101
|
Islam E. Development of epitope-based chimeric protein as a vaccine against Lujo virus by utilizing immunoinformatic tools. Future Virol 2022. [DOI: 10.2217/fvl-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Lujo is a modern zoonotic virus that is potentially fatal and spreads by bodily fluids. In this research, immunoinformatic tools are used to build a vaccine. Methodology: The epitopes of cytotoxic T-lymphocytes, helper T-lymphocytes and linear B-lymphocytes were predicted from the most antigenic protein. The designed vaccine's physiochemical properties and 3D structure have been forecasted. Low free energy and strong binding affinity estimated in molecular docking against toll-like receptor 4 (TLR4) and dynamic simulation. Furthermore, in silico cloning in the Escherichia coli K12 host system was performed for high level of expression. Conclusion: Finally, immune simulation was used to determine immune responses to the vaccine that was formulated confirming the developed vaccine as a good candidate against Lujo virus.
Collapse
Affiliation(s)
- Enayetul Islam
- Department of Genetic Engineering & Biotechnology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
102
|
Zhang C, Liu S, Yang M. The Role of Interferon Regulatory Factors in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. GASTROENTEROLOGY INSIGHTS 2022; 13:148-161. [DOI: 10.3390/gastroent13020016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease with many metabolic comorbidities, such as obesity, diabetes, and cardiovascular diseases. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, accompanies the progression of hepatic steatosis, inflammation, cell death, and varying degree of liver fibrosis. Interferons (IFNs) have been shown to play important roles in the pathogenesis of NAFLD and NASH. Their regulating transcriptional factors such as interferon regulatory factors (IRFs) can regulate IFN expression, as well as genes involved in macrophage polarization, which are implicated in the pathogenesis of NAFLD and advanced liver disease. In this review, the roles of IRF-involved signaling pathways in hepatic inflammation, insulin resistance, and immune cell activation are reviewed. IRFs such as IRF1 and IRF4 are also involved in the polarization of macrophages that contribute to critical roles in NAFLD or NASH pathogenesis. In addition, IRFs have been shown to be regulated by treatments including microRNAs, PPAR modulators, anti-inflammatory agents, and TLR agonists or antagonists. Modulating IRF-mediated factors through these treatments in chronic liver disease can ameliorate the progression of NAFLD to NASH. Furthermore, adenoviruses and CRISPR activation plasmids can also be applied to regulate IRF-mediated effects in chronic liver disease. Pre-clinical and clinical trials for evaluating IRF regulators in NAFLD treatment are essential in the future direction.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
103
|
Gene-Gene Interaction Study Between Genetic Polymorphisms of Folate Metabolism and MTR SNPs on Prognostic Features Impact for Breast Cancer. Rep Biochem Mol Biol 2022; 11:89-101. [PMID: 35765535 PMCID: PMC9208558 DOI: 10.52547/rbmb.11.1.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023]
Abstract
Background Breast Cancer (BC), the second leading cause of cancer mortality after lung cancer and varied across the world due to genetic and environmental factors. In this study, we evaluated the interaction between the polymorphisms in genes encoding enzymes of folate metabolism: methylenetetrahydrofolate reductase (MTHFR), methionine synthesis reductase (MTR) with the BC prognostic factors. Methods This study was conducted on 160 Egyptian subjects, 60 controls and 100 cases. Sequencing, RFLP analysis in addition to statistical analysis including Chi-squared test, haplotype analysis was used to evaluate associations with BC risk and its clinicopathological parameters. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression. Results Strong significant association with breast cancer risk was observed for the haplotype (T-C-G) of MTHFR C677T/ MTHFR A1289C and MTRA2576G and hormonal receptor expression (ER-/PR-/HER2+), bigger and advanced tumor and metastatic lymph nodes. However, no significant difference was observed for age. Conclusion The combination of SNPs from MTHFR and MTR genes has a more synergistically genetic effect on BC disease progression. These SNPs could be used as tumor aggressiveness markers among Egyptian females with BC and could help in saving money and time.
Collapse
|
104
|
Dawood RM, Gomaa AA, El-Meguid MA, Hassan EA, Salum GM, Fares HM, El Awady MK, Fares EM, Esmat G. The Impact of Direct-Acting Antiviral Agents on Cytomegalovirus Reactivation in Chronic Hepatitis C Infection. Asian Pac J Cancer Prev 2022; 23:1365-1372. [PMID: 35485698 PMCID: PMC9375591 DOI: 10.31557/apjcp.2022.23.4.1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The co-infection of HCV/CMV may accelerate the progression of liver diseases and worsen responsiveness to IFN treatment. The Direct-acting antiviral agents (DAAs), currently approved therapy for HCV, may cause a transient change in immune status, favoring the reactivation of other viruses. The current study aims to evaluate the impact of DAAs treatment on the reactivation of latent CMV in HCV patients. METHODS The serological IgG, IgM Abs against CMV were detected by ELISA on192 HCV patients. The seronegative CMV IgM patients received (sofosbuvir/daclatasvir) regimen, then the CMV reactivation was examined by measuring the CMV IgM by ELISA and CMV DNA by real-time PCR. RESULTS The serological data revealed that all patients were positive for CMV IgG (100%) while (64%) patients were positive for CMV IgM. The seronegative CMV IgM (36%) received the DAAs protocol. The sustained virological response was monitored by measuring the HCV RNA viremia in the patient sera. The serological data revealed that 28.6% of patients had a reactivation of CMV, while 18.5% of patients had detectable CMV DNA viremia. Moreover, there was a significant improvement in liver function as well as a decrease in FIB-4 and APRI scores at EOT. SVR was reached 97.4% among the total studied patients (N= 192). CONCLUSION CMV co-infection has no impact on the response rate to DAAs. However, the CMV reactivation might have occurred after the complete eradication of HCV by DAAs.
Collapse
Affiliation(s)
- Reham M Dawood
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St., Dokki, Giza, Egypt.
| | - Ahmed A Gomaa
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Egypt.
| | - Mai Abd El-Meguid
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St., Dokki, Giza, Egypt.
| | - Essam A Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Egypt.
| | - Ghada M Salum
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St., Dokki, Giza, Egypt.
| | - Hany Mahmoud Fares
- Department of Physical Therapy for Internal Medicine and Surgery, Faculty of Physical Therapy, Ahram Canadian University, Egypt.
| | - Mostafa K El Awady
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St., Dokki, Giza, Egypt.
| | - Eman M Fares
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Egypt.
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
105
|
Kamal A, Matta C, Mohsin HA, Elhadidi AS, Ghazy RM, Omar HH, Tahoun M, Mohamed NA. ASSESSING PREDICTORS OF DIRECTLY ACTING ANTIVIRALS' FAILURE AS A FURTHER STEP TOWARDS MORE EFFICIENT HCV ELIMINATION PROGRAMS: IL28B (IFNL4) GENE POLYMORPHISM HAS NO ROLE WHILE HIGHER ESTIMATED CREATININE CLEARANCE IS A FORGOTTEN FACTOR. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:177-183. [PMID: 35830025 DOI: 10.1590/s0004-2803.202202000-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sustained virologic response (SVR) rates after directly acting antivirals (DAAs) for hepatitis C virus (HCV) exceed 95%. This encouraged policymakers to put plans to achieve HCV elimination by 2030. The remaining percentage of non-SVR12 can affect HCV eradication strategies in the real-world especially the compliance of large numbers of treated persons to follow up for assessment of virologic response cannot be guaranteed. OBJECTIVE We aimed to assess predictors of failure to achieve SVR after receiving sofosbuvir plus NS5A inhibitor as an important step towards achieving better HCV eradication strategies. METHODS During the period from 1st November 2018 to 1st November 2019, 1581 treatment-naive patients received sofosbuvir plus daclatasvir ± ribavirin at our unit and 10 patients were referred to us with HCV relapse after the same regimens. A total of 163 out of the 1581 patients were lost for follow-up before assessment of virologic response and excluded from the analysis. 20 out of the remaining patients failed to achieve SVR12. Data from the 30 patients with non-SVR12 were included in the case-control analysis. RESULTS Every unit increase in estimated creatinine clearance using modification of diet in renal disease study (MDRD) score, total bilirubin, and INR was associated with 1.03, 13.92, and 80.08 times greater odds of non-SVR12 (P<0.001, P=0.0016, P=0.02) respectively. The presence of liver cirrhosis on ultrasonography increases the odds by 10.03. (P=0.009). CONCLUSION Higher MDRD score, INR, total bilirubin, and presence of sonographic features of liver cirrhosis are predictors of failure to achieve SVR12 using sofosbuvir plus NS5A inhibitor.
Collapse
Affiliation(s)
- Ahmed Kamal
- Internal Medicine and Hepatology department. Faculty of Medicine, Alexandria University, Egypt
| | - Cecil Matta
- Developmental Genetics department, Faculty of Science, Alexandria University, Egypt
| | - Heba Akram Mohsin
- Cell biology and genetics fellow, Faculty of Science, Alexandria University, Egypt
- College of pharmacy-Al-Zahraa University for Women, Iraq
| | - Abeer Shawki Elhadidi
- Clinical and chemical pathology department, Faculty of Medicine, Alexandria University, Egypt
| | - Ramy Mohamed Ghazy
- Tropical health department, High Institute of Public Health, Alexandria University, Egypt
| | - Heba Hany Omar
- Clinical Pharmacist at Alexandria Main University hospitals, Alexandria University, Egypt
- Microbiology department, Faculty of Pharmacy, AL Salam University, Egypt
| | - Mona Tahoun
- Clinical and chemical pathology department, Faculty of Medicine, Alexandria University, Egypt
| | | |
Collapse
|
106
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, Fernandes Q, Al-Zaidan L, Krishnankutty R, Merhi M, Uddin S, Dermime S. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res 2022; 41:99. [PMID: 35292091 PMCID: PMC8922757 DOI: 10.1186/s13046-022-02318-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.
Collapse
Affiliation(s)
- Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
107
|
Meshram RJ, Kathwate GH, Gacche RN. Progress, evolving therapeutic/diagnostic approaches, and challenges in the management of hepatitis C virus infections. Arch Virol 2022; 167:717-736. [PMID: 35089390 PMCID: PMC8795940 DOI: 10.1007/s00705-022-05375-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infections are emerging as one of the foremost challenges in healthcare owing to its chronicity and the virus's quasispecies nature. Worldwide, over 170 million people are chronically infected with HCV, with an annual mortality of over 500,000 people across the world. The emerging pathophysiological evidence links HCV infections to a risk of developing liver diseases such as cirrhosis and hepatocellular carcinoma. Despite the great strides that have been made towards understanding the pathophysiology of disease progression, the tailored treatments of HCV infection remain to be established. The present review provides an update of the literature pertaining to evolving therapeutic approaches and prophylactic measures for the effective management of HCV infections. An extensive discussion of established and experimental immune prophylactic measures also sheds light on current developments in the design of vaccination strategies against HCV infection. We have also attempted to address the application of nanotechnology in formulating effective therapeutic interventions against HCV. Pointing out the limitations of the existing diagnostic methods and therapeutic approaches against HCV might inspire the design and development of novel, efficient, reliable, and cost-effective diagnostic technologies as well as novel therapeutic and immune prophylactic interventions for the effective management of HCV.
Collapse
Affiliation(s)
| | | | - Rajesh Nivarti Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, MS, 411007, India.
| |
Collapse
|
108
|
Hu Z, Zhou X, Zeng D, Lai J. Shikonin induces cell autophagy via modulating the microRNA -545-3p/guanine nucleotide binding protein beta polypeptide 1 axis, thereby disrupting cellular carcinogenesis in colon cancer. Bioengineered 2022; 13:5928-5941. [PMID: 35192430 PMCID: PMC8973937 DOI: 10.1080/21655979.2021.2024638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 01/22/2023] Open
Abstract
Shikonin (SHK), a major component of shiverweed, was provided with anti-tumor effects via multiple targets and signal pathways. Nevertheless, the specific mechanism of its function in colorectal cancer (CRC) still needed to be further explored. The study was designed to examine the role of SHK in CRC and its specific mechanism on the cell tumor behavior of CRC. Collection of clinical samples was performed, and test of microRNA (miR)-545-3p and guanine nucleotide-binding protein beta polypeptide 1 (GNB1) in the samples was conducted; Selection of CRC cell line was exerted, and examination of miR-545-3p and GNB1 was performed; After treatment of shikonin (SHK), correlated plasmids were transfected, test of cell advancement was performed. Test of the protein of autophagy-correlated proteins light chain 3-II/light chain 3I and p63 was performed. The interaction of miR-545-3p with GNB1 was explored, and the action of SHK in vivo was tested. SHK repressed the advancement of SW480 cells with elevated apoptosis and autophagy and the cells quantities in G0/G1 phase. MiR-545-3p was elevated in CRC. SHK boosted miR-545-3p, repression of miR-545-3p or augmentation of GNB1 was able to turn around the function of SHK on CRC, and GNB1 was the target gene of miR-545-3p.All in all, SHK stimulates apoptosis and autophagy in CRC via miR-545-3p/GNB1 signaling axis, firstly demonstrating the regulatory mechanism of SHK in CRC via miR-545-3p/GNB1 axis.
Collapse
Affiliation(s)
- ZhiWei Hu
- Department of Gastrointestinal Surgery, The Yuebei People’s Hospital of ShaoGuan, ShaoGuan, GuangDong, China
| | - XinDong Zhou
- Department of Gastrointestinal Surgery, The Yuebei People’s Hospital of ShaoGuan, ShaoGuan, GuangDong, China
| | - DeQiang Zeng
- Department of Gastrointestinal Surgery, The Yuebei People’s Hospital of ShaoGuan, ShaoGuan, GuangDong, China
| | - JiaJun Lai
- Department of Gastrointestinal Surgery, The Yuebei People’s Hospital of ShaoGuan, ShaoGuan, GuangDong, China
| |
Collapse
|
109
|
Gao Z, Chen L, Song T, Pan X, Li X, Lu G, Tang Y, Wu X, Zhao B, Zhang R. A candidate multi-epitope vaccine against porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae induces robust humoral and cellular response in mice. Vaccine 2022; 40:2370-2378. [DOI: 10.1016/j.vaccine.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
|
110
|
Ateya RM, Afifi SA, Abd Al Monem N, Al-Karamany AS, Bessar AA, Rageh F, Ahmed SS, Ghareeb D. Impact of IL-28B gene polymorphism on chronic hepatitis-C patients progression with diabetes and non-diabetes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic hepatitis C (CHC) is a silent viral infection; however, elevated mortality and morbidity rates are noted in Egypt due to its adverse effects. The augmented incidence of diabetes in patients with viral C infection may be owing to glucose intolerance, high BMI, senility, and inherited factors.
Purpose of the study
Little information is available about the connection between interleukin-28B (IL-28B) genotype in disease progression among CHC patients with diabetes. Thus, we aimed to assess the association between IL-28B genotype (rs12979860) in CHC with type 2 diabetes mellitus (T2DM) versus those without diabetes in disease progression among Egyptian patients.
Results
CC genotype was significantly lower in diabetics than in non-diabetics (13.7% vs. 36.3%). While (CT/TT) were significantly higher in diabetics than in non-diabetics (CT 58.8% vs. 43.7%), (TT 27.5% vs. 20%) (p = 0.03) and likewise alleles (p = 0.04). Multivariate logistic regression analysis was significant with viral load p < 0.001, alanine aminotransferase (ALT) p < 0.001, genotype CC versus TT p = 0.04 & T2DM p = 0.03.
Conclusion
CC genotype might be used as a protective factor and TT genotype as a risk factor in disease progression among CHC patients with T2DM. Additionally, viral load, ALT & T2DM might interplay as predictors of disease severity. Detecting the genetic factors can be helpful in predicting and preventing the complications of diabetes associated with the hepatitis C virus (HCV).
Collapse
|
111
|
Balakrishnan R, Mohammed V, Veerabathiran R. The role of genetic mutation in alcoholic liver disease. EGYPTIAN LIVER JOURNAL 2022; 12:14. [DOI: 10.1186/s43066-022-00175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alcoholic liver disease (ALD) is the world’s most common type of liver disease caused due to overconsumption of alcohol. The liver supports the best level of tissue damage by hefty drinking since it is the binding site of ethanol digestion. This disease can progress to alcoholic steatohepatitis from alcoholic fatty liver, which implies steatosis has become the most punctual reaction to hefty drinking and is portrayed by the deposition of fat hepatocytes. In addition, steatosis can advance to steatohepatitis, a more extreme, provocative sort of liver damage described by hepatic inflammation. Constant and unnecessary liquor utilization delivers a wide range of hepatic sores, fibrosis and cirrhosis, and sometimes hepatocellular carcinoma. Most people consuming > 40 g of liquor each day create alcoholic fatty liver (AFL); notwithstanding, just a subset of people will grow further developed infection. Hereditary, epigenetic, and non-hereditary components may clarify the impressive interindividual variety in the ALD phenotype.
Main body
This systematic review is to classify new candidate genes associated with alcoholic liver disorders, such as RASGRF2, ALDH2, NFE2L2, ADH1B, PNPLA3, DRD2, MTHFR, TM6SF2, IL1B, and CYP2E1, MBOAT7 as well as to revise the functions of each gene in its polymorphic sequence. The information obtained from the previously published articles revealed the crucial relationship between the genes and ALD and discussed each selected gene’s mechanism.
Conclusion
The aim of this review is to highlight the candidate genes associated with the ALD, and the evidence of this study is to deliberate the part of genetic alterations and modifications that can serve as an excellent biological maker, risk predictors, and therapeutic targets for this disease.
Collapse
|
112
|
Cheng J, Chen Z, Zuo G, Cao W. Integrated analysis of differentially expressed genes, differentially methylated genes, and natural compounds in hepatitis C virus-induced cirrhosis. J Int Med Res 2022; 50:3000605221074525. [PMID: 35086375 PMCID: PMC8801647 DOI: 10.1177/03000605221074525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To identify key genes in hepatitis C virus (HCV)-induced cirrhosis and to predict effective drugs for its treatment. Methods Three datasets were used to screen for differentially expressed genes (DEGs) and differentially methylated genes (DMGs) in HCV-induced cirrhosis. DEGs were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses using the clusterProfiler R package. Their respective protein–protein interaction (PPI) networks were constructed using Cytoscape. Cross analysis of DEGs and DMGs was performed to identify the genetic landscape of HCV-induced cirrhosis, and five genes were validated by receiver operating characteristic curve analysis. Molecular autodocking between ISG15 and natural products was performed using AutoDock Tool 1.5.6. Results A total of 357 DEGs and 8,830 DMGs were identified. DEG functional analysis identified several pathways involved in the pathogenesis of HCV-induced cirrhosis. Cross analysis of DEGs and DMGs identified 212 genes, and PPI network analysis identified 25 hub genes. Finally, five genes including ISG15 were identified and confirmed in dataset GSE36411. Artesunate and betulinic acid were shown to have a strong binding affinity to ISG15. Conclusion Our study provides novel insights into the mechanisms of HCV-induced cirrhosis which could lead to the identification of new therapeutics.
Collapse
Affiliation(s)
- Junxiong Cheng
- College of Traditional Chinese Medicine, 12550Chongqing Medical University, Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, P. R. China
| | - Zhiwei Chen
- College of Traditional Chinese Medicine, 12550Chongqing Medical University, Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, P. R. China
| | - Guoqing Zuo
- College of Traditional Chinese Medicine, 12550Chongqing Medical University, Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, P. R. China.,Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P. R. China
| | - Wenfu Cao
- College of Traditional Chinese Medicine, 12550Chongqing Medical University, Chongqing Medical University, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, P. R. China
| |
Collapse
|
113
|
Comparative Study on the Exacerbating Effects of Casein-Rich vs. Gluten-Rich Diets on Biochemical-Induced Features in Rodent Model of Autism. J Mol Neurosci 2022; 72:359-371. [PMID: 35028884 DOI: 10.1007/s12031-021-01950-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023]
Abstract
In relation to dietary intervention in individuals with autism spectrum disorder (ASD), certain food constituents especially gluten and casein are recognized to be challenging and should be restricted. In this study, levels of glutathione S-transferase, glutathione, lipid peroxides, serotonin (5-HT), interleukin-6 (IL-6), glutamate, and gamma aminobutyric acid (GABA) were measured in the brain homogenates of ASD rodent model. Rats were treated either with single dose clindamycin (30 mg/kg) or with propionic acid (PPA) (250 mg/kg) for 3 days and then fed a standard diet, casein-rich diet (CRD), or gluten-rich diet (GRD). The obtained data demonstrates that clindamycin and PPA induced oxidative stress, which was slightly affected by CRD. A marked increase in the proinflammatory cytokine (IL-6) concentration found in clindamycin- and PPA-treated groups was lower in CRD fed rats. Both CRDs and GRDs produced similar trends in glutamate levels. 5-HT levels were higher in the clindamycin- and PPA-treated groups and increased with a GRD but were less affected by a CRD. CRD could be less deleterious compared to GRD. Although the underlying cause of gastrointestinal symptoms in patients with ASD is not exactly known, the most widely accepted one is the opioid theory which is related to GRD and CRD.
Collapse
|
114
|
Antonelli ACB, Almeida VP, de Castro FOF, Silva JM, Pfrimer IAH, Cunha-Neto E, Maranhão AQ, Brígido MM, Resende RO, Bocca AL, Fonseca SG. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Sci Rep 2022; 12:53. [PMID: 34997041 PMCID: PMC8741764 DOI: 10.1038/s41598-021-03990-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine’s average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.
Collapse
Affiliation(s)
- Ana Clara Barbosa Antonelli
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Vinnycius Pereira Almeida
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Fernanda Oliveira Feitosa de Castro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil.,Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | | | - Irmtraut Araci Hoffmann Pfrimer
- Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Andréa Queiroz Maranhão
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Marcelo Macedo Brígido
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | | | | | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil. .,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil.
| |
Collapse
|
115
|
Khalil FO, Alsebaey A, Kasemy ZA, Abdelmageed SM, Bedair HM, Abdelsattar S. IL28B, TLR7 SNPs, and cytomegalovirus infection are risk factors for advanced liver disease in chronic hepatitis C patients. Expert Rev Anti Infect Ther 2022. [DOI: https://doi.org/10.1080/14787210.2021.1935239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Fatma Omar Khalil
- Department of Microbiology and Immunology, National Liver Institute, Egypt
| | - Ayman Alsebaey
- Department of Hepatology and Gastroenterology, National Liver Institute, Egypt
| | | | | | - Hanan Mosaad Bedair
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Egypt
| |
Collapse
|
116
|
Khalil FO, Alsebaey A, Kasemy ZA, Abdelmageed SM, Bedair HM, Abdelsattar S. IL28B, TLR7 SNPs, and cytomegalovirus infection are risk factors for advanced liver disease in chronic hepatitis C patients. Expert Rev Anti Infect Ther 2022; 20:121-129. [PMID: 34047252 DOI: 10.1080/14787210.2021.1935239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic hepatitis C (CHC) is a leading cause of cirrhosis and hepatocellular carcinoma (HCC). This study aimed to study the association of IL28B, toll-like receptor (TLR) 7, cytomegalovirus and advanced liver disease. METHODS Four groups were included; control (n = 125, 25.9%), CHC (n = 114, 23.6%), liver cirrhosis (n = 120, 24.8%), and HCC (n = 124, 25.7%). RESULTS In CHC group, patients were mainly F1 (60%) followed by F2. IL28B genotype CC percentage was higher in control group than the CHC and cirrhosis groups. CT and TT genotypes were higher in the CHC and cirrhosis groups than control group. The C allele was higher in the control group than the CHC, cirrhosis and HCC groups and the opposite with the T allele. Control and CHC had same TLR7 alleles. Cirrhosis patients and HCC had lower TLR 7 A allele and higher G allele than the control group. Both cirrhosis and HCC groups had statistically significant higher percentage of the AG and GG genotypes than the control group. Patients with HCC had higher cytomegalovirus infection percentage than cirrhosis and CHC group (38.7% vs 20% vs 16.7%), respectively. CONCLUSION IL28B, TLR7 SNPs and cytomegalovirus infection are risk factors for advanced liver disease in hepatitis C patients.
Collapse
Affiliation(s)
- Fatma Omar Khalil
- Department of Microbiology and Immunology, National Liver Institute, Egypt
| | - Ayman Alsebaey
- Department of Hepatology and Gastroenterology, National Liver Institute, Egypt
| | | | | | - Hanan Mosaad Bedair
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Egypt
| |
Collapse
|
117
|
Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, Cao X, Shen L. Oxidative Stress in Autism Spectrum Disorder-Current Progress of Mechanisms and Biomarkers. Front Psychiatry 2022; 13:813304. [PMID: 35299821 PMCID: PMC8921264 DOI: 10.3389/fpsyt.2022.813304] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. Existing data suggest that early diagnosis and intervention can improve ASD outcomes. However, the causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. More mechanisms and biomarkers of autism have been found with the development of advanced technology such as mass spectrometry. Many recent studies have found a link between ASD and elevated oxidative stress, which may play a role in its development. ASD is caused by oxidative stress in several ways, including protein post-translational changes (e.g., carbonylation), abnormal metabolism (e.g., lipid peroxidation), and toxic buildup [e.g., reactive oxygen species (ROS)]. To detect elevated oxidative stress in ASD, various biomarkers have been developed and employed. This article summarizes recent studies about the mechanisms and biomarkers of oxidative stress. Potential biomarkers identified in this study could be used for early diagnosis and evaluation of ASD intervention, as well as to inform and target ASD pharmacological or nutritional treatment interventions.
Collapse
Affiliation(s)
- Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, China
| |
Collapse
|
118
|
Ibrahim MK, AbdElrahman M, Bader El Din NG, Tawfik S, Abd-Elsalam S, Omran D, Barakat AZ, Farouk S, Elbatae H, El Awady MK. The impact of genetic variations in sofosbuvir metabolizing enzymes and innate immunity mediators on treatment outcome in HCV-infected patients. Microb Pathog 2022; 162:105311. [PMID: 34843922 DOI: 10.1016/j.micpath.2021.105311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is the leading cause of liver diseases worldwide. At present, combinations of different classes of direct-acting antiviral agents (DAAs) are used as treatment options for HCV, in which sofosbuvir (SOF) is the common DAA among different therapeutic regimes. In Egypt, SOF plus daclatasvir (DCV) is the widely used anti-HCV treatment protocol. Herein, we aimed to assess the association between 3 single-nucleotide polymorphisms (SNPs) at the genes coding for 2 SOF metabolizing enzymes: histidine triad nucleotide-binding protein 1 (HINT1) rs4696/rs7728773 and nucleoside diphosphate kinase 1 (NME1) rs3760468, together with the most potent anti-HCV innate molecule, i.e., interferon lambda 3 (IFNL3) rs12979860 and the response to SOF/DCV in Egyptian patients chronically infected with genotype 4 (GT4). SNPs were genotyped using real-time PCR in DNA from patients who achieved sustained virological response (SVR) at 12 weeks post-SOF/DCV treatment (i.e., responders; n = 188), patients who failed to achieve SVR12 (i.e., non-responders; n = 109), and healthy controls (n = 62). Our results demonstrated that patients bearing HINT1 rs7728773 CT/TT (odds ratio 2.119, 95% CI 1.263-3.559, p = 0.005) and IFNL3 rs12979860 CC (odds ratio 3.995, 95% CI 2.126-7.740, p = 0.0001) were more likely to achieve SVR12. However, neither HINT1 rs4696 nor NME1 rs3760468 seems to contribute to the responsiveness to SOF/DCV. Binary regression analysis defined 5 predictor factors independently associated with SVR12: age, bilirubin, hemoglobin, early stages of fibrosis, and combined HINT1 rs7728773 and IFNL3 rs12979860 favorable and mixed genotypes (odds ratio 3.134, 95% CI 1.518-6.47, p = 0.002), and that was confirmed by the combined ROC curve for the 5 predictor factors (AUC = 0.91, 95% CI 0.869-0.95, P = 0.0001). In conclusion, these data suggest that the two SNPs have the potential in predicting the response rate to SOF/DCV treatment in patients infected with HCV GT4. This study is the first to investigate the pharmacogenetics of SOF metabolizing enzyme and introduce HINT1 rs7728773 as a novel SNP that predicts the treatment efficacy.
Collapse
Affiliation(s)
- Marwa K Ibrahim
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| | - Mohamed AbdElrahman
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Iraq; Clinical Pharmacy Unit, Badr University Hospital, Faculty of Medicine, Helwan University, Egypt
| | - Noha G Bader El Din
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Salwa Tawfik
- Department of Internal Medicine, National Research Center, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Sherief Abd-Elsalam
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia Omran
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Egypt
| | - Amal Z Barakat
- Department of Molecular Biology, Biotechnology Research Institute, National Research Center, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Sally Farouk
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Hassan Elbatae
- Department of Tropical Medicine, Faculty of Medicine, Kafer Elshiek University, Kafer Elshiek, Egypt
| | - Mostafa K El Awady
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
119
|
El Abd Y, Tabll A, Smolic R, Smolic M. Mini-review: The market growth of diagnostic and therapeutic monoclonal antibodies - SARS CoV-2 as an example. Hum Antibodies 2022; 30:15-24. [PMID: 34958012 DOI: 10.3233/hab-211513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The emergence of novel viruses poses severe challenges to global public health highlighting the crucial necessity for new antivirals. MAIN BODY Monoclonal antibodies (mAbs) are immunoglobulins that bind to a single epitope. Mouse mAbs are generated by classic hybridoma technology and are mainly used for immunodiagnostics. For immunotherapy, it is critical to use monoclonal antibodies in their human form to minimize adverse reactions. They have been successfully used to treat numerous illnesses, accordingly, an increasing number of mAbs, with high potency against emerging viruses is the target of every biopharmaceutical company. The diagnostic and therapeutic mAbs market grows rapidly into a multi-billion-dollar business. Biopharmaceuticals are innovative resolutions which revolutionized the treatment of significant chronic diseases and malignancies. Currently, a variety of therapeutic options that include antiviral medications, monoclonal antibodies, and immunomodulatory agents are available for the management of COVID-19. SHORT CONCLUSION The invasion of mAbs in new medical sectors will increase the market magnitude as it is expected to generate revenue of about 300 billion $ by 2025. In the current mini-review, the applications of monoclonal antibodies in immune-diagnosis and immunotherapy will be demonstrated, particularly for COVID-19 infection and will focus mainly on monoclonal antibodies in the market.
Collapse
Affiliation(s)
- Yasmine El Abd
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
- Technology and Innovation Commercialization Office (TICO), National Research Centre, Dokki, Egypt
| | - Ashraf Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Egypt
- Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Robert Smolic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Division of Gastroenterology/Hepatology, Department of Medicine, University Hospital Osijek, Osijek, Croatia
| | - Martina Smolic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
120
|
GPX4-Regulated Ferroptosis Mediates S100-Induced Experimental Autoimmune Hepatitis Associated with the Nrf2/HO-1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6551069. [PMID: 34966478 PMCID: PMC8712167 DOI: 10.1155/2021/6551069] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/05/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Autoimmune hepatitis (AIH) is an inflammatory autoimmune disease of the liver. Oxidative stress triggered by reactive oxygen radicals is a common pathophysiological basis for the pathogenesis of many liver diseases, and ferroptosis is associated with the toxic accumulation of reactive oxygen species. The signaling transduction pathways responsible for iron processing and lipid-peroxidation mechanisms are believed to drive ferroptosis. However, the specific mechanisms regulating ferroptosis remain unclear. The aims of this investigation were to identify the possible effector functions of ferroptosis, based on glutathione peroxidase 4 (GPX4) regulation in an S100-induced autoimmune hepatitis mouse model and hepatocyte injury models. The S100 liver antigen-induced AIH mouse model was used to detect ferroptotic biomarkers using western blotting. Upregulated levels of cyclooxygenase2 (COX2) and Acyl-Coenzyme A synthase long-chain family member 4 (ACSL4) were observed in the S100-induced AIH model group, while levels of GPX4 and ferritin heavy chain 1 (FTH1) were downregulated (P < 0.05). The expression profiles of COX2, ACSL4, GPX4, and FTH1 were restored following the administration of ferrostatin-1. In addition, Nrf2 and HO-1 levels in the S100-induced AIH model mice after treatment with ferrostatin-1 were downregulated compared to the nonferrostatin-1-treated S100-induced AIH model mice (P < 0.05). Moreover, COX2 and ACSL4 levels were significantly upregulated, with significant FTH1 downregulation, in the AIH model mice when liver-specific GPX4 was silenced using AAV8 constructs. These data indicate that inhibition of ferroptosis significantly ameliorated the influence of AIH on the Nuclear factor E2-related factor 2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling pathway, and that ferroptosis may act as an initiator or intermediate mediator leading to AIH.
Collapse
|
121
|
Manne V, Ryan J, Wong J, Vengayil G, Basit SA, Gish RG. Hepatitis C Vaccination: Where We Are and Where We Need to Be. Pathogens 2021; 10:pathogens10121619. [PMID: 34959574 PMCID: PMC8705661 DOI: 10.3390/pathogens10121619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) is a common cause of chronic liver disease and liver cancer worldwide. Despite advances in curative therapies for HCV, the incidence of new infections is not decreasing at the expected rate to hit the World Health Organization (WHO) target for the elimination of HCV by 2030. In fact, there are still more new cases of infection in the United States and worldwide than are being cured. The reasons for the rise in new cases include poor access to care and the opioid epidemic. The clinical burden of HCV requires a multimodal approach to eradicating the infection. Vaccination would be an excellent tool to prevent incidence of new infections; however, the genetic diversity of HCV and its ability to generate quasispecies within an infected host make creating a broadly reactive vaccine difficult. Multiple vaccine candidates have been identified, but to date, there has not been a target that has led to a broadly reactive vaccine, though several of the candidates are promising. Additionally, the virus is very difficult to culture and testing candidates in humans or chimpanzees is ethically challenging. Despite the multiple barriers to creating a vaccine, vaccination still represents an important tool in the fight against HCV.
Collapse
Affiliation(s)
- Vignan Manne
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - John Ryan
- Comprehensive Digestive Institute of Nevada, Las Vegas, NV 89148, USA; (J.R.); (S.A.B.)
| | - Jonathan Wong
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - Gayatri Vengayil
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - Syed Abdul Basit
- Comprehensive Digestive Institute of Nevada, Las Vegas, NV 89148, USA; (J.R.); (S.A.B.)
| | - Robert G. Gish
- Liver Transplant Clinic, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence: ; Tel.: +1-866-873-8877
| |
Collapse
|
122
|
Shayeghpour A, Kianfar R, Hosseini P, Ajorloo M, Aghajanian S, Hedayat Yaghoobi M, Hashempour T, Mozhgani SH. Hepatitis C virus DNA vaccines: a systematic review. Virol J 2021; 18:248. [PMID: 34903252 PMCID: PMC8667529 DOI: 10.1186/s12985-021-01716-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Vaccination against HCV is an effective measure in reduction of virus-related public health burden and mortality. However, no prophylactic vaccine is available as of yet. DNA-based immunization is a promising modality to generate cellular and humoral immune responses. The objective of this study is to provide a systematic review of HCV DNA vaccines and investigate and discuss the strategies employed to optimize their efficacies. METHODS MEDLINE (PubMed), Web of Science, Scopus, ScienceDirect, and databases in persian language including the Regional Information Centre for Science & Technology (RICeST), the Scientific Information Database and the Iranian Research Institute for Information Science and Technology (IranDoc) were examined to identify studies pertaining to HCV nucleic acid vaccine development from 2000 to 2020. RESULTS Twenty-seven articles were included. Studies related to HCV RNA vaccines were yet to be published. A variety of strategies were identified with the potential to optimize HCV DNA vaccines such as incorporating multiple viral proteins and molecular tags such as HBsAg and Immunoglobulin Fc, multi-epitope expression, co-expression plasmid utilization, recombinant subunit immunogens, heterologous prime-boosting, incorporating NS3 mutants in DNA vaccines, utilization of adjuvants, employment of less explored methods such as Gene Electro Transfer, construction of multi- CTL epitopes, utilizing co/post translational modifications and polycistronic genes, among others. The effectiveness of the aforementioned strategies in boosting immune response and improving vaccine potency was assessed. CONCLUSIONS The recent progress on HCV vaccine development was examined in this systematic review to identify candidates with most promising prophylactic and therapeutic potential.
Collapse
Affiliation(s)
- Ali Shayeghpour
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Roya Kianfar
- Department of Medical Virology, Tarbiat Modares University, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ajorloo
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sepehr Aghajanian
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mojtaba Hedayat Yaghoobi
- Department of Infectious Disease, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
123
|
Sarkar A, Mahendran TS, Meenakshisundaram A, Christopher RV, Dan P, Sundararajan V, Jana N, Venkatasubbu D, Sheik Mohideen S. Role of cerium oxide nanoparticles in improving oxidative stress and developmental delays in Drosophila melanogaster as an in-vivo model for bisphenol a toxicity. CHEMOSPHERE 2021; 284:131363. [PMID: 34225110 DOI: 10.1016/j.chemosphere.2021.131363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical used commonly in the manufacture of plastic bottles, beverage cans, consumer products, and medical devices. It has a high risk of disrupting hormone-mediated processes which are critical for the growth and development of an infant. In the present study, the flies are exposed to different concentrations of BPA (0.05 and 0.5 mM), which represented the federally regulated LOAEL (50 mg/kg bw/day) and a higher dose of 1 mM, to study the change in cell death, nuclear instability oxidative stress, and behavioral anomalies leading to complex behavioral disorders like Autism. Effects of BPA doses (0.05, 0.5, 1 mM) were studied and the flies showed deficits in social interaction, locomotion, and enhanced oxidative stress that was found to be deteriorating among the flies. Automated tracking and robust MATLAB analysis of behavioral paradigms like position, movement, velocity, and courtship have given us an insight into a detrimental change in development and behavior when exposed to BPA. The flies were also co-treated with Cerium Oxide nanoparticles (CeO2 NP), well known for its antioxidant properties due to their antioxidant enzyme biomimetic nature, resulted in low oxidative stress, genotoxicity, and an improvement in behavior. In this work, we have tested our hypothesis of oxidative stress and nuclear instability as a potent cause for improper development in Drosophila when exposed to EDCs like BPA which is a potential hazard for both health and environment and might lead to various developmental disorders in children.
Collapse
Affiliation(s)
- Arkajyoti Sarkar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Tharun Selvam Mahendran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Aasha Meenakshisundaram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rushenka Vashti Christopher
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Pallavi Dan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vignesh Sundararajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nishant Jana
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Devanand Venkatasubbu
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
124
|
Sugrue JA, Bourke NM, O’Farrelly C. Type I Interferon and the Spectrum of Susceptibility to Viral Infection and Autoimmune Disease: A Shared Genomic Signature. Front Immunol 2021; 12:757249. [PMID: 34917078 PMCID: PMC8669998 DOI: 10.3389/fimmu.2021.757249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Type I interferons (IFN-I) and their cognate receptor, the IFNAR1/2 heterodimer, are critical components of the innate immune system in humans. They have been widely explored in the context of viral infection and autoimmune disease where they play key roles in protection against infection or shaping disease pathogenesis. A false dichotomy has emerged in the study of IFN-I where interferons are thought of as either beneficial or pathogenic. This 'good or bad' viewpoint excludes more nuanced interpretations of IFN-I biology - for example, it is known that IFN-I is associated with the development of systemic lupus erythematosus, yet is also protective in the context of infectious diseases and contributes to resistance to viral infection. Studies have suggested that a shared transcriptomic signature underpins both potential resistance to viral infection and susceptibility to autoimmune disease. This seems to be particularly evident in females, who exhibit increased viral resistance and increased susceptibility to autoimmune disease. The molecular mechanisms behind such a signature and the role of sex in its determination have yet to be precisely defined. From a genomic perspective, several single nucleotide polymorphisms (SNPs) in the IFN-I pathway have been associated with both infectious and autoimmune disease. While overlap between infection and autoimmunity has been described in the incidence of these SNPs, it has been overlooked in work and discussion to date. Here, we discuss the possible contributions of IFN-Is to the pathogenesis of infectious and autoimmune diseases. We comment on genetic associations between common SNPs in IFN-I or their signalling molecules that point towards roles in protection against viral infection and susceptibility to autoimmunity and propose that a shared transcriptomic and genomic immunological signature may underlie resistance to viral infection and susceptibility to autoimmunity in humans. We believe that defining shared transcriptomic and genomic immunological signatures underlying resistance to viral infection and autoimmunity in humans will reveal new therapeutic targets and improved vaccine strategies, particularly in females.
Collapse
Affiliation(s)
- Jamie A. Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nollaig M. Bourke
- Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
125
|
Hasanshahi Z, Hashempour A, Ghasabi F, Moayedi J, Musavi Z, Dehghani B, Sharafi H, Joulaei H. First report on molecular docking analysis and drug resistance substitutions to approved HCV NS5A and NS5B inhibitors amongst Iranian patients. BMC Gastroenterol 2021; 21:443. [PMID: 34819046 PMCID: PMC8612383 DOI: 10.1186/s12876-021-01988-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background NS5A and NS5B proteins of hepatitis C virus (HCV) are the main targets of compounds that directly inhibit HCV infections. However, the emergence of resistance-associated substitutions (RASs) may cause substantial reductions in susceptibility to inhibitors. Methods Viral load and genotyping were determined in eighty-seven naïve HCV-infected patients, and the amplified NS5A and NS5B regions were sequenced by Sanger sequencing. In addition, physicochemical properties, structural features, immune epitopes, and inhibitors-protein interactions of sequences were analyzed using several bioinformatics tools. Results Several amino acid residue changes were found in NS5A and NS5B proteins; however, we did not find any mutations related to resistance to the treatment in NS5B. Different phosphorylation and few glycosylation sites were assessed. Disulfide bonds were identified in both proteins that had a significant effect on the function and structure of HCV proteins. Applying reliable software to predict B-cell epitopes, 3 and 5 regions were found for NS5A and NS5B, respectively, representing a considerable potential to induce the humoral immune system. Docking analysis determined amino acids involved in the interaction of inhibitors and mentioned proteins may not decrease the drug efficiency. Conclusions Strong interactions between inhibitors, NS5A and NS5B proteins and the lack of efficient drug resistance mutations in the analyzed sequences may confirm the remarkable ability of NS5A and NS5B inhibitors to control HCV infection amongst Iranian patients. The results of bioinformatics analysis could unveil all features of both proteins, which can be beneficial for further investigations on HCV drug resistance and designing novel vaccines. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01988-y.
Collapse
Affiliation(s)
- Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farzane Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Musavi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heidar Sharafi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Middle East Liver Diseases (MELD) Center, Tehran, Iran
| | - Hassan Joulaei
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
126
|
Salum GM, el Meguid MA, Abelhafez TH, Medhat E, Abdel Aziz AO, Dawood R. Evaluation of seven gene signature for predicting HCV recurrence post-liver transplantation. J Genet Eng Biotechnol 2021; 19:174. [PMID: 34757522 PMCID: PMC8581076 DOI: 10.1186/s43141-021-00266-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Orthotropic liver transplantation (OLT) offers a therapeutic choice for hepatocellular carcinoma (HCC) patients. The poor outcome of liver transplantation is HCV recurrence. Several genome-wide associated studies (GWAS) have reported many genetic variants to be associated with HCV recurrence. Seven gene polymorphisms formed a cirrhosis risk score (CRS) signature that could be used to distinguish chronic HCV patients at high risk from those at low risk for cirrhosis in non-transplant patients. This study aims to examine the association of CRS score and other clinical parameters with the probability for HCC emergence and/or the rate of HCV recurrence following liver transplantation. RESULTS Seven gene polymorphisms, forming the CRS, were genotyped by real-time PCR using allelic discrimination protocol in 199 end-stage liver disease patients (79 child A, 43 child B, and 77child C), comprising 106 patients who encountered liver transplantation. Recipient CRS scores were correlated with HCV recurrence (HCV-Rec) at the end of the third year after OLT. Around 81% (39) recipients with low steatosis (LS; < 3.5%) donor percentage revealed no HCV recurrence (non-Rec) (p<0.001). CRS score could distinguish between child A, child B, and child C only at the low-risk group. Among the HCV Rec group 27% (8/30), 40% (12/30), and 33% (10/30) fell into the high, moderate, and low CRS risk groups, respectively. Stepwise logistic regression evinced two features more likely to be seen in HCV-Rec patients: abnormal ALT [OR, 1.1; 95% CI, 1.02-1.2] and donor steatosis >3.5% [OR, 46.07; 95% CI, 1.5-1407.8]. CONCLUSIONS Accordingly, the CRS score seems to be less useful to predict HCV recurrence after OLT. ALT and donor steatosis (exceed 3.5%) can significantly promote the HCV recurrence post-OLT. Moreover, the combination of MMF and CNI positively heightens HCV recurrence.
Collapse
Affiliation(s)
- Ghada M. Salum
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| | - Mai Abd el Meguid
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| | - Tawfeek H. Abelhafez
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| | - Eman Medhat
- Department of Endemic Medicine and Hepato-gastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ashraf O. Abdel Aziz
- Department of Endemic Medicine and Hepato-gastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Reham Dawood
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
127
|
Dong J, Wu T, Zhang Y, Xie Z, He J. Transcriptome and MicroRNAs Profiling Analysis of Huh7.5.1 Cells in Response to Hepatitis C Virus Infection. HEPATITIS MONTHLY 2021; 21. [DOI: 10.5812/hepatmon.118724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background: There is a great need for further study on the mechanism of HCV infection or its pathopoiesis mechanism. Therefore, an HCV infection model was used to analyze the mechanisms of transcriptional and post-transcriptional regulation of gene expression. Methods: The detections of transcriptome and microRNAs expressions in Huh7.5.1 cells infected with JFH-1 were conducted with next-generation sequencing. Moreover, bioinformatics data were obtained. Results: There were 21,827,299, and 42,588,251 reads qualified Illumina read pairs obtained from JFH-1-infected (HCV) and non-infected (blank) Huh7.5.1 cells, respectively. Moreover, 678 and 1,041 mRNAs data with a length of 101 bp from HCV and blank Huh7.5.1 cells cDNA sequence were generated, respectively. The results of comparative transcriptome sequencing analysis declared 460 differentially expressed mRNAs in HCV-infected cells, including 152 upregulated mRNAs and 308 downregulated mRNAs (HCV vs. blank). Gene Ontology (GO) and KEGG pathway enrichment analyses indicated the involved pathways, such as MAPK, p53, and PI3K/Akt signaling pathways, as well as oocyte meiosis and pathways in cancer. Conclusions: Our work confirmed the transcriptome and microRNA data profiling from the cell model of HCV infection with JFH-1 using next-generation sequencing (NGS). Furthermore, the gene expression and regulation information or signaling pathways associated with the pathopoiesis mechanism of HCV infection were identified.
Collapse
|
128
|
Al Zamane S, Nobel FA, Jebin RA, Amin MB, Somadder PD, Antora NJ, Hossain MI, Islam MJ, Ahmed K, Moni MA. Development of an in silico multi-epitope vaccine against SARS-COV-2 by précised immune-informatics approaches. INFORMATICS IN MEDICINE UNLOCKED 2021; 27:100781. [PMID: 34746365 PMCID: PMC8563510 DOI: 10.1016/j.imu.2021.100781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023] Open
Abstract
The coronavirus family has been infecting the human population for the past two decades, but the ongoing coronavirus called SARS-CoV-2 has posed an enigmatic challenge to global public health security. Since last year, the mutagenic quality of this virus is causing changes to its genetic material. To prevent those situations, the FDA approved some emergency vaccines but there is no assurance that these will function properly in the complex human body system. In point of view, a short but efficient effort has made in this study to develop an immune epitope-based therapy for the rapid exploitation of SARS-CoV-2 by applying in silico structural biology and advancing immune information strategies. The antigenic epitopes were screened from the Surface, Membrane, Envelope proteins of SARS-CoV-2 and passed through several immunological filters to determine the best possible one. According to this, 7CD4+, 10CD8+ and 5 B-cell epitopes were found to be prominent, antigenic, immunogenic, and most importantly, highly conserved among 128 Bangladeshi and 110 other infected countries SARS-CoV-2 variants. After that, the selected epitopes and adjuvant were linked to finalize the multi-epitope vaccine by appropriate linkers. The immune simulation disclosed that the engineered vaccine could activate both humoral and innate immune responses. For the prediction of an effective binding, molecular docking was carried out between the vaccine and immunological receptors (TLRs). Strong binding affinity and good docking scores clarified the stringency of the vaccines. Furthermore, MD simulation was performed within the highest binding affinity complex to observe the stability. Codon optimization and other physicochemical properties revealed that the vaccine would be suitable for a higher expression at cloning level. So, monitoring the overall in silico assessment, we anticipated that our engineered vaccine would be a plausible prevention against COVID-19.
Collapse
Affiliation(s)
- Saad Al Zamane
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Fahim Alam Nobel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Ruksana Akter Jebin
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammed Badrul Amin
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Pratul Dipta Somadder
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Nusrat Jahan Antora
- Department of Genetic Engineering and Biotechnology, Faculty of Sciences and Engineering, East West University, Aftabnagar, Dhaka, 1212, Bangladesh
| | - Md Imam Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Kawsar Ahmed
- Group of Biophotomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammad Ali Moni
- Department of Computer Science and Engineering, Pabna University of Science and Technology, Pabna, 6600, Bangladesh
| |
Collapse
|
129
|
Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Trindade Maranhão Costa F, Freire Santana M, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, ISARIC4C Investigators, Da Silva Filho JL, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJ. A prenylated dsRNA sensor protects against severe COVID-19. Science 2021; 374:eabj3624. [PMID: 34581622 PMCID: PMC7612834 DOI: 10.1126/science.abj3624] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2′-5′-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Sugrue
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Spyros Lytras
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Srikeerthana Kuchi
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Marko Noerenberg
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Matthew L. Turnbull
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Colin Loney
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jay Allan
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Innes Jarmson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Natalia Cameron-Ruiz
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Margus Varjak
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Rute M. Pinto
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Jeffrey Y. Lee
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Louisa Iselin
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natasha Palmalux
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Douglas G. Stewart
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Simon Swingler
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Edward J. D. Greenwood
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Thomas W. M. Crozier
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Quan Gu
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Emma L. Davies
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sara Clohisey
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bo Wang
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
| | - Monique Freire Santana
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Angie Fawkes
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison Meynert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Graeme Grimes
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - ISARIC4C Investigators
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paolo, Brazil
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Amazonas, Brazil
- Postgraduate Program in Tropical Medicine, Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Edinburgh Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Joao Luiz Da Silva Filho
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | | | - Eddie C. Y. Wang
- Division of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Antonia Ho
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ruth F. Jarrett
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Alfredo Castello
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - David L. Robertson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Malcolm G. Semple
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children’s Hospital, Liverpool, UK
| | - Peter J. M. Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare, National Health Service Trust London, London, UK
| | - Massimo Palmarini
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - J. Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Suzannah J. Rihn
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Sam J. Wilson
- Medical Research Council–University of Glasgow Centre for Virus Research (CVR), Institute of Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
130
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- John Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
131
|
Mohanty E, Mohanty A. Role of artificial intelligence in peptide vaccine design against RNA viruses. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100768. [PMID: 34722851 PMCID: PMC8536498 DOI: 10.1016/j.imu.2021.100768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
RNA viruses have high rate of replication and mutation that help them adapt and change according to their environmental conditions. Many viral mutants are the cause of various severe and lethal diseases. Vaccines, on the other hand have the capacity to protect us from infectious diseases by eliciting antibody or cell-mediated immune responses that are pathogen-specific. While there are a few reviews pertaining to the use of artificial intelligence (AI) for SARS-COV-2 vaccine development, none focus on peptide vaccination for RNA viruses and the important role played by AI in it. Peptide vaccine which is slowly coming to be recognized as a safe and effective vaccination strategy has the capacity to overcome the mutant escape problem which is also being currently faced by SARS-COV-2 vaccines in circulation.Here we review the present scenario of peptide vaccines which are developed using mathematical and computational statistics methods to prevent the spread of disease caused by RNA viruses. We also focus on the importance and current stage of AI and mathematical evolutionary modeling using machine learning tools in the establishment of these new peptide vaccines for the control of viral disease.
Collapse
Affiliation(s)
- Eileena Mohanty
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar, Odisha, 751024, India
| | - Anima Mohanty
- School of Biotechnology (KSBT), KIIT University-2, Bhubaneswar, 751024, India
| |
Collapse
|
132
|
Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines against Helicobacter pylori. Crit Rev Microbiol 2021; 48:489-512. [PMID: 34559599 DOI: 10.1080/1040841x.2021.1979934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the principal cause of serious diseases (e.g. gastric cancer and peptic ulcers). Antibiotic therapy is an inadequate strategy in H. pylori eradication because of which vaccination is an inevitable approach. Despite the presence of countless vaccine candidates, current vaccines in clinical trials have performed with poor efficacy which makes vaccination extremely challenging. Remarkable advancements in immunology and pathogenic biology have provided an appropriate opportunity to develop various epitope-based vaccines. The fusion of proper antigens involved in different aspects of H. pylori colonization and pathogenesis as well as peptide linkers and built-in adjuvants results in producing epitope-based vaccines with excellent therapeutic efficacy and negligible adverse effects. Difficulties of the in vitro culture of H. pylori, high genetic variation, and unfavourable immune responses against feeble epitopes in the complete antigen are major drawbacks of current vaccine strategies that epitope-based vaccines may overcome. Besides decreasing the biohazard risk, designing precise formulations, saving time and cost, and induction of maximum immunity with minimum adverse effects are the advantages of epitope-based vaccines. The present article is a comprehensive review of strategies for designing and developing epitope-based vaccines to provide insights into the innovative vaccination against H. pylori.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
133
|
Guo T, Liu D, Peng S, Wang M, Li Y. A Positive Feedback Loop of lncRNA MIR31HG-miR-361-3p -YY1 Accelerates Colorectal Cancer Progression Through Modulating Proliferation, Angiogenesis, and Glycolysis. Front Oncol 2021; 11:684984. [PMID: 34485123 PMCID: PMC8416113 DOI: 10.3389/fonc.2021.684984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells. Materials and Methods Quantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Results MIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1. Conclusion This study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.
Collapse
Affiliation(s)
- Tao Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Defeng Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shihao Peng
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangyang Li
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
134
|
Balachandar V, Rajagopalan K, Jayaramayya K, Jeevanandam M, Iyer M. Mitochondrial dysfunction: A hidden trigger of autism? Genes Dis 2021; 8:629-639. [PMID: 34291134 PMCID: PMC8278534 DOI: 10.1016/j.gendis.2020.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Autism is a heterogeneous neurodevelopmental and neuropsychiatric disorder with no precise etiology. Deficits in cognitive functions uncover at early stages and are known to have an environmental and genetic basis. Since autism is multifaceted and also linked with other comorbidities associated with various organs, there is a possibility that there may be a fundamental cellular process responsible for this. These reasons place mitochondria at the point of interest as it is involved in multiple cellular processes predominantly involving metabolism. Mitochondria encoded genes were taken into consideration lately because it is inherited maternally, has its own genome and also functions the time of embryo development. Various researches have linked mitochondrial mishaps like oxidative stress, ROS production and mt-DNA copy number variations to autism. Despite dramatic advances in autism research worldwide, the studies focusing on mitochondrial dysfunction in autism is rather minimal, especially in India. India, owing to its rich diversity, may be able to contribute significantly to autism research. It is vital to urge more studies in this domain as it may help to completely understand the basics of the condition apart from a genetic standpoint. This review focuses on the worldwide and Indian scenario of autism research; mitochondrial abnormalities in autism and possible therapeutic approaches to combat it.
Collapse
Affiliation(s)
- Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Kamarajan Rajagopalan
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Kaavya Jayaramayya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India
| | - Madesh Jeevanandam
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Department of Biochemistry, PSG College of Arts and Sciences, Coimbatore, Tamil Nadu 641014, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India
| |
Collapse
|
135
|
Gokhale NS, Smith JR, Van Gelder RD, Savan R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol Rev 2021; 304:77-96. [PMID: 34405416 DOI: 10.1111/imr.13019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
From the initial sensing of viral nucleotides by pattern recognition receptors, through the induction of type I and III interferons (IFN), upregulation of antiviral effector proteins, and resolution of the inflammatory response, each step of innate immune signaling is under tight control. Though innate immunity is often associated with broad regulation at the level of gene transcription, RNA-centric post-transcriptional processes have emerged as critical mechanisms for ensuring a proper antiviral response. Here, we explore the diverse RNA regulatory mechanisms that modulate the innate antiviral immune response, with a focus on RNA sensing by RIG-I-like receptors (RLR), interferon (IFN) and IFN signaling pathways, viral pathogenesis, and host genetic variation that contributes to these processes. We address the post-transcriptional interactions with RNA-binding proteins, non-coding RNAs, transcript elements, and modifications that control mRNA stability, as well as alternative splicing events that modulate the innate immune antiviral response.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Julian R Smith
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Rachel D Van Gelder
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
136
|
Felicidade I, Bocchi M, Ramos MRZ, Carlos LDO, Wagner NRF, Campos ACL, Ribeiro LR, Mantovani MS, Watanabe MAE, Vitiello GAF. Transforming growth factor beta 1 (TGFβ1) plasmatic levels and haplotype structures in obesity: a role for TGFβ1 in steatosis development. Mol Biol Rep 2021; 48:6401-6411. [PMID: 34403036 DOI: 10.1007/s11033-021-06640-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Obesity is considered a chronic inflammatory disease and transforming growth factor beta 1 (TGFβ1) might exert important roles in disease pathogenesis regulating adipocyte differentiation and immune-inflammatory environment. However, the role of this cytokine as a biomarker in obesity is poorly addressed. Therefore, the present study aimed to evaluate the impact of TGFB1 polymorphisms and TGFβ1 plasmatic levels in obesity METHODS AND RESULTS: TGFB1 promoter region polymorphisms (rs1800468, G-800A and rs1800469, C-509 T) were evaluated in 75 obese patients and 45 eutrophic patients through PCR-RFLP and plasmatic TGFβ1 was quantified through ELISA from 37 of the obese patients, and correlations with clinical and biochemical parameters were tested. Despite no association was found between TGFB1 polymorphisms and obesity susceptibility, several correlations with clinical data were noted. Among others, AC haplotype negatively correlated with plasmatic TGFβ1, while plasmatic TGFβ1 negatively correlated with C-reactive protein and positively correlated with liver abnormalities on ultrasound and, specifically, with steatosis presence and degree. Conversely, GT haplotype, which associates with higher TGFβ1 production, was also positively correlated with the same parameters of liver abnormalities. Further, plasmatic vitamin D negatively correlated with TGFβ1, while positively correlated with AC haplotype. CONCLUSION Overall, the results indicate that TGFβ1 might exert important roles in obesity pathophysiology and correlate with biochemical and clinical parameters both at systemic protein as well as at genetic level. Importantly, the consistent positive correlation at both levels with steatosis might suggest this cytokine as a biomarker for this hepatic abnormality in obese patients.
Collapse
Affiliation(s)
- Ingrid Felicidade
- Department of General Biology, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
- School of Medicine, Department of Pathology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Mayara Bocchi
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | | | | | | | | | - Lúcia Regina Ribeiro
- School of Medicine, Department of Pathology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil.
- Laboratory of DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, PR445, Km 380 Celso Garcia Cid highway, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
137
|
A microRNA panel compared to environmental and polygenic scores for colorectal cancer risk prediction. Nat Commun 2021; 12:4811. [PMID: 34376648 PMCID: PMC8355103 DOI: 10.1038/s41467-021-25067-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
Circulating microRNAs (miRNAs) could improve colorectal cancer (CRC) risk prediction. Here, we derive a blood-based miRNA panel and evaluate its ability to predict CRC occurrence in a population-based cohort of adults aged 50-75 years. Forty-one miRNAs are preselected from independent studies and measured by quantitative-real-time-polymerase-chain-reaction in serum collected at baseline of 198 participants who develop CRC during 14 years of follow-up and 178 randomly selected controls. A 7-miRNA score is derived by logistic regression. Its predictive ability, quantified by the optimism-corrected area-under-the-receiver-operating-characteristic-curve (AUC) using .632+ bootstrap is 0.794. Predictive ability is compared to that of an environmental risk score (ERS) based on known risk factors and a polygenic risk score (PRS) based on 140 previously identified single-nucleotide-polymorphisms. In participants with all scores available, optimism-corrected-AUC is 0.802 for the 7-miRNA score, while AUC (95% CI) is 0.557 (0.498-0.616) for the ERS and 0.622 (0.564-0.681) for the PRS.
Collapse
|
138
|
Soveg FW, Schwerk J, Gokhale NS, Cerosaletti K, Smith JR, Pairo-Castineira E, Kell AM, Forero A, Zaver SA, Esser-Nobis K, Roby JA, Hsiang TY, Ozarkar S, Clingan JM, McAnarney ET, Stone AEL, Malhotra U, Speake C, Perez J, Balu C, Allenspach EJ, Hyde JL, Menachery VD, Sarkar SN, Woodward JJ, Stetson DB, Baillie JK, Buckner JH, Gale M, Savan R. Endomembrane targeting of human OAS1 p46 augments antiviral activity. eLife 2021; 10:e71047. [PMID: 34342578 PMCID: PMC8357416 DOI: 10.7554/elife.71047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Many host RNA sensors are positioned in the cytosol to detect viral RNA during infection. However, most positive-strand RNA viruses replicate within a modified organelle co-opted from intracellular membranes of the endomembrane system, which shields viral products from cellular innate immune sensors. Targeting innate RNA sensors to the endomembrane system may enhance their ability to sense RNA generated by viruses that use these compartments for replication. Here, we reveal that an isoform of oligoadenylate synthetase 1, OAS1 p46, is prenylated and targeted to the endomembrane system. Membrane localization of OAS1 p46 confers enhanced access to viral replication sites and results in increased antiviral activity against a subset of RNA viruses including flaviviruses, picornaviruses, and SARS-CoV-2. Finally, our human genetic analysis shows that the OAS1 splice-site SNP responsible for production of the OAS1 p46 isoform correlates with protection from severe COVID-19. This study highlights the importance of endomembrane targeting for the antiviral specificity of OAS1 and suggests that early control of SARS-CoV-2 replication through OAS1 p46 is an important determinant of COVID-19 severity.
Collapse
Affiliation(s)
- Frank W Soveg
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Johannes Schwerk
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Nandan S Gokhale
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | | | - Julian R Smith
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | | | - Alison M Kell
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New MexicoAlbuquerqueUnited States
| | - Adriana Forero
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Shivam A Zaver
- Department of Microbiology, School of Medicine, University of WashingtonSeattleUnited States
| | - Katharina Esser-Nobis
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Justin A Roby
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Tien-Ying Hsiang
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Snehal Ozarkar
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Jonathan M Clingan
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Eileen T McAnarney
- Department of Microbiology and Immunology, University of Texas Medical CenterGalvestonUnited States
| | - Amy EL Stone
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University NevadaHendersonUnited States
| | - Uma Malhotra
- Department of Infectious Disease, Virginia Mason Medical CenterSeattleUnited States
- Department of Medicine, Section of Infectious Diseases, University of WashingtonSeattleUnited States
| | - Cate Speake
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Joseph Perez
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of PittsburghPittsburghUnited States
| | - Chiraag Balu
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research InstituteSeattleUnited States
| | - Jennifer L Hyde
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical CenterGalvestonUnited States
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of PittsburghPittsburghUnited States
| | - Joshua J Woodward
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
- Department of Microbiology, School of Medicine, University of WashingtonSeattleUnited States
| | - Daniel B Stetson
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - John Kenneth Baillie
- Roslin Institute, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General HospitalEdinburghUnited Kingdom
| | - Jane H Buckner
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Michael Gale
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| | - Ram Savan
- Department of Immunology, School of Medicine, University of WashingtonSeattleUnited States
- Center for Innate Immunity and Immune Disease, University of WashingtonSeattleUnited States
| |
Collapse
|
139
|
Zhang WT, Zhang GX, Gao SS. The Potential Diagnostic Accuracy of Let-7 Family for Cancer: A Meta-Analysis. Technol Cancer Res Treat 2021; 20:15330338211033061. [PMID: 34259101 PMCID: PMC8283215 DOI: 10.1177/15330338211033061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Cancer is a global public health problem affecting human health. Early stage of cancer diagnosis, when it is not too large and has not spread is important for successful treatment. Many researchers have proposed that the let-7 microRNA family can be used as a biomarker for cancer diagnosis. The aim of this meta-analysis is to evaluate whether let-7 family can be used as a diagnostic tool for cancer patients. Methods: We conducted a comprehensive literature search on PubMed, EMBASE, Web of Science, Cochrane Library, Google Scholar, China National Knowledge Infrastructure (CNKI) and Wanfang database, updated to October 23, 2020. A random effects model was used to pool the sensitivity and specificity. Besides, we measured the diagnostic value using positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were pooled. In addition, meta-regression and subgroup analysis were performed to explore the possible sources of heterogeneity, and Deeks’ funnel chart was used to assess whether there was publication bias. Results: 31 studies from 15 articles were included in the current meta-analysis. The overall sensitivity, specificity, PLR, NLR, DOR and AUC were 0.80 (95% CI: 0.75-0.85), 0.81 (95% CI: 0.74-0.86), 4.2 (95% CI: 2.9-5.9), 0.24 (95% CI: 0.19-0.32), 17 (95% CI: 10-29) and 0.87 (95% CI: 0.84-0.90), respectively. Subgroup analysis shows that the let-7 family cluster of serum type showed a better diagnostic accuracy of cancer, especially the breast cancer. Although there is no publication bias, it still has some limitations. Conclusions: let-7 family can be considered as a promising non-invasive diagnostic biomarker for cancer.
Collapse
Affiliation(s)
- Wen-Ting Zhang
- Xi'an Daxing Hospital, Xi'an, Shaanxi, China.,International Doctoral School, University of Seville, Seville, Spain
| | - Guo-Xun Zhang
- International Doctoral School, University of Seville, Seville, Spain
| | - Shuai-Shuai Gao
- Xi'an Daxing Hospital, Xi'an, Shaanxi, China.,International Doctoral School, University of Seville, Seville, Spain
| |
Collapse
|
140
|
Liu Y, Cui SN, Duan MY, Dou ZL, Li YZ, Liu YX, Xia Y, Zhang JW, Yan XN, Han DR. Is there a relationship between psoriasis and hepatitis C? A meta-analysis and bioinformatics investigation. Virol J 2021; 18:135. [PMID: 34215260 PMCID: PMC8252322 DOI: 10.1186/s12985-021-01606-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background The relationship between psoriasis and hepatitis C was previously controversial, so our purpose is to investigate this connection.
Methods We conducted a systematic review of the case–control, cross-sectional and cohort studies examining the association between psoriasis and hepatitis C in PubMed, EMBASE and Cochrane library databases and investigated the overlapping genes between psoriasis targets and hepatitis C targets using bioinformatics analysis. Based on overlapping genes and hub nodes, we also constructed the protein–protein interaction (PPI) network and module respectively, followed by the pathway enrichment analysis.
Results We included 11 publications that reported a total of 11 studies (8 cross-sectional and 3 case–control). The case–control and cross-sectional studies included 25,047 psoriasis patients and 4,091,631 controls in total. Psoriasis was associated with a significant increase of prevalent hepatitis C (OR 1.72; 95% confidence interval [CI] (1.17–2.52)). A total of 389 significant genes were common to both hepatitis C and psoriasis, which mainly involved IL6, TNF, IL10, ALB, STAT3 and CXCL8. The module and pathway enrichment analyses showed that the common genes had the potential to influence varieties of biological pathways, including the inflammatory response, cytokine activity, cytokine–cytokine receptor interaction, Toll-like receptor signaling pathway, which play an important role in the pathogenesis of hepatitis C and psoriasis. Conclusion Patients with psoriasis display increased prevalence of hepatitis C and the basic related mechanisms between hepatitis C and psoriasis had been preliminarily clarified. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01606-z.
Collapse
Affiliation(s)
- Yong Liu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,Department of Dermatology, Shaanxi Hospital of Chinese Medicine, Xi'an, China
| | - Sheng Nan Cui
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, China
| | - Meng Yao Duan
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi Li Dou
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhen Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Xing Liu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Ye Xia
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wei Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Ning Yan
- Department of Dermatology, Shaanxi Hospital of Chinese Medicine, Xi'an, China.
| | - Dong Ran Han
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
141
|
Current management & future directions in post-liver transplant recurrence of viral hepatitis. JOURNAL OF LIVER TRANSPLANTATION 2021. [DOI: 10.1016/j.liver.2021.100027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
142
|
Robak O, Kastner MT, Stecher C, Schneider M, Andreas M, Greinix H, Kallay E, Honsig C, Steininger C. Cytomegalovirus Infection Downregulates Vitamin D Receptor in Patients Undergoing Hematopoietic Stem Cell Transplantation. Transplantation 2021; 105:1595-1602. [PMID: 32890131 DOI: 10.1097/tp.0000000000003448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative option for patients with hematologic diseases but is associated with high mortality and morbidity. Cytomegalovirus (CMV) infection is common in HSCT patients and modulates vitamin D metabolism in vitro. We aimed at validating CMV-associated vitamin D metabolism in vivo in HSCT. METHODS Patients treated for significant CMV viremia after HSCT were evaluated for CMV load before, during, and after antiviral treatment. RNA was isolated from whole-blood samples to test for regulation of key components of the vitamin D receptor (VDR) pathway during different phases of CMV viremia. RESULTS CMV viremia developed a mean time of 102 (±34) d post-HSCT. Maximum levels of CMV-DNA reached a mean of 5668 (±7257) copies/mL. VDR expression was downregulated to a mean of 64.3% (±42.5%) relative to the VDR expression pre-CMV viremia (P = 0.035) and lagged in recovery following antiviral treatment. Toll-like receptor (TLR) 2 mRNA was upregulated to 225.4% during CMV viremia relative to the expression pre-CMV viremia (P = 0.012) but not TLR6/7/8 and the TLR-adaptor protein MyD88. Levels of 25-OH vitamin D were reduced in all viremic patients (48.0 ± 4.8 versus 25.1 ± 3.7 ng/mL) and were even lower after periods of CMV viremia compared with the control group (48.3 ± 3.5 versus 17.8 ± 1.8 ng/mL; P = 0.008). CONCLUSIONS CMV viremia is associated with significant dysregulation of vitamin D metabolism in HSCT patients.
Collapse
Affiliation(s)
- Oliver Robak
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marie-Theres Kastner
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Carmen Stecher
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martina Schneider
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Hildegard Greinix
- Department of Haematology, Medical University of Graz, Graz, Austria
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Claudia Honsig
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Steininger
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
143
|
Sánchez-González MT, Cienfuegos-Jiménez O, Álvarez-Cuevas S, Pérez-Maya AA, Borrego-Soto G, Marino-Martínez IA. Prevalence of the SNP rs10774671 of the OAS1 gene in Mexico as a possible predisposing factor for RNA virus disease. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2021; 12:52-60. [PMID: 34336138 PMCID: PMC8310884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED The COVID-19 pandemic has revealed the susceptibility of certain populations to RNA virus infection. This variety of agents is currently the cause of severe respiratory diseases (SARS-CoV2 and Influenza), Hepatitis C, measles and of high prevalence tropical diseases that are detected throughout the year (Dengue and Zika). The rs10774671 polymorphism is a base change from G to A in the last nucleotide of intron-5 of the OAS1 gene. This change modifies a splicing site and generates isoforms of the OAS1 protein with a higher molecular weight and a demonstrated lower enzymatic activity. The low activity of these OAS1 isoforms makes the innate immune response against RNA virus infections less efficient, representing a previously unattended risk factor for certain populations. OBJECTIVE Determine the distribution of rs10774671 in the open population of Mexico. METHODS In 98 healthy volunteers, allelic and genotypic frequencies were determined by qPCR using allele specific labeled probes, and the Hardy-Weinberg equilibrium was determined. RESULTS The A-allele turned out to be the most prevalent in the analyzed population. CONCLUSIONS Our population is genetically susceptible to RNA virus disease due to the predominant presence of the A allele of rs10774671 in the OAS1 gene.
Collapse
Affiliation(s)
- María Teresa Sánchez-González
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la SaludMonterrey, Nuevo León, México
| | - Oscar Cienfuegos-Jiménez
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la SaludMonterrey, Nuevo León, México
| | - Salomón Álvarez-Cuevas
- Universidad Autónoma de Nuevo León, Departamento de Patología, Facultad de MedicinaMonterrey, Nuevo León, México
| | - Antonio Ali Pérez-Maya
- Universidad Autónoma de Nuevo León, Departamento de Bioquímica y Medicina Molecular, Facultad de MedicinaMonterrey, Nuevo León, México
| | - Gissela Borrego-Soto
- Department of Molecular Biosciences, University of Texas at AustinAustin, Texas, United States of America
| | - Iván Alberto Marino-Martínez
- Universidad Autónoma de Nuevo León, Centro de Investigación y Desarrollo en Ciencias de la SaludMonterrey, Nuevo León, México
- Universidad Autónoma de Nuevo León, Departamento de Patología, Facultad de MedicinaMonterrey, Nuevo León, México
| |
Collapse
|
144
|
Ghafouri-Fard S, Hussen BM, Badrlou E, Abak A, Taheri M. MicroRNAs as important contributors in the pathogenesis of colorectal cancer. Biomed Pharmacother 2021; 140:111759. [PMID: 34091180 DOI: 10.1016/j.biopha.2021.111759] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most fatal and fourth most frequently diagnosed neoplasm in the world. Numerous non-coding RNAs have been shown to contribute in the development of CRC. MicroRNAs (miRNAs) are among the mostly assessed non-coding RNAs in CRC. These transcripts influence expression and activity of TGF-β, Wnt/β-catenin, MAPK, PI3K/AKT and other CRC-related pathways. In the context of CRC, miRNAs interact with long non-coding RNAs to influence CRC course. Stool and serum levels of miRNAs have been used to distinguish CRC patients from healthy controls, indicating diagnostic roles of these transcripts in CRC. Therapeutic application of miRNAs in CRC has been assessed in animal models, yet has not been verified in clinical settings. In the current review, we have provided a recent update on the role of miRNAs in CRC development as well as diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Elham Badrlou
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
145
|
Yang Q, Zhou Z, Yang X, Chen Y, Liu A, Zhang B, Shao L, Zheng J, Zhang W. Latent Cytomegalovirus Reactivation in Patients With Liver Failure: A 10-Year Retrospective Case-Control Study, 2011-2020. Front Cell Infect Microbiol 2021; 11:642500. [PMID: 34041042 PMCID: PMC8143188 DOI: 10.3389/fcimb.2021.642500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to explore potential risk factors for cytomegalovirus (CMV) reactivation and their impact on liver failure patient outcomes. Methods A 10-year retrospective case-control study was conducted in adult participants, who were diagnosed with liver failure and had undergone CMV DNA tests. CMV reactivation cases were matched with controls at a 2:1 ratio based on age, sex, and year of admission. Univariate and multivariate analyses were used to explore risk factors for CMV reactivation. Results Between January 2011 and April 2020, 198 adult patients with liver failure and available CMV DNA test results were enrolled into the study. Among them, 33 patients had detectable CMV DNA in their plasma (16.7%). Clinical manifestations and liver function were comparable between the CMV reactivation and non-reactivation groups. However, CMV reactivation may triple mortality in patients with liver failure. We found that nearly 50% of patients in the CMV-positive group received glucocorticoids, compared to 13.6% in the CMV-negative group (P=0.000). The median total glucocorticoid dose included 836.5 mg of methylprednisolone (IQR 308.7-1259.0 mg) in the CMV-positive group, which was significantly higher than that in the CMV-negative group. A multivariate analysis revealed that glucocorticoid use significantly increased the risk of CMV reactivation (adjusted OR, 4.84; 95% CI, 1.61-14.49; P=0.005). Patients with CMV reactivation tended to be associated with higher white cell counts (adjusted OR, 1.21; 95% CI, 1.08-1.36; P=0.002). Conclusions High intravenous glucocorticoid doses may be the most important risk factor for CMV reactivation in liver failure.
Collapse
Affiliation(s)
- Qingluan Yang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhe Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuefang Yang
- Department of Infectious Disease, The Second People's Hospital of Lanzhou, Gansu, China
| | - Yuming Chen
- Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Aiping Liu
- Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Bingyan Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
146
|
Zhu Y, Xu W, Hu W, Wang F, Zhou Y, Xu J, Gong W. Discovery and validation of novel protein markers in mucosa of portal hypertensive gastropathy. BMC Gastroenterol 2021; 21:214. [PMID: 33971821 PMCID: PMC8111717 DOI: 10.1186/s12876-021-01787-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Portal hypertension induced esophageal and gastric variceal bleeding is the main cause of death among patients of decompensated liver cirrhosis. Therefore, a standardized, biomarker-based test, to make an early-stage non-invasive risk assessment of portal hypertension, is highly desirable. However, no fit-for-purpose biomarkers have yet been identified. Methods We conducted a pilot study consisting of 5 portal hypertensive gastropathy (PHG) patients and 5 normal controls, sampling the gastric mucosa of normal controls and PHG patients before and after endoscopic cyanoacrylate injection, using label-free quantitative (LFQ) mass spectrometry, to identify potential biomarker candidates in gastric mucosa from PHG patients and normal controls. Then we further used parallel reaction monitoring (PRM) to verify the abundance of the targeted protein. Results LFQ analyses identified 423 significantly differentially expressed proteins. 17 proteins that significantly elevated in the gastric mucosa of PHG patients were further validated using PRM. Conclusions This is the first application of an LFQ-PRM workflow to identify and validate PHG–specific biomarkers in patient gastric mucosa samples. Our findings lay the foundation for comprehending the molecular mechanisms of PHG pathogenesis, and provide potential applications for useful biomarkers in early diagnosis and treatment. Trial registration and ethics approval: Trial registration was completed (ChiCTR2000029840) on February 25, 2020. Ethics Approvals were completed on July 17, 2017 (NYSZYYEC20180003) and February 15, 2020 (NYSZYYEC20200005). Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01787-5.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Wen Xu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Fang Wang
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Yan Zhou
- Information Management Section, Bethune International Peace Hospital, Shijiazhuang City, Hebei Province, China
| | - Jianguo Xu
- Department of Liver Disease Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
147
|
Structure-Based and Rational Design of a Hepatitis C Virus Vaccine. Viruses 2021; 13:v13050837. [PMID: 34063143 PMCID: PMC8148096 DOI: 10.3390/v13050837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
A hepatitis C virus (HCV) vaccine is a critical yet unfulfilled step in addressing the global disease burden of HCV. While decades of research have led to numerous clinical and pre-clinical vaccine candidates, these efforts have been hindered by factors including HCV antigenic variability and immune evasion. Structure-based and rational vaccine design approaches have capitalized on insights regarding the immune response to HCV and the structures of antibody-bound envelope glycoproteins. Despite successes with other viruses, designing an immunogen based on HCV glycoproteins that can elicit broadly protective immunity against HCV infection is an ongoing challenge. Here, we describe HCV vaccine design approaches where immunogens were selected and optimized through analysis of available structures, identification of conserved epitopes targeted by neutralizing antibodies, or both. Several designs have elicited immune responses against HCV in vivo, revealing correlates of HCV antigen immunogenicity and breadth of induced responses. Recent studies have elucidated the functional, dynamic and immunological features of key regions of the viral envelope glycoproteins, which can inform next-generation immunogen design efforts. These insights and design strategies represent promising pathways to HCV vaccine development, which can be further informed by successful immunogen designs generated for other viruses.
Collapse
|
148
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
149
|
Malikova AZ, Shcherbakova AS, Konduktorov KA, Zemskaya AS, Dalina AA, Popenko VI, Leonova OG, Morozov AV, Kurochkin NN, Smirnova OA, Kochetkov SN, Kozlov MV. Pre-Senescence Induction in Hepatoma Cells Favors Hepatitis C Virus Replication and Can Be Used in Exploring Antiviral Potential of Histone Deacetylase Inhibitors. Int J Mol Sci 2021; 22:4559. [PMID: 33925399 PMCID: PMC8123837 DOI: 10.3390/ijms22094559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Recent evidence suggests that fibrotic liver injury in patients with chronic hepatitis C correlates with cellular senescence in damaged liver tissue. However, it is still unclear how senescence can affect replication of the hepatitis C virus (HCV). In this work, we report that an inhibitor of cyclin-dependent kinases 4/6, palbociclib, not only induced in hepatoma cells a pre-senescent cellular phenotype, including G1 arrest in the cell cycle, but also accelerated viral replicon multiplication. Importantly, suppression of HCV replication by direct acting antivirals (DAAs) was barely affected by pre-senescence induction, and vice versa, the antiviral activities of host-targeting agents (HTAs), such as inhibitors of human histone deacetylases (HDACi), produced a wide range of reactions-from a dramatic reduction to a noticeable increase. It is very likely that under conditions of the G1 arrest in the cell cycle, HDACi exhibit their actual antiviral potency, since their inherent anticancer activity that complicates the interpretation of test results is minimized.
Collapse
|
150
|
Dawood RM, Salum GM, El-Meguid MA, Elsayed A, Yosry A, Abdelaziz A, Shousha HI, Nabeel MM, El Awady MK. Development of a gene signature for predicting cirrhosis risk score of chronic liver disease associated with HCV infection in Egyptians. Microb Pathog 2021; 153:104805. [PMID: 33609649 DOI: 10.1016/j.micpath.2021.104805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Complex diseases such as fibrosis are likely polygenic. Lately, cirrhosis risk score (CRS) clearly discriminated Chronic HCV patients with high-risk versus those with low-risk for cirrhosis better than clinical factors. METHODS Herein, the CRS was assessed via genotyping by allelic discrimination assays in 243 HCV Egyptian patients categorized into 164 patients didn't develop HCC (93 mild, 71 advanced fibrosis); and 79 patients developed HCC. APRI and FIB-4 scores were calculated, compared with CRS and correlated with degree of fibrosis progression. RESULTS Median of the three CRS, APRI and FIB-4 scores were significantly elevated in late fibrotic and HCC patients (p < 0.001); however CRS displayed proper discrimination (mild fibrosis (0.59; 0.4-0.75), advanced fibrosis (0.75; 0.7-0.86) and HCC (0.73; 0.57-0.77); (p < 0.001)). The ROC analysis of CRS score displayed modest accuracy to discriminate between mild and advanced fibrotic patient; AUC was 0.73; p < 0.0001), while AUC was only 0.57 (p = 0.05) for the discrimination between HCC and no HCC. Moreover, the combination of CRS, APRI and FIB4 lessened the power of correlation (AUC, 0.63 (p < 0.0001)) in fibrosis prognosis. In HCC prognosis, the combination of CRS, APRI and FIB4 in HCC patients showed modest accuracy with AUC, 0.59 (p = 0.0001). CONCLUSION The diagnostic accuracy of FIB-4 for predicting liver fibrosis was nearly identical to that of CRS, however the strength of CRS score stemmed from that it is built on 7 SNPs host genetic factor. Our study validates non invasive algorithms for fibrosis prognosis purposes which may aid in decision making for therapeutic intervention.
Collapse
Affiliation(s)
- Reham M Dawood
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, 33 EL Bohouth Street Dokki, Giza, 12622, Egypt.
| | - Ghada M Salum
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, 33 EL Bohouth Street Dokki, Giza, 12622, Egypt
| | - Mai Abd El-Meguid
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, 33 EL Bohouth Street Dokki, Giza, 12622, Egypt
| | - Ahmed Elsayed
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Egypt
| | - Ayman Yosry
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Egypt
| | - Ashraf Abdelaziz
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Egypt
| | - Hend Ibrahim Shousha
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Egypt
| | - Mohamed Mahmoud Nabeel
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Egypt
| | - Mostafa K El Awady
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, 33 EL Bohouth Street Dokki, Giza, 12622, Egypt
| |
Collapse
|