1401
|
Wang SY, Xue X, Duan R, Gong PY, E Y, Jiang T, Zhang YD. A TREML2 missense variant influences specific hippocampal subfield volumes in cognitively normal elderly subjects. Brain Behav 2020; 10:e01573. [PMID: 32073739 PMCID: PMC7177563 DOI: 10.1002/brb3.1573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Triggering receptor expressed on myeloid cells-like transcript 2 gene (TREML2) is a newly identified AD susceptibility gene. Its missense variant rs3747742-C substantially decreases AD risk in both Caucasians and Han Chinese, but the underlying mechanisms remain elusive. In the present study, to uncover the possible mechanisms by which TREML2 rs3747742-C reduces AD risk, we investigated the possible relation of this variant with AD-related brain structures using a cognitively normal elderly population from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. METHODS In total, 158 cognitively normal elders from ADNI database with complete data for brain structures and TREML2 rs3747742 genotype were included in this study. The association of TREML2 rs3747742 genotype with the structures of three cerebral cortices (entorhinal cortex, middle temporal gyrus, and parahippocampal gyrus), two subcortical regions (amygdala and hippocampus), and three subfields of hippocampus (CA1, CA2 + CA3, and CA4 + dentate gyrus) was investigated. RESULTS A significant difference was noted in the volume of right CA1 subfield among three genotypes of TREML2 rs3747742 (p = .0364). In the multivariate analysis, TREML2 rs3747742-C significantly increased right CA1 subfield volume after adjusting for age, gender, education years, APOE ε4 status, and intracranial volume under the recessive genetic model (Bonferroni corrected p = .003586). CONCLUSION The present study provides the first evidence that TREML2 rs3747742-C carriers have larger volumes of hippocampal CA1 subfield in a cognitively normal elderly population. These findings imply that enhancement of brain reserve may contribute to the protection of TREML2 rs3747742-C in AD susceptibility.
Collapse
Affiliation(s)
- Si-Yu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Xue
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Duan
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng-Yu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | | |
Collapse
|
1402
|
A new Zn(II)-coordination polymer based on m-terphenyl pentacarboxylic acid ligand for photocatalytic methylene blue degradation and protective effect against Alzheimer’s disease by reducing the inflammatory response and oxidative stress in the nerve cells. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
1403
|
Xu M, Zhang L, Li P, Wang C, Shi Y. Network pharmacology used to decode potential active ingredients in Ferula assafoetida and mechanisms for the application to Alzheimer’s disease. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
1404
|
Chiang MC, Nicol CJB, Cheng YC, Yen C, Lin CH, Chen SJ, Huang RN. Nanogold Neuroprotection in Human Neural Stem Cells Against Amyloid-beta-induced Mitochondrial Dysfunction. Neuroscience 2020; 435:44-57. [PMID: 32229231 DOI: 10.1016/j.neuroscience.2020.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neuronal dementia with progressive memory loss. Amyloid-beta (Aβ) peptides has major effect in the neurodegenerative disorder, which are thought to promote mitochondrial dysfunction in AD brains. Anti-AD drugs acting upon the brain are generally difficult to develop, often cause serious side effects or lack therapeutic efficacy. Numerous studies have shown the beneficial therapeutic applications of gold nanoparticles (AuNPs), including for neuroprotective events and AD. The aim of this study is to understand how AuNPs could exert their neuroprotective role in AD, for which cell model have chosen human neural stem cells (hNSCs) as the experimental tool. We hypothesize AuNPs protect against Aβ-induced cellular impairment and mitochondrial dysfunction in hNSCs. Here, we show AuNPs increase the survival of hNSCs treated with Aβ via downregulation of caspase 3 and 9 activities. Moreover, AuNPs abrogated the Aβ-mediated decrease neuroprotective (CREB and Bcl-2) and mitochondrial (PGC1α, NRF-1 and Tfam) gene expressions in treated hNSCs. Importantly, co-treatment with AuNPs significantly rescued hNSCs from Aβ-mediated mitochondrial function and morphology. AuNPs also significantly normalizes the immunostaining of mitochondrial marker and mass in differentiated hNSCs with Aβ. The effects may be exerted by the AuNPs, as supported by its protective reversal of Aβ-induced cellular impairment and mitochondrial dysfunction in hNSCs. In fact, the results presented extend our understanding of the mechanisms through which AuNPs could exert their neuroprotective role in hNSCs treated with Aβ.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao Yuan 333, Taiwan
| | - Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Chien-Hung Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
1405
|
Storm CS, Kia DA, Almramhi M, Wood NW. Using Mendelian randomization to understand and develop treatments for neurodegenerative disease. Brain Commun 2020; 2:fcaa031. [PMID: 32954289 PMCID: PMC7425289 DOI: 10.1093/braincomms/fcaa031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Common neurodegenerative diseases are thought to arise from a combination of environmental and genetic exposures. Mendelian randomization is a powerful way to leverage existing genetic data to investigate causal relationships between risk factors and disease. In recent years, Mendelian randomization has gathered considerable traction in neurodegenerative disease research, providing valuable insights into the aetiology of these conditions. This review aims to evaluate the impact of Mendelian randomization studies on translational medicine for neurodegenerative diseases, highlighting the advances made and challenges faced. We will first describe the fundamental principles and limitations of Mendelian randomization and then discuss the lessons from Mendelian randomization studies of environmental risk factors for neurodegeneration. We will illustrate how Mendelian randomization projects have used novel resources to study molecular pathways of neurodegenerative disease and discuss the emerging role of Mendelian randomization in drug development. Finally, we will conclude with our view of the future of Mendelian randomization in these conditions, underscoring unanswered questions in this field.
Collapse
Affiliation(s)
- Catherine S Storm
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Mona Almramhi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
1406
|
Raimundo AF, Ferreira S, Martins IC, Menezes R. Islet Amyloid Polypeptide: A Partner in Crime With Aβ in the Pathology of Alzheimer's Disease. Front Mol Neurosci 2020; 13:35. [PMID: 32265649 PMCID: PMC7103646 DOI: 10.3389/fnmol.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes affects hundreds of millions of patients worldwide. Despite the advances in understanding the disease and therapeutic options, it remains a leading cause of death and of comorbidities globally. Islet amyloid polypeptide (IAPP), or amylin, is a hormone produced by pancreatic β-cells. It contributes to the maintenance of glucose physiological levels namely by inhibiting insulin and glucagon secretion as well as controlling adiposity and satiation. IAPP is a highly amyloidogenic polypeptide forming intracellular aggregates and amyloid structures that are associated with β-cell death. Data also suggest the relevance of unprocessed IAPP forms as seeding for amyloid buildup. Besides the known consequences of hyperamylinemia in the pancreas, evidence has also pointed out that IAPP has a pathological role in cognitive function. More specifically, IAPP was shown to impair the blood–brain barrier; it was also seen to interact and co-deposit with amyloid beta peptide (Aß), and possibly with Tau, within the brain of Alzheimer's disease (AD) patients, thereby contributing to diabetes-associated dementia. In fact, it has been suggested that AD results from a metabolic dysfunction in the brain, leading to its proposed designation as type 3 diabetes. Here, we have first provided a brief perspective on the IAPP amyloidogenic process and its role in diabetes and AD. We have then discussed the potential interventions for modulating IAPP proteotoxicity that can be explored for therapeutics. Finally, we have proposed the concept of a “diabetes brain phenotype” hypothesis in AD, which may help design future IAPP-centered drug developmentstrategies against AD.
Collapse
Affiliation(s)
- Ana F Raimundo
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Ferreira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Regina Menezes
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
1407
|
Pharmacological Mechanisms Underlying the Neuroprotective Effects of Alpinia oxyphylla Miq. on Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21062071. [PMID: 32197305 PMCID: PMC7139528 DOI: 10.3390/ijms21062071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
Alpinia oxyphylla Miq. (i.e., A. oxyphylla), a traditional Chinese medicine, can exert neuroprotective effects in ameliorating mild cognitive impairment and improving the pathological hallmarks of Alzheimer's disease (AD). Here, 50 active compounds and 164 putative targets were collected and identified with 251 clinically tested AD-associated target proteins using network pharmacology approaches. Based on the Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway enrichments, the compound-target-pathway-disease/protein-protein interaction network constructions, and the network topological analysis, we concluded that A. oxyphylla may have neuroprotective effects by regulating neurotransmitter function, as well as brain plasticity in neuronal networks. Moreover, closely-related AD proteins, including the amyloid-beta precursor protein, the estrogen receptor 1, acetylcholinesterase, and nitric oxide synthase 2, were selected as the bottleneck nodes of network for further verification by molecular docking. Our analytical results demonstrated that terpene, as the main compound of A. oxyphylla extract, exerts neuroprotective effects, providing new insights into the development of a natural therapy for the prevention and treatment of AD.
Collapse
|
1408
|
Wang HC, Liu NY, Zhang S, Yang Y, Wang ZY, Wei Y, Liu JG, Pei H, Li H. Clinical Experience in Treatment of Alzheimer's Disease with Jiannao Yizhi Formula () and Routine Western Medicine. Chin J Integr Med 2020; 26:212-218. [PMID: 32180150 DOI: 10.1007/s11655-019-2718-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the long-term therapeutic effects of the Chinese medicine Jiannao Yizhi Formula (, JYF) in the treatment of Alzheimer's disease (AD). METHODS Sixty mild-to-moderate AD participants were recruited and randomly allocated to the treatment (30 with JYF) and the control groups (30 with donepezil) for 6 months with the random numbers. The primary outcomes were scores of Alzheimer's Disease Rating Scale-Cognitive (ADAS-Cog) and Chinese Medicine Symptom Scale (CM-SS). The secondary outcomes were scores of Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Activities of Daily Living (ADL). Safety assessments were conducted at baseline and the 6th month of treatment. Serum levels of acetylcholine (Ach), amyloid-β protein 42 (Aβ42), and the microtubule-associated protein tau (Tau) were also determined by enzyme-liked immunosorbent assay. RESULTS Fifty-one participants were included in the final analyses (JYF n=27; donepezil n=24). Compared with baseline, both JYF and donepezil increased the MoCA and MMSE scores and decreased the ADAS-Cog and CM-SS scores (P<0.05 or P<0.01). Both drugs increased the serum levels of Ach and decreased the serum levels of Aβ42 and Tau (all P<0.05). There was no significant difference in these variables between the two groups, which showed that JYF was not inferior to donepezil. No obviously significant changes were observed in the ADL. No severe adverse events were observed in both groups. CONCLUSION The effect and safety of JYF for the treatment of AD were not inferior to those of donepezil.
Collapse
Affiliation(s)
- Hui-Chan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Nan-Yang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shuai Zhang
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yang Yang
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhi-Yong Wang
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yun Wei
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jian-Gang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hui Pei
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hao Li
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
1409
|
Tauopathy Analysis in P301S Mouse Model of Alzheimer Disease Immunized With DNA and MVA Poxvirus-Based Vaccines Expressing Human Full-Length 4R2N or 3RC Tau Proteins. Vaccines (Basel) 2020; 8:vaccines8010127. [PMID: 32183198 PMCID: PMC7157204 DOI: 10.3390/vaccines8010127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive memory loss and cognitive decline that has been associated with an accumulation in the brain of intracellular neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau protein, and extracellular senile plaques formed by β-amyloid peptides. Currently, there is no cure for AD and after the failure of anti β-amyloid therapies, active and passive tau immunotherapeutic approaches have been developed in order to prevent, reduce or ideally reverse the disease. Vaccination is one of the most effective approaches to prevent diseases and poxviruses, particularly modified vaccinia virus Ankara (MVA), are one of the most promising viral vectors used as vaccines against several human diseases. Thus, we present here the generation and characterization of the first MVA vectors expressing human tau genes; the full-length 4R2N tau protein or a 3RC tau fragment containing 3 tubulin-binding motifs and the C-terminal region (termed MVA-Tau4R2N and MVA-Tau3RC, respectively). Both MVA-Tau recombinant viruses efficiently expressed the human tau 4R2N or 3RC proteins in cultured cells, being detected in the cytoplasm of infected cells and co-localized with tubulin. These MVA-Tau vaccines impacted the innate immune responses with a differential recruitment of innate immune cells to the peritoneal cavity of infected mice. However, no tau-specific T cell or humoral immune responses were detected in vaccinated mice. Immunization of transgenic P301S mice, a mouse model for tauopathies, with a DNA-Tau prime/MVA-Tau boost approach showed no significant differences in the hyperphosphorylation of tau, motor capacity and survival rate, when compared to non-vaccinated mice. These findings showed that a well-established and potent protocol of T and B cell activation based on DNA/MVA prime/boost regimens using DNA and MVA vectors expressing tau full-length 4R2N or 3RC proteins is not sufficient to trigger tau-specific T and B cell immune responses and to induce a protective effect against tauopathy in this P301S murine model. In the pursuit of AD vaccines, our results highlight the need for novel optimized tau immunogens and additional modes of presentation of tau protein to the immune system.
Collapse
|
1410
|
Lim SL, Tran DN, Kieu Z, Chen C, Villanueva E, Ghiaar S, Gallup V, Zumkehr J, Cribbs DH, Rodriguez-Ortiz CJ, Kitazawa M. Genetic Ablation of Hematopoietic Cell Kinase Accelerates Alzheimer's Disease-Like Neuropathology in Tg2576 Mice. Mol Neurobiol 2020; 57:2447-2460. [PMID: 32146679 DOI: 10.1007/s12035-020-01894-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 01/31/2023]
Abstract
Microglial dysregulation, pertaining to impairment in phagocytosis, clearance and containment of amyloid-β (Aβ), and activation of neuroinflammation, has been posited to contribute to the pathogenesis of Alzheimer's disease (AD). Detailed cellular mechanisms that are disrupted during the disease course to display such impairment in microglia, however, remain largely undetermined. We hypothesize that loss of hematopoietic cell kinase (HCK), a phagocytosis-regulating member of the Src family tyrosine kinases that mediate signals from triggering receptor expressed on myeloid cells 2 and other immunoreceptors, impairs microglial homeostasis and Aβ clearance, leading to the accelerated buildup of Aβ pathology and cognitive decline during the early stage of neuropathological development. To elucidate the pivotal role of HCK in AD, we generated a constitutive knockout of HCK in the Tg2576 mouse model of AD. We found that HCK deficiency accelerated cognitive decline along with elevated Aβ level and plaque burden, attenuated microglial Aβ phagocytosis, induced iNOS expression in microglial clusters, and reduced pre-synaptic protein at the hippocampal regions. Our findings substantiate that HCK plays a prominent role in regulating microglial neuroprotective functions and attenuating early AD neuropathology.
Collapse
Affiliation(s)
- Siok Lam Lim
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Diana Nguyen Tran
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Zanett Kieu
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Christine Chen
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Emmanuel Villanueva
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Sagar Ghiaar
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Victoria Gallup
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Joannee Zumkehr
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - David H Cribbs
- Department of Neurology, University of California, Irvine, CA, 92697, USA
| | - Carlos J Rodriguez-Ortiz
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Masashi Kitazawa
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA. .,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
1411
|
Nehete PN, Williams LE, Chitta S, Nehete BP, Patel AG, Ramani MD, Wisniewski T, Scholtzova H. Class C CpG Oligodeoxynucleotide Immunomodulatory Response in Aged Squirrel Monkey ( Saimiri Boliviensis Boliviensis). Front Aging Neurosci 2020; 12:36. [PMID: 32194391 PMCID: PMC7063459 DOI: 10.3389/fnagi.2020.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
One means of stimulating the mammalian innate immune system is via Toll-like receptor 9 (TLR9) being exposed to unmethylated cytosine-phosphate-guanine (CpG) DNA, also known as pathogen-associated molecular patterns (PAMPs) of microbial origin. Synthetic CpG oligodeoxynucleotides (ODNs) with defined CpG motifs possess broad immunostimulatory properties that make CpG ODNs suitable as therapeutic interventions in a variety of human disease conditions, including Alzheimer's disease (AD). Rodent models are often used to preclinically test the effectiveness of CpG ODN therapeutic agents for AD and other disorders. However, the translatability of findings in such models is limited due to the significant difference of the expression of TLR9 between primates and rodents. The squirrel monkey (SQM), a New World non-human primate (NHP), is known to be phylogenetically proximate to humans, and develops extensive age-dependent cerebral amyloid angiopathy (CAA), a key pathological feature of AD. Hence, this model is currently being used to test AD therapeutics. In the present study, we conducted the first examination of Class C CpG ODN's immunomodulatory role in elderly SQMs. We documented the effectiveness of CpG ODN to trigger an immune response in an aged cohort whose immune system is senescent. The specific immune response patterns detected here closely resembled CpG ODN-induced immunostimulatory patterns observed in prior human studies. Overall, our findings provide critical data regarding the immunomodulatory potential of CpG ODN in this NHP model, allowing for future translational studies of innate immunity stimulation via TLR9 agonists for diverse indications, including AD therapeutics.
Collapse
Affiliation(s)
- Pramod N. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Lawrence E. Williams
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | - Sriram Chitta
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | - Bharti P. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | - Akash G. Patel
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States
| | - Margish D. Ramani
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States
- Department of Pathology, New York University School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Henrieta Scholtzova
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
- Department of Neurology, Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
1412
|
Zhao Y, Long Z, Ding Y, Jiang T, Liu J, Li Y, Liu Y, Peng X, Wang K, Feng M, He G. Dihydroartemisinin Ameliorates Learning and Memory in Alzheimer's Disease Through Promoting Autophagosome-Lysosome Fusion and Autolysosomal Degradation for Aβ Clearance. Front Aging Neurosci 2020; 12:47. [PMID: 32210783 PMCID: PMC7067048 DOI: 10.3389/fnagi.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Dihydroartemisinin (DHA) is an active metabolite of sesquiterpene trioxane lactone extracted from Artemisia annua, which is used to treat malaria worldwide. DHA can activate autophagy, which is the main mechanism to remove the damaged cell components and recover the harmful or useless substances from eukaryotic cells and maintain cell viability through the autophagy lysosomal degradation system. Autophagy activation and autophagy flux correction are playing an important neuroprotective role in the central nervous system, as they accelerate the removal of toxic protein aggregates intracellularly and extracellularly to prevent neurodegenerative processes, such as Alzheimer's disease (AD). In this study, we explored whether this mechanism can mediate the neuroprotective effect of DHA on the AD model in vitro and in vivo. Three months of DHA treatment improved the memory and cognitive impairment, reduced the deposition of amyloid β plaque, reduced the levels of Aβ40 and Aβ42, and ameliorated excessive neuron apoptosis in APP/PS1 mice brain. In addition, DHA treatment increased the level of LC3 II/I and decreased the expression of p62. After Bafilomycin A1 and Chloroquine (CQ) blocked the fusion of autophagy and lysosome, as well as the degradation of autolysosomes (ALs), DHA treatment increased the level of LC3 II/I and decreased the expression of p62. These results suggest that DHA treatment can correct autophagic flux, improve autophagy dysfunction, inhibit abnormal death of neurons, promote the clearance of amyloid-β peptide (Aβ) fibrils, and have a multi-target effect on the neuropathological process, memory and cognitive deficits of AD.
Collapse
Affiliation(s)
- Yueyang Zhao
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Zhimin Long
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Ya Ding
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Tingting Jiang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Jiajun Liu
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Yimin Li
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Xuehua Peng
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kejian Wang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Min Feng
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| |
Collapse
|
1413
|
Tian H, Li S, Wen H, Zhang X, Li J. Volatile organic compounds fingerprinting in faeces and urine of Alzheimer's disease model SAMP8 mice by headspace-gas chromatography-ion mobility spectrometry and headspace-solid phase microextraction-gas chromatography-mass spectrometry. J Chromatogr A 2020; 1614:460717. [DOI: 10.1016/j.chroma.2019.460717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 12/24/2022]
|
1414
|
Arbo B, Cechinel L, Palazzo R, Siqueira I. Endosomal dysfunction impacts extracellular vesicle release: Central role in Aβ pathology. Ageing Res Rev 2020; 58:101006. [PMID: 31891813 DOI: 10.1016/j.arr.2019.101006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 01/04/2023]
Abstract
Alzheimer's Disease (AD) is characterized by progressive loss of cognitive abilities; senile plaques represent the major histopathological findings. Amyloid precursor protein (APP) processing machinery, and its product amyloid-beta (Aβ) peptide, have been found in extracellular vesicles (EVs), specifically exosomes, which allows for Aβ peptide aggregation and subsequent senile plaques deposition. We review the APP processing imbalance in EVs, autophagic and endosomal pathways in AD. Increased intraluminal vesicle (ILV) production and exosome release appear to counteract the endosomal dysfunction of APP processing; however, this process results in elevated amyloidogenic processing of APP and augmented senile plaque deposition. Several players related to APP processing and dysfunctional endosomal-lysosomal-exosomal (and other EVs) pathway are described, and the interconnected systems are discussed. The components Arc, p75, Rab11 and retromer complex emerge as candidates for key convergent mechanisms that lead to increased EVs loaded with APP machinery and Aβ levels, in atrophy and damage of basal forebrain cholinergic neurons in AD.
Collapse
|
1415
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
1416
|
Protein Kinase C Isozymes and Autophagy during Neurodegenerative Disease Progression. Cells 2020; 9:cells9030553. [PMID: 32120776 PMCID: PMC7140419 DOI: 10.3390/cells9030553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Protein kinase C (PKC) isozymes are members of the Serine/Threonine kinase family regulating cellular events following activation of membrane bound phospholipids. The breakdown of the downstream signaling pathways of PKC relates to several disease pathogeneses particularly neurodegeneration. PKC isozymes play a critical role in cell death and survival mechanisms, as well as autophagy. Numerous studies have reported that neurodegenerative disease formation is caused by failure of the autophagy mechanism. This review outlines PKC signaling in autophagy and neurodegenerative disease development and introduces some polyphenols as effectors of PKC isozymes for disease therapy.
Collapse
|
1417
|
Moore S, Rabichow BE, Sattler R. The Hitchhiker's Guide to Nucleocytoplasmic Trafficking in Neurodegeneration. Neurochem Res 2020; 45:1306-1327. [PMID: 32086712 DOI: 10.1007/s11064-020-02989-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
The widespread nature of nucleocytoplasmic trafficking defects and protein accumulation suggests distinct yet overlapping mechanisms in a variety of neurodegenerative diseases. Detailed understanding of the cellular pathways involved in nucleocytoplasmic transport and its dysregulation are essential for elucidating neurodegenerative pathogenesis and pinpointing potential areas for therapeutic intervention. The transport of cargos from the nucleus to the cytoplasm is generally regulated by the structure and function of the nuclear pore as well as the karyopherin α/β, importin, exportin, and mRNA export mechanisms. The disruption of these crucial transport mechanisms has been extensively described in the context of neurodegenerative diseases. One common theme in neurodegeneration is the cytoplasmic aggregation of proteins, including nuclear RNA binding proteins, repeat expansion associated gene products, and tau. These cytoplasmic aggregations are partly a consequence of failed nucleocytoplasmic transport machinery, but can also further disrupt transport, creating cyclical feed-forward mechanisms that exacerbate neurodegeneration. Here we describe the canonical mechanisms that regulate nucleocytoplasmic trafficking as well as how these mechanisms falter in neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephen Moore
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Benjamin E Rabichow
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| |
Collapse
|
1418
|
Yang S, Zhou H, Wang G, Zhong XH, Shen QL, Zhang XJ, Li RY, Chen LH, Zhang YH, Wan Z. Quercetin is protective against short-term dietary advanced glycation end products intake induced cognitive dysfunction in aged ICR mice. J Food Biochem 2020; 44:e13164. [PMID: 32065675 DOI: 10.1111/jfbc.13164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023]
Abstract
Dietary advanced glycation end products (dAGEs) might be potential toxins involved in the pathogenesis of Alzheimer's disease (AD). Quercetin is a flavonoid possessing neuroprotective effects. We aimed to explore whether a 21 days of dAGEs intake would result in cognitive dysfunction in aged ICR mice, and the protective effects of quercetin, with potential mechanisms explored. Fourteen-month old ICR mice were randomly assigned into four groups, that is, Control, AGEs, quercetin, and AGE diet supplemented with quercetin. Key markers involved in Aβ, tau, and neuroinflammation from hippocampus and cortex were measured via western blot. Gut microbiota and short chain fatty acids profiles from intestinal contents were measured via 16S rRNA gene sequencing and gas chromatography (GC), respectively. Quercetin alleviated cognitive impairment induced by dAGEs in aged mice. This might be associated with that quercetin reduced cathepsin B, tau phosphorylation, and neuroinflammation, and elevated α-diversity index (ACE, Chao1, and Shannon index), and reduced phylum Verrucomicrobia of gut microbiota. PRACTICAL APPLICATIONS: Alzheimer's disease (AD) has been regarded as the commonest cause of progressive dementia for the elderly. This study is the very first to demonstrate that even a short-term dietary advanced glycation end product (dAGEs) intake induced impaired cognitive function in aged ICR mice, and querectin is capable of reversing dAGEs-induced cognitive dysfunction. Reduced tau phosphorylation, neuroinflammation, and altered gut microbiota profiles may be involved in querectin's protective effects against dAGEs-induced cognitive impairment. Our study suggested that quercetin supplementation might be beneficial for improving cognitive function in elderly subjects with high consumption of dAGEs such as grilling, frying, and broiling of food.
Collapse
Affiliation(s)
- Shengyi Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Huanhuan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Guiping Wang
- School of Physical Education, Soochow University, Suzhou, China.,Laboratory Animal Center, Medical College of Soochow University, Suzhou, China
| | | | | | | | - Ru-Yi Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Li-Hua Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Ya-Han Zhang
- Suzhou Institute for Food Control, Suzhou, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, Suzhou, China
| |
Collapse
|
1419
|
Ligustilide improves aging-induced memory deficit by regulating mitochondrial related inflammation in SAMP8 mice. Aging (Albany NY) 2020; 12:3175-3189. [PMID: 32065782 PMCID: PMC7066895 DOI: 10.18632/aging.102793] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease. The main active component in Angelica sinensis, ligustilide, has been reported to have the protective effect on AD. Whether ligustilide could protect against age-induced dementia is still unknown. In this study, we used an aging model, SAMP8 mice to investigate the neuroprotective effect of ligustilide. The behavioral tests (Morris water maze, object recognition task, open field test and elevated plus maze) results showed that ligustilide could improve the memory deficit in SAMP8 mice. For mechanism study, we found that the protein level of P-Drp1 (fission) was decreased and the levels of Mfn1 and Mfn2 (fusion) were increased after ligustilide treatment in animals and cells. Ligustilide increased P-AMPK and ATP levels. Malondialdehyde and superoxide dismutase activity results indicated that ligustilide exerts antioxidant effects by reducing the level of oxidative stress markers. In addition, ligustilide improved neural function and alieved apoptosis and neuroinflammation. These findings have shown that ligustilide treatment improves mitochondrial function in SAMP8 mice, and improves memory loss.
Collapse
|
1420
|
Conway ME. Alzheimer's disease: targeting the glutamatergic system. Biogerontology 2020; 21:257-274. [PMID: 32048098 PMCID: PMC7196085 DOI: 10.1007/s10522-020-09860-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that causes a progressive decline in memory, language and problem solving. For decades mechanism-based therapies have primarily focused on amyloid β (Aβ) processing and pathways that govern neurofibrillary tangle generation. With the potential exception to Aducanumab, a monotherapy to target Aβ, clinical trials in these areas have been challenging and have failed to demonstrate efficacy. Currently, the prescribed therapies for AD are those that target the cholinesterase and glutamatergic systems that can moderately reduce cognitive decline, dependent on the individual. In the brain, over 40% of neuronal synapses are glutamatergic, where the glutamate level is tightly regulated through metabolite exchange in neuronal, astrocytic and endothelial cells. In AD brain, Aβ can interrupt effective glutamate uptake by astrocytes, which evokes a cascade of events that leads to neuronal swelling, destruction of membrane integrity and ultimately cell death. Much work has focussed on the post-synaptic response with little insight into how glutamate is regulated more broadly in the brain and the influence of anaplerotic pathways that finely tune these mechanisms. The role of blood branched chain amino acids (BCAA) in regulating neurotransmitter profiles under disease conditions also warrant discussion. Here, we review the importance of the branched chain aminotransferase proteins in regulating brain glutamate and the potential consequence of dysregulated metabolism in the context of BCAA or glutamate accumulation. We explore how the reported benefits of BCAA supplementation or restriction in improving cognitive function in other neurological diseases may have potential application in AD. Given that memantine, the glutamate receptor agonist, shows clinical relevance it is now timely to research related pathways, an understanding of which could identify novel approaches to treatment of AD.
Collapse
Affiliation(s)
- Myra E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK. .,Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
1421
|
Yang W, Wu PF, Ma JX, Liao MJ, Xu LS, Xu MH, Yi L. Presenilin1 exerts antiproliferative effects by repressing the Wnt/β-catenin pathway in glioblastoma. Cell Commun Signal 2020; 18:22. [PMID: 32046730 PMCID: PMC7014622 DOI: 10.1186/s12964-019-0501-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
Background Glioblastoma and Alzheimer’s disease (AD) are the most common and devastating diseases in the central nervous system. The dysfunction of Presenilin1 is the main reason for AD pathogenesis. However, the molecular function of Presenilin1 and its relative mechanism in glioblastoma remain unclear. Methods Expression of presenilin1 in glioma was determined by IHC. CCK-8, colony formation, Flow cytometry, Edu staining were utilized to evaluate functions of presenilin1 on glioblastoma proliferation. The mechanism of above process was assessed by Western blotting and cell immunofluorescence. Mouse transplanting glioblastoma model and micro-MRI detection were used to verified presenilin1 function in vivo. Results In this study, we found that all grades of glioma maintained relatively low Presenilin1 expression and that the expression of Presenilin1 in high-grade glioma was significantly lower than that in low-grade glioma. Moreover, the Presenilin1 level had a positive correlation with glioma and glioblastoma patient prognosis. Next, we determined that Presenilin1 inhibited the growth and proliferation of glioblastoma cells by downregulating CDK6, C-myc and Cyclin D1 to arrest the cell cycle at the G1/S phase. Mechanistically, Presenilin1 promoted the direct phosphorylation of β-catenin at the 45 site and indirect phosphorylation at the 33/37/41 site, then decreased the stabilized part of β-catenin and hindered its translocation from the cytoplasm to the nucleus. Furthermore, we found that Presenilin1 downregulation clearly accelerated the growth of subcutaneous glioblastoma, and Presenilin1 overexpression significantly repressed the subcutaneous and intracranial transplantation of glioblastoma by hindering β-catenin-dependent cell proliferation. Conclusion Our data implicate the antiproliferative effect of Presenilin1 in glioblastoma by suppressing Wnt/β-catenin signaling, which may provide a novel therapeutic agent for glioblastoma. Video Abstract.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Peng-Fei Wu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Jian-Xing Ma
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Mao-Jun Liao
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Lun-Shan Xu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China
| | - Min-Hui Xu
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China.
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital & Institute Research of Surgery of Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
1422
|
Dioguardi M, Crincoli V, Laino L, Alovisi M, Sovereto D, Mastrangelo F, Lo Russo L, Lo Muzio L. The Role of Periodontitis and Periodontal Bacteria in the Onset and Progression of Alzheimer's Disease: A Systematic Review. J Clin Med 2020; 9:E495. [PMID: 32054121 PMCID: PMC7074205 DOI: 10.3390/jcm9020495] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
The evidence of a connection between the peripheral inflammatory processes and neurodegenerative diseases of the central nervous system is becoming more apparent. This review of the related literature highlights the most recent clinical, epidemiological, and in vitro studies trying to investigate possible connections between periodontal bacteria and the onset and progression of Alzheimer's disease. This review was conducted by searching databases such as PubMed and Scopus using keywords or combinations such as Alzheimer's Disease AND periodontal or dementia AND periodontitis OR periodontal. After eliminating overlaps and screening the articles not related to these issues, we identified 1088 records and proceeded to the selection of articles for an evaluation of the associative assumptions. The hypothesis suggested by the authors and confirmed by the literature is that the bacterial load and the inflammatory process linked to periodontal disease can intensify inflammation at the level of the central nervous system, favoring the occurrence of the disease. The analysis of the literature highlights how periodontal disease can directly contribute to the peripheral inflammatory environment by the introduction of periodontal or indirect pathogenic bacteria and proinflammatory cytokines locally produced at the periodontal level following bacterial colonization of periodontal defects.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| | - Vito Crincoli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Division of Complex Operating Unit of Dentistry, “Aldo Moro” University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy;
| | - Mario Alovisi
- Department of Surgical Sciences, Dental School, University of Turin, 10126 Turin, Italy
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| | - Filiberto Mastrangelo
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (D.S.); (F.M.); (L.L.R.)
| |
Collapse
|
1423
|
Ding N, Jiang J, Tian H, Wang S, Li Z. Benign Regulation of the Astrocytic Phospholipase A 2-Arachidonic Acid Pathway: The Underlying Mechanism of the Beneficial Effects of Manual Acupuncture on CBF. Front Neurosci 2020; 13:1354. [PMID: 32174802 PMCID: PMC7054756 DOI: 10.3389/fnins.2019.01354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background The astrocytic phospholipase A2 (PLA2)-arachidonic acid (AA) pathway is crucial in understanding the reduction of cerebral blood flow (CBF) prior to cognitive deterioration. In complementary and alternative medicine, manual acupuncture (MA) is used as one of the most important therapies for Alzheimer’s disease (AD). The beneficial effects of MA on CBF were reported in our previous study. However, the underlying molecular mechanism remains largely elusive. Objective To investigate the effect of MA on the astrocytic PLA2-AA pathway in SAMP8 mice hippocampi. Methods SAMP8 mice were divided into the SAMP8 control (Pc) group, the SAMP8 MA (Pm) group and the SAMP8 donepezil (Pd) group. SAMR1 mice were used as the SAMRl control (Rc) group. Mice in the Pd group were treated with donepezil hydrochloride at 0.65 μg/g. In the Pm group, MA was applied at Baihui (GV20) and Yintang (GV29) for 20 min. The above treatments were administered once a day for 26 consecutive days. The Morris water maze was applied to assess spatial learning and memory. Immunofluorescence staining, western blot and liquid chromatography-tandem mass spectrometry were used to investigate the expression of related proteins and measure the contents of the metabolic intermediates of the PLA2-AA pathway. Results Compared with that in the Rc group, the escape latency in the Pc group significantly increased (p < 0.01); whereas, the platform crossover number and percentage of time and swimming distance in the platform quadrant decreased (p < 0.01). The hippocampal expression of PLA2, cyclooxygenase-1, cytochrome P450 proteins 2C23 and the levels of AA, prostaglandin E2 and epoxyeicosatrienoic acids of the Pc group was drastically higher than that in the Rc group (p < 0.01). These changes were reversed by MA and donepezil (p < 0.01 or p < 0.05). Conclusion MA can effectively improve the learning and memory abilities of SAMP8 mice and has a negative regulatory effect on the PLA2-AA pathway. We propose that the increase of the arterial tone, which is induced by the inhibition of vasodilatory pathway, may be a reason for the beneficial effect of MA on CBF.
Collapse
Affiliation(s)
- Ning Ding
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Jiang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shun Wang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Li
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
1424
|
He Y, Li Y, Zhou F, Qi J, Wu M. Decreased circadian fluctuation in cognitive behaviors and synaptic plasticity in APP/PS1 transgenic mice. Metab Brain Dis 2020; 35:343-352. [PMID: 31879834 DOI: 10.1007/s11011-019-00531-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022]
Abstract
Cognitive decline, memory impairment and circadian rhythm disturbance are iconic manifestations of Alzheimer's disease (AD). APPswe/PS1dE9 (APP/PS1) mice, a model of AD, show deficits in multiple learning and memory abilities, synaptic plasticity, and behavioral circadian rhythm, but whether circadian differences in cognitive performance and synaptic plasticity could be affected in AD remain unclear. Here, the cognitive behaviors of 6-month-old APP/PS1 mice were assessed by multiple behavior tests in the rest phase (light period) or active phase (dark period) of the day. The possible electrophysiological mechanism was subsequently investigated by in vivo hippocampal long-term potentiation (LTP) recording, and the locomotor activity rhythm of the mice was detected using wheel-running activities. Compared to wild-type (WT) mice, APP/PS1 mice exhibited long-term spatial memory impairment and in vivo hippocampal LTP suppression. In addition, in APP/PS1 mice, circadian differences in new object recognition memory and LTP were lost, and the circadian difference in long-term spatial memory was decreased, accompanied by a less robust locomotor activity rhythm. These results indicate that the loss of circadian differences in new object recognition memory and the decrease in the circadian difference in long-term spatial memory in APP/PS1 mice, which are closely associated with the loss of the circadian difference in LTP and less robust locomotor activity, might occur early in the course of AD.
Collapse
Affiliation(s)
- Yexin He
- Department of Radiology, Affiliated Provincial People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Yiying Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Fang Zhou
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Jinshun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Meina Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
1425
|
Cui Z, Meng X, Zhuang S, Liu Z, Zhou F, Tian Y. Schizophrenia, Bipolar Disorder, and Alzheimer's Disease are not Causal Factors of Bone Mineral Density: A Mendelian Randomization Analysis. Calcif Tissue Int 2020; 106:131-146. [PMID: 31679055 DOI: 10.1007/s00223-019-00625-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023]
Abstract
Until recently, it remains unclear whether schizophrenia, bipolar disorder (BD), and Alzheimer's disease (AD) is associated with bone mineral density (BMD). We aimed to investigate the causal effects of schizophrenia, BD and AD on BMD with Mendelian randomization (MR) analysis. Single-nucleotide polymorphisms (SNPs) strongly associated with these three neuropsychiatric diseases as instrumental variables were selected from genome-wide association studies in the MR Base database. We analyzed the effects of these SNPs on the femoral neck BMD (FN-BMD), lumbar spine BMD (LS-BMD) and forearm BMD (FA-BMD), and evaluated the heterogeneities and pleiotropy of these genetic variants. We also evaluated the potential confounding factors in the association between these three neuropsychiatric diseases and the BMD level. It was found that none of these genetic variants were significantly associated with BMD or confounding factors. Using these genetic variants, we did not find statistically significant causal effects of per unit increase in the log-odds of having schizophrenia, BD or AD with FN-BMD, LS-BMD and FA-BMD changes (e.g. schizophrenia and FN-BMD, MR-Egger OR 0.9673, 95% CI 0.8382 to 1.1163, p = 0.6519). The MR results also revealed that directional pleiotropy was unlikely to bias the causality (e.g., schizophrenia and FN-BMD, intercept = 0.0023, p = 0.6887), and no evidence of heterogeneity was found between the genetic variants (e.g., schizophrenia and FN-BMD, MR-Egger Q = 46.1502, I2 = 0.0899, p = 0.3047). Our MR study did not support causal effects of increased risk of schizophrenia, BD and AD status with BMD level.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xiangyu Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Siying Zhuang
- Wuhan University School of Medicine, Wuhan, Hubei, China
| | - Zhaorui Liu
- Peking University Sixth Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China
| | - Yun Tian
- Department of Orthopedic Surgery, Peking University Third Hospital, No 49 Huayuan Road, Haidian District, Beijing, China.
| |
Collapse
|
1426
|
Benbow SJ, Strovas TJ, Darvas M, Saxton A, Kraemer BC. Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Hum Mol Genet 2020; 29:495-505. [PMID: 31943011 PMCID: PMC7015844 DOI: 10.1093/hmg/ddz319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 02/02/2023] Open
Abstract
Aggregates of Aβ peptide and the microtubule-associated protein tau are key molecular hallmarks of Alzheimer's disease (AD). However, the interaction between these two pathologies and the mechanisms underlying disease progression have remained unclear. Numerous failed clinical trials suggest the necessity for greater mechanistic understanding in order to refine strategies for therapeutic discovery and development. To this end, we have generated a transgenic Caenorhabditis elegans model expressing both human Aβ1-42 peptide and human tau protein pan-neuronally. We observed exacerbated behavioral dysfunction and age-dependent neurodegenerative changes in the Aβ;tau transgenic animals. Further, these changes occurred in the Aβ;tau transgenic animals at greater levels than worms harboring either the Aβ1-42 or tau transgene alone and interestingly without changes to the levels of tau expression, phosphorylation or aggregation. Functional changes were partially rescued with the introduction of a genetic suppressor of tau pathology. Taken together, the data herein support a synergistic role for both Aβ and tau in driving neuronal dysfunction seen in AD. Additionally, we believe that the utilization of the genetically tractable C. elegans model will provide a key resource for dissecting mechanisms driving AD molecular pathology.
Collapse
Affiliation(s)
- Sarah J Benbow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Timothy J Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Martin Darvas
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
1427
|
Cao K, Dong YT, Xiang J, Xu Y, Li Y, Song H, Yu WF, Qi XL, Guan ZZ. The neuroprotective effects of SIRT1 in mice carrying the APP/PS1 double-transgenic mutation and in SH-SY5Y cells over-expressing human APP670/671 may involve elevated levels of α7 nicotinic acetylcholine receptors. Aging (Albany NY) 2020; 12:1792-1807. [PMID: 32003755 PMCID: PMC7053601 DOI: 10.18632/aging.102713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
The aim was to determine whether the neuroprotective effect of SIRT1 in Alzheimer’s disease (AD), due to inhibition of aggregation of the β-amyloid peptide (Aβ), involves activation of α7 nAChR. In present study, four-month-old APP/PS1 mice were administered resveratrol (RSV) or suramin once daily for two months, following which their spatial learning and memory were assessed using the Morris water maze test. Deposits of Aβ in vivo were detected by near-infrared imaging (NIRI) and confocal laser scanning. SH-SY5Y/APPswe cells were treated with RSV, suramin, U0126 or methyllycaconitine (MLA). Levels of proteins and mRNA were determined by Western blotting and qRT-PCR, respectively. The results show that activation of SIRT1 improved their spatial learning and memory and reduced the production and aggregation of Aβ in the hippocampus and cerebral cortex; whereas inhibition of SIRT1 had the opposite effects. In addition, activation of SIRT1 increased the levels of both α7 nAChR and αAPP in the brains these animals. Finally, activation of SIRT1 elevated the levels of pERK1/2, while inhibition of ERK1/2 counteracted the increase in α7 nAChR caused by RSV. These findings indicate that neuroprotection by SIRT1 may involve increasing levels of α7 nAChR through activation of the MAPK/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Kun Cao
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Jie Xiang
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China
| | - Yi Xu
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Yi Li
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Zhi-Zhong Guan
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| |
Collapse
|
1428
|
Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nat Commun 2020; 11:571. [PMID: 31996674 PMCID: PMC6989696 DOI: 10.1038/s41467-019-13745-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023] Open
Abstract
Aggregation of the Tau protein into fibrils defines progression of neurodegenerative diseases, including Alzheimer’s Disease. The molecular basis for potentially toxic reactions of Tau aggregates is poorly understood. Here we show that π-stacking by Arginine side-chains drives protein binding to Tau fibrils. We mapped an aggregation-dependent interaction pattern of Tau. Fibrils recruit specifically aberrant interactors characterised by intrinsically disordered regions of atypical sequence features. Arginine residues are key to initiate these aberrant interactions. Crucial for scavenging is the guanidinium group of its side chain, not its charge, indicating a key role of π-stacking chemistry for driving aberrant fibril interactions. Remarkably, despite the non-hydrophobic interaction mode, the molecular chaperone Hsp90 can modulate aberrant fibril binding. Together, our data present a molecular mode of action for derailment of protein-protein interaction by neurotoxic fibrils. Tau fibril formation is a hallmark of Alzheimer’s disease. Here the authors reveal an aggregation-dependent protein interaction pattern of Tau and further show that π-stacking of the arginine side-chains drives aberrant protein binding to Tau fibrils.
Collapse
|
1429
|
Yan N, Zhang J. Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease. Front Neurosci 2020; 13:1443. [PMID: 32063824 PMCID: PMC7000453 DOI: 10.3389/fnins.2019.01443] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
Iron is an essential transition metal for numerous biologic processes in mammals. Iron metabolism is regulated via several coordination mechanisms including absorption, utilization, recycling, and storage. Iron dyshomeostasis can result in intracellular iron retention, thereby damaging cells, tissues, and organs through free oxygen radical generation. Numerous studies have shown that brain iron overload is involved in the pathological mechanism of neurodegenerative disease including Alzheimer’s disease (AD). However, the underlying mechanisms have not been fully elucidated. Ferroptosis, a newly defined iron-dependent form of cell death, which is distinct from apoptosis, necrosis, autophagy, and other forms of cell death, may provide us a new viewpoint. Here, we set out to summarize the current knowledge of iron metabolism and ferroptosis, and review the contributions of iron and ferroptosis to AD.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
1430
|
Pomilio C, Gorojod RM, Riudavets M, Vinuesa A, Presa J, Gregosa A, Bentivegna M, Alaimo A, Alcon SP, Sevlever G, Kotler ML, Beauquis J, Saravia F. Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer's disease patients. GeroScience 2020; 42:613-632. [PMID: 31975051 DOI: 10.1007/s11357-020-00161-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of misfolded proteins, amyloid-β (Aβ) aggregates, and neuroinflammation in the brain. Microglial cells are key players in the context of AD, being capable of releasing cytokines in response to Aβ and degrading aggregated proteins by mechanisms involving the ubiquitin-proteasome system and autophagy. Here, we present in vivo and in vitro evidence showing that microglial autophagy is affected during AD progression. PDAPPJ20 mice-murine model of AD-exhibited an accumulation of the autophagy receptor p62 and ubiquitin+ aggregates in Iba1+ microglial cells close to amyloid deposits in the hippocampus. Moreover, cultured microglial BV-2 cells showed an enhanced autophagic flux during a 2-h exposure to fibrillar Aβ, which was decreased if the exposure was prolonged to 24 h, a condition analogous to the chronic exposure to Aβ in the human pathology. The autophagic impairment was also associated with lysosomal damage, depicted by membrane permeabilization as shown by the presence of the acid hydrolase cathepsin-D in cytoplasm and altered LysoTracker staining. These results are compatible with microglial exhaustion caused by pro-inflammatory conditions and persistent exposure to aggregated Aβ peptides. In addition, we found LC3-positive autophagic vesicles accumulated in phagocytic CD68+ microglia in human AD brain samples, suggesting defective autophagy in microglia of AD brain. Our results indicate that the capacity of microglia to degrade Aβ and potentially other proteins through autophagy may be negatively affected as the disease progresses. Preserving autophagy in microglia thus emerges as a promising approach for treating AD. Graphical abstract.
Collapse
Affiliation(s)
- Carlos Pomilio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Roxana M Gorojod
- Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Miguel Riudavets
- FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina
| | - Angeles Vinuesa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Jessica Presa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Amal Gregosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Melisa Bentivegna
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Soledad Porte Alcon
- Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Gustavo Sevlever
- FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina
| | - Monica L Kotler
- Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Juan Beauquis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Flavia Saravia
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, 1428, Buenos Aires, Argentina.
| |
Collapse
|
1431
|
Honda S, Arakawa S, Yamaguchi H, Torii S, Tajima Sakurai H, Tsujioka M, Murohashi M, Shimizu S. Association Between Atg5-independent Alternative Autophagy and Neurodegenerative Diseases. J Mol Biol 2020; 432:2622-2632. [PMID: 31978398 DOI: 10.1016/j.jmb.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular process that degrades intracellular components, including misfolded proteins and damaged organelles. Many neurodegenerative diseases are considered to progress via the accumulation of misfolded proteins and damaged organelles; therefore, autophagy functions in regulating disease severity. There are at least two types of autophagy (canonical autophagy and alternative autophagy), and canonical autophagy has been applied to therapeutic strategies against various types of neurodegenerative diseases. In contrast, the role of alternative autophagy has not yet been clarified, but it is speculated to be involved in the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hirofumi Yamaguchi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masatsune Tsujioka
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michiko Murohashi
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
1432
|
Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL. Immunotherapy for Parkinson's disease. Neurobiol Dis 2020; 137:104760. [PMID: 31978602 PMCID: PMC7933730 DOI: 10.1016/j.nbd.2020.104760] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
With the increasing prevalence of Parkinson’s disease (PD), there is an immediate need to interdict disease signs and symptoms. In recent years this need was met through therapeutic approaches focused on regenerative stem cell replacement and alpha-synuclein clearance. However, neither have shown long-term clinical benefit. A novel therapeutic approach designed to affect disease is focused on transforming the brain’s immune microenvironment. As disordered innate and adaptive immune functions are primary components of neurodegenerative disease pathogenesis, this has emerged as a clear opportunity for therapeutic development. Interventions that immunologically restore the brain’s homeostatic environment can lead to neuroprotective outcomes. These have recently been demonstrated in both laboratory and early clinical investigations. To these ends, efforts to increase the numbers and function of regulatory T cells over dominant effector cells that exacerbate systemic inflammation and neurodegeneration have emerged as a primary research focus. These therapeutics show broad promise in affecting disease outcomes beyond PD, such as for Alzheimer’s disease, stroke and traumatic brain injuries, which share common neurodegenerative disease processes.
Collapse
Affiliation(s)
- Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| |
Collapse
|
1433
|
Lambertsen KL, Soares CB, Gaist D, Nielsen HH. Neurofilaments: The C-Reactive Protein of Neurology. Brain Sci 2020; 10:brainsci10010056. [PMID: 31963750 PMCID: PMC7016784 DOI: 10.3390/brainsci10010056] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs) are quickly becoming the biomarkers of choice in the field of neurology, suggesting their use as an unspecific screening marker, much like the use of elevated plasma C-reactive protein (CRP) in other fields. With sensitive techniques being readily available, evidence is growing regarding the diagnostic and prognostic value of NFs in many neurological disorders. Here, we review the latest literature on the structure and function of NFs and report the strengths and pitfalls of NFs as markers of neurodegeneration in the context of neurological diseases of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Kate L. Lambertsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
| | - Catarina B. Soares
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
| | - David Gaist
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
- Department of Clinical Research, Neurology Research Unit, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, J.B. Winsloewsvej 4, 5000 Odense C, Denmark; (K.L.L.); (C.B.S.); (D.G.)
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloewsvej 21, st, 5000 Odense C, Denmark
- BRIDGE—Brain Research—Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsloewsvej 19, 3. sal, 5000 Odense C, Denmark
- Department of Clinical Research, Neurology Research Unit, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Correspondence:
| |
Collapse
|
1434
|
Wang X, Zhao J. Neuroprotective effect of CPCGI on Alzheimer's disease and its mechanism. Mol Med Rep 2020; 21:115-122. [PMID: 31939621 PMCID: PMC6896362 DOI: 10.3892/mmr.2019.10835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder causing progressive memory loss and cognitive impairment. The aberrant accumulation of amyloid‑β (Aβ) and neuroinflammation are two major events in AD. Aβ‑induced neurotoxicity and oxidative stress are also involved in the pathogenesis of AD. The purpose of the current study was to investigate the effect of compound porcine cerebroside and ganglioside injection (CPCGI) on the progression of AD, and to explore the molecular mechanism. In vivo and in vitro models of AD were established and treated with CPCGI. Aβ40 and Aβ42 protein levels were detected using western blotting. Production of pro‑inflammatory factors [tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β] and oxidative stress markers [malondialdehyde (MDA), superoxide dismutase (SOD)] and reactive oxygen species (ROS) production were determined. Cell viability and apoptosis were detected using 3‑(4,5‑dimethyl‑2‑thiazolyl)‑2,5‑diphenyl‑2‑H‑tetrazolium bromide assay and flow cytometry analysis respectively. Results demonstrated that CPCGI administration reduced Aβ40 and Aβ42 accumulation, and inhibited inflammatory response and oxidative stress in the in vivo rat model of AD, evidenced by decreased Aβ40 and Aβ42 protein expression, reduced levels of TNF‑α and IL‑1β, reduced MDA content, enhanced SOD activity, and reduced ROS level. It was found that CPCGI enhanced cell viability and reduced cell apoptosis of Aβ25‑35 induced PC12 cells. In addition, the mitogen‑activated protein kinase/NF‑κB pathway was involved in the protective effect of CPCGI on AD. Taken together, the data demonstrated that CPCGI exerted a protective effect on AD by reducing Aβ accumulation, inhibiting inflammatory response and oxidative stress, In addition to preventing neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
1435
|
Fu H, Xu Z, Zhang XL, Zheng GQ. Kaixinsan, a Well-Known Chinese Herbal Prescription, for Alzheimer's Disease and Depression: A Preclinical Systematic Review. Front Neurosci 2020; 13:1421. [PMID: 32009890 PMCID: PMC6971218 DOI: 10.3389/fnins.2019.01421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/16/2019] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is highly prevalent worldwide with no modifying therapy. Behavioral and psychological symptoms of dementia (BPSD) occur in most patients with AD, and depression is one of the most common AD-related BPSD. Kaixinsan (KXS) is an ancient Chinese herbal prescription widely used to treat dementia and forgetfulness. In this systematic review, we conducted a meta-analysis to assess preclinical evidence for the effects of KXS on cognitive impairment and depression. Thirty-eight articles involving 1,050 animals were included after searching from six databases from the inception up to June 2019. The primary outcome measures were behavioral outcome. Indicators of cognitive function in AD included escape latency, time spent on the target quadrant, and the number of target platform crossings in the Morris water maze (MWM) test. Indicators of depression included number of rearing events and total distance in the open-field test, duration of immobility in the forced swim test, and sucrose consumption or sucrose preference index in the sucrose preference test. The secondary outcomes were mechanisms of KXS for treatment of AD and depression. The results showed that KXS significantly reduced escape latency (P < 0.01), increased time spent in the target quadrant (P < 0.01), and increased the number of target platform crossings (P < 0.01) in the MWM test in AD models compared with control. The possible mechanisms for KXS-mediated improvements in cognitive function were antioxidant activity, anti-inflammatory activity, antiapoptotic activity, neuroprotection, and synapse protection. In addition, the results demonstrated that KXS significantly increased the number of rearing instances (P < 0.01) in the open-field test, decreased the duration of immobility (P < 0.01) in forced swim test, and increased sucrose consumption or sucrose preference index (P < 0.01) in the sucrose preference test in depression models compared with control. The mechanisms of KXS-mediated anti-depressive effects were HPA axis regulation, antioxidant activity, anti-inflammatory activity, synapse protection, and neuroprotection. The results of this study suggested that KXS can be used to effectively treat AD and depression through multiple mechanisms, extrapolating the therapeutic potential of KXS for treating AD-related BPSD.
Collapse
Affiliation(s)
| | | | | | - Guo-qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
1436
|
Xuan K, Zhao T, Qu G, Liu H, Chen X, Sun Y. The efficacy of statins in the treatment of Alzheimer's disease: a meta-analysis of randomized controlled trial. Neurol Sci 2020; 41:1391-1404. [PMID: 31930449 DOI: 10.1007/s10072-020-04243-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a common type of dementia, which has caused heavy global economic and health burden, and the using of statins to treat AD has caused widely debated. The purpose of this meta-analysis is to explore the effect of statins in the treatment of Alzheimer's disease. METHODS Studies were retrieved by searching PubMed, Embase, Cochrane library, OvisdSP, Web of Science, Chinese Nation Knowledge Infrastructure (CNKI) and Chinese Biomedical Database (CBM) databases before March 31, 2019. We extracted the Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-cognitive (ADAS-Cog), Neuropsychiatric Inventory (NPI), Activities of Daily Living (ADL) scale score, and other information. The pooled Weighted Mean Difference (WMD) and their 95% confidence intervals (95% CI) were calculated with random effect model or fixed random effect model. RESULTS A total of nine randomized controlled trials were included that contained 1489 patients; of them, 742 patients in the statins group, 747 patients in the control group. There were nine studies used the MMSE scale, five studies used the ADAS-Cog scale, four studies used the NPI scale, and six studies used the ADL scale. Meta-analysis of the nine studies that reported the MMSE scale scores indicated that there is no significant effect of statins as compared with control group (the pooled WMD = 1.09, 95% CI, - 0.00, 2.18, p = 0.05, I2 = 87.9%). Meta-analysis of the five studies that reported the ADAS-Cog scale scores also indicated that there is no significant effect of statins as compared with control group (the pooled WMD = - 0.16, 95% CI, - 2.67, 2.36, p = 0.90, I2 = 80.1%). Meta-analysis of the four studies that reported the NPI scale scores indicated that treatment with statins could slow the rise in the NPI scale scores (the pooled WMD = - 1.16, 95% CI, - 1.88, - 0.44, p = 0.002, I2 = 45.4%). Meta-analysis of the six studies that reported the ADL scale scores indicated that treatment with statins could improve patients' daily living ability (the pooled WMD = - 4.06, 95% CI, - 6.88, - 1.24, p = 0.005, I2 = 86.7%). Results of subgroup analysis indicated that the use of statins in the short term (≤ 12 months) associated with the change of the MMSE scale scores (the pooled WMD = 1.78, 95% CI, 0.53, 3.04, p = 0.005, I2 = 79.6%). Sensitivity analysis and publication bias test were both negative, and the results were relatively reliable and stable. CONCLUSION Statins used in AD patients had beneficial effects on the scores of MMSE scale in the short term (≤ 12 months), and statins could slow the deterioration of neuropsychiatric status and significantly improve activities of daily living ability in AD patients, but statins did not show an advantage in the change of the ADAS-Cog scale scores.
Collapse
Affiliation(s)
- Kun Xuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tianming Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China. .,Center for Evidence-Based Practice, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
1437
|
The Role of Macrophage Migration Inhibitory Factor in Alzheimer's Disease: Conventionally Pathogenetic or Unconventionally Protective? Molecules 2020; 25:molecules25020291. [PMID: 31936865 PMCID: PMC7024279 DOI: 10.3390/molecules25020291] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recent preclinical and clinical observations have offered relevant insights on the etiopathogenesis of late onset Alzheimer′s disease (AD) and upregulated immunoinflammatory events have been described as underlying mechanisms involved in the development of AD. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by several cells of the innate and adaptive immune system, as well as non-immune cells. In the present review, we highlight experimental, genetic, and clinical studies on MIF in rodent models of AD and AD patients, and we discuss emerging therapeutic opportunities for tailored modulation of the activity of MIF, that may potentially be applied to AD patients. Dismantling the exact role of MIF and its receptors in AD may offer novel diagnostic and therapeutic opportunities in AD.
Collapse
|
1438
|
Santos J, Iglesias V, Santos-Suárez J, Mangiagalli M, Brocca S, Pallarès I, Ventura S. pH-Dependent Aggregation in Intrinsically Disordered Proteins Is Determined by Charge and Lipophilicity. Cells 2020; 9:E145. [PMID: 31936201 PMCID: PMC7017033 DOI: 10.3390/cells9010145] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022] Open
Abstract
Protein aggregation is associated with an increasing number of human disorders and premature aging. Moreover, it is a central concern in the manufacturing of recombinant proteins for biotechnological and therapeutic applications. Nevertheless, the unique architecture of protein aggregates is also exploited by nature for functional purposes, from bacteria to humans. The relevance of this process in health and disease has boosted the interest in understanding and controlling aggregation, with the concomitant development of a myriad of algorithms aimed to predict aggregation propensities. However, most of these programs are blind to the protein environment and, in particular, to the influence of the pH. Here, we developed an empirical equation to model the pH-dependent aggregation of intrinsically disordered proteins (IDPs) based on the assumption that both the global protein charge and lipophilicity depend on the solution pH. Upon its parametrization with a model IDP, this simple phenomenological approach showed unprecedented accuracy in predicting the dependence of the aggregation of both pathogenic and functional amyloidogenic IDPs on the pH. The algorithm might be useful for diverse applications, from large-scale analysis of IDPs aggregation properties to the design of novel reversible nanofibrillar materials.
Collapse
Affiliation(s)
- Jaime Santos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.S.); (V.I.); (I.P.)
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.S.); (V.I.); (I.P.)
| | - Juan Santos-Suárez
- Galicia Supercomputing Center (CESGA), 15705 Santiago de Compostela, A Coruña, Spain;
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (M.M.); (S.B.)
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (M.M.); (S.B.)
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.S.); (V.I.); (I.P.)
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.S.); (V.I.); (I.P.)
| |
Collapse
|
1439
|
Muguruma Y, Tsutsui H, Akatsu H, Inoue K. Comprehensive quantification of purine and pyrimidine metabolism in Alzheimer's disease postmortem cerebrospinal fluid by LC-MS/MS with metal-free column. Biomed Chromatogr 2020; 34:e4722. [PMID: 31656052 DOI: 10.1002/bmc.4722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/24/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022]
Abstract
The metabolome presence of nucleobases, nucleosides, nucleotides and related phosphorylated metabolites has been examined for Alzheimer's disease (AD). Although reversed-phase liquid chromatography tandem mass spectrometry (LC-MS/MS) has been used for the determination of these analytes, they were limited in chromatographic signal intensity and reproducibility owing to significant peak tailing caused by complexing with metallic cations and phosphate groups. In this work, we applied LC-MS/MS analysis with a metal-free column for comprehensive quantification of 40 analytes regarding to purine and pyrimidine metabolism in postmortem cerebrospinal fluid (pCSF) from AD patients. For the analytical column, an InertSustain AQ-C18 metal-free PEEK column was used. MS detection was by electrospray positive ionization. The metal-free column allowed for sharp peak detection of highly polar metabolites within a running time of 17 min. In validation, the limits of detection (LOD), the limit of quantitation (LOQ) and recovery value using a pooled pCSF sample are 1-500 nM, 0.5-250 nM and a range of 53.1-144.0% (RSD ranged from 0.4 to 19.6%). The developed LC-MS/MS method utilizing a metal-free column provides an accurate quantification of some metabolites regarding purine and pyrimidine metabolism in pCSF samples obtained from AD patients.
Collapse
Affiliation(s)
- Yoshio Muguruma
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Haruhito Tsutsui
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.,ONO Pharmaceutical Co. Ltd, Osaka, Japan
| | - Hiroyasu Akatsu
- Department of Medicine for Aging Place, Community Health Care/Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
1440
|
Shi M, Sun F, Wang Y, Kang J, Zhang S, Li H. CGA restrains the apoptosis of Aβ 25-35-induced hippocampal neurons. Int J Neurosci 2020; 130:700-707. [PMID: 31902262 DOI: 10.1080/00207454.2019.1702547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Chlorogenic acid (CGA) has anti-oxidant and anti-inflammatory effects, but the study on its role in Alzheimer's disease (AD) models remains rare. Here, the effects of CGA on β-amyloid protein (Aβ)-induced cell models were investigated, aiming to provide a direction for Aβ-induced AD.Material and methods: Hippocampal neurons were separated from newborn Sprague-Dawley (SD) rats and identified by immumofluorescence method. Hippocampal neurons were processed with Aβ25-35 after pre-treatment CGA. MTT assay was used for detecting viability of treated cells. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and lactate dehydrogenase (LDH) of treated hippocampal neurons were determined by corresponding kits. Flow cytometry analysis assessed the apoptosis and mitochondrial membrane potential (MMP) in hippocampal neurons after treatment. The expressions of proteins related to apoptosis and endoplasmic reticulum stress (ERS) were measured by western blot (WB) analysis.Results: Immumofluorescence method showed that the Aβ25-35 induction models were successfully constructed. CGA increased the viability and decreased the apoptosis rate of Aβ25-35-induced hippocampal neurons. Decreasing activities of LDH and MDA, and raised contents of SOD and GSH-Px were appeared in Aβ25-35-induced cells that pre-treated with CGA. Moreover, CGA also enhanced MMP intensity of hippocampal neurons induced by Aβ25-35. In WB analysis, CGA reversed the promoting effect of Aβ25-35 on the expressions of proteins related to pro-ERS and pro-apoptosis.Conclusion: CGA restrained the apoptosis of Aβ25-35-induced hippocampal neurons via improving the anti-oxidant capacity, mitochondrial injury and ERS state of cells, which may provide a direction for AD.
Collapse
Affiliation(s)
- Min Shi
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Sun
- Department of Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuqing Zhang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfu Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
1441
|
A novel rhamnoside derivative PL402 up-regulates matrix metalloproteinase 3/9 to promote Aβ degradation and alleviates Alzheimer's-like pathology. Aging (Albany NY) 2020; 12:481-501. [PMID: 31901901 PMCID: PMC6977668 DOI: 10.18632/aging.102637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
The accumulation of amyloid-β (Aβ), considered as the major cause of Alzheimer’s disease (AD) pathogenesis, relays on the rate of its biosynthesis and degradation. Aβ degradation is a common overture to late-onset AD and targeting the impairment of Aβ degradation has gained attention in the recent years. In this study, we demonstrated a rhamnoside derivative PL402 suppressed Aβ level in cell models without changing the expression or activity of Aβ generation-related secretases. However, the levels of matrix metalloproteinase (MMP) 3 and 9, belonging to amyloid-degrading enzymes (ADEs), were up-regulated by PL402. The inhibition or the knockdown of these two enzymes abolished the effect of PL402, indicating that PL402 may reduce Aβ via MMP3/9-mediated Aβ degradation. Notably, administration of PL402 significantly attenuated Aβ pathology and cognitive defects in APP/PS1 transgenic mice with the consistent promotion of ADEs expression. Thus, our study suggests that targeting Aβ degradation could be an effective strategy against AD and the rhamnoside derivatives may have therapeutic effects.
Collapse
|
1442
|
Han S, Nandy P, Austria Q, Siedlak SL, Torres S, Fujioka H, Wang W, Zhu X. Mfn2 Ablation in the Adult Mouse Hippocampus and Cortex Causes Neuronal Death. Cells 2020; 9:E116. [PMID: 31947766 PMCID: PMC7017224 DOI: 10.3390/cells9010116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023] Open
Abstract
It is believed that mitochondrial fragmentation cause mitochondrial dysfunction and neuronal deficits in Alzheimer's disease. We recently reported that constitutive knockout of the mitochondria fusion protein mitofusin2 (Mfn2) in the mouse brain causes mitochondrial fragmentation and neurodegeneration in the hippocampus and cortex. Here, we utilize an inducible mouse model to knock out Mfn2 (Mfn2 iKO) in adult mouse hippocampal and cortical neurons to avoid complications due to developmental changes. Electron microscopy shows the mitochondria become swollen with disorganized and degenerated cristae, accompanied by increased oxidative damage 8 weeks after induction, yet the neurons appear normal at the light level. At later timepoints, increased astrocyte and microglia activation appear and nuclei become shrunken and pyknotic. Apoptosis (Terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL) begins to occur at 9 weeks, and by 12 weeks, most hippocampal neurons are degenerated, confirmed by loss of NeuN. Prior to the loss of NeuN, aberrant cell-cycle events as marked by proliferating cell nuclear antigen (PCNA) and pHistone3 were evident in some Mfn2 iKO neurons but do not colocalize with TUNEL signals. Thus, this study demonstrated that Mfn2 ablation and mitochondrial fragmentation in adult neurons cause neurodegeneration through oxidative stress and neuroinflammation in vivo via both apoptosis and aberrant cell-cycle-event-dependent cell death pathways.
Collapse
Affiliation(s)
- Song Han
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Priya Nandy
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Quillan Austria
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
1443
|
Carneiro P, Morais S, do Carmo Pereira M. Biosensors on the road to early diagnostic and surveillance of Alzheimer's disease. Talanta 2020; 211:120700. [PMID: 32070618 DOI: 10.1016/j.talanta.2019.120700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is a debilitating and largely untreatable condition with subtle onset and slow progression over an extensive period of time, which culminate in increasing levels of disability. As Alzheimer's disease prevalence is expected to grow exponentially in the upcoming decades, there is an urgency to develop analytical technologies for the sensitive, reliable and cost-effective detection of Alzheimer's disease biomarkers. Biosensors are powerful analytical devices that translate events of biological recognition on physical or chemical transducers into electrical, thermal or optical signals. The high sensitivity and selectivity of biosensors associated with easy, rapid and low-cost determination of analytes have made this discipline one of the most intensively studied in the past decades. This review centers on recent advances, challenges and trends of Alzheimer's disease biosensing particularly in the effort to combine the unique properties of nanomaterials with biorecognition elements. In the last decade, impressive progresses have been made towards the development of biosensors, mainly electrochemical and optical, for detection of Alzheimer's disease biomarkers in the pico- and femto-molar range. Nonetheless, advances in multiplexed detection, robustness, stability and specificity are still necessary to ensure an accurate and differentiated diagnosis of this disease.
Collapse
Affiliation(s)
- Pedro Carneiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
1444
|
Effects of Huang-Lian-Jie-Du Decoction on Oxidative Stress and AMPK-SIRT1 Pathway in Alzheimer's Disease Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6212907. [PMID: 31976005 PMCID: PMC6959142 DOI: 10.1155/2020/6212907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
Huang-Lian-Jie-Du Decoction (HLJDD), traditional Chinese medicine (TCM), is proven to have ameliorative effects on learning and memory deficits of Alzheimer's disease (AD). The current study aims to reveal the underlying mechanism of HLJDD in the treatment of AD by simultaneous determination on the regulation of HLJDD on oxidative stress, neurotransmitters, and AMPK-SIRT1 pathway in AD. AD model rat was successfully established by injection of D-galactose and Aβ25-35-ibotenic acid. Morris Water Maze (MWM) test was used to evaluate the success of AD modelling. On this basis, an advanced technique with UPLC-QqQ MS/MS was built up and applied to determine the levels of 8 neurotransmitters in rat plasma. Significant alternation in methionine, glutamine, and tryptophan was observed in AD rats' plasma after the administration of HLJDD, relative to the model group. Meanwhile, HLJDD could upregulate the levels of SOD, GSH-Px, AMPK, and SIRT1 and downregulate the content of MDA in the peripheral system of the AD rats. The underlying therapeutic mechanism of HLJDD for the treatment of AD was associated with alleviating oxidation stress, inflammation, neurotransmitters, and energy metabolism. These data provide solid foundation for the potential use of HLJDD to treat AD.
Collapse
|
1445
|
Chamera K, Trojan E, Szuster-Głuszczak M, Basta-Kaim A. The Potential Role of Dysfunctions in Neuron-Microglia Communication in the Pathogenesis of Brain Disorders. Curr Neuropharmacol 2020; 18:408-430. [PMID: 31729301 PMCID: PMC7457436 DOI: 10.2174/1570159x17666191113101629] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022] Open
Abstract
The bidirectional communication between neurons and microglia is fundamental for the proper functioning of the central nervous system (CNS). Chemokines and clusters of differentiation (CD) along with their receptors represent ligand-receptor signalling that is uniquely important for neuron - microglia communication. Among these molecules, CX3CL1 (fractalkine) and CD200 (OX-2 membrane glycoprotein) come to the fore because of their cell-type-specific localization. They are principally expressed by neurons when their receptors, CX3CR1 and CD200R, respectively, are predominantly present on the microglia, resulting in the specific axis which maintains the CNS homeostasis. Disruptions to this balance are suggested as contributors or even the basis for many neurological diseases. In this review, we discuss the roles of CX3CL1, CD200 and their receptors in both physiological and pathological processes within the CNS. We want to underline the critical involvement of these molecules in controlling neuron - microglia communication, noting that dysfunctions in their interactions constitute a key factor in severe neurological diseases, such as schizophrenia, depression and neurodegeneration-based conditions.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Ewa Trojan
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Magdalena Szuster-Głuszczak
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St. 31-343Kraków, Poland
| |
Collapse
|
1446
|
Tan JZA, Fourriere L, Wang J, Perez F, Boncompain G, Gleeson PA. Distinct anterograde trafficking pathways of BACE1 and amyloid precursor protein from the TGN and the regulation of amyloid-β production. Mol Biol Cell 2020; 31:27-44. [PMID: 31746668 PMCID: PMC6938271 DOI: 10.1091/mbc.e19-09-0487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
Processing of amyloid precursor protein (APP) by the β-secretase BACE1 is the initial step of the amyloidogenic pathway to generate amyloid-β (Aβ). Although newly synthesized BACE1 and APP are transported along the secretory pathway, it is not known whether BACE1 and APP share the same post-Golgi trafficking pathways or are partitioned into different transport routes. Here we demonstrate that BACE1 exits the Golgi in HeLa cells and primary neurons by a pathway distinct from the trafficking pathway for APP. By using the Retention Using Selective Hooks system, we show that BACE1 is transported from the trans-Golgi network to the plasma membrane in an AP-1- and Arf1/4-dependent manner. Subsequently, BACE1 is endocytosed to early and recycling endosomes. Perturbation of BACE1 post-Golgi trafficking results in an increase in BACE1 cleavage of APP and increased production of both Aβ40 and Aβ42. These findings reveal that Golgi exit of BACE1 and APP in primary neurons is tightly regulated, resulting in their segregation along different transport routes, which limits APP processing.
Collapse
Affiliation(s)
- Jing Zhi A. Tan
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Lou Fourriere
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jingqi Wang
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75248 Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75248 Paris, France
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
1447
|
Jorda A, Aldasoro M, Aldasoro C, Guerra-Ojeda S, Iradi A, Vila JM, Campos-Campos J, Valles SL. Action of low doses of Aspirin in Inflammation and Oxidative Stress induced by aβ 1-42 on Astrocytes in primary culture. Int J Med Sci 2020; 17:834-843. [PMID: 32218705 PMCID: PMC7085272 DOI: 10.7150/ijms.40959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Aspirin has been used as anti-inflammatory and anti-aggregate for decades but the precise mechanism(s) of action after the presence of the toxic peptide Aβ1-42 in cultured astrocytes remains poorly resolved. Here we use low-doses of aspirin (10-7 M) in astrocytes in primary culture in presence or absence of Aβ1-42 toxic peptide. We noted an increase of cell viability and proliferation with or without Aβ1-42 peptide presence in aspirin treated cells. In addition, a decrease in apoptosis, determined by Caspase 3 activity and the expression of Cyt c and Smac/Diablo, were detected. Also, aspirin diminished necrosis process (LDH levels), pro-inflammatory mediators (IL-β and TNF-α) and NF-ᴋB protein expression, increasing anti-inflammatory PPAR-γ protein expression, preventing Aβ1-42 toxic effects. Aspirin inhibited COX-2 and iNOS without changes in COX-1 expression, increasing anti-oxidant protein (Cu/Zn-SOD and Mn-SOD) expression in presence or absence of Aβ1-42. Taken together, our results show that aspirin, at low doses increases cell viability by decreasing inflammation and oxidative stress, preventing the deleterious effects of the Aβ1-42 peptide on astrocytes in primary culture. The use of low doses of aspirin may be more suitable for Alzheimer's disease.
Collapse
Affiliation(s)
- Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Faculty of Nursing and Podiatry, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Jose Mª Vila
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Juan Campos-Campos
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Faculty of Nursing and Podiatry, University of Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| |
Collapse
|
1448
|
Baschi R, Luca A, Nicoletti A, Caccamo M, Cicero CE, D'Agate C, Di Giorgi L, La Bianca G, Lo Castro T, Zappia M, Monastero R. Changes in Motor, Cognitive, and Behavioral Symptoms in Parkinson's Disease and Mild Cognitive Impairment During the COVID-19 Lockdown. Front Psychiatry 2020; 11:590134. [PMID: 33381057 PMCID: PMC7768013 DOI: 10.3389/fpsyt.2020.590134] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022] Open
Abstract
Objective: The effects of the COVID-19 lockdown on subjects with prodromal phases of dementia are unknown. The aim of this study was to evaluate the motor, cognitive, and behavioral changes during the COVID-19 lockdown in Italy in patients with Parkinson's disease (PD) with and without mild cognitive impairment (PD-MCI and PD-NC) and in patients with MCI not associated with PD (MCInoPD). Methods: A total of 34 patients with PD-NC, 31 PD-MCI, and 31 MCInoPD and their caregivers were interviewed 10 weeks after the COVID-19 lockdown in Italy, and changes in cognitive, behavioral, and motor symptoms were examined. Modified standardized scales, including the Neuropsychiatric Inventory (NPI) and the Movement Disorder Society, Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Parts I and II, were administered. Multivariate logistic regression was used to evaluate associated covariates by comparing PD-NC vs. PD-MCI and MCInoPD vs. PD-MCI. Results: All groups showed a worsening of cognitive (39.6%), pre-existing (37.5%), and new (26%) behavioral symptoms, and motor symptoms (35.4%) during the COVID-19 lockdown, resulting in an increased caregiver burden in 26% of cases. After multivariate analysis, PD-MCI was significantly and positively associated with the IADL lost during quarantine (OR 3.9, CI 1.61-9.58), when compared to PD-NC. In the analysis of MCInoPD vs. PD-MCI, the latter showed a statistically significant worsening of motor symptoms than MCInoPD (OR 7.4, CI 1.09-45.44). Regarding NPI items, nighttime behaviors statistically differed in MCInoPD vs. PD-MCI (16.1% vs. 48.4%, p = 0.007). MDS-UPDRS parts I and II revealed that PD-MCI showed a significantly higher frequency of cognitive impairment (p = 0.034), fatigue (p = 0.036), and speech (p = 0.013) than PD-NC. On the contrary, PD-MCI showed significantly higher frequencies in several MDS-UPDRS items compared to MCInoPD, particularly regarding pain (p = 0.001), turning in bed (p = 0.006), getting out of bed (p = 0.001), and walking and balance (p = 0.003). Conclusion: The COVID-19 quarantine is associated with the worsening of cognitive, behavioral, and motor symptoms in subjects with PD and MCI, particularly in PD-MCI. There is a need to implement specific strategies to contain the effects of quarantine in patients with PD and cognitive impairment and their caregivers.
Collapse
Affiliation(s)
- Roberta Baschi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Antonina Luca
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Alessandra Nicoletti
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Maria Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Edoardo Cicero
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Concetta D'Agate
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Lucia Di Giorgi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe La Bianca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Tiziana Lo Castro
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia," University of Catania, Catania, Italy
| | - Roberto Monastero
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
1449
|
Shi L, Winchester LM, Liu BY, Killick R, Ribe EM, Westwood S, Baird AL, Buckley NJ, Hong S, Dobricic V, Kilpert F, Franke A, Kiddle S, Sattlecker M, Dobson R, Cuadrado A, Hye A, Ashton NJ, Morgan AR, Bos I, Vos SJ, ten Kate M, Scheltens P, Vandenberghe R, Gabel S, Meersmans K, Engelborghs S, De Roeck EE, Sleegers K, Frisoni GB, Blin O, Richardson JC, Bordet R, Molinuevo JL, Rami L, Wallin A, Kettunen P, Tsolaki M, Verhey F, Lleó A, Alcolea D, Popp J, Peyratout G, Martinez-Lage P, Tainta M, Johannsen P, Teunissen CE, Freund-Levi Y, Frölich L, Legido-Quigley C, Barkhof F, Blennow K, Rasmussen KL, Nordestgaard BG, Frikke-Schmidt R, Nielsen SF, Soininen H, Vellas B, Kloszewska I, Mecocci P, Zetterberg H, Morgan BP, Streffer J, Visser PJ, Bertram L, Nevado-Holgado AJ, Lovestone S. Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology. J Alzheimers Dis 2020; 77:1353-1368. [PMID: 32831200 PMCID: PMC7683080 DOI: 10.3233/jad-200208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown. OBJECTIVE We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes. METHODS We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677). RESULTS We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts. CONCLUSIONS Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
Collapse
Affiliation(s)
- Liu Shi
- Department of Psychiatry, University of Oxford, UK
| | | | | | - Richard Killick
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
| | | | | | | | | | - Shengjun Hong
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Fabian Kilpert
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Steven Kiddle
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- MRC Social, Genetic and Developmental Psychiatry Centre, King’s College London, UK
| | - Martina Sattlecker
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- MRC Social, Genetic and Developmental Psychiatry Centre, King’s College London, UK
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- ”Victor Babes” National Institute of Pathology, Bucharest, Romania
| | - Abdul Hye
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
| | - Nicholas J. Ashton
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephanie J.B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Mara ten Kate
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Silvy Gabel
- University Hospital Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium
| | - Karen Meersmans
- University Hospital Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium
| | - Sebastiaan Engelborghs
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, UZ Brussel, Brussels, Belgium
| | - Ellen E. De Roeck
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Belgium
| | - Giovanni B. Frisoni
- University of Geneva, Geneva, Switzerland
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- AIX Marseille University, INS, Ap-hm, Marseille, France
| | | | | | - José L. Molinuevo
- Alzheimer’s disease & other cognitive disorders unit, Hospital Clínic, Barcelona, Spain
- BarcelonaBeta Brain Research Center, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorena Rami
- BarcelonaBeta Brain Research Center, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, school of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Alberto Lleó
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Daniel Alcolea
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Julius Popp
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
- Geriatric Psychiatry, Department of Psychiatry, Geneva University Hospitals, and University of Geneva, Geneva, Switzerland
| | - Gwendoline Peyratout
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Mikel Tainta
- CITA-Alzheimer Foundation, San Sebastian, Spain
- Organización Sanitaria Integrada Goierri – Alto Urola, Osakidetza, Spain
| | - Peter Johannsen
- Danish Dementia Research Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, dept of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Yvonne Freund-Levi
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
- Department of Old Age Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Department of Psychiatry, Örebro Universitetssjukhus, Örebro, Sweden
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany
| | - Cristina Legido-Quigley
- Kings College London, London, UK
- The Systems Medicine Group, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherland
- UCL Institutes of Neurology and Healthcare Engineering, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Katrine Laura Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sune Fallgaard Nielsen
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Hilkka Soininen
- Neurology / Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bruno Vellas
- Toulouse Gerontopole University Hospital, Univeriste Paul Sabatier, INSERM U 558, France
| | | | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - B. Paul Morgan
- Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - Johannes Streffer
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- UCB, Braine-l’Alleud, Belgium, formerly Janssen R&D, LLC. Beerse, Belgium at the time of study conduct
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Simon Lovestone
- Department of Psychiatry, University of Oxford, UK
- Currently at Janssen-Cilag UK, formerly at Department of Psychiatry, University of Oxford, UK at the time of the study conduct
| |
Collapse
|
1450
|
Hassan A, Robinson M, Willerth SM. Determining the mechanism behind yoga's effects on preventing the symptoms of Alzheimer's disease. Neural Regen Res 2020; 15:261-262. [PMID: 31552895 PMCID: PMC6905332 DOI: 10.4103/1673-5374.265553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Adithy Hassan
- Division of Medical Sciences, 3800 Finnerty Road, University of Victoria, Victoria, British Columbia, Canada
| | - Meghan Robinson
- The Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, 3800 Finnerty Road; Department of Mechanical Engineering, University of Victoria; Centre for Biomedical Research, University of Victoria, Victoria; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|