101
|
Zhang Y, Zhang Y, Su Z, Ren B, Yu S, Li W, Xu N, Lou H. Impaired embryo development potential associated with thyroid autoimmunity in euthyroid infertile women with diminished ovarian reserve. Front Endocrinol (Lausanne) 2024; 15:1376179. [PMID: 38948519 PMCID: PMC11214279 DOI: 10.3389/fendo.2024.1376179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose The aim of this study was to evaluate the associations of thyroid autoimmunity (TAI) with the number of oocytes retrieved (NOR), fertilization rate (FR), and embryo quality (EQ) in euthyroid women with infertility and diminished ovarian reserve (DOR). Methods This retrospective cohort study involved 1,172 euthyroid women aged 20-40 years with infertility and DOR who underwent an oocyte retrieval cycle. TAI was diagnosed in the presence of serum thyroperoxidase antibody (TPOAb) concentrations higher than 34 IU/ml and/or serum thyroglobulin antibody (TgAb) concentrations exceeding 115.0 IU/ml. Among these women, 147 patients with TAI were classified as the TAI-positive group, while 1,025 patients without TAI were classified as the TAI-negative group. Using generalized linear models (GLMs) adjusted for confounding factors, we evaluated the associations of TAI and the serum TPOAb and TgAb concentrations and NOR, FR, and EQ in this study's subjects. The TPOAb and TGAb values were subjected to log10 transformation to reduce skewness. Logistic regression models were used to estimate the effects of TPOAb and TgAb concentrations on the probabilities of achieving a high NOR (≥7) and high FR (>60%). Results For the whole study population, women with TAI had a significantly lower NOR and poorer EQ than women without TAI (P < 0.001 for both). Interestingly, in the TSH ≤2.5 subgroup, the TAI-positive group also had a significantly lower NOR and poorer EQ than the TAI-negative group (P < 0.001 for both). Furthermore, negative associations were observed between log10(TPOAb) concentrations and NOR and the number of high-quality embryos and available embryos (P < 0.05 for all). The log10(TgAb) concentrations were inversely associated with NOR and the number of high-quality embryos (P < 0.05 for all). In the regression analysis, the log10(TPOAb) concentrations had lower probabilities of achieving a high NOR [adjusted odds ratio (aOR): 0.56; 95% confidence interval (95% CI) 0.37, 0.85; P = 0.007]. Conclusions TAI and higher TPOAb and TgAb concentrations were shown to be associated with reductions in the NOR and EQ in the study population. Our findings provide further evidence to support systematic screening and treatment for TAI in euthyroid women with infertility and DOR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Lou
- Reproductive Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
102
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
103
|
Kurlovich J, Rodriguez Polo I, Dovgusha O, Tereshchenko Y, Cruz CRV, Behr R, Günesdogan U. Generation of marmoset primordial germ cell-like cells under chemically defined conditions. Life Sci Alliance 2024; 7:e202302371. [PMID: 38499329 PMCID: PMC10948935 DOI: 10.26508/lsa.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of sperm and oocytes, which transmit genetic/epigenetic information across generations. Mouse PGC and subsequent gamete development can be fully reconstituted in vitro, opening up new avenues for germ cell studies in biomedical research. However, PGCs show molecular differences between rodents and humans. Therefore, to establish an in vitro system that is closely related to humans, we studied PGC development in vivo and in vitro in the common marmoset monkey Callithrix jacchus (cj). Gonadal cjPGCs at embryonic day 74 express SOX17, AP2Ɣ, BLIMP1, NANOG, and OCT4A, which is reminiscent of human PGCs. We established transgene-free induced pluripotent stem cell (cjiPSC) lines from foetal and postnatal fibroblasts. These cjiPSCs, cultured in defined and feeder-free conditions, can be differentiated into precursors of mesendoderm and subsequently into cjPGC-like cells (cjPGCLCs) with a transcriptome similar to human PGCs/PGCLCs. Our results not only pave the way for studying PGC development in a non-human primate in vitro under experimentally controlled conditions, but also provide the opportunity to derive functional marmoset gametes in future studies.
Collapse
Affiliation(s)
- Julia Kurlovich
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Ignacio Rodriguez Polo
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- Stem Cell and Human Development Laboratory, The Francis Crick Institute, London, UK
| | - Oleksandr Dovgusha
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Yuliia Tereshchenko
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Carmela Rieline V Cruz
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Department for Molecular Developmental Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
104
|
Radley A, Boeing S, Smith A. Branching topology of the human embryo transcriptome revealed by Entropy Sort Feature Weighting. Development 2024; 151:dev202832. [PMID: 38691188 PMCID: PMC11213519 DOI: 10.1242/dev.202832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Analysis of single cell transcriptomics (scRNA-seq) data is typically performed after subsetting to highly variable genes (HVGs). Here, we show that Entropy Sorting provides an alternative mathematical framework for feature selection. On synthetic datasets, continuous Entropy Sort Feature Weighting (cESFW) outperforms HVG selection in distinguishing cell-state-specific genes. We apply cESFW to six merged scRNA-seq datasets spanning human early embryo development. Without smoothing or augmenting the raw counts matrices, cESFW generates a high-resolution embedding displaying coherent developmental progression from eight-cell to post-implantation stages and delineating 15 distinct cell states. The embedding highlights sequential lineage decisions during blastocyst development, while unsupervised clustering identifies branch point populations obscured in previous analyses. The first branching region, where morula cells become specified for inner cell mass or trophectoderm, includes cells previously asserted to lack a developmental trajectory. We quantify the relatedness of different pluripotent stem cell cultures to distinct embryo cell types and identify marker genes of naïve and primed pluripotency. Finally, by revealing genes with dynamic lineage-specific expression, we provide markers for staging progression from morula to blastocyst.
Collapse
Affiliation(s)
- Arthur Radley
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
105
|
Ayipo YO, Chong CF, Abdulameed HT, Mordi MN. Bioactive alkaloidal and phenolic phytochemicals as promising epidrugs for diabetes mellitus 2: A review of recent development. Fitoterapia 2024; 175:105922. [PMID: 38552806 DOI: 10.1016/j.fitote.2024.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Department of Chemistry and Industrial Chemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria; Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| | - Chien Fung Chong
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Hassan Taiye Abdulameed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Biochemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
106
|
Ruan D, Xuan Y, Tam TTKK, Li Z, Wang X, Xu S, Herrmann D, Niemann H, Lai L, Gao X, Nowak-Imialek M, Liu P. An optimized culture system for efficient derivation of porcine expanded potential stem cells from preimplantation embryos and by reprogramming somatic cells. Nat Protoc 2024; 19:1710-1749. [PMID: 38509352 DOI: 10.1038/s41596-024-00958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 03/22/2024]
Abstract
Pigs share anatomical and physiological traits with humans and can serve as a large-animal model for translational medicine. Bona fide porcine pluripotent stem cells (PSCs) could facilitate testing cell and drug therapies. Agriculture and biotechnology may benefit from the ability to produce immune cells for studying animal infectious diseases and to readily edit the porcine genome in stem cells. Isolating porcine PSCs from preimplantation embryos has been intensively attempted over the past decades. We previously reported the derivation of expanded potential stem cells (EPSCs) from preimplantation embryos and by reprogramming somatic cells of multiple mammalian species, including pigs. Porcine EPSCs (pEPSCs) self-renew indefinitely, differentiate into embryonic and extra-embryonic lineages, and permit precision genome editing. Here we present a highly reproducible experimental procedure and data of an optimized and robust porcine EPSC culture system and its use in deriving new pEPSC lines from preimplantation embryos and reprogrammed somatic cells. No particular expertise is required for the protocols, which take ~4-6 weeks to complete. Importantly, we successfully established pEPSC lines from both in vitro fertilized and somatic cell nuclear transfer-derived embryos. These new pEPSC lines proliferated robustly over long-term passaging and were amenable to both simple indels and precision genome editing, with up to 100% targeting efficiency. The pEPSCs differentiated into embryonic cell lineages in vitro and teratomas in vivo, and into porcine trophoblast stem cells in human trophoblast stem cell medium. We show here that pEPSCs have unique epigenetic features, particularly H3K27me3 levels substantially lower than fibroblasts.
Collapse
Affiliation(s)
- Degong Ruan
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Timothy Theodore Ka Ki Tam
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - ZhuoXuan Li
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xiao Wang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shao Xu
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Neustadt, Germany
| | - Heiner Niemann
- Hannover Medical School (MHH), Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover, Germany
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Monika Nowak-Imialek
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
- First Department of Medicine, Cardiology, Klinikum rechts der Isar-Technical University of Munich, Munich, Germany.
| | - Pentao Liu
- Center for Translational Stem Cell Biology, Science Park, Sha Tin, Hong Kong, China.
- Shenzhen Key Laboratory of Fertility Regulation, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
107
|
Onfray C, Chevolleau S, Moinard E, Girard O, Mahadik K, Allsop R, Georgolopoulos G, Lavigne R, Renoult O, Aksoy I, Lemaitre E, Hulin P, Ouimette JF, Fréour T, Pecqueur C, Pineau C, Pasque V, Rougeulle C, David L. Unraveling hallmark suitability for staging pre- and post-implantation stem cell models. Cell Rep 2024; 43:114232. [PMID: 38761378 DOI: 10.1016/j.celrep.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
The advent of novel 2D and 3D models for human development, including trophoblast stem cells and blastoids, has expanded opportunities for investigating early developmental events, gradually illuminating the enigmatic realm of human development. While these innovations have ushered in new prospects, it has become essential to establish well-defined benchmarks for the cell sources of these models. We aimed to propose a comprehensive characterization of pluripotent and trophoblastic stem cell models by employing a combination of transcriptomic, proteomic, epigenetic, and metabolic approaches. Our findings reveal that extended pluripotent stem cells share many characteristics with primed pluripotent stem cells, with the exception of metabolic activity. Furthermore, our research demonstrates that DNA hypomethylation and high metabolic activity define trophoblast stem cells. These results underscore the necessity of considering multiple hallmarks of pluripotency rather than relying on a single criterion. Multiplying hallmarks alleviate stage-matching bias.
Collapse
Affiliation(s)
- Constance Onfray
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Simon Chevolleau
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Eva Moinard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Océane Girard
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Kasturi Mahadik
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Ryan Allsop
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Grigorios Georgolopoulos
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Régis Lavigne
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Ophélie Renoult
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Irene Aksoy
- University Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Elsa Lemaitre
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | - Philippe Hulin
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France
| | | | - Thomas Fréour
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, 08028 Barcelona, Spain; CHU Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Pecqueur
- Nantes Université, CNRS, Inserm, CRCI2NA, 44000 Nantes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000 Rennes, France; University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, 35000 Rennes, France
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Leuven Institute for Single Cell Omics and Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, 75013 Paris, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, SFR Bonamy, 44000 Nantes, France.
| |
Collapse
|
108
|
Li N, Jin K, Liu B, Yang M, Shi P, Heng D, Wang J, Liu L. Single-cell 3D genome structure reveals distinct human pluripotent states. Genome Biol 2024; 25:122. [PMID: 38741214 PMCID: PMC11089717 DOI: 10.1186/s13059-024-03268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.
Collapse
Affiliation(s)
- Niannian Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Weifang People's Hospital, Shandong, 261041, China
| | - Kairang Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Bin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Weifang People's Hospital, Shandong, 261041, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Mingzhu Yang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - PanPan Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dai Heng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
109
|
Ren W, Zheng D, Liu G, Wu G, Peng Y, Wu J, Jin K, Zuo Q, Zhang Y, Li G, Han W, Cui XS, Chen G, Li B, Niu YJ. The Effect of Inhibiting the Wingless/Integrated (WNT) Signaling Pathway on the Early Embryonic Disc Cell Culture in Chickens. Animals (Basel) 2024; 14:1382. [PMID: 38731386 PMCID: PMC11083256 DOI: 10.3390/ani14091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The utilization of chicken embryonic-derived pluripotent stem cell (PSC) lines is crucial in various fields, including growth and development, vaccine and protein production, and germplasm resource protection. However, the research foundation for chicken PSCs is relatively weak, and there are still challenges in establishing a stable and efficient PSC culture system. Therefore, this study aims to investigate the effects of the FGF2/ERK and WNT/β-catenin signaling pathways, as well as different feeder layers, on the derivation and maintenance of chicken embryonic-derived PSCs. The results of this study demonstrate that the use of STO cells as feeder layers, along with the addition of FGF2, IWR-1, and XAV-939 (FIX), allows for the efficient derivation of chicken PSC-like cells. Under the FIX culture conditions, chicken PSCs express key pluripotency genes, such as POUV, SOX2, and NANOG, as well as specific proteins SSEA-1, C-KIT, and SOX2, indicating their pluripotent nature. Additionally, the embryoid body experiment confirms that these PSC-like cells can differentiate into cells of three germ layers in vitro, highlighting their potential for multilineage differentiation. Furthermore, this study reveals that chicken Eyal-Giladi and Kochav stage X blastodermal cells express genes related to the primed state of PSCs, and the FIX culture system established in this research maintains the expression of these genes in vitro. These findings contribute significantly to the understanding and optimization of chicken PSC culture conditions and provide a foundation for further exploration of the biomedical research and biotechnological applications of chicken PSCs.
Collapse
Affiliation(s)
- Wenjie Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dan Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guangzheng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Gaoyuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yixiu Peng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jun Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohui Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ying-Jie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
110
|
Chemerinski A, Shen M, Valero-Pacheco N, Zhao Q, Murphy T, George L, Lemenze A, Sherman L, Heller D, Chen X, Wu T, McGovern PG, Morelli SS, Arora R, Beaulieu AM, Douglas NC. The impact of ovarian stimulation on the human endometrial microenvironment. Hum Reprod 2024; 39:1023-1041. [PMID: 38511208 PMCID: PMC11063567 DOI: 10.1093/humrep/deae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
STUDY QUESTION How does ovarian stimulation (OS), which is used to mature multiple oocytes for ART procedures, impact the principal cellular compartments and transcriptome of the human endometrium in the periovulatory and mid-secretory phases? SUMMARY ANSWER During the mid-secretory window of implantation, OS alters the abundance of endometrial immune cells, whereas during the periovulatory period, OS substantially changes the endometrial transcriptome and impacts both endometrial glandular and immune cells. WHAT IS KNOWN ALREADY Pregnancies conceived in an OS cycle are at risk of complications reflective of abnormal placentation and placental function. OS can alter endometrial gene expression and immune cell populations. How OS impacts the glandular, stromal, immune, and vascular compartments of the endometrium, in the periovulatory period as compared to the window of implantation, is unknown. STUDY DESIGN, SIZE, DURATION This prospective cohort study carried out between 2020 and 2022 included 25 subjects undergoing OS and 25 subjects in natural menstrual cycles. Endometrial biopsies were performed in the proliferative, periovulatory, and mid-secretory phases. PARTICIPANTS/MATERIALS, SETTING, METHODS Blood samples were processed to determine serum estradiol and progesterone levels. Both the endometrial transcriptome and the principal cellular compartments of the endometrium, including glands, stroma, immune, and vasculature, were evaluated by examining endometrial dating, differential gene expression, protein expression, cell populations, and the three-dimensional structure in endometrial tissue. Mann-Whitney U tests, unpaired t-tests or one-way ANOVA and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE In the periovulatory period, OS induced high levels of differential gene expression, glandular-stromal dyssynchrony, and an increase in both glandular epithelial volume and the frequency of endometrial monocytes/macrophages. In the window of implantation during the mid-secretory phase, OS induced changes in endometrial immune cells, with a greater frequency of B cells and a lower frequency of CD4 effector T cells. LARGE SCALE DATA The data underlying this article have been uploaded to the Genome Expression Omnibus/National Center for Biotechnology Information with accession number GSE220044. LIMITATIONS, REASONS FOR CAUTION A limited number of subjects were included in this study, although the subjects within each group, natural cycle or OS, were homogenous in their clinical characteristics. The number of subjects utilized was sufficient to identify significant differences; however, with a larger number of subjects and additional power, we may detect additional differences. Another limitation of the study is that proliferative phase biopsies were collected in natural cycles, but not in OS cycles. Given that the OS cycle subjects did not have known endometrial factor infertility, and the comparisons involved subjects who had a similar and robust response to stimulation, the findings are generalizable to women with a normal response to OS. WIDER IMPLICATIONS OF THE FINDINGS OS substantially altered the periovulatory phase endometrium, with fewer transcriptomic and cell type-specific changes in the mid-secretory phase. Our findings show that after OS, the endometrial microenvironment in the window of implantation possesses many more similarities to that of a natural cycle than does the periovulatory endometrium. Further investigation of the immune compartment and the functional significance of this cellular compartment under OS conditions is warranted. STUDY FUNDING/COMPETING INTERESTS Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases (R01AI148695 to A.M.B. and N.C.D.), Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD109152 to R.A.), and the March of Dimes (5-FY20-209 to R.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or March of Dimes. All authors declare no conflict of interest.
Collapse
Affiliation(s)
- Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - May Shen
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Nuriban Valero-Pacheco
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Trystn Murphy
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Lea George
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Alex Lemenze
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Molecular and Genomics Informatics Core, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Lauren Sherman
- Department of Medicine-Hematology/Oncology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Debra Heller
- Department of Pathology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Xiaowei Chen
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Tracy Wu
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Peter G McGovern
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Aimee M Beaulieu
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Nataki C Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
111
|
Han Q, Ma R, Liu N. Epigenetic reprogramming in the transition from pluripotency to totipotency. J Cell Physiol 2024; 239:e31222. [PMID: 38375873 DOI: 10.1002/jcp.31222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Mammalian development commences with the zygote, which can differentiate into both embryonic and extraembryonic tissues, a capability known as totipotency. Only the zygote and embryos around zygotic genome activation (ZGA) (two-cell embryo stage in mice and eight-cell embryo in humans) are totipotent cells. Epigenetic modifications undergo extremely extensive changes during the acquisition of totipotency and subsequent development of differentiation. However, the underlying molecular mechanisms remain elusive. Recently, the discovery of mouse two-cell embryo-like cells, human eight-cell embryo-like cells, extended pluripotent stem cells and totipotent-like stem cells with extra-embryonic developmental potential has greatly expanded our understanding of totipotency. Experiments with these in vitro models have led to insights into epigenetic changes in the reprogramming of pluri-to-totipotency, which have informed the exploration of preimplantation development. In this review, we highlight the recent findings in understanding the mechanisms of epigenetic remodeling during totipotency capture, including RNA splicing, DNA methylation, chromatin configuration, histone modifications, and nuclear organization.
Collapse
Affiliation(s)
- Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Ru Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
112
|
Amstislavsky S, Brusentsev E, Lebedeva D, Rozhkova I, Rakhmanova T, Okotrub S, Kozeneva V, Igonina T, Babochkina T. Effect of cryopreservation on Odc1 and RhoA genes expression in diapausing mouse blastocysts. Reprod Domest Anim 2024; 59:e14576. [PMID: 38712681 DOI: 10.1111/rda.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
The possibility of embryo cryopreservation is important for applying the genome resource banking (GRB) concept to those mammalian species that exhibit embryonal diapause in their early development. Odc1 encodes ODC1, which is a key enzyme in polyamine synthesis. RhoA is an essential part of Rho/ROCK system. Both Odc1 and RhoA play an important role in preimplantation embryo development. Studying these systems in mammalian species with obligate or experimentally designed embryonic diapause may provide insight into the molecular machinery underlying embryo dormancy and re-activation. The effect of cryopreservation procedures on the expression of the Odc1 and RhoA in diapausing embryos has not been properly studied yet. The purpose of this work is to address the possibility of cryopreservation diapausing embryos and to estimate the expression of the Odc1 and RhoA genes in diapausing and non-diapausing embryos before and after freeze-thaw procedures using ovariectomized progesterone treated mice as a model. Both diapausing and non-diapausing in vivo-derived embryos continued their development in vitro after freezing-thawing as evidenced by blastocoel re-expansion. Although cryopreservation dramatically decreased the expression of the Odc1 and RhoA genes in non-diapausing embryos, no such effects have been observed in diapausing embryos where these genes were already at the low level before freeze-thaw procedures. Future studies may attempt to facilitate the re-activation of diapausing embryos, for example frozen-thawed ones, specifically targeting Odc1 or Rho/ROCK system.
Collapse
Affiliation(s)
- Sergei Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Eugeny Brusentsev
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Daria Lebedeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Irina Rozhkova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Tamara Rakhmanova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana Okotrub
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Varvara Kozeneva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Igonina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Babochkina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
113
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
114
|
Chau CW, To A, Au-Yeung RKH, Tang K, Xiang Y, Ruan D, Zhang L, Wong H, Zhang S, Au MT, Chung S, Song E, Choi DH, Liu P, Yuan S, Wen C, Sugimura R. SARS-CoV-2 infection activates inflammatory macrophages in vascular immune organoids. Sci Rep 2024; 14:8781. [PMID: 38627497 PMCID: PMC11021416 DOI: 10.1038/s41598-024-59405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
SARS-CoV-2 provokes devastating tissue damage by cytokine release syndrome and leads to multi-organ failure. Modeling the process of immune cell activation and subsequent tissue damage is a significant task. Organoids from human tissues advanced our understanding of SARS-CoV-2 infection mechanisms though, they are missing crucial components: immune cells and endothelial cells. This study aims to generate organoids with these components. We established vascular immune organoids from human pluripotent stem cells and examined the effect of SARS-CoV-2 infection. We demonstrated that infections activated inflammatory macrophages. Notably, the upregulation of interferon signaling supports macrophages' role in cytokine release syndrome. We propose vascular immune organoids are a useful platform to model and discover factors that ameliorate SARS-CoV-2-mediated cytokine release syndrome.
Collapse
Affiliation(s)
- Chiu Wang Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Alex To
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex K H Au-Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yang Xiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Degong Ruan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lanlan Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Hera Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shihui Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man Ting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | | | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Centre for Translational Stem Cell Biology, Sha Tin, Hong Kong
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Centre for Translational Stem Cell Biology, Sha Tin, Hong Kong.
| |
Collapse
|
115
|
Wei J, Zhang L, Xu H, Luo Q. Preterm birth, a consequence of immune deviation mediated hyperinflammation. Heliyon 2024; 10:e28483. [PMID: 38689990 PMCID: PMC11059518 DOI: 10.1016/j.heliyon.2024.e28483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Preterm birth represents a multifaceted syndrome with intricacies still present in our comprehension of its etiology. In the context of a semi-allograft, the prosperity from implantation to pregnancy to delivery hinges on the establishment of a favorable maternal-fetal immune microenvironment and a successful trilogy of immune activation, immune tolerance and then immune activation transitions. The occurrence of spontaneous preterm birth could be related to abnormalities within the immune trilogy, stemming from deviation in maternal and fetal immunity. These immune deviations, characterized by insufficient immune tolerance and early immune activation, ultimately culminated in an unsustainable pregnancy. In this review, we accentuated the role of both innate and adaptive immune reason in promoting spontaneous preterm birth, reviewed the risk of preterm birth from vaginal microbiome mediated by immune changes and the potential of vaginal microbiomes and metabolites as a new predictive marker, and discuss the changes in the role of progesterone and its interaction with immune cells in a preterm birth population. Our objective was to contribute to the growing body of knowledge in the field, shedding light on the immunologic reason of spontaneous preterm birth and effective biomarkers for early prediction, providing a roadmap for forthcoming investigations.
Collapse
Affiliation(s)
- Juan Wei
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - LiYuan Zhang
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - Heng Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| |
Collapse
|
116
|
Pennarossa G, Arcuri S, Gandolfi F, Brevini TAL. Generation of Artificial Blastoids Combining miR-200-Mediated Reprogramming and Mechanical Cues. Cells 2024; 13:628. [PMID: 38607067 PMCID: PMC11011911 DOI: 10.3390/cells13070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200's ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor's cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
117
|
Liu X, Chan VSF, Smith KGC, Ming C, Or CS, Tsui FTW, Gao B, Cook MC, Liu P, Lau CS, Li PH. Recapitulating primary immunodeficiencies with expanded potential stem cells: Proof of concept with STAT1 gain of function. J Allergy Clin Immunol 2024; 153:1125-1139. [PMID: 38072195 DOI: 10.1016/j.jaci.2023.11.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.
Collapse
Affiliation(s)
- Xueyan Liu
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Vera S F Chan
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Kenneth G C Smith
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chang Ming
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Chung Sze Or
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Faria T W Tsui
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Bo Gao
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Matthew C Cook
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pentao Liu
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Chak Sing Lau
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Philip Hei Li
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
118
|
Zhong Y, Wang G, Yang S, Zhang Y, Wang X. The role of DNA damage in neural stem cells ageing. J Cell Physiol 2024; 239:e31187. [PMID: 38219047 DOI: 10.1002/jcp.31187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Neural stem cells (NSCs) are pluripotent stem cells with the potential to differentiate into a variety of nerve cells. NSCs are susceptible to both intracellular and extracellular insults, thus causing DNA damage. Extracellular insults include ultraviolet, ionizing radiation, base analogs, modifiers, alkyl agents and others, while intracellular factors include Reactive oxygen species (ROS) radicals produced by mitochondria, mismatches that occur during DNA replication, deamination of bases, loss of bases, and more. When encountered with DNA damage, cells typically employ three coping strategies: DNA repair, damage tolerance, and apoptosis. NSCs, like many other stem cells, have the ability to divide, differentiate, and repair DNA damage to prevent mutations from being passed down to the next generation. However, when DNA damage accumulates over time, it will lead to a series of alterations in the metabolism of cells, which will cause cellular ageing. The ageing and exhaustion of neural stem cell will have serious effects on the body, such as neurodegenerative diseases. The purpose of this review is to examine the processes by which DNA damage leads to NSCs ageing and the mechanisms of DNA repair in NSCs.
Collapse
Affiliation(s)
- Yiming Zhong
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangming Wang
- School of Medicine, Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
119
|
Rashidian P. An update on oncofertility in prepubertal females. J Gynecol Obstet Hum Reprod 2024; 53:102742. [PMID: 38341083 DOI: 10.1016/j.jogoh.2024.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Cancer is a life-threatening event for pediatric patients. Treatment advancements in pediatric cancer have improved prognosis, but some of these treatments have gonadotoxic potential and may affect fertility in different ways. Due to the growing interest of the research community in the life prospects of young cancer survivors, there has been a demand to intersect reproductive medicine and oncology, which is referred to as "oncofertility". There are various fertility preservation options according to gender and pubertal status, and shared decisions must take place at the time of diagnosis. This study aims to provide a critical review of current and emerging strategies for preserving and restoring fertility in prepubertal females, ranging from established methods to experimental approaches that can be offered before, during, and after anticancer therapies. Additionally, the author aims to review how clinicians' awareness of oncofertility options and the latest advancements in this field, timely referral, and proper consultations with patients and their families are vital in addressing their concerns, providing emotional support, and guiding them through the decision-making process, as well as potential barriers that may hinder the fertility preservation process.
Collapse
Affiliation(s)
- Pegah Rashidian
- Reproductive Health Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
120
|
Ye J, Xu Y, Ren Q, Liu L, Sun Q. Nutrient deprivation induces mouse embryonic diapause mediated by Gator1 and Tsc2. Development 2024; 151:dev202091. [PMID: 38603796 DOI: 10.1242/dev.202091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.
Collapse
Affiliation(s)
- Jiajia Ye
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Xu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Ren
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
121
|
Kek T, Geršak K, Virant-Klun I. Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans. Reprod Toxicol 2024; 125:108580. [PMID: 38522559 DOI: 10.1016/j.reprotox.2024.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Preterm birth in humans (PTB), defined as birth prior to 37 weeks of gestation, is one of the most important causes of neonatal morbidity and mortality and is associated with adverse health outcomes later in life. Attributed to many different etiological factors, estimated 15.1 million or 11.1% of births each year are preterm, which is more than 1 per 10 livebirths globally. Environmental pollution is a well-established risk factor that could influence the pathogenesis of PTB. Increasing evidence has shown an association between maternal exposure to endocrine disrupting chemicals (EDCs) and PTB. This scoping review aims to summarize current research on the association between EDC exposure and PTB in humans. Database PubMed was used to identify articles discussing the effect of selected EDCs, namely bisphenol A, bisphenol S, bisphenol F, parabens, and triclosan, found in plastics, cosmetics and other personal care products, on PTB occurrence. Regardless of some inconsistences in the findings across studies, the reviewed studies suggest a potential association between involuntary exposure to reviewed EDCs and the risk of PTB. However, further studies are needed to delineate exact correlations and mechanisms through which EDC exposure causes PTB so that efficient preventative measures could be implemented. Until then, health care providers should inform women about possible EDC exposure thus empowering them to make healthy choices and at the same time decrease the EDC negative effects.
Collapse
Affiliation(s)
- Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia.
| | - Ksenija Geršak
- Medical Faculty, University of Ljubljana, Vrazov trg 2, Ljubljana 1000, Slovenia; Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Šlajmerjeva 3, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| |
Collapse
|
122
|
Kim K. The Role of Endocrine Disruption Chemical-Regulated Aryl Hydrocarbon Receptor Activity in the Pathogenesis of Pancreatic Diseases and Cancer. Int J Mol Sci 2024; 25:3818. [PMID: 38612627 PMCID: PMC11012155 DOI: 10.3390/ijms25073818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) serves as a ligand-activated transcription factor crucial for regulating fundamental cellular and molecular processes, such as xenobiotic metabolism, immune responses, and cancer development. Notably, a spectrum of endocrine-disrupting chemicals (EDCs) act as agonists or antagonists of AHR, leading to the dysregulation of pivotal cellular and molecular processes and endocrine system disruption. Accumulating evidence suggests a correlation between EDC exposure and the onset of diverse pancreatic diseases, including diabetes, pancreatitis, and pancreatic cancer. Despite this association, the mechanistic role of AHR as a linchpin molecule in EDC exposure-related pathogenesis of pancreatic diseases and cancer remains unexplored. This review comprehensively examines the involvement of AHR in EDC exposure-mediated regulation of pancreatic pathogenesis, emphasizing AHR as a potential therapeutic target for the pathogenesis of pancreatic diseases and cancer.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas Medical Sciences, Little Rock, AR 72225, USA
| |
Collapse
|
123
|
Cui X, Dong H, Luo S, Zhuang B, Li Y, Zhong C, Ma Y, Hong L. Long Non-Coding RNA-Cardiac-Inducing RNA 6 Mediates Repair of Infarcted Hearts by Inducing Mesenchymal Stem Cell Differentiation into Cardiogenic Cells through Cyclin-Dependent Kinase 1. Int J Mol Sci 2024; 25:3466. [PMID: 38542439 PMCID: PMC10971150 DOI: 10.3390/ijms25063466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
This study aims to investigate the induction effect of LncRNA-CIR6 on MSC differentiation into cardiogenic cells in vitro and in vivo. In addition to pretreatment with Ro-3306 (a CDK1 inhibitor), LncRNA-CIR6 was transfected into BMSCs and hUCMSCs using jetPRIME. LncRNA-CIR6 was further transfected into the hearts of C57BL/6 mice via 100 μL of AAV9-cTnT-LncRNA-CIR6-ZsGreen intravenous injection. After three weeks of transfection followed by AMI surgery, hUCMSCs (5 × 105/100 μL) were injected intravenously one week later. Cardiac function was evaluated using VEVO 2100 and electric mapping nine days after cell injection. Immunofluorescence, Evans blue-TTC, Masson staining, FACS, and Western blotting were employed to determine relevant indicators. LncRNA-CIR6 induced a significant percentage of differentiation in BMSCs (83.00 ± 0.58)% and hUCMSCs (95.43 ± 2.13)% into cardiogenic cells, as determined by the expression of cTnT using immunofluorescence and FACS. High cTNT expression was observed in MSCs after transfection with LncRNA-CIR6 by Western blotting. Compared with the MI group, cardiac contraction and conduction function in MI hearts treated with LncRNA-CIR6 or combined with MSCs injection groups were significantly increased, and the areas of MI and fibrosis were significantly lower. The transcriptional expression region of LncRNA-CIR6 was on Chr17 from 80209290 to 80209536. The functional region of LncRNA-CIR6 was located at nucleotides 0-50/190-255 in the sequence. CDK1, a protein found to be related to the proliferation and differentiation of cardiomyocytes, was located in the functional region of the LncRNA-CIR6 secondary structure (from 0 to 17). Ro-3306 impeded the differentiation of MSCs into cardiogenic cells, while MSCs transfected with LncRNA-CIR6 showed a high expression of CDK1. LncRNA-CIR6 mediates the repair of infarcted hearts by inducing MSC differentiation into cardiogenic cells through CDK1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lan Hong
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, China; (X.C.); (H.D.); (S.L.); (B.Z.); (Y.L.); (C.Z.); (Y.M.)
| |
Collapse
|
124
|
Li Y, Yang H, Fu B, Kaneko G, Li H, Tian J, Wang G, Wei M, Xie J, Yu E. Integration of Multi-Omics, Histological, and Biochemical Analysis Reveals the Toxic Responses of Nile Tilapia Liver to Chronic Microcystin-LR Exposure. Toxins (Basel) 2024; 16:149. [PMID: 38535815 PMCID: PMC10974751 DOI: 10.3390/toxins16030149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 04/25/2025] Open
Abstract
Microcystin-LR (MC-LR) is a cyanobacterial metabolite produced during cyanobacterial blooms and is toxic to aquatic animals, and the liver is the main targeted organ of MC-LR. To comprehensively understand the toxicity mechanism of chronic exposure to environmental levels of MC-LR on the liver of fish, juvenile Nile tilapia were exposed to 0 μg/L (control), 1 μg/L (M1), 3 μg/L (M3), 10 μg/L (M10), and 30 μg/L (M30) MC-LR for 60 days. Then, the liver hepatotoxicity induced by MC-LR exposure was systematically evaluated via histological and biochemical determinations, and the underlying mechanisms were explored through combining analysis of biochemical parameters, multi-omics (transcriptome and metabolome), and gene expression. The results exhibited that chronic MC-LR exposure caused slight liver minor structural damage and lipid accumulation in the M10 group, while resulting in serious histological damage and lipid accumulation in the M30 group, indicating obvious hepatotoxicity, which was confirmed by increased toxicity indexes (i.e., AST, ALT, and AKP). Transcriptomic and metabolomic analysis revealed that chronic MC-LR exposure induced extensive changes in gene expression and metabolites in six typical pathways, including oxidative stress, apoptosis, autophagy, amino acid metabolism, primary bile acid biosynthesis, and lipid metabolism. Taken together, chronic MC-LR exposure induced oxidative stress, apoptosis, and autophagy, inhibited primary bile acid biosynthesis, and caused fatty deposition in the liver of Nile tilapia.
Collapse
Affiliation(s)
- Yichao Li
- Faculty of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Huici Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China;
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX 77901, USA;
| | - Hongyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Jingjing Tian
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Guangjun Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Mingken Wei
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China;
| | - Jun Xie
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| | - Ermeng Yu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.Y.); (H.L.); (J.T.); (G.W.)
| |
Collapse
|
125
|
Raniga K, Nasir A, Vo NTN, Vaidyanathan R, Dickerson S, Hilcove S, Mosqueira D, Mirams GR, Clements P, Hicks R, Pointon A, Stebbeds W, Francis J, Denning C. Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2024; 31:292-311. [PMID: 38366587 DOI: 10.1016/j.stem.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.
Collapse
Affiliation(s)
- Kavita Raniga
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.
| | - Aishah Nasir
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | - Diogo Mosqueira
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Clements
- Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Jo Francis
- Mechanstic Biology and Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Chris Denning
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
126
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
127
|
Dufour A, Kurylo C, Stöckl JB, Laloë D, Bailly Y, Manceau P, Martins F, Turhan AG, Ferchaud S, Pain B, Fröhlich T, Foissac S, Artus J, Acloque H. Cell specification and functional interactions in the pig blastocyst inferred from single-cell transcriptomics and uterine fluids proteomics. Genomics 2024; 116:110780. [PMID: 38211822 DOI: 10.1016/j.ygeno.2023.110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/08/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The embryonic development of the pig comprises a long in utero pre- and peri-implantation development, which dramatically differs from mice and humans. During this peri-implantation period, a complex series of paracrine signals establishes an intimate dialogue between the embryo and the uterus. To better understand the biology of the pig blastocyst during this period, we generated a large dataset of single-cell RNAseq from early and hatched blastocysts, spheroid and ovoid conceptus and proteomic datasets from corresponding uterine fluids. Our results confirm the molecular specificity and functionality of the three main cell populations. We also discovered two previously unknown subpopulations of the trophectoderm, one characterised by the expression of LRP2, which could represent progenitor cells, and the other, expressing pro-apoptotic markers, which could correspond to the Rauber's layer. Our work provides new insights into the biology of these populations, their reciprocal functional interactions, and the molecular dialogue with the maternal uterine environment.
Collapse
Affiliation(s)
- Adrien Dufour
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France
| | - Cyril Kurylo
- Université de Toulouse, INRAE, ENVT, GenPhySE, Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Jan B Stöckl
- Ludwig-Maximilians-Universität München, Genzentrum, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Denis Laloë
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France
| | - Yoann Bailly
- INRAE, GenESI, La Gouvanière, 86480 Rouillé, France
| | | | - Frédéric Martins
- Plateforme Genome et Transcriptome (GeT-Santé), GenoToul, Toulouse University, CNRS, INRAE, INSA, Toulouse, France; I2MC - Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Ali G Turhan
- Université Paris Saclay, Inserm, UMRS1310, 7 rue Guy Moquet, 94800 Villejuif, France
| | | | - Bertrand Pain
- Université de Lyon, Inserm, INRAE, SBRI, 18 Av. du Doyen Jean Lépine, 69500 Bron, France
| | - Thomas Fröhlich
- Ludwig-Maximilians-Universität München, Genzentrum, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Sylvain Foissac
- Université de Toulouse, INRAE, ENVT, GenPhySE, Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Jérôme Artus
- Université Paris Saclay, Inserm, UMRS1310, 7 rue Guy Moquet, 94800 Villejuif, France
| | - Hervé Acloque
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy en Josas, France.
| |
Collapse
|
128
|
Jung M, Jung JS, Pfeifer J, Hartmann C, Ehrhardt T, Abid CL, Kintzel J, Puls A, Navarrete Santos A, Hollemann T, Riemann D, Rujescu D. Neuronal Stem Cells from Late-Onset Alzheimer Patients Show Altered Regulation of Sirtuin 1 Depending on Apolipoprotein E Indicating Disturbed Stem Cell Plasticity. Mol Neurobiol 2024; 61:1562-1579. [PMID: 37728850 PMCID: PMC10896791 DOI: 10.1007/s12035-023-03633-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Late-onset Alzheimer's disease (AD) is a complex multifactorial disease. The greatest known risk factor for late-onset AD is the E4 allele of the apolipoprotein E (APOE), while increasing age is the greatest known non-genetic risk factor. The cell type-specific functions of neural stem cells (NSCs), in particular their stem cell plasticity, remain poorly explored in the context of AD pathology. Here, we describe a new model that employs late-onset AD patient-derived induced pluripotent stem cells (iPSCs) to generate NSCs and to examine the role played by APOE4 in the expression of aging markers such as sirtuin 1 (SIRT1) in comparison to healthy subjects carrying APOE3. The effect of aging was investigated by using iPSC-derived NSCs from old age subjects as healthy matched controls. Transcript and protein analysis revealed that genes were expressed differently in NSCs from late-onset AD patients, e.g., exhibiting reduced autophagy-related protein 7 (ATG7), phosphatase and tensin homolog (PTEN), and fibroblast growth factor 2 (FGF2). Since SIRT1 expression differed between APOE3 and APOE4 NSCs, the suppression of APOE function in NSCs also repressed the expression of SIRT1. However, the forced expression of APOE3 by plasmids did not recover differently expressed genes. The altered aging markers indicate decreased plasticity of NSCs. Our study provides a suitable in vitro model to investigate changes in human NSCs associated with aging, APOE4, and late-onset AD.
Collapse
Affiliation(s)
- Matthias Jung
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany.
| | - Juliane-Susanne Jung
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Jenny Pfeifer
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Carla Hartmann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Toni Ehrhardt
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Chaudhry Luqman Abid
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Jenny Kintzel
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Puls
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Dagmar Riemann
- Department Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 2, 06112, Halle (Saale), Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
129
|
Yang X, Wu X, Wang Y, Li W, Wu X, Yuan L, Yu T, Li N, Zhang S, Hua J. Induction of lung progenitor cell-like organoids by porcine pluripotent stem cells. FASEB J 2024; 38:e23481. [PMID: 38334430 DOI: 10.1096/fj.202302402r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Organoids are in vitro 3D models that are generated using stem cells to study organ development and regeneration. Despite the extensive research on lung organoids, there is limited information on pig lung cell generation or development. Here, we identified five epithelial cell types along with their characteristic markers using scRNA-seq. Additionally, we found that NKX2.1 and FOXA2 acted as the crucial core transcription factors in porcine lung development. The presence of SOX9/SOX2 double-positive cells was identified as a key marker for lung progenitor cells. The Monocle algorithm was used to create a pseudo-temporal differentiation trajectory of epithelial cells, leading to the identification of signaling pathways related to porcine lung development. Moreover, we established the differentiation method from porcine pluripotent stem cells (pPSCs) to SOX17+ FOXA2+ definitive endoderm (DE) and NKX2.1+ FOXA2+ CDX2- anterior foregut endoderm (AFE). The AFE is further differentiated into lung organoids while closely monitoring the differentiation process. We showed that NKX2.1 overexpression facilitated the induction of lung organoids and supported subsequent lung differentiation and maturation. This model offers valuable insights into studying the interaction patterns between cells and the signaling pathways during the development of the porcine lung.
Collapse
Affiliation(s)
- Xinchun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqi Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liming Yuan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Taiyong Yu
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
130
|
Fang S, Wang J, Liu G, Qu B, Chunyu J, Xu W, Xiang J, Li X. DPPA2/4 Promote the Pluripotency and Proliferation of Bovine Extended Pluripotent Stem Cells by Upregulating the PI3K/AKT/GSK3β/β-Catenin Signaling Pathway. Cells 2024; 13:382. [PMID: 38474345 PMCID: PMC10930381 DOI: 10.3390/cells13050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3β/β-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of β-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3β/β-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinzhu Xiang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| | - Xueling Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| |
Collapse
|
131
|
Sun J, Xie F, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Liu GE, Zhang Y. Integrated meta-omics reveals the regulatory landscape involved in lipid metabolism between pig breeds. MICROBIOME 2024; 12:33. [PMID: 38374121 PMCID: PMC10877772 DOI: 10.1186/s40168-023-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Domesticated pigs serve as an ideal animal model for biomedical research and also provide the majority of meat for human consumption in China. Porcine intramuscular fat content associates with human health and diseases and is essential in pork quality. The molecular mechanisms controlling lipid metabolism and intramuscular fat accretion across tissues in pigs, and how these changes in response to pig breeds, remain largely unknown. RESULTS We surveyed the tissue-resident cell types of the porcine jejunum, colon, liver, and longissimus dorsi muscle between Lantang and Landrace breeds by single-cell RNA sequencing. Combining lipidomics and metagenomics approaches, we also characterized gene signatures and determined key discriminating markers of lipid digestibility, absorption, conversion, and deposition across tissues in two pig breeds. In Landrace, lean-meat swine mainly exhibited breed-specific advantages in lipid absorption and oxidation for energy supply in small and large intestinal epitheliums, nascent high-density lipoprotein synthesis for reverse cholesterol transport in enterocytes and hepatocytes, bile acid formation, and secretion for fat emulsification in hepatocytes, as well as intestinal-microbiota gene expression involved in lipid accumulation product. In Lantang, obese-meat swine showed a higher synthesis capacity of chylomicrons responsible for high serum triacylglycerol levels in small intestinal epitheliums, the predominant characteristics of lipid absorption in muscle tissue, and greater intramuscular adipcytogenesis potentials from muscular fibro-adipogenic progenitor subpopulation. CONCLUSIONS The findings enhanced our understanding of the cellular biology of lipid metabolism and opened new avenues to improve animal production and human diseases. Video Abstract.
Collapse
Affiliation(s)
- Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
132
|
Martins B, Bister A, Dohmen RGJ, Gouveia MA, Hueber R, Melzener L, Messmer T, Papadopoulos J, Pimenta J, Raina D, Schaeken L, Shirley S, Bouchet BP, Flack JE. Advances and Challenges in Cell Biology for Cultured Meat. Annu Rev Anim Biosci 2024; 12:345-368. [PMID: 37963400 DOI: 10.1146/annurev-animal-021022-055132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.
Collapse
Affiliation(s)
- Beatriz Martins
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Arthur Bister
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Maria Ana Gouveia
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joanna Papadopoulos
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Joana Pimenta
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Dhruv Raina
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lieke Schaeken
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Sara Shirley
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Benjamin P Bouchet
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands;
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| |
Collapse
|
133
|
Dehghan Z, Rezaee D, Noori E, Pilehchi T, Saberi F, Taheri Z, Darya G, Mehdinejadiani S. Exosomes as modulators of embryo implantation. Mol Biol Rep 2024; 51:284. [PMID: 38324178 DOI: 10.1007/s11033-024-09282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Exosomes, known as extracellular vehicles (EVs), are found in biological fluids. They have the capability to carry and transfer signaling molecules, such as nucleic acids and proteins, facilitating intercellular communication and regulating the gene expression profile in target cells. EVs have the potential to be used as biomarkers in diagnosis, prognosis and also as feasible therapeutic targets. The available evidence suggests that exosomes play critical roles in the reproductive system, particularly during implantation, which is widely recognized as a crucial step in early pregnancy. A proper molecular dialogue between a high-quality embryo and a receptive endometrium is essential for the establishment of a normal pregnancy. This review focuses on the key role of exosomes originated from various sources, including the embryo, seminal fluid, and uterus fluid, based on the available evidence. It explores their potential applications as a novel approach in assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Tayyebeh Pilehchi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saberi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Taheri
- Department of Biology and Biotechnology, Pavia University, Pavia, Italy
| | - Gholamhossein Darya
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
134
|
Liu X, Polo JM. Human blastoid as an in vitro model of human blastocysts. Curr Opin Genet Dev 2024; 84:102135. [PMID: 38052115 DOI: 10.1016/j.gde.2023.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Human development is a highly coordinated process, with any abnormalities during the early embryonic stages that can often have detrimental consequences. The complexity and nuances of human development underpin its significance in embryo research. However, this research is often hindered by limited availability and ethical considerations associated with the use of donated blastocysts from in vitro fertilization (IVF) surplus. Human blastoids offer promising alternatives as they can be easily generated and manipulated in the laboratory while preserving key characteristics of human blastocysts. In this way, they hold the potential to serve as a scalable and ethically permissible resource in embryology research. By utilizing such human embryo models, we can establish a transformative platform that complements the study with IVF embryos, ultimately enhancing our understanding of human embryogenesis.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria, Australia.
| |
Collapse
|
135
|
Lin Z, Xie F, He X, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Zhang Y, Sun J. A novel protein encoded by circKANSL1L regulates skeletal myogenesis via the Akt-FoxO3 signaling axis. Int J Biol Macromol 2024; 257:128609. [PMID: 38056741 DOI: 10.1016/j.ijbiomac.2023.128609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.
Collapse
Affiliation(s)
- Zekun Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
136
|
Juengel JL, Reader KL, Maclean PH, Quirke LD, Zellhuber-McMillan S, Haack NA, Heiser A. The role of the oviduct environment in embryo survival. Reprod Fertil Dev 2024; 36:RD23171. [PMID: 38402905 DOI: 10.1071/rd23171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
CONTEXT Declining fertility is an issue in multiple mammalian species. As the site of fertilisation and early embryo development, the oviduct plays a critical role in embryo survival, yet there is a paucity of information on how the oviduct regulates this process. AIMS We hypothesised that differences in steroid hormone signalling and/or immune function would be observed in a model of poor embryo survival, the peripubertal ewe. METHODS We examined expression of steroid hormones in systemic circulation, oviductal expression of oestrogen receptorαand genes important in steroid hormone signalling, and immune function in pregnant and cyclic peripubertal and adult ewes on day 3 after oestrus. KEY RESULTS Concentrations of progesterone, but not oestradiol, were decreased in the peripubertal ewe compared to the adult ewe. Oestrogen receptorαprotein expression was increased in the peripubertal ewe, but pathway analysis of gene expression revealed downregulation of the oestrogen signalling pathway compared to the adult ewe. Differential expression of several genes involved in immune function between the peripubertal and adult ewe was consistent with an unfavourable oviductal environment in the peripubertal ewe lamb. Oestradiol concentration was positively correlated with the expression of multiple genes involved in the regulation of immune function. CONCLUSIONS Differences in the immune environment of the oviduct, potentially linked to differential modulation by steroid hormones, may partially underly the poor fertilisation and early embryo survival observed in the peripubertal ewe. IMPLICATIONS A unfavourable oviductal environment may play an important role in limiting reproductive success.
Collapse
Affiliation(s)
- Jennifer L Juengel
- Agricultural Systems and Reproduction, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9092, New Zealand
| | - Karen L Reader
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Paul H Maclean
- Bioinformatics and Statistics, AgResearch Ltd, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Laurel D Quirke
- Agricultural Systems and Reproduction, AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9092, New Zealand
| | | | - Neville A Haack
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Axel Heiser
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd, Private Bag 11008, Palmerston North 4442, New Zealand
| |
Collapse
|
137
|
Cao H, Xiang Y, Zhang S, Chao Y, Guo J, Aurich T, Ho JW, Huang Y, Liu P, Sugimura R. PD-L1 regulates inflammatory programs of macrophages from human pluripotent stem cells. Life Sci Alliance 2024; 7:e202302461. [PMID: 37949473 PMCID: PMC10638094 DOI: 10.26508/lsa.202302461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) serves as a pivotal immune checkpoint in both the innate and adaptive immune systems. PD-L1 is expressed in macrophages in response to IFNγ. We examined whether PD-L1 might regulate macrophage development. We established PD-L1 KO (CD274 -/- ) human pluripotent stem cells and differentiated them into macrophages and observed a 60% reduction in CD11B+CD45+ macrophages in CD274 -/- ; this was orthogonally verified, with the PD-L1 inhibitor BMS-1166 reducing macrophages to the same fold. Single-cell RNA sequencing further confirmed the down-regulation of the macrophage-defining transcription factors SPI1 and MAFB Furthermore, CD274 -/- macrophages reduced the level of inflammatory signals such as NF-κB and TNF, and chemokine secretion of the CXCL and CCL families. Anti-inflammatory TGF-β was up-regulated. Finally, we identified that CD274 -/- macrophages significantly down-regulated interferon-stimulated genes despite the presence of IFNγ in the differentiation media. These data suggest that PD-L1 regulates inflammatory programs of macrophages from human pluripotent stem cells.
Collapse
Affiliation(s)
- Handi Cao
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Yang Xiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Yiming Chao
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Jilong Guo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Theo Aurich
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joshua Wk Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China
| | - Yuanhua Huang
- Centre for Translational Stem Cell Biology, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pentao Liu
- Centre for Translational Stem Cell Biology, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
138
|
Jackson BT, Finley LWS. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024; 31:161-180. [PMID: 38306993 PMCID: PMC10842269 DOI: 10.1016/j.stem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Stem cells perform many different functions, each of which requires specific metabolic adaptations. Over the past decades, studies of pluripotent and tissue stem cells have uncovered a range of metabolic preferences and strategies that correlate with or exert control over specific cell states. This review aims to describe the common themes that emerge from the study of stem cell metabolism: (1) metabolic pathways supporting stem cell proliferation, (2) metabolic pathways maintaining stem cell quiescence, (3) metabolic control of cellular stress responses and cell death, (4) metabolic regulation of stem cell identity, and (5) metabolic requirements of the stem cell niche.
Collapse
Affiliation(s)
- Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
139
|
Ding T, Zeng L, Xia Y, Zhang B, Cui D. miR-135a Mediates Mitochondrial Oxidative Respiratory Function through SIRT1 to Regulate Atrial Fibrosis. Cardiology 2024; 149:286-296. [PMID: 38228115 DOI: 10.1159/000536059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION This study aimed to explore the function of miR-135a in the progress of atrial fibrosis and the mechanism of miR-135a/SIRT1 (sirtuin 1) in human cardiac fibroblasts and mouse cardiac fibroblasts (MCFs) mediating the regulation of atrial fibrosis by mitochondrial oxidative respiration function. METHODS Using Ang II (angiotensin II) to induce fibrosis in HCFs (human corneal fibroblasts) and MCF (Michigan Cancer Foundation, MCF) cells in vitro, the miRNA-seq results of previous studies were validated. Proliferative and invasive ability of HCFs and MCFs was detected by Cell Counting Kit-8 assay (CCK-8) and scratch experiment after overexpressing miR-135a in HCFs and MCF cells. Protein and mRNA expression was tested using Western blot and qPCR. The target of miR-135a was verified as SIRT1 by a luciferase reporter assay and the activities of the mitochondrial respiratory enzyme complexes I, II, III, and IV were determined colorimetrically. The activities of malondialdehyde, reactive oxygen species, and superoxide dismutase in cells were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS miR-135a expression was elevated in HCFs and MCFs cells in the Ang II group than control group. Overexpression of miR-135a could promote the proliferation, migration, oxidative stress, as well as fibrosis of cardiac fibroblasts and suppresses mitochondrial activity. In addition, we found SIRT1 was a target gene of miR-135a. What is more, the findings showed miR-135a promoted fibrosis in HCFs and MCFs cells acting through regulation of SIRT1. CONCLUSIONS miR-135a mediates mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis.
Collapse
Affiliation(s)
- Tianhang Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liyan Zeng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ying Xia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Baojun Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Dongji Cui
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
140
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
141
|
MacCarthy CM, Wu G, Malik V, Menuchin-Lasowski Y, Velychko T, Keshet G, Fan R, Bedzhov I, Church GM, Jauch R, Cojocaru V, Schöler HR, Velychko S. Highly cooperative chimeric super-SOX induces naive pluripotency across species. Cell Stem Cell 2024; 31:127-147.e9. [PMID: 38141611 DOI: 10.1016/j.stem.2023.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023]
Abstract
Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.
Collapse
Affiliation(s)
| | - Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; International Bio Island, Guangzhou, China; MingCeler Biotech, Guangzhou, China
| | - Vikas Malik
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Taras Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gal Keshet
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rui Fan
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; University of Utrecht, Utrecht, the Netherlands; STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
142
|
Shen X, Hu J, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Shao L, Guo X, Shao Y, Huerlimann R, Li C, Goulden E, Anderson K, Fan G, Domingos JA. Exploring the cobia (Rachycentron canadum) genome: unveiling putative male heterogametic regions and identification of sex-specific markers. Gigascience 2024; 13:giae034. [PMID: 38995143 PMCID: PMC11240236 DOI: 10.1093/gigascience/giae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | | | | | | | - Libin Shao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xinyu Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yunchang Shao
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Geogia Tech Shenzhen Institute (GTSI), Tianjin University, Shen Zhen 518067, China
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Chengze Li
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Evan Goulden
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Kelli Anderson
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jose A Domingos
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
143
|
Zhang D, Tang D, Liu PT, Tao L, Lu LM. Isolation of tumor stem-like cells from primary laryngeal squamous cell carcinoma cells (FD-LS-6). Hum Cell 2024; 37:323-336. [PMID: 37759147 DOI: 10.1007/s13577-023-00984-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
The development of efficient treatments for laryngeal squamous cell carcinoma (LSCC) is hindered by the lack of applicable tumor cell lines and animal models of the disease, especially those related to cancer stem-like cells (CSCs). CSCs play critical roles in tumor propagation and pathogenesis whereas no CSCs lines have been developed to date. In this study, we establish an LSCC cell line (FD-LS-6) from primary LSCC tumor tissue (not experienced single-cell cloning) and adapted a culturing condition for the expansion of potential stem cells (EPSCs) to isolate CSCs from FD-LS-6. We successfully derived novel CSCs and named them as LSCC sphere-forming cells (LSCSCs) which were subsequently characterized for their CSC properties. We showed that LSCSCs shared many properties of CSCs, including CSC marker, robust self-renewal capacity, tumorigenesis ability, potential to generate other cell types such as adipocytes and osteoblasts, and resistance to chemotherapy. Compared to parental cells, LSCSCs were significantly more potent in forming tumors in vivo in mice and more resistant to chemotherapy. LSCSCs have higher expressions of epithelial-mesenchymal transition proteins and chemotherapy resistance factors, and exhibit an activated COX2/PEG2 signaling pathway. Altogether, our work establishes the first CSCs of LSCC (FD-LS-6) and provides a tool to study tumorigenesis and metastasis of LSCC and help the development of anticancer therapies.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Otolaryngology-HNS, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University School of Medicine, 83 Fenyang Road, Shanghai, 200031, China
- Department of Pudong Hospital, Fudan University School of Medicine, 2800 Gongwei Road, Shanghai, 201300, China
| | - Di Tang
- Department of Otolaryngology-HNS, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University School of Medicine, 83 Fenyang Road, Shanghai, 200031, China
- Department of Pudong Hospital, Fudan University School of Medicine, 2800 Gongwei Road, Shanghai, 201300, China
| | - Pen-Tao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong, China
- Centre for Translational Stem Cell Biology, Science and Technology Park, 6-8 Harbour Road, Hong Kong, China
| | - Lei Tao
- Department of Otolaryngology-HNS, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University School of Medicine, 83 Fenyang Road, Shanghai, 200031, China.
- Department of Pudong Hospital, Fudan University School of Medicine, 2800 Gongwei Road, Shanghai, 201300, China.
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
144
|
Wu X, Ni Y, Li W, Yang B, Yang X, Zhu Z, Zhang J, Wu X, Shen Q, Liao Z, Yuan L, Chen Y, Du Q, Wang C, Liu P, Miao Y, Li N, Zhang S, Liao M, Hua J. Rapid conversion of porcine pluripotent stem cells into macrophages with chemically defined conditions. J Biol Chem 2024; 300:105556. [PMID: 38097188 PMCID: PMC10825052 DOI: 10.1016/j.jbc.2023.105556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.
Collapse
Affiliation(s)
- Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Ni
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinchun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng Liao
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liming Yuan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunlong Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Du
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengbao Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yiliang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
145
|
Cai X, Lv Y, Pan J, Cao Z, Zhang J, Li Y, Zheng H. CBX8 Promotes Epithelial-mesenchymal Transition, Migration, and Invasion of Lung Cancer through Wnt/β-catenin Signaling Pathway. Curr Protein Pept Sci 2024; 25:386-393. [PMID: 38265409 DOI: 10.2174/0113892037273375231204080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Lung cancer (LC) is primarily responsible for cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features and is associated with the development of tumors. CBX8, a member of the PcG protein family, plays a critical role in various cancers, containing LC. However, specific regulatory mechanisms of CBX8 in LC progression are not fully understood. This study aimed to investigate the regulatory role of CBX8 in LC progression. METHODS Bioinformatics was used to analyze the relationship between CBX8 level and tumor and the enrichment pathway of CBX8 enrichment. qRT-PCR was used to detect the differential expression of CBX8 in LC cells and normal lung epithelial cells. The effects of knockdown or overexpression of CBX8 on the proliferation, migration and invasion of LC cells were evaluated by CCK- -8 assay and Transwell assay, and the levels of proteins associated with the EMT pathway and Wnt/ β-catenin signaling pathway were detected by western blot. RESULTS Bioinformatics analysis revealed that CBX8 was highly expressed in LC and enriched on the Wnt/β-catenin signaling pathway. The expression level of CBX8 was significantly elevated in LC cells. Knockdown of CBX8 significantly inhibited cell proliferation, migration and invasion, and decreased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. Conversely, overexpression of CBX8 promoted cell proliferation, migration and invasion, and increased the expression levels of EMT-related proteins and Wnt/β-catenin pathway-related proteins. The Wnt inhibitor IWP-4 alleviated the effects produced by overexpression of CBX8. CONCLUSION Collectively, these data demonstrated that CBX8 induced EMT through Wnt/β-- catenin signaling, driving migration and invasion of LC cells.
Collapse
Affiliation(s)
- Xiaoping Cai
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Yuankai Lv
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Jiongwei Pan
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Zhuo Cao
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Junzhi Zhang
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Yuling Li
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Hao Zheng
- Department of Respiratory, Six affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| |
Collapse
|
146
|
Denker HW. Embryoids, models, embryos? We need to take a new look at legal norms concerning the beginning of organismic development. Mol Hum Reprod 2023; 30:gaad047. [PMID: 38113415 DOI: 10.1093/molehr/gaad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Indexed: 12/21/2023] Open
|
147
|
Zhang W, Sun S, Wang Q, Li X, Xu M, Li Q, Zhao Y, Peng K, Yao C, Wang Y, Chang Y, Liu Y, Wu X, Gao Q, Shuai L. Haploid-genetic screening of trophectoderm specification identifies Dyrk1a as a repressor of totipotent-like status. SCIENCE ADVANCES 2023; 9:eadi5683. [PMID: 38117886 PMCID: PMC10732524 DOI: 10.1126/sciadv.adi5683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Trophectoderm (TE) and the inner cell mass are the first two lineages in murine embryogenesis and cannot naturally transit to each other. The barriers between them are unclear and fascinating. Embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) retain the identities of inner cell mass and TE, respectively, and, thus, are ideal platforms to investigate these lineages in vitro. Here, we develop a loss-of-function genetic screening in haploid ESCs and reveal many mutations involved in the conversion of TSCs. The disruption of either Catip or Dyrk1a (candidates) in ESCs facilitates the conversion of TSCs. According to transcriptome analysis, we find that the repression of Dyrk1a activates totipotency, which is a possible reason for TE specification. Dyrk1a-null ESCs can contribute to embryonic and extraembryonic tissues in chimeras and can efficiently form blastocyst-like structures, indicating their totipotent developmental abilities. These findings provide insights into the mechanisms underlying cell fate alternation in embryogenesis.
Collapse
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Qing Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Keli Peng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Ying Chang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Yan Liu
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin 300350, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
148
|
Conrad JV, Meyer S, Ramesh PS, Neira JA, Rusteika M, Mamott D, Duffin B, Bautista M, Zhang J, Hiles E, Higgins EM, Steill J, Freeman J, Ni Z, Liu S, Ungrin M, Rancourt D, Clegg DO, Stewart R, Thomson JA, Chu LF. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Reports 2023; 18:2328-2343. [PMID: 37949072 PMCID: PMC10724057 DOI: 10.1016/j.stemcr.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pranav S Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel Mamott
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bret Duffin
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Monica Bautista
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Emily Hiles
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Eve M Higgins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - John Steill
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jack Freeman
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Zijian Ni
- Department of Statistics, University of Wisconsin, Madison, WI 53706, USA
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derrick Rancourt
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
149
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
150
|
Xu T, Su P, Wu L, Li D, Qin W, Li Q, Zhou J, Miao YL. OCT4 regulates WNT/β-catenin signaling and prevents mesoendoderm differentiation by repressing EOMES in porcine pluripotent stem cells. J Cell Physiol 2023; 238:2855-2866. [PMID: 37942811 DOI: 10.1002/jcp.31135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
The regulatory network between signaling pathways and transcription factors (TFs) is crucial for the maintenance of pluripotent stem cells. However, little is known about how the key TF OCT4 coordinates signaling pathways to regulate self-renewal and lineage differentiation of porcine pluripotent stem cells (pPSCs). Here, we explored the function of OCT4 in pPSCs by transcriptome and chromatin accessibility analysis. The TFs motif enrichment analysis revealed that, following OCT4 knockdown, the regions of increased chromatin accessibility were enriched with EOMES, GATA6, and FOXA1, indicating that pPSCs differentiated toward the mesoendoderm (ME) lineage. Besides, pPSCs rapidly differentiated into ME when the WNT/β-catenin inhibitor XAV939 was removed. However, the ME differentiation of pPSCs caused by OCT4 knockdown did not rely on the activation of WNT/β-catenin signaling because the target gene of WNT/β-catenin signaling, AXIN2 was not upregulated after OCT4 knockdown, despite significant upregulation of WLS and some WNT ligands. Importantly, OCT4 is directly bound to the promoter and enhancers of EOMES and repressed its transcription. Overexpression of EOMES was sufficient to induce ME differentiation in the presence of XAV939. These results demonstrate that OCT4 can regulate WNT/β-catenin signaling and prevent ME differentiation of pPSCs by repressing EOMES transcription.
Collapse
Affiliation(s)
- Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Delong Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Wei Qin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Qiao Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|