentrate on the latter function: the sustenance by LTis of CD4 T-cell responses for protective immunity.
Collapse
|
1447
|
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139:485-98. [PMID: 19836068 PMCID: PMC2796826 DOI: 10.1016/j.cell.2009.09.033] [Citation(s) in RCA: 3497] [Impact Index Per Article: 218.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/02/2009] [Accepted: 09/30/2009] [Indexed: 11/21/2022]
Abstract
The gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. How commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to induce the appearance of CD4(+) T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria. SFB adhere tightly to the surface of epithelial cells in the terminal ileum of mice with Th17 cells but are absent from mice that have few Th17 cells. Colonization with SFB was correlated with increased expression of genes associated with inflammation and antimicrobial defenses and resulted in enhanced resistance to the intestinal pathogen Citrobacter rodentium. Thus, manipulation of this commensal-regulated pathway may provide new opportunities for enhancing mucosal immunity and treating autoimmune disease.
Collapse
Affiliation(s)
- Ivaylo I. Ivanov
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Koji Atarashi
- Laboratory of Immune Regulation, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nicolas Manel
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Eoin L. Brodie
- Center for Environmental Biotechnology, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tatsuichiro Shima
- Yakult Central Institute for Microbiological Research, Yaho 1796, Kunitachi, Tokyo 186-8650, Japan
| | - Ulas Karaoz
- Center for Environmental Biotechnology, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dongguang Wei
- Carl Zeiss SMT, Inc., Nanotechnology Systems Div. One Corporation Way, Peabody, MA 01960, USA
| | - Katherine C. Goldfarb
- Center for Environmental Biotechnology, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Clark A. Santee
- Center for Environmental Biotechnology, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan V. Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Takeshi Tanoue
- Laboratory of Immune Regulation, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akemi Imaoka
- Yakult Central Institute for Microbiological Research, Yaho 1796, Kunitachi, Tokyo 186-8650, Japan
| | - Kikuji Itoh
- Department of Veterinary Public Health, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshinori Umesaki
- Yakult Central Institute for Microbiological Research, Yaho 1796, Kunitachi, Tokyo 186-8650, Japan
| | - Kenya Honda
- Laboratory of Immune Regulation, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
- Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| | - Dan R. Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
1448
|
Lin Y, Ritchea S, Logar A, Slight S, Messmer M, Rangel-Moreno J, Guglani L, Alcorn JF, Strawbridge H, Park SM, Onishi R, Nyugen N, Walter MJ, Pociask D, Randall TD, Gaffen SL, Iwakura Y, Kolls JK, Khader SA. Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity 2009; 31:799-810. [PMID: 19853481 DOI: 10.1016/j.immuni.2009.08.025] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 02/06/2023]
Abstract
The importance of T helper type 1 (Th1) cell immunity in host resistance to the intracellular bacterium Francisella tularensis is well established. However, the relative roles of interleukin (IL)-12-Th1 and IL-23-Th17 cell responses in immunity to F. tularensis have not been studied. The IL-23-Th17 cell pathway is critical for protective immunity against extracellular bacterial infections. In contrast, the IL-23-Th17 cell pathway is dispensable for protection against intracellular pathogens such as Mycobacteria. Here we show that the IL-23-Th17 pathway regulates the IL-12-Th1 cell pathway and was required for protective immunity against F.tularensis live vaccine strain. We show that IL-17A, but not IL-17F or IL-22, induced IL-12 production in dendritic cells and mediated Th1 responses. Furthermore, we show that IL-17A also induced IL-12 and interferon-gamma production in macrophages and mediated bacterial killing. Together, these findings illustrate a biological function for IL-17A in regulating IL-12-Th1 cell immunity and host responses to an intracellular pathogen.
Collapse
Affiliation(s)
- Yinyao Lin
- Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1449
|
Ely LK, Fischer S, Garcia KC. Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol 2009; 10:1245-51. [PMID: 19838198 PMCID: PMC2783927 DOI: 10.1038/ni.1813] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 09/17/2009] [Indexed: 11/30/2022]
Abstract
T helper type 17 (TH-17) cells, together with their effector cytokines including interleukin 17 (IL-17) family members, are emerging as key mediators of chronic inflammatory and autoimmune disorders. Here we present the crystal structure of a 1:2 complex of IL-17RA bound to IL-17F. The manner of complex formation is unique for cytokines, and involves two fibronectin-type domains of IL-17RA engaging IL-17 within a groove between the IL-17 homodimer interface in a knob-and-hole fashion. The first receptor-binding event to the IL-17 cytokines modulates the affinity and specificity of the second receptor-binding event, thereby promoting heterodimeric versus homodimeric complex formation. IL-17RA utilizes a common recognition strategy to bind to several IL-17 family members, allowing it to potentially act as a shared receptor within multiple different signaling complexes.
Collapse
Affiliation(s)
- Lauren K Ely
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
1450
|
Santos RL, Raffatellu M, Bevins CL, Adams LG, Tükel C, Tsolis RM, Bäumler AJ. Life in the inflamed intestine, Salmonella style. Trends Microbiol 2009; 17:498-506. [PMID: 19819699 DOI: 10.1016/j.tim.2009.08.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 12/12/2022]
Abstract
The lower gastrointestinal tract is densely populated with resident microbial communities (microbiota), which do not elicit overt host responses but rather provide benefit to the host, including niche protection from pathogens. However, introduction of bacteria into the underlying tissue evokes acute inflammation. Non-typhoidal Salmonella serotypes (NTS) elicit this stereotypic host response by actively penetrating the intestinal epithelium and surviving in tissue macrophages. Initial responses generated by bacterial host cell interaction are amplified in tissue through the interleukin (IL)-18/interferon-gamma and IL-23/IL-17 axes, resulting in the activation of mucosal barrier functions against NTS dissemination. However, the pathogen is adapted to survive antimicrobial defenses encountered in the lumen of the inflamed intestine. This strategy enables NTS to exploit inflammation to outcompete the intestinal microbiota, and promotes the Salmonella transmission by the fecal/oral route.
Collapse
Affiliation(s)
- Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | |
Collapse
|