101
|
Alzoughool F, Abumweis S, Alanagreh L, Atoum M. Associations of pre-existing cardiovascular morbidity with severity and the fatality rate in COVID-19 patients: a systematic review and meta-analysis. Osong Public Health Res Perspect 2022; 13:37-50. [PMID: 35255677 PMCID: PMC8907611 DOI: 10.24171/j.phrp.2021.0186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/24/2021] [Indexed: 01/08/2023] Open
Abstract
Objectives The aim of this study was to evaluate the association of pre-existing cardiovascular comorbidities, including hypertension and coronary heart disease, with coronavirus disease 2019 (COVID-19) severity and mortality. Methods PubMed, ScienceDirect, and Scopus were searched between January 1, 2020, and July 18, 2020, to identify eligible studies. Random-effect models were used to estimate the pooled event rates of pre-existing cardiovascular disease comorbidities and odds ratio (OR) with 95% confidence intervals (95% CIs) of disease severity and mortality associated with the exposures of interest. Results A total of 34 studies involving 19,156 patients with COVID-19 infection met the inclusion criteria. The prevalence of pre-existing cardiovascular disease in the included studies was 14.0%. Pre-existing cardiovascular disease in COVID-19 patients was associated with severe outcomes (OR, 4.1; 95% CI, 2.9 to 5.7) and mortality (OR, 6.1; 95% CI, 2.9 to 12.7). Hypertension and coronary heart disease increased the risk of severe outcomes by 3 times (OR, 3.2; 95% CI, 2.0 to 3.6) and 2.5 times (OR, 2.5; 95% CI, 1.7 to 3.8), respectively. No significant publication bias was indicated. Conclusion COVID-19 patients with pre-existing cardiovascular comorbidities have a higher risk of severe outcomes and mortality. Awareness of pre-existing cardiovascular comorbidity is important for the early management of COVID-19.
Collapse
|
102
|
Li L, Xiong W, Li D, Cao J. Association of Interleukin-10 Polymorphism (rs1800896, rs1800871, and rs1800872) With Breast Cancer Risk: An Updated Meta-Analysis Based on Different Ethnic Groups. Front Genet 2022; 13:829283. [PMID: 35186043 PMCID: PMC8855208 DOI: 10.3389/fgene.2022.829283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: The interleukin10 (IL-10) gene polymorphisms have been indicated to be associated with breast cancer (BC) risk, but the findings are still controversial. To derive a more precise evaluation, we performed a comprehensive meta-analysis. Methods: A systematic literature search was conducted using PubMed, Embase, CNKI, China biomedical (CBM), and Google Scholar to 29 March 2020. Revman5.3 and Stata 12.0 software analyzed the data, and the strength of the association was identified using the odds ratio (OR) and the corresponding 95% confidence interval (CI). Results: A total of 23 studies (7,250 cancer cases and 7,675 case-free controls) were included in this meta-analysis. The results show that IL-10 gene polymorphisms were significantly correlated with BC risk based on subgroup analysis by ethnicity. The IL-10 rs1800896 polymorphism was significantly associated with the risk of BC in Asians (G vs. A: OR = 0.78, 95% CI = 0.65–0.95, p = 0.01; GG vs. AA: OR = 0.51, 95% CI = 0.31–0.84, p = 0.007; GA vs. AA: OR = 0.6, 95% CI = 0.44–0.81, p = 0.0009; GG + GA vs. AA: OR = 0.6, 95% CI = 0.45–0.81, p = 0.0007); Moreover, an increased BC risk in Asians were also associated with the IL-10 rs1800872 polymorphism (AA vs CC: OR = 0.74, 95% CI = 0.55–0.99, p = 0.04; A vs C: OR = 0.85, 95% CI = 0.74–0.98, p = 0.03). In addition, The IL-10 rs1800871 (CT vs. TT: OR = 1.8, 95% CI = 1.03–3.13, p = 0.04) and rs1800872 polymorphism (A vs C: OR = 0.65, 95% CI 0.43–0.98, p = 0.04) were associated with BC risk in Caucasians. Conclusion: Collectively, this meta-analysis demonstrated that IL-10 rs1800896 and rs1800872 (AA vs. CC; A vs. C) polymorphisms significantly increased the risk of BC in Asians, while the rs1800871 and rs1800872 (A vs. C) were associated with the risk of BC in Caucasians. Therefore, this may provide new ideas for predicting and diagnosing BC susceptibility through the detection of IL-10 gene polymorphism. Systematic Review Registration: [https://www.crd.york.ac.uk/ PROSPERO], identifier [CRD42021266635].
Collapse
Affiliation(s)
- Lijun Li
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Xiong
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgical, Hengyang Medical School, University of South China, Hengyang, China
| | - Donghua Li
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiangang Cao
- The Affiliated Nanhua Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Jiangang Cao,
| |
Collapse
|
103
|
Signorini L, Dolci M, Castelnuovo N, Crespi L, Incorvaia B, Bagnoli P, Parapini S, Basilico N, Galli C, Ambrogi F, Pariani E, Binda S, Ticozzi R, Ferrante P, Delbue S. Longitudinal, virological, and serological assessment of hospitalized COVID-19 patients. J Neurovirol 2022; 28:113-122. [PMID: 34997473 PMCID: PMC8740865 DOI: 10.1007/s13365-021-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 11/03/2022]
Abstract
Here we described the virological and serological assessment of 23 COVID-19 patients hospitalized and followed up in Milan, Italy, during the first wave of COVID-19 pandemic. Nasopharyngeal (NPS), anal swabs, and blood samples were collected from 23 COVID-19 patients, at hospital admission, and periodically up to discharge, for a median time of 20 days (3-83 days). RNA was isolated and tested for SARS-CoV-2 by qRT-PCR; anti-SARS-CoV-2 IgM and IgG antibody titers were evaluated in serum samples by ELISA. SARS-CoV-2 genome was detected in the NPS swabs of the 23 patients, at the admission, and 8/19 (42.1%) were still positive at the discharge. Anal swabs were positive to SARS-CoV-2 RNA detection in 20/23 (86.9%) patients; 6/19 (31.6%) were still positive at discharge. The mean time of RNA negative conversion was 17 days (4-36 days) and 33 days (4-77 days), for NPS and anal swabs, respectively. SARS-CoV-2-RNA was detected in the blood of 6/23 (26.1%) patients. Thirteen/23 (56.5%) and 17/23 (73.9%) patients were seropositive for IgM and IgG, respectively, at the admission, and the median IgM and IgG levels significantly (p < 0.05) increased after 13 days. Although the limited cohort size, our report provides evidence that SARS-CoV-2 is shed through multiple routes, with important implications in healthcare settings.
Collapse
Affiliation(s)
- Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Nicolò Castelnuovo
- Istituto Clinico Città Studi (ICCS), Via Jommelli 17, 20133 Milan, Italy
| | - Luigia Crespi
- Istituto Clinico Città Studi (ICCS), Via Jommelli 17, 20133 Milan, Italy
| | - Barbara Incorvaia
- Istituto Clinico Città Studi (ICCS), Via Jommelli 17, 20133 Milan, Italy
| | - Pietro Bagnoli
- Istituto Clinico Città Studi (ICCS), Via Jommelli 17, 20133 Milan, Italy
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Federico Ambrogi
- Department of Clinical and Community Sciences, University of Milan, Milan, Italy
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rosalia Ticozzi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Istituto Clinico Città Studi (ICCS), Via Jommelli 17, 20133 Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy
| |
Collapse
|
104
|
Shaikh F, Alamgir M, Ahmed S. Hormonal and genetic risk factors for breast cancer in a subset of the Karachi population. J Taibah Univ Med Sci 2022; 17:694-700. [PMID: 35983446 PMCID: PMC9356353 DOI: 10.1016/j.jtumed.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Objective Appraisement of vitamin D receptor (VDR) polymorphisms is thought to be crucial to detect and make approaches targeting groups at risk for breast cancer (BC). Moreover, an understanding of genetic susceptibility can allow us to foresee several risk factors. The objective of our research is to evaluate the T to C base shift within TaqI (rs731236) in exon 9 and the A to G transition within Bsm1 (rs1544410) in intron 8 of the VDR gene as risk factors among BC patients. Methods The study involved 150 BC patients with a definite histological diagnosis. Controls were age-matched. DNA samples of Taq1 and Bsm1 were amplified according to the programmed protocol using a thermal cycler. The amplified PCR products were digested with Taq1 and Bsm1 restriction endonuclease enzymes. RFLP fragments were observed under UV light using 2% agarose gel and 0.5 ug/mL Ethidium bromide. Results The highest number of BC patients (32.7%) were in the 36 to 45 age group. Ethnicity and parity were found to be statistically significant. TaqI polymorphisms showed the highest genotypic frequency for TC (Tt) at 49 (32.7%), and there were 18 patients (12.0%) and controls with high statistical significance (OD 3.6, CI 2–6.4) and a p-value < 0.0001. However, for the Bsm1 genotype, the A (B) allele may be linked with protection from BC in individuals with the AA (BB) genotype. Conclusion A positive association was found between VDR genotypes and BC in a collective assay of Taq1 and BsmI. These results need further authentication in large cohort studies prior to applying these SNPs as promising BC markers in the Pakistani populace.
Collapse
|
105
|
Almansour NM. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence. Front Mol Biosci 2022; 9:836417. [PMID: 35145999 PMCID: PMC8824427 DOI: 10.3389/fmolb.2022.836417] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a kind of breast cancer that lacks estrogen, progesterone, and human epidermal growth factor receptor 2. This cancer is responsible for more than 15-20% of all breast cancers and is of particular research interest as it is therapeutically challenging mainly because of its low response to therapeutics and highly invasive nature. The non-availability of specific treatment options for TNBC is usually managed by conventional therapy, which often leads to relapse. The focus of this review is to provide up-to-date information related to TNBC epidemiology, risk factors, metastasis, different signaling pathways, and the pathways that can be blocked, immune suppressive cells of the TNBC microenvironment, current and investigation therapies, prognosis, and the role of artificial intelligence in TNBC diagnosis. The data presented in this paper may be helpful for researchers working in the field to obtain general and particular information to advance the understanding of TNBC and provide suitable disease management in the future.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| |
Collapse
|
106
|
Escobedo RA, Kaushal D, Singh DK. Insights Into the Changing Landscape of Coronavirus Disease 2019. Front Cell Infect Microbiol 2022; 11:761521. [PMID: 35083164 PMCID: PMC8784834 DOI: 10.3389/fcimb.2021.761521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious, infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in late 2019 in Wuhan China. A year after the World Health Organization declared COVID-19 a global pandemic, over 215 million confirmed cases and approximately 5 million deaths have been reported worldwide. In this multidisciplinary review, we summarize important insights for COVID-19, ranging from its origin, pathology, epidemiology, to clinical manifestations and treatment. More importantly, we also highlight the foundational connection between genetics and the development of personalized medicine and how these aspects have an impact on disease treatment and management in the dynamic landscape of this pandemic.
Collapse
Affiliation(s)
- Ruby A. Escobedo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
- The Integrated Biomedical Sciences (IBMS) Graduate Program, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
107
|
Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, James W, Gordon S, Pepper MS. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol 2022; 12:809244. [PMID: 35046961 PMCID: PMC8761766 DOI: 10.3389/fimmu.2021.809244] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new beta coronavirus that emerged at the end of 2019 in the Hubei province of China. SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020. Herd or community immunity has been proposed as a strategy to protect the vulnerable, and can be established through immunity from past infection or vaccination. Whether SARS-CoV-2 infection results in the development of a reservoir of resilient memory cells is under investigation. Vaccines have been developed at an unprecedented rate and 7 408 870 760 vaccine doses have been administered worldwide. Recently emerged SARS-CoV-2 variants are more transmissible with a reduced sensitivity to immune mechanisms. This is due to the presence of amino acid substitutions in the spike protein, which confer a selective advantage. The emergence of variants therefore poses a risk for vaccine effectiveness and long-term immunity, and it is crucial therefore to determine the effectiveness of vaccines against currently circulating variants. Here we review both SARS-CoV-2-induced host immune activation and vaccine-induced immune responses, highlighting the responses of immune memory cells that are key indicators of host immunity. We further discuss how variants emerge and the currently circulating variants of concern (VOC), with particular focus on implications for vaccine effectiveness. Finally, we describe new antibody treatments and future vaccine approaches that will be important as we navigate through the COVID-19 pandemic.
Collapse
Affiliation(s)
- Priyal Mistry
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Fatima Barmania
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kimberly Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adéle Strydom
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ignatius M. Viljoen
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - William James
- James and Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
108
|
Kumar A. Omicron, a New Variant of Severe Acute Respiratory Syndrome Coronavirus-2 Virus: Global Upsurge, Devastation, and Future Prospect. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_289_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
109
|
Dogra AK, Prakash A, Gupta S, Gupta M, Bhat SA. Genetic variations of vitamin D receptor gene and steroid receptors status in breast cancer risk: An updated review. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2022. [DOI: 10.1016/j.abst.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
110
|
Bi C, Ramos-Mandujano G, Li M. NIRVANA for Simultaneous Detection and Mutation Surveillance of SARS-CoV-2 and Co-infections of Multiple Respiratory Viruses. Methods Mol Biol 2022; 2511:79-88. [PMID: 35838953 DOI: 10.1007/978-1-0716-2395-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Detection and mutation surveillance of SARS-CoV-2 are crucial for combating the COVID-19 pandemic. Here we describe a lab-based method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes. It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus and monitor mutations for up to 96 samples in real time. The method proved to be rapid and sensitive (limit of detection: 29 viral RNA copies/μL of extracted nucleic acid) in detecting SARS-CoV-2 in clinical samples. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses.
Collapse
Affiliation(s)
- Chongwei Bi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Shanghai ZhiYu Bio-technology Co., LTD, Shanghai, China
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mo Li
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
111
|
Atoum MF, Alparrey AAH. Association of Leptin Receptor Q223R Gene Polymorphism and Breast Cancer Patients: A Case Control Study. Asian Pac J Cancer Prev 2022; 23:177-182. [PMID: 35092386 PMCID: PMC9258657 DOI: 10.31557/apjcp.2022.23.1.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Leptin is a hormone secreted from adipocytes that regulates metabolism and energy homeostasis through the leptin receptor (LEPR). The aim of this study was to investigate the association of leptin receptor gene Q223R gene polymorphism, and plasma leptin level among obese breast cancer females. MATERIALS AND METHODS The study enrolled 160 breast cancer patients and 160 healthy control females. LEPR Q223R polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Serum leptin was determined using enzyme-linked immunosorbent assay human leptin kit. Immunohistochemical tests from paraffin blocks were carried out for estrogen and progesterone staging using the precise antibodies. RESULTS An association was found between LEPR gene Q223R gene polymorphism among obese breast cancer females. Statistical difference was found between GG (60.6%) Arg/Arg genotype (OR=2.986; 95%CI=1.540 to 5.789; p= 0.001) compared to AA (33.1%) Gln/Gln genotype. GG Q223R LEPR polymorphism showed statistically significant difference among obese breast cancer patients (BMI more than 25) compared to control (P < 0.0001). GG genotype of Q223R LEPR polymorphism showed statistically significant increased leptin level (p-value =0.0001) among obese patients (mean± SD; 23.39±4.32) compared to control (17.83±5.67). CONCLUSIONS Q223R LEPR polymorphism GG genotype was associated with increased leptin profile among obese breast cancer females.
Collapse
Affiliation(s)
- Manar F Atoum
- Department Medical Laboratory Sciences, Faculty Applied Health Sciences, Hashemite University, Zarqa, Jordan.
| | | |
Collapse
|
112
|
Campos-Garzón C, Riquelme-Gallego B, de la Torre-Luque A, Caparrós-González RA. Psychological Impact of the COVID-19 Pandemic on Pregnant Women: A Scoping Review. Behav Sci (Basel) 2021; 11:181. [PMID: 34940116 PMCID: PMC8698569 DOI: 10.3390/bs11120181] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
During the gestation period, pregnant women experience physical and psychological changes, which represent vulnerability factors that can boost the development of mental health conditions. The COVID-19 pandemic is producing new changes in the routines of the whole society, especially on lifestyle habits. The psychological impact associated with the COVID-19 pandemic and pregnant women remains unclear. A scoping review regarding the psychological impact of the COVID-19 pandemic on pregnant women was conducted. Searchers were conducted using the PubMed, Web of Science and CINAHL databases. Articles in Spanish, English and French were included. The search was conducted between November 2020 and September 2021. We identified 31 studies that evaluated 30,049 expectant mothers during the COVID-19 pandemic. Pregnant women showed high levels of anxiety and depression symptomatology. Fear of contagion and concerns regarding the health of the fetus were identified as the main variables related to psychological distress. An increase of the levels of depression, anxiety and stress during the COVID-19 pandemic amongst pregnant women has been observed. Moreover, an increased vulnerability of the fetus due to placental metabolic alterations is discussed. This review suggests that the COVID-19 pandemic is associated with a negative psychological impact on pregnant women. Thus, high levels of anxiety and depression symptoms suggest the need for a systematic approach.
Collapse
Affiliation(s)
- Celia Campos-Garzón
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain; (C.C.-G.); (R.A.C.-G.)
| | - Blanca Riquelme-Gallego
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain; (C.C.-G.); (R.A.C.-G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Alejandro de la Torre-Luque
- Center of Biomedical Research in Mental Health, Department of Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, CIBERSAM, 28040 Madrid, Spain;
| | - Rafael A. Caparrós-González
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain; (C.C.-G.); (R.A.C.-G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
113
|
Hajimohammadi B, Eslami G, Loni E, Ehrampoush MH, Moshtaghioun SM, Fallahzadeh H, Ardakani SAY, Hosseini SS, Askari V. Relationship between Serum Tumor-Related Markers and Genetically Modified Rice Expressing Cry1Ab Protein in Sprague-Dawley Rats. Nutr Cancer 2021; 74:2581-2590. [PMID: 34875945 DOI: 10.1080/01635581.2021.2012210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genetically Modified (GM) foods are among the most important achievements of biotechnology. Given the safety importance of transgenic rice, this study was conducted to investigate the effect of GM rice consumption on serum concentrations of tumor markers in rats. In this experimental intervention, we used the blood serum samples from the Biobank taken from 60 males and 60 female Sprague-Dawley (SD) rats fed on three different diets, including rat's standard food, non-GM rice, and GM rice after 90 day. Tumor markers including Carcinogenic embryonic antigen (CEA), Alpha-Fito protein (AFP), Cancer Antigen 19-9 (CA19-9), Cancer Antigen 125 (CA125), and Cancer Antigen15-3 (CA15-3) were assessed by enzyme-linked immune sorbent assay (ELISA) method. Statistical analysis was conducted via SPSS software. The results show that the concentrations of tumor markers were within the normal range in the SD rats treated with diet, and since the concentration of tumor markers was lower than the acceptable index determined, according to the kit standard in both groups, no obvious carcinogenic effect was found. However, these findings are not enough to make a final decision regarding the safety assessment of GM rice consumption.
Collapse
Affiliation(s)
- Bahador Hajimohammadi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elahe Loni
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Hossein Fallahzadeh
- Center for Healthcare Data Modeling, Departments of biostatistics and Epidemiology, School of public health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Ali Yasini Ardakani
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Saeedeh Sadat Hosseini
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahideh Askari
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
114
|
Nipun TS, Ema TI, Mia MAR, Hossen MS, Arshe FA, Ahmed SZ, Masud A, Taheya FF, Khan AA, Haque F, Azad SA, Al Hasibuzzaman M, Tanbir M, Anis S, Akter S, Mily SJ, Dey D. Active site-specific quantum tunneling of hACE2 receptor to assess its complexing poses with selective bioactive compounds in co-suppressing SARS-CoV-2 influx and subsequent cardiac injury. J Adv Vet Anim Res 2021; 8:540-556. [PMID: 35106293 PMCID: PMC8757663 DOI: 10.5455/javar.2021.h544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE This research aims to study the target specificity of selective bioactive compounds in complexing with the human angiotensin-converting enzyme (hACE2) receptor to impede the severe acute respiratory syndrome coronavirus 2 influx mechanism resulting in cardiac injury and depending on the receptor's active site properties and quantum tunneling. MATERIALS AND METHODS A library of 120 phytochemical ligands was prepared, from which 5 were selected considering their absorption, distribution, metabolism, and excretion (ADMET) and quantitative structure-activity relationship (QSAR) profiles. The protein active sites and belonging quantum tunnels were defined to conduct supramolecular docking of the aforementioned ligands. The hydrogen bond formation and hydrophobic interactions between the ligand-receptor complexes were studied following the molecular docking steps. A comprehensive molecular dynamic simulation (MDS) was conducted for each of the ligand-receptor complexes to figure out the values - root mean square deviation (RMSD) (Å), root mean square fluctuation (RMSF) (Å), H-bonds, Cα, solvent accessible surface area (SASA) (Å2), molecular surface area (MolSA) (Å2), Rg (nm), and polar surface area (PSA) (Å). Finally, computational programming and algorithms were used to interpret the dynamic simulation outputs into their graphical quantitative forms. RESULTS ADMET and QSAR profiles revealed that the most active candidates from the library to be used were apigenin, isovitexin, piperolactam A, and quercetin as test ligands, whereas serpentine as the control. Based on the binding affinities of supramolecular docking and the parameters of molecular dynamic simulation, the strength of the test ligands can be classified as isovitexin > quercetin > piperolactam A > apigenin when complexed with the hACE2 receptor. Surprisingly, serpentine showed lower affinity (-8.6 kcal/mol) than that of isovitexin (-9.9 kcal/mol) and quercetin (-8.9 kcal/mol). The MDS analysis revealed all ligands except isovitexin having a value lower than 2.5 Ǻ. All the test ligands exhibited acceptable fluctuation ranges of RMSD (Å), RMSF (Å), H-bonds, Cα, SASA (Å2), MolSA (Å2), Rg (nm), and PSA (Å) values. CONCLUSION Considering each of the parameters of molecular optimization, docking, and dynamic simulation interventions, all of the test ligands can be suggested as potential targeted drugs in blocking the hACE2 receptor.
Collapse
Affiliation(s)
- Tanzina Sharmin Nipun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Md. Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Md. Saddam Hossen
- Microbiology Major, Faculty of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, PR China
| | - Farzana Alam Arshe
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Afsana Masud
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Fatiha Faheem Taheya
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Arysha Alif Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Fauzia Haque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Salauddin Al Azad
- Fermentation Engineering Major, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | | | - Mohammad Tanbir
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Samin Anis
- Chattogram Maa-O-Shishu Hospital Medical College, University of Chittagong, Chattogram, Bangladesh
| | - Sharmin Akter
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
115
|
Prajapati A, Gupta S, Nayak P, Gulia A, Puri A. The effect of COVID-19: Adopted changes and their impact on management of musculoskeletal oncology care at a tertiary referral centre. J Clin Orthop Trauma 2021; 23:101651. [PMID: 34703161 PMCID: PMC8531238 DOI: 10.1016/j.jcot.2021.101651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has disrupted access to healthcare. Delay in diagnosis and onset of care increases cancer related mortality. We aim to analyse its impact on patient profile, hospital visits, morbidity in surgically treated patients and process outcomes. METHODS We analysed an ambi-directional cohort from 16th March to June 30, 2020 (Pandemic cohort, PC) as compared to 2019 (Pre-pandemic cohort, PPC). We measured, new patient registrations, proportion of 'within state' patients vs 'rest of India', median time to treatment decision, proportion of patients seeking 'second opinions', modality of initial treatment (surgery/radiotherapy/chemotherapy), 30-day post-operative morbidity/mortality and conversion of inpatient-to 'teleconsult' in the PC. RESULTS Between the 2 cohorts, new registrations declined from 235 to 69 (70% reduction). The percentage of 'within state' patients increased from 41.7% to 53.6% (11.9% increase). There was a decline in second opinion consults from 25% to 16%. The median time to decision-making decreased to 16 days in PC vs 20 days in PPC (20% reduction). Surgery was the first line of treatment in 40% as compared to 34% in the PPC with a mean time to surgery of 24 days in PC compared to 36 days in PPC (33% reduction). 66 surgeries were performed in the PC compared to 132 in the PPC. Thirty day post operative morbidity needing readmission remained similar (18% PC, vs 17% PPC). Perioperative intensive care remained similar in both cohorts. Teleconsultation was deemed medically safe in 92.8% (439/473 patients). CONCLUSIONS The COVID 19 pandemic has substantially reduced access and onset to cancer care. Post operative morbidity and mortality did not seem to worsen with triage. Teleconsultation is an effective tool in optimizing follow up strategy.
Collapse
Affiliation(s)
- Ashwin Prajapati
- Bone and Soft Tissue Services, Dept of Surgical Oncology, Tata Memorial Hospital, and Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Srinath Gupta
- Bone and Soft Tissue Services, Dept of Surgical Oncology, Tata Memorial Hospital, and Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Prakash Nayak
- Bone and Soft Tissue Services, Dept of Surgical Oncology, Tata Memorial Hospital, and Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Ashish Gulia
- Bone and Soft Tissue Services, Dept of Surgical Oncology, Tata Memorial Hospital, and Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Ajay Puri
- Bone and Soft Tissue Services, Dept of Surgical Oncology, Tata Memorial Hospital, and Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
116
|
Dastar S, Gharesouran J, Mortazavi D, Hosseinzadeh H, Kian SJ, Taheri M, Ghafouri-Fard S, Jamali E, Rezazadeh M. COVID-19 pandemic: Insights into genetic susceptibility to SARS-CoV-2 and host genes implications on virus spread, disease severity and outcomes. Hum Antibodies 2021; 30:1-14. [PMID: 34864654 DOI: 10.3233/hab-211506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The outbreak of the newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) all over the world has caused global public health emergencies, international concern and economic crises. The systemic SARS-CoV-2 disease (COVID-19) can lead to death through causing unrestrained cytokines-storm and subsequent pulmonary shutdown among the elderly and patients with pre-existing comorbidities. Additionally, in comparison with poor nations without primary health care services, in developed countries with advanced healthcare system we can witness higher number of infections per one million people. In this review, we summarize the latest studies on genes associated with SARS-CoV-2 pathogenesis and propose possible mechanisms of the virus replication cycle and its triggered signaling pathways to encourage researchers to investigate genetic and immune profiles of the disease and try strategies for its treatment. Our review shows that immune response in people with different genetic background might vary as African and then Asian populations have lowest number of affected cases compared with European and American nations. Considering SARS-CoV-2 pathogenesis, we put forward some potentially important genetic gateways to COVID-19 infection including genes involved in the entry and replication of SARS-CoV-2 and the regulation of host immune response which might represent explanation for its spread, severity, and morality. Finally, we suggest that genetic alterations within these gateways could be critical factors in influencing geographical discrepancies of the virus, so it is essential to fully study them and design appropriated and reliable therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Saba Dastar
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, Istanbul, Turkey
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Jalal Kian
- Department of Virology, Iran University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
117
|
Segovia-Mendoza M, García-Quiroz J, Díaz L, García-Becerra R. Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. Int J Mol Sci 2021; 22:12741. [PMID: 34884550 PMCID: PMC8657847 DOI: 10.3390/ijms222312741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
118
|
Chen Y, Sun L, Ullah I, Beaudoin-Bussières G, Anand SP, Hederman AP, Tolbert WD, Sherburn R, Nguyen DN, Marchitto L, Ding S, Wu D, Luo Y, Gottumukkala S, Moran S, Kumar P, Piszczek G, Mothes W, Ackerman ME, Finzi A, Uchil PD, Gonzalez FJ, Pazgier M. Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.24.469776. [PMID: 34845451 PMCID: PMC8629194 DOI: 10.1101/2021.11.24.469776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Soluble Angiotensin-Converting Enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses utilizing ACE2 as their receptor. Here, using structure-guided approaches, we developed divalent ACE2 molecules by grafting the extracellular ACE2-domain onto a human IgG1 or IgG3 (ACE2-Fc). These ACE2-Fcs harbor structurally validated mutations that enhance spike (S) binding and remove angiotensin enzymatic activity. The lead variant bound tightly to S, mediated in vitro neutralization of SARS-CoV-2 variants of concern (VOCs) with sub-nanomolar IC 50 and was capable of robust Fc-effector functions, including antibody-dependent-cellular cytotoxicity, phagocytosis and complement deposition. When tested in a stringent K18-hACE2 mouse model, it delayed death or effectively resolved lethal SARS-CoV-2 infection in a prophylactic or therapeutic setting utilizing the combined effect of neutralization and Fc-effector functions. These data confirm the utility of ACE2-Fcs as valuable agents in preventing and eliminating SARS-CoV-2 infection and demonstrate that ACE2-Fc therapeutic activity require Fc-effector functions.
Collapse
Affiliation(s)
- Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
- equal contribution
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- equal contribution
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
- equal contribution
| | - Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill, QC, Canada
| | | | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Lorie Marchitto
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Sean Moran
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Andrés Finzi
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill, QC, Canada
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| |
Collapse
|
119
|
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. Biosensors as Nano-Analytical Tools for COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:7823. [PMID: 34883826 PMCID: PMC8659776 DOI: 10.3390/s21237823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.
Collapse
Affiliation(s)
- Anchal Pradhan
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Preeti Lahare
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Priyank Sinha
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Bhanushree Gupta
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Kallol K. Ghosh
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
120
|
Adugna DG. Current Clinical Application of Mesenchymal Stem Cells in the Treatment of Severe COVID-19 Patients: Review. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:71-80. [PMID: 34785907 PMCID: PMC8590837 DOI: 10.2147/sccaa.s333800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus-2019 disease is a newly diagnosed infectious disease, which is caused by the severe acute respiratory syndrome corona virus-2. It spreads quickly and has become a major public health problem throughout the world. When the viral structural spike protein binds to the angiotensin-converting enzyme-2 receptor of the host cell membrane, the virus enters into host cells. The virus primarily affects lung epithelial cells or other target cells that express angiotensin-converting enzyme-2 receptors in COVID-19 patients. Chemokines released by the host cells stimulate the recruitment of different immune cells. A cytokine storm occurs when a high amount of pro-inflammatory cytokines are produced as a result of the accumulation of immune cells. In COVID-19 patients, cytokine storms are the leading cause of severe acute respiratory distress syndrome. Mesenchymal stem cells are multipotent and self-renewing adult stem cells, which are obtained from a variety of tissues including bone marrow, adipose tissue, Warthon's jelly tissue, and amniotic fluid. Mesenchymal stem cells primarily exert their important therapeutic effects through 2 mechanisms: immunoregulatory effects and differentiation capacity. Mesenchymal stem cells can release several cytokines via paracrine mechanism or by direct interaction with white blood cells such as natural killer cells, T-lymphocytes, B-lymphocytes, natural killer cells, and macrophages, resulting in immune system regulation. Mesenchymal stem cells may help to restore the lung microenvironment, preserve alveolar epithelial cells, prevent lung fibrosis, and treat pulmonary dysfunction that is caused by COVID-19 associated pneumonia. Mesenchymal stem cells therapy may suppress aggressive inflammatory reactions and increase endogenous restoration by improving the pulmonary microenvironment. Furthermore, clinical evidence suggests that intravenous injection of mesenchymal stem cells may radically reduce lung tissue damage in COVID-19 patients. With the advancement of research involving mesenchymal stem cells for the treatment of COVID-19, mesenchymal stem cells therapy may be the main strategy for reducing the recent pandemic.
Collapse
Affiliation(s)
- Dagnew Getnet Adugna
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| |
Collapse
|
121
|
Aljunidee KA, Bardaweel SK. Combination therapy of calcitriol inhibits the proliferation of breast cancer cells: new concept of nonclassical function of calcitriol. Horm Mol Biol Clin Investig 2021; 43:199-205. [PMID: 34768317 DOI: 10.1515/hmbci-2021-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To evaluate the anticancer effects of calcitriol and cholecalciferol against different cell lines of breast cancer in monotherapy settings and in combination with raloxifene. METHODS The antiproliferative, anti-migratory, and apoptotic induction effects were assessed by MTT, wound healing, and flow cytometry assays, respectively. RESULTS Calcitriol and cholecalciferol exhibited antiproliferative effects against T47D, MCF-7, and MDA-MB-231 in a time and concentration-dependent manner. The IC50 values of calcitriol were in the range of 0.05-0.25 μM while that for cholecalciferol were in the range of 3-100 μM. Furthermore, the results showed that calcitriol and cholecalciferol exhibited anti-migratory effects on MDA-MB-231, an apoptotic induction effect on MCF-7 cells, and a synergistic effect when combined with raloxifene. CONCLUSIONS Calcitriol and cholecalciferol exhibited anticancer effects and may be used as chemosensitizers.
Collapse
Affiliation(s)
- Khuzama A Aljunidee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
122
|
Hojjat Jodaylami M, Djaïleb A, Ricard P, Lavallée É, Cellier-Goetghebeur S, Parker MF, Coutu J, Stuible M, Gervais C, Durocher Y, Desautels F, Cayer MP, de Grandmont MJ, Rochette S, Brouard D, Trottier S, Boudreau D, Pelletier JN, Masson JF. Cross-reactivity of antibodies from non-hospitalized COVID-19 positive individuals against the native, B.1.351, B.1.617.2, and P.1 SARS-CoV-2 spike proteins. Sci Rep 2021; 11:21601. [PMID: 34750399 PMCID: PMC8575961 DOI: 10.1038/s41598-021-00844-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) have emerged worldwide, with implications on the spread of the pandemic. Characterizing the cross-reactivity of antibodies against these VOCs is necessary to understand the humoral response of non-hospitalized individuals previously infected with SARS-CoV-2, a population that remains understudied. Thirty-two SARS-CoV-2-positive (PCR-confirmed) and non-hospitalized Canadian adults were enrolled 14-21 days post-diagnosis in 2020, before the emergence of the B.1.351 (also known as Beta), B.1.617.2 (Delta) and P.1 (Gamma) VOCs. Sera were collected 4 and 16 weeks post-diagnosis. Antibody levels and pseudo-neutralization of the ectodomain of SARS-CoV-2 spike protein/human ACE-2 receptor interaction were analyzed with native, B.1.351, B.1.617.2 and P.1 variant spike proteins. Despite a lower response observed for the variant spike proteins, we report evidence of a sustained humoral response against native, B.1.351, B.1.617.2 and P.1 variant spike proteins among non-hospitalized Canadian adults. Furthermore, this response inhibited the interaction between the spike proteins from the different VOCs and ACE-2 receptor for ≥ 16 weeks post-diagnosis, except for individuals aged 18-49 years who showed no inhibition of the interaction between B.1.617.1 or B.1.617.2 spike and ACE-2. Interestingly, the affinity (KD) measured between the spike proteins (native, B.1.351, B.1.617.2 and P.1) and antibodies elicited in sera of infected and vaccinated (BNT162b2 and ChAdOx1 nCoV-19) individuals was invariant. Relative to sera from vaccine-naïve (and previously infected) individuals, sera from vaccinated individuals had higher antibody levels (as measured with label-free SPR) and more efficiently inhibited the spike-ACE-2 interactions, even among individuals aged 18-49 years, showing the effectiveness of vaccination.
Collapse
Affiliation(s)
- Maryam Hojjat Jodaylami
- Department of Chemistry, Québec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Abdelhadi Djaïleb
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Pierre Ricard
- Department of Chemistry, Québec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Étienne Lavallée
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Stella Cellier-Goetghebeur
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Megan-Faye Parker
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Julien Coutu
- Department of Chemistry, Québec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Florence Desautels
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Marie-Pierre Cayer
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Marie Joëlle de Grandmont
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Samuel Rochette
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Danny Brouard
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Sylvie Trottier
- Centre de recherche du Centre hospitalier universitaire de Québec and Département de microbiologie-infectiologie et d'immunologie, Université Laval, 2705, boulevard Laurier, Québec, QC, G1V 4G2, Canada
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL), Université Laval, 1045, av. de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Joelle N Pelletier
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research On Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada.
| | - Jean-Francois Masson
- Department of Chemistry, Québec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
123
|
Pérez Quiñones J, Roschger C, Zierer A, Peniche-Covas C, Brüggemann O. Self-Assembled Silk Fibroin-Based Aggregates for Delivery of Camptothecin. Polymers (Basel) 2021; 13:polym13213804. [PMID: 34771362 PMCID: PMC8587969 DOI: 10.3390/polym13213804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
A water-soluble hydrolysate of silk fibroin (SF) (~30 kDa) was esterified with tocopherol, ergocalciferol, and testosterone to form SF aggregates for the controlled delivery of the anticancer drug camptothecin (CPT). Elemental analysis and 1H NMR spectroscopy showed a degree of substitution (DS) on SF of 0.4 to 3.8 mol %. Yields of 58 to 71% on vitamins- and testosterone-grafted SF conjugates were achieved. CPT was efficiently incorporated into the lipophilic core of SF aggregates using a dialysis-precipitation method, achieving drug contents of 6.3-8.5 wt %. FTIR spectra and DSC thermograms showed that tocopherol- and testosterone-grafted SF conjugates predominantly adopted a β-sheet conformation. After the esterification of tyrosine residues on SF chains with the vitamin or testosterone, the hydrodynamic diameters almost doubled or tripled that of SF. The zeta potential values after esterification increased to about -30 mV, which favors the stability of aggregates in aqueous medium. Controlled and almost quantitative release of CPT was achieved after 6 days in PBS at 37 °C, with almost linear release during the first 8 h. MCF-7 cancer cells exhibited good uptake of CPT-loaded SF aggregates after 6 h, causing cell death and cell cycle arrest in the G2/M phase. Substantial uptake of the CPT-loaded aggregates into MCF-7 spheroids was shown after 3 days. Furthermore, all CPT-loaded SF aggregates demonstrated superior toxicity to MCF-7 spheroids compared with parent CPT. Blank SF aggregates induced no hemolysis at pH 6.2 and 7.4, while CPT-loaded SF aggregates provoked hemolysis at pH 6.2 but not at pH 7.4. In contrast, parent CPT caused hemolysis at both pH tested. Therefore, CPT-loaded SF aggregates are promising candidates for chemotherapy.
Collapse
Affiliation(s)
- Javier Pérez Quiñones
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria;
- Correspondence: or ; Tel.: +43-670-4039820
| | - Cornelia Roschger
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); or (A.Z.)
| | - Andreas Zierer
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); or (A.Z.)
| | - Carlos Peniche-Covas
- Facultad de Química, Universidad de La Habana, Zapata S/N entre G y Carlitos Aguirre, La Habana 10400, Cuba;
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria;
| |
Collapse
|
124
|
Malik YS, Obli Rajendran V, Ma I, Pande T, Ravichandran K, Jaganathasamy N, Ganesh B, Santhakumar A, Tazerji SS, Rahman MT, Safdar M, Dubal ZB, Dhama K. Responses to COVID-19 in South Asian Association for Regional Cooperation (SAARC) countries in 2020, a data analysis during a world of crises. CHAOS, SOLITONS, AND FRACTALS 2021; 152:111311. [PMID: 34376927 PMCID: PMC8339575 DOI: 10.1016/j.chaos.2021.111311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 05/09/2023]
Abstract
Coronavirus disease (COVID-19) caused by SARS-CoV-2 was notified from Wuhan city, Hubei province, China in the mid of December 2019. The disease is showing dynamic change in the pattern of confirmed cases and death toll in these low and middle-income countries (LMICs). In this study, exponential growth (EG) method was used to calculate the real-time reproductive number (Rt) for initial and later stage of epidemic in South Asian Association for Regional Cooperation (SAARC) member countries (April 2020 - December 2020). Time dependent (TD) method was used to calculate the weekly real -time reproduction number (Rt). We also presented the observations on COVID-19 epidemiology in relation with the health expenditure, poverty, BCG vaccination, literacy population density and Rt for understanding the current scenario, trends, and expected outcome of the disease in SAARC countries. A significant positive correlation was noticed between COVID-19 deaths and health expenditure (% GDP) (r = 0.58, P < 0.05). The other factors such as population density/sq km, literacy %, adult population %, and poverty % were not significantly correlated with number of COVID-19 cases and deaths. Among SAARC countries, the highest Rt was observed in India (Rt = 2.10; 95% CI 2.04-2.17) followed by Bangladesh (Rt = 1.62; 95% CI 1.59-1.64) in initial state of epidemic. A continuous monitoring is necessitated in all countries looking at the medical facilities, available infrastructure and healthcare manpower, constraints which may appear with increased number of critically ill patients if the situation persists longer.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Vinodhkumar Obli Rajendran
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Ikram Ma
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Tripti Pande
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Karthikeyan Ravichandran
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Nagaraj Jaganathasamy
- Indian Council of Medical Research -National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, Tamil Nadu 600077, India
| | - Balasubramanian Ganesh
- Indian Council of Medical Research -National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, Tamil Nadu 600077, India
| | - Aridoss Santhakumar
- Indian Council of Medical Research -National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, Tamil Nadu 600077, India
| | - Sina Salajegheh Tazerji
- Young Researchers and Elites Club, SRBIAU, Tehran, Iran
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Pakistan
| | - Zunjar B Dubal
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| |
Collapse
|
125
|
Mouritz AP, Galos J, Linklater DP, Ladani RB, Kandare E, Crawford RJ, Ivanova EP. Towards antiviral polymer composites to combat COVID-19 transmission. NANO SELECT 2021; 2:2061-2071. [PMID: 34485980 PMCID: PMC8242795 DOI: 10.1002/nano.202100078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022] Open
Abstract
Polymer matrix composite materials have the capacity to aid the indirect transmission of viral diseases. Published research shows that respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19), can attach to polymer substrata as a result of being contacted by airborne droplets resulting from infected people sneezing or coughing in close proximity. Polymer matrix composites are used to produce a wide range of products that are "high-touch" surfaces, such as sporting goods, laptop computers and household fittings, and these surfaces can be readily contaminated by pathogens. This article reviews published research on the retention of SARS-CoV-2 and other virus types on plastics. The factors controlling the viral retention time on plastic surfaces are examined and the implications for viral retention on polymer composite materials are discussed. Potential strategies that can be used to impart antiviral properties to polymer composite surfaces are evaluated. These strategies include modification of the surface composition with biocidal agents (e.g., antiviral polymers and nanoparticles) and surface nanotexturing. The potential application of these surface modification strategies in the creation of antiviral polymer composite surfaces is discussed, which opens up an exciting new field of research for composite materials.
Collapse
Affiliation(s)
- Adrian P. Mouritz
- School of EngineeringRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Joel Galos
- School of EngineeringRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | | | - Raj B. Ladani
- School of EngineeringRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | - Everson Kandare
- School of EngineeringRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| | | | - Elena P. Ivanova
- School of ScienceRMIT UniversityGPO Box 2476MelbourneVictoria3001Australia
| |
Collapse
|
126
|
Chawla U, Kashyap MK, Husain A. Aging and diabetes drive the COVID-19 forwards; unveiling nature and existing therapies for the treatment. Mol Cell Biochem 2021; 476:3911-3922. [PMID: 34169437 PMCID: PMC8224992 DOI: 10.1007/s11010-021-04200-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide and resulted in more than 3.5 million deaths so far. The infection causes Coronavirus disease (COVID-19) in people of all age groups, notably diabetic and old age people, at a higher risk of infectivity and fatality. Around 35% of the patients who have died of the disease were diabetic. The infection is associated with weakening immune response, chronic inflammation, and potential direct pancreatic impairment. There seems to be a three-way association of the SARS-CoV-2 infection with diabetes and aging. The COVID-19 infection causes metabolism complications, which may induce diabetes and accelerate aging in healthy individuals. How does diabetes elevate the likelihood of the infection is not clearly understood. we summarize mechanisms of accelerated aging in COVID-19 and diabetes, and the possible correlation of these three diseases. Various drug candidates under different stages of pre-clinical or clinical developments give us hope for the development of COVID-19 therapeutics, but there is no approved drug so far to treat this disease. Here, we explored the potential of anti-diabetic and anti-aging natural compounds for the COVID-19 treatment. We have also reviewed different therapeutic strategies with plant-based natural products that may be used to cure patients infected with SARS-CoV-2 and post-infection syndrome.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry, The University of Arizona, Old Chemistry 226, Tucson, AZ, 85721, USA
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Amity Education Valley Panchgaon, Manesar (Gurugram), Haryana, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India.
- Innovation and Incubation Centre for Entrepreneurship, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India.
| |
Collapse
|
127
|
Sarker M, Hasan A, Rafi M, Hossain M, El-Mageed H, Elsapagh R, Capasso R, Emran T. A Comprehensive Overview of the Newly Emerged COVID-19 Pandemic: Features, Origin, Genomics, Epidemiology, Treatment, and Prevention. BIOLOGICS 2021; 1:357-383. [DOI: 10.3390/biologics1030021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The coronavirus disease 2019 (COVID-19), a life-threatening pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has resulted in massive destruction and is still continuously adding to its death toll. The advent of this global outbreak has not yet been confirmed; however, investigation for suitable prophylaxis against this lethal virus is being carried out by experts all around the globe. The SARS-CoV-2 belongs to the Coronaviridae superfamily, like the other previously occurring human coronavirus variants. To better understand a new virus variant, such as the SARS-CoV-2 delta variant, it is vital to investigate previous virus strains, including their genomic composition and functionality. Our study aimed at addressing the basic overview of the virus’ profile that may provide the scientific community with evidence-based insights into COVID-19. Therefore, this study accomplished a comprehensive literature review that includes the virus’ origin, classification, structure, life cycle, genome, mutation, epidemiology, and subsequent essential factors associated with host–virus interaction. Moreover, we summarized the considerable diagnostic measures, treatment options, including multiple therapeutic approaches, and prevention, as well as future directions that may reduce the impact and misery caused by this devastating pandemic. The observations and data provided here have been screened and accumulated through extensive literature study, hence this study will help the scientific community properly understand this new virus and provide further leads for therapeutic interventions.
Collapse
Affiliation(s)
- Md. Sarker
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - A. Hasan
- Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - H. El-Mageed
- Micro-Analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni-Suef City 62521, Egypt
| | - Reem Elsapagh
- Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Talha Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
128
|
Malarvili MB, Alexie M, Dahari N, Kamarudin A. On Analyzing Capnogram as a Novel Method for Screening COVID-19: A Review on Assessment Methods for COVID-19. Life (Basel) 2021; 11:1101. [PMID: 34685472 PMCID: PMC8538964 DOI: 10.3390/life11101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
In November 2019, the novel coronavirus disease COVID-19 was reported in Wuhan city, China, and was reported in other countries around the globe. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Strategies such as contact tracing and a vaccination program have been imposed to keep COVID-19 under control. Furthermore, a fast, noninvasive and reliable testing device is needed urgently to detect COVID-19, so that contact can be isolated and ringfenced before the virus spreads. Although the reverse transcription polymerase chain reaction (RT-PCR) test is considered the gold standard method for the diagnosis of SARS-CoV-2 infection, this test presents some limitations which cause delays in detecting the disease. The antigen rapid test (ART) test, on the other hand, is faster and cheaper than PCR, but is less sensitive, and may limit SARS-CoV-2 detection. While other tests are being developed, accurate, noninvasive and easy-to-use testing tools are in high demand for the rapid and extensive diagnosis of the disease. Therefore, this paper reviews current diagnostic methods for COVID-19. Following this, we propose the use of expired carbon dioxide (CO2) as an early screening tool for SARS-CoV-2 infection. This system has already been developed and has been tested on asthmatic patients. It has been proven that expired CO2, also known as capnogram, can help differentiate between respiratory conditions and, therefore, could be used to detect SARS-CoV-2 infection, as it causes respiratory tract-related diseases.
Collapse
Affiliation(s)
- M. B. Malarvili
- School of Biomedical and Health Science Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia; (M.A.); (N.D.)
| | - Mushikiwabeza Alexie
- School of Biomedical and Health Science Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia; (M.A.); (N.D.)
- College of Science and Technology (CST), Center or Excellence in Biomedical Engineering and E-Health (CEBE), University of Rwanda, KN 67 Street Nyarugenge, Kigali 3900, Rwanda
| | - Nadhira Dahari
- School of Biomedical and Health Science Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia; (M.A.); (N.D.)
| | - Anhar Kamarudin
- Faculty of Medicine, University Malaya Medical Centre (UMMC), Kuala Lumpur 59100, Malaysia;
| |
Collapse
|
129
|
Alhuthail E, Stockley J, Coney A, Cooper B. Measurement of breathing in patients with post-COVID-19 using structured light plethysmography (SLP). BMJ Open Respir Res 2021; 8:8/1/e001070. [PMID: 34642224 PMCID: PMC8506860 DOI: 10.1136/bmjresp-2021-001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction COVID-19 pandemic has had a huge impact on global health to date, with 5.6 million cases in the UK since its emergence. The respiratory symptoms largely mimic those of pneumonia’ with symptoms ranging from mild to severe. The effects on respiratory physiology are not yet fully understood, but evidence is emerging that there is much dysfunctional breathing reported but little information on tidal ventilation from the acute phase of the infection. Structured light plethysmography (SLP) is a contactless technique of respiratory function testing that measures tidal breathing parameters by assessing thoracoabdominal displacement. Methods In a postdischarge clinic, SLP was performed routinely on 110 hospitalised patients recovering from COVID-19 who had been screened for respiratory symptoms to confirm any respiratory changes occurring after the disease. Patients were categorised based on their hospital treatment in (1) the intensive therapy unit (ITU) (requiring intubation) (n=65) or (2) respiratory wards only (n=45). Data from these two patient cohorts were compared with preacquired data from healthy controls (n=30). Results We have found a significantly increased respiratory rate (p=0.006) in ITU patients compared with the healthy cohort and also a significant decrease in the inspiratory time (p=0.01), expiratory time (p=0.005) and the total breathing cycle (p=0.008). There were no significant differences between ITU and ward patients and no significant differences in healthy compared with ward patients. We examined the variability of breathing (‘entropy’) both in terms of the breath-to-breath interval and the volume-to-volume change. The breath-to-breath interval alone was significantly lower in ITU patients compared with healthy cohorts (p=0.02). Conclusion Our findings suggest that abnormalities in tidal breathing can be detected in COVID-19 recovery patients, and SLP may be a promising tool in assessing the aftermath of diseases such as COVID-19, particularly if more intensive management strategies such as mechanical ventilation are required.
Collapse
Affiliation(s)
- Eyas Alhuthail
- School of Biomedical Sciences, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK.,Basic Sciences Department, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - James Stockley
- Lung Function and Sleep, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Andrew Coney
- School of Biomedical Sciences, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Brendan Cooper
- Lung Function and Sleep, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
130
|
Becker AL, Carpenter EL, Slominski AT, Indra AK. The Role of the Vitamin D Receptor in the Pathogenesis, Prognosis, and Treatment of Cutaneous Melanoma. Front Oncol 2021; 11:743667. [PMID: 34692525 PMCID: PMC8526885 DOI: 10.3389/fonc.2021.743667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Melanoma is the malignant transformation of melanocytes and represents the most lethal form of skin cancer. While early-stage melanoma localized to the skin can be cured with surgical excision, metastatic melanoma often requires a multi-pronged approach and even then can exhibit treatment resistance. Understanding the molecular mechanisms involved in the pathogenesis of melanoma could lead to novel diagnostic, prognostic, and therapeutic strategies to ultimately decrease morbidity and mortality. One emerging candidate that may have value as both a prognostic marker and in a therapeutic context is the vitamin D receptor (VDR). VDR is a nuclear steroid hormone receptor activated by 1,25 dihydroxy-vitamin D3 [calcitriol, 1,25(OH)2D3]. While 1,25 dihydroxy-vitamin D3 is typically thought of in relation to calcium metabolism, it also plays an important role in cell proliferation, differentiation, programmed-cell death as well as photoprotection. This review discusses the role of VDR in the crosstalk between keratinocytes and melanocytes during melanomagenesis and summarizes the clinical data regarding VDR polymorphisms, VDR as a prognostic marker, and potential uses of vitamin D and its analogs as an adjuvant treatment for melanoma.
Collapse
Affiliation(s)
- Alyssa L. Becker
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU, Corvallis, OR, United States
- John A. Burns School of Medicine at the University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Evan L. Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU, Corvallis, OR, United States
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU, Corvallis, OR, United States
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, United States
- Department of Biochemistry and Biophysics, Oregon State University (OSU), Corvallis, OR, United States
- Linus Pauling Science Center, Oregon State University (OSU), Corvallis, OR, United States
- Department of Dermatology, Oregon Health & Science University (OHSU), Portland, OR, United States
| |
Collapse
|
131
|
Farooqi T, Malik JA, Mulla AH, Al Hagbani T, Almansour K, Ubaid MA, Alghamdi S, Anwar S. An overview of SARS-COV-2 epidemiology, mutant variants, vaccines, and management strategies. J Infect Public Health 2021; 14:1299-1312. [PMID: 34429257 PMCID: PMC8366110 DOI: 10.1016/j.jiph.2021.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Over the last two decades, humanity has observed the extraordinary anomaly caused by novel, weird coronavirus strains, such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). As the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus has made its entry into the world, it has dramatically affected life in every domain by continuously producing new variants. The vaccine development is an ongoing process, although some vaccines got marketed. The big challenge is now whether the vaccine candidates can provide long-lasting protection or prevention against mutant variants. METHODS The information was gathered from various journals, electronic searches via Internet-based information such as PubMed, Google Scholar, Science Direct, online electronic journals, WHO landscape, world meters, WHO website, and News. RESULTS This review will present and discuss some coronavirus disease 19 (COVID-19) related aspects including: the pathophysiology, epidemiology, mutant variants vaccine candidates, vaccine efficacy, and management strategies. Due to the high death rate, continuous spread, an inadequate workforce, lack of required therapeutics, and incomplete understanding of the viral strain, it becomes crucial to build the knowledge of its biological characteristics and make available the rapid diagnostic and vital therapeutic machinery for the combat and management of an infection. CONCLUSION The data summarizes current research on the COVID 19 infection and therapeutic interventions, which will direct future decision-making on the effort-worthy phases of the COVID 19 and the development of critical therapeutics. The only possible solution is the vaccine development targeting against all variant strains to halt its progress; the identified theoretical and practical knowledge can eliminate the gaps to improve a better understanding of the novel coronavirus structure and its design of a vaccine. In addition, to that the long-lasting protection is another challenging objective that need to be looked into.
Collapse
Affiliation(s)
- Tahmeena Farooqi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical Engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | | | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University, Albaha, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
132
|
Sinha K, Som Chaudhury S, Sharma P, Ruidas B. COVID-19 rhapsody: Rage towards advanced diagnostics and therapeutic strategy. J Pharm Anal 2021; 11:529-540. [PMID: 34178413 PMCID: PMC8214321 DOI: 10.1016/j.jpha.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
The deadly global outbreak of coronavirus disease-2019 (COVID-19) has forged an unrivaled threat to human civilization. Contemplating its profuse impact, initial risk management and therapies are needed, as well as rapid detection strategies alongside treatments with existing drugs or traditional treatments to provide better clinical support for critical patients. Conventional detection techniques have been considered but do not sufficiently meet the current challenges of effective COVID-19 diagnosis. Therefore, several modern techniques including point-of-care diagnosis with a biosensor, clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins that function as nuclease (Cas) technology, next-generation sequencing, serological, digital, and imaging approaches have delivered improved and noteworthy success compared to that using traditional strategies. Conventional drug treatment, plasma therapy, and vaccine development are also ongoing. However, alternative medicines including Ayurveda, herbal drugs, homeopathy, and Unani have also been enlisted as prominent treatment strategies for developing herd immunity and physical defenses against COVID-19. All considered, this review can help develop rapid and simplified diagnostic strategies, as well as advanced evidence-based modern therapeutic approaches that will aid in combating the global pandemic.
Collapse
Affiliation(s)
- Koel Sinha
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah, 711103, India
| | - Sutapa Som Chaudhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah, 711103, India
| | - Pramita Sharma
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah, 711103, India
- Department of Zoology, Hooghly Mohsin College Affiliated to University of Burdwan, Hooghly, 712101, India
| | - Bhuban Ruidas
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah, 711103, India
| |
Collapse
|
133
|
Torbati E, Krause KL, Ussher JE. The Immune Response to SARS-CoV-2 and Variants of Concern. Viruses 2021; 13:1911. [PMID: 34696342 PMCID: PMC8537260 DOI: 10.3390/v13101911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023] Open
Abstract
At the end of 2019 a newly emerged betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of severe pneumonia, subsequently termed COVID-19, in a number of patients in Wuhan, China. Subsequently, SARS-CoV-2 rapidly spread globally, resulting in a pandemic that has to date infected over 200 million individuals and resulted in more than 4.3 million deaths. While SARS-CoV-2 results in severe disease in 13.8%, with increasing frequency of severe disease with age, over 80% of infections are asymptomatic or mild. The immune response is an important determinant of outcome following SARS-CoV-2 infection. While B cell and T cell responses are associated with control of infection and protection against subsequent challenge with SARS-CoV-2, failure to control viral replication and the resulting hyperinflammation are associated with severe COVID-19. Towards the end of 2020, several variants of concern emerged that demonstrate increased transmissibility and/or evasion of immune responses from prior SARS-CoV-2 infection. This article reviews what is known about the humoral and cellular immune responses to SARS-CoV-2 and how mutation and structural/functional changes in the emerging variants of concern impact upon the immune protection from prior infection or vaccination.
Collapse
Affiliation(s)
- Elham Torbati
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
- Vaccine Alliance Aotearoa New Zealand, Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - James E. Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
- Vaccine Alliance Aotearoa New Zealand, Malaghan Institute of Medical Research, Wellington 6242, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
134
|
Tan SC, Low TY, Mohamad Hanif EA, Sharzehan MAK, Kord-Varkaneh H, Islam MA. The rs9340799 polymorphism of the estrogen receptor alpha (ESR1) gene and its association with breast cancer susceptibility. Sci Rep 2021; 11:18619. [PMID: 34545128 PMCID: PMC8452701 DOI: 10.1038/s41598-021-97935-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The ESR1 rs9340799 polymorphism has been frequently investigated with regard to its association with breast cancer (BC) susceptibility, but the findings have been inconclusive. In this work, we aimed to address the inconsistencies in study findings by performing a systematic review and meta-analysis. Eligible studies were identified from the Web of Science, PubMed, Scopus, China National Knowledge Infrastructure, VIP and Wanfang databases based on the predefined inclusion and exclusion criteria. The pooled odds ratio (OR) was then calculated under five genetic models: homozygous (GG vs. AA), heterozygous (AG vs. AA), dominant (AG + GG vs. AA), recessive (GG vs. AA + AG) and allele (G vs. A). Combined results from 23 studies involving 34,721 subjects indicated a lack of significant association between the polymorphism and BC susceptibility (homozygous model, OR = 1.045, 95% CI 0.887-1.231, P = 0.601; heterozygous model, OR = 0.941, 95% CI 0.861-1.030, P = 0.186; dominant model, OR = 0.957, 95% CI 0.875-1.045, P = 0.327; recessive model, OR = 1.053, 95% CI 0.908-1.222, P = 0.495; allele model, OR = 0.987, 95% CI 0.919-1.059, P = 0.709). Subgroup analyses by ethnicity, menopausal status and study quality also revealed no statistically significant association (P > 0.05). In conclusion, our results showed that the ESR1 rs9340799 polymorphism was not associated with BC susceptibility, suggesting its limited potential as a genetic marker for BC.
Collapse
Affiliation(s)
- Shing Cheng Tan
- grid.412113.40000 0004 1937 1557UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- grid.412113.40000 0004 1937 1557UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ezanee Azlina Mohamad Hanif
- grid.412113.40000 0004 1937 1557UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Ayub Khan Sharzehan
- grid.412113.40000 0004 1937 1557UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamed Kord-Varkaneh
- grid.411600.2Department of Clinical Nutrition and Dietetics, Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Md Asiful Islam
- grid.11875.3a0000 0001 2294 3534Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
135
|
Gholamalizadeh M, Mokhtari Z, Doaei S, Jalili V, Davoodi SH, Jonoush M, Akbari ME, Hajipour A, Bahar B, Tabesh GA, Omidi S, Mosavi Jarrahi SA. The association between fat mass and obesity-associated (FTO) genotype and serum vitamin D level in breast cancer patients. J Cell Mol Med 2021; 25:9627-9633. [PMID: 34490746 PMCID: PMC8505832 DOI: 10.1111/jcmm.16908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
The preventive effect of vitamin D against breast cancer can be influenced by gene polymorphisms. This study aimed to investigate the association between serum level of 25(OH) vitamin D and FTO genotype in breast cancer patients. A cross‐sectional study was carried out on 180 newly diagnosed patients with breast cancer in Tehran, Iran. The blood samples were collected from the participants in order to assess the FTO gene rs9939609 polymorphism by the tetra‐primer amplification refractory mutation system (Tetra‐ARMS) PCR method. The serum level of 25(OH) vitamin D was measured using the direct competitive enzyme‐linked immunosorbent assay (ELISA) method. The association between vitamin D and the FTO genotype in patients with breast cancer was assessed after adjustment for cofounders. The frequency of TT, AT and AA genotypes in the breast cancer patients were 43% (n = 77), 49% (n = 89) and 8% (n = 14), respectively. All patients with higher than 40 ng/dl of serum 25(OH) vitamin D had one or two copies of FTO rs9939609 risk allele (p = 0.019). No linear association was found between the number of FTO risk allele and the level of serum vitamin D. All patients with high serum level of 25(OH) vitamin D had one or two copies of FTO rs9939609 risk allele. FTO gene polymorphisms may counteract the beneficial effects of vitamin D in breast cancer prevention. Further studies can help to better understand the genetic factors predisposing to breast cancer and their effect on the association between vitamin D and breast cancer.
Collapse
Affiliation(s)
- Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mokhtari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahideh Jalili
- Faculty of Medicine, Urmia University of Medical sciences, Urmia, Iran
| | - Sayed Hossein Davoodi
- Departments of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Jonoush
- Department of Nutrition, School of Medicine, Mashahd University of Medical Sciences, Mashahad, Iran
| | | | - Azadeh Hajipour
- School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Ghasem Azizi Tabesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Omidi
- Department of Health Education and Promotion, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | | |
Collapse
|
136
|
Tanimoto S, Itoh SG, Okumura H. "Bucket brigade" using lysine residues in RNA-dependent RNA polymerase of SARS-CoV-2. Biophys J 2021; 120:3615-3627. [PMID: 34339634 PMCID: PMC8324383 DOI: 10.1016/j.bpj.2021.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising drug target for coronavirus disease 2019 (COVID-19) because it plays the most important role in the replication of the RNA genome. Nucleotide analogs such as remdesivir and favipiravir are thought to interfere with the RNA replication by RdRp. More specifically, they are expected to compete with nucleoside triphosphates, such as ATP. However, the process in which these drug molecules and nucleoside triphosphates are taken up by RdRp remains unknown. In this study, we performed all-atom molecular dynamics simulations to clarify the recognition mechanism of RdRp for these drug molecules and ATP that were at a distance. The ligand recognition ability of RdRp decreased in the order of remdesivir, favipiravir, and ATP. We also identified six recognition paths. Three of them were commonly found in all ligands, and the remaining three paths were ligand-dependent ones. In the common two paths, it was observed that the multiple lysine residues of RdRp carried the ligands to the binding site like a "bucket brigade." In the remaining common path, the ligands directly reached the binding site. Our findings contribute to the understanding of the efficient ligand recognition by RdRp at the atomic level.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Satoru G Itoh
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
137
|
Minamikawa T, Koma T, Suzuki A, Nagamatsu K, Yasui T, Yasutomo K, Nomaguchi M. Inactivation of SARS-CoV-2 by deep ultraviolet light emitting diode: A review. JAPANESE JOURNAL OF APPLIED PHYSICS 2021; 60:090501. [DOI: 10.35848/1347-4065/ac19d1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
138
|
Kaklamanos A, Belogiannis K, Skendros P, Gorgoulis VG, Vlachoyiannopoulos PG, Tzioufas AG. COVID-19 Immunobiology: Lessons Learned, New Questions Arise. Front Immunol 2021; 12:719023. [PMID: 34512643 PMCID: PMC8427766 DOI: 10.3389/fimmu.2021.719023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
There is strong evidence that COVID-19 pathophysiology is mainly driven by a spatiotemporal immune deregulation. Both its phenotypic heterogeneity, spanning from asymptomatic to severe disease/death, and its associated mortality, are dictated by and linked to maladaptive innate and adaptive immune responses against SARS-CoV-2, the etiologic factor of the disease. Deregulated interferon and cytokine responses, with the contribution of immune and cellular stress-response mediators (like cellular senescence or uncontrolled inflammatory cell death), result in innate and adaptive immune system malfunction, endothelial activation and inflammation (endothelitis), as well as immunothrombosis (with enhanced platelet activation, NET production/release and complement hyper-activation). All these factors play key roles in the development of severe COVID-19. Interestingly, another consequence of this immune deregulation, is the production of autoantibodies and the subsequent development of autoimmune phenomena observed in some COVID-19 patients with severe disease. These new aspects of the disease that are now emerging (like autoimmunity and cellular senescence), could offer us new opportunities in the field of disease prevention and treatment. Simultaneously, lessons already learned from the immunobiology of COVID-19 could offer new insights, not only for this disease, but also for a variety of chronic inflammatory responses observed in autoimmune and (auto)inflammatory diseases.
Collapse
Affiliation(s)
- Aimilios Kaklamanos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiotis G. Vlachoyiannopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Autoimmune Systemic and Neurological Diseases, Athens, Greece
| |
Collapse
|
139
|
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel) 2021; 13:4287. [PMID: 34503097 PMCID: PMC8428369 DOI: 10.3390/cancers13174287] [Citation(s) in RCA: 774] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide with more than 2 million new cases in 2020. Its incidence and death rates have increased over the last three decades due to the change in risk factor profiles, better cancer registration, and cancer detection. The number of risk factors of BC is significant and includes both the modifiable factors and non-modifiable factors. Currently, about 80% of patients with BC are individuals aged >50. Survival depends on both stage and molecular subtype. Invasive BCs comprise wide spectrum tumors that show a variation concerning their clinical presentation, behavior, and morphology. Based on mRNA gene expression levels, BC can be divided into molecular subtypes (Luminal A, Luminal B, HER2-enriched, and basal-like). The molecular subtypes provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. The eighth edition of TNM classification outlines a new staging system for BC that, in addition to anatomical features, acknowledges biological factors. Treatment of breast cancer is complex and involves a combination of different modalities including surgery, radiotherapy, chemotherapy, hormonal therapy, or biological therapies delivered in diverse sequences.
Collapse
Affiliation(s)
- Sergiusz Łukasiewicz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Robert Sitarz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Andrzej Stanisławek
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Oncology, Chair of Oncology and Environmental Health, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
140
|
Agarwal P, Kaushik A, Sarkar S, Rao D, Mukherjee N, Bharat V, Das S, Saha AK. Global survey-based assessment of lifestyle changes during the COVID-19 pandemic. PLoS One 2021; 16:e0255399. [PMID: 34388151 PMCID: PMC8362972 DOI: 10.1371/journal.pone.0255399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Along with the major impact on public health, the COVID-19 outbreak has caused unprecedented concerns ranging from sudden loss of employment to mental stress and anxiety. We implemented a survey-based data collection platform to characterize how the COVID-19 pandemic has affected the socio-economic, physical and mental health conditions of individuals. We focused on three broad areas, namely, changes in social interaction during home confinement, economic impact and their health status. We identified a substantial increase in virtual interaction among individuals, which might be a way to alleviate the sudden unprecedented mental health burden, exacerbated by general awareness about viral infections or other manifestations associated with them. The majority of participants (85%) lived with one or more companions and unemployment issues did not affect 91% of the total survey takers, which was one of the crucial consequences of the pandemic. Nevertheless, measures such as an increased frequency of technology-aided distant social interaction, focus on physical fitness and leisure activities were adopted as coping mechanisms during this period of home isolation. Collectively, these metrics provide a succinct and informative summary of the socio-economic and health impact of the COVID-19 pandemic on the individuals. Findings from our study reflect that continuous surveillance of the psychological consequences for outbreaks should become routine as part of preparedness efforts worldwide. Given the limitations of analyzing the large number of variables, we have made the raw data publicly available on the OMF ME/CFS Data Center server to facilitate further analyses (https://igenomed.stanford.edu/dataset/survey-study-on-lifestyle-changes-during-covid-19-pandemic).
Collapse
Affiliation(s)
- Poonam Agarwal
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Abhinav Kaushik
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Sutapa Sarkar
- Gastroenterology and Hepatology, Stanford University School of Medicine, VA Palo Alto, Palo Alto, CA, United States of America
| | - Deepti Rao
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nilanjan Mukherjee
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Vinita Bharat
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Subhamoy Das
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Amit Kumar Saha
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA United States of America
| |
Collapse
|
141
|
Identification of COVID-19 prognostic markers and therapeutic targets through meta-analysis and validation of Omics data from nasopharyngeal samples. EBioMedicine 2021; 70:103525. [PMID: 34392148 PMCID: PMC8358265 DOI: 10.1016/j.ebiom.2021.103525] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been generated from patient samples in various studies. Translation of these data into clinical interventions against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory tract can unveil prognostic markers and therapeutic targets. Methods We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug targets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian hamster challenge model. Findings The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8, S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2 replication in vitro. Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs. Interpretation Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model. Funding This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Wellcome Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.
Collapse
|
142
|
Singh B, Datta B, Ashish A, Dutta G. A comprehensive review on current COVID-19 detection methods: From lab care to point of care diagnosis. SENSORS INTERNATIONAL 2021; 2:100119. [PMID: 34766062 PMCID: PMC8302821 DOI: 10.1016/j.sintl.2021.100119] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Without a doubt, the current global pandemic affects all walks of our life. It affected almost every age group all over the world with a disease named COVID-19, declared as a global pandemic by WHO in early 2020. Due to the high transmission and moderate mortality rate of this virus, it is also regarded as the panic-zone virus. This potentially deadly virus has pointed up the significance of COVID-19 research. Due to the rapid transmission of COVID-19, early detection is very crucial. Presently, there are different conventional techniques are available for coronavirus detection like CT-scan, PCR, Sequencing, CRISPR, ELISA, LFA, LAMP. The urgent need for rapid, accurate, and cost-effective detection and the requirement to cut off shortcomings of traditional detection methods, make scientists realize to advance new technologies. Biosensors are one of the reliable platforms for accurate, early diagnosis. In this article, we have pointed recent diagnosis approaches for COVID-19. The review includes basic virology of SARS-CoV-2 mainly clinical and pathological features. We have also briefly discussed different types of biosensors, their working principles, and current advancement for COVID-19 detection and prevention.
Collapse
Affiliation(s)
- Bishal Singh
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Brateen Datta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Amlan Ashish
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
143
|
Lin Z, Qing H, Li R, Zheng L, Yao H. Evolution trace of SARS-CoV-2 from January 19 to March 12, 2020, in the United States. J Med Virol 2021; 93:6595-6604. [PMID: 34292617 PMCID: PMC8426869 DOI: 10.1002/jmv.27225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/18/2023]
Abstract
As a kind of human betacoronavirus, SARS‐CoV‐2 has endangered globally public health. As of January 2021, the virus had resulted in 2,209,195 deaths. By studying the evolution trend and characteristics of 265 SARS‐CoV‐2 strains in the United States from January to March, it is found that the strains can be divided into six clades, USA clade‐1, USA clade‐2, USA clade‐3, USA clade‐4, USA clade‐5, and USA clade‐6, in which US clade‐1 may be the most ancestral clade, USA clade‐2 is an interim clade of USA clade‐1 and USA clade‐3, the other three clades have similar codon usage pattern, while USA clade‐6 is the newest and most adaptable clade. Mismatch analysis and protein alignment showed that the evolution of the clades arises from some special mutations in viral proteins, which may help the strain to invade, replicate, transcribe and so on. Compared with previous research and classifications, we suggest that clade O in GISAID should not be an independent clade and Wuhan‐Hu‐1 (EPI_ISL_402125) should not be an ancestral reference sequence. Our study decoded the evolutionary dynamic of SARS‐CoV‐2 in the early stage from the United States, which give some clues to infer the current evolution trend of SARS‐CoV‐2 and study the function of viral mutational protein. Basing on decoding the characteristics and evolution process of SARS‐CoV‐2 in the early stage of the USA, it is suggested that the clade O in GISAID should not be as an independent evolutionary clade by phylogenetic analysis or protein alignment. Secondly, Wuhan‐Hu‐1 (EPI_ISL_402125) should not be as an ancestral reference sequence and its candidate should be EPI_ISL_529213. Thirdly, many unique mutation sites in viral proteins were found to lay foundation to study the function of the mutational protein and to reveal the evolution trend of SARS‐CoV‐2 in coming days.
Collapse
Affiliation(s)
- Ziying Lin
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | - Hua Qing
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | - Rui Li
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| | | | - Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, China
| |
Collapse
|
144
|
Kandemiş E, Tuncel G, Fahrioğlu U, Temel ŞG, Mocan G, Ergören MÇ. Natural selection at work? Vitamin D deficiency rates and rising health problems in young Turkish Cypriot professionals. Cent Eur J Public Health 2021; 29:130-133. [PMID: 34245553 DOI: 10.21101/cejph.a6117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/25/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Vitamin D is a fat-soluble, prohormone vitamin that is important especially for bone mineralization and skeletal health. In recent years, vitamin D deficiency appeared as a worldwide problem, affecting many people in different ways including the Northern Cypriot population. The deficiency might be caused by the lack of exposure to sunlight, diet low in vitamin D, sedentary lifestyle, and also due to some genetic variations in the vitamin D receptor (VDR) gene. METHODS In this study, four common VDR polymorphisms and associations with vitamin D deficiency in the Turkish Cypriot population between ages 18-40 and working in office conditions was studied by PCR- RFLP analysis. RESULTS rs2228570 C>T variant was shown to be significantly associated with low serum vitamin D levels in the studied population. CONCLUSION Together with the effect of rs2228570 C>T variant in the VDR gene, it is thought that the lifestyle changes in the Turkish Cypriot population might have caused the increased frequency of vitamin D deficiency in the young professionals.
Collapse
Affiliation(s)
- Emine Kandemiş
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
| | - Gülten Tuncel
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - Umut Fahrioğlu
- DESAM Institute, Near East University, Nicosia, Cyprus.,Department of Medical Biology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Şehime Gülsün Temel
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gamze Mocan
- Department of Medical Biology, Faculty of Medicine, Near East University, Nicosia, Cyprus.,Department of Medical Pathology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Mahmut Çerkez Ergören
- DESAM Institute, Near East University, Nicosia, Cyprus.,Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
145
|
Etienne EE, Nunna BB, Talukder N, Wang Y, Lee ES. COVID-19 Biomarkers and Advanced Sensing Technologies for Point-of-Care (POC) Diagnosis. Bioengineering (Basel) 2021; 8:98. [PMID: 34356205 PMCID: PMC8301167 DOI: 10.3390/bioengineering8070098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19, also known as SARS-CoV-2 is a novel, respiratory virus currently plaguing humanity. Genetically, at its core, it is a single-strand positive-sense RNA virus. It is a beta-type Coronavirus and is distinct in its structure and binding mechanism compared to other types of coronaviruses. Testing for the virus remains a challenge due to the small market available for at-home detection. Currently, there are three main types of tests for biomarker detection: viral, antigen and antibody. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) remains the gold standard for viral testing. However, the lack of quantitative detection and turnaround time for results are drawbacks. This manuscript focuses on recent advances in COVID-19 detection that have lower limits of detection and faster response times than RT-PCR testing. The advancements in sensing platforms have amplified the detection levels and provided real-time results for SARS-CoV-2 spike protein detection with limits as low as 1 fg/mL in the Graphene Field Effect Transistor (FET) sensor. Additionally, using multiple biomarkers, detection levels can achieve a specificity and sensitivity level comparable to that of PCR testing. Proper biomarker selection coupled with nano sensing detection platforms are key in the widespread use of Point of Care (POC) diagnosis in COVID-19 detection.
Collapse
Affiliation(s)
- Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
- Division of Engineering in Medicine, Department of Medicine, Brigham, and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (E.E.E.); (B.B.N.); (N.T.); (Y.W.)
| |
Collapse
|
146
|
Adam KM. Immunoinformatics approach for multi-epitope vaccine design against structural proteins and ORF1a polyprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Trop Dis Travel Med Vaccines 2021; 7:22. [PMID: 34238372 PMCID: PMC8266167 DOI: 10.1186/s40794-021-00147-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The lack of effective treatment against the highly infectious SARS-CoV-2 has aggravated the already catastrophic global health issue. Here, in an attempt to design an efficient vaccine, a thorough immunoinformatics approach was followed to predict the most suitable viral proteins epitopes for building that vaccine. METHODS The amino acid sequences of four structural proteins (S, M, N, E) along with one potentially antigenic accessory protein (ORF1a) of SARS-CoV-2 were inspected for the most appropriate epitopes to be used for building the vaccine construct. Several immunoinformatics tools were used to assess the antigenicity (VaxiJen server), immunogenicity (IEDB immunogenicity tool), allergenicity (AlgPred), toxigenicity (ToxinPred server), interferon-gamma inducing capacity (IFNepitope server), and the physicochemical properties of the construct (ProtParam tool). RESULTS The final candidate vaccine construct consisted of 468 amino acids, encompassing 29 epitopes. The CTL epitopes that passed the antigenicity, allergenicity, toxigenicity and immunogenicity assessment were four epitopes from S protein, one from M protein, two from N protein, 12 from the ORF1a polyprotein and none from E protein. While the HTL epitopes that passed the antigenicity, allergenicity, toxigenicity and INF-[Formula: see text] were one from S protein, three from M protein, six from the ORF1a polyprotein and none from N and E proteins. All the vaccine properties and its ability to trigger the humoral and cell-mediated immune response were validated computationally. Molecular modeling, docking to TLR3, simulation, and molecular dynamics were also carried out. Finally, a molecular clone using pET28::mAID expression plasmid vector was prepared. CONCLUSION The overall results of the study suggest that the final multi-epitope chimeric construct is a potential candidate for an efficient protective vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Khalid Mohamed Adam
- College of Applied Medical Sciences, Medical and Engineering Complex, University of Bisha, Bisha, 61922, Kingdom of Saudi Arabia.
| |
Collapse
|
147
|
Motamedi H, Ari MM, Dashtbin S, Fathollahi M, Hossainpour H, Alvandi A, Moradi J, Abiri R. An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. Int Immunopharmacol 2021; 96:107763. [PMID: 34162141 PMCID: PMC8101866 DOI: 10.1016/j.intimp.2021.107763] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the rapidly spreading pandemic COVID-19 in the world. As an effective therapeutic strategy is not introduced yet and the rapid genetic variations in the virus, there is an emerging necessity to design, evaluate and apply effective new vaccines. An acceptable vaccine must elicit both humoral and cellular immune responses, must have the least side effects and the storage and transport systems should be available and affordable for all countries. These vaccines can be classified into different types: inactivated vaccines, live-attenuated virus vaccines, subunit vaccines, virus-like particles (VLPs), nucleic acid-based vaccines (DNA and RNA) and recombinant vector-based vaccines (replicating and non-replicating viral vector). According to the latest update of the WHO report on April 2nd, 2021, at least 85 vaccine candidates were being studied in clinical trial phases and 184 candidate vaccines were being evaluated in pre-clinical stages. In addition, studies have shown that other vaccines, including the Bacillus Calmette-Guérin (BCG) vaccine and the Plant-derived vaccine, may play a role in controlling pandemic COVID-19. Herein, we reviewed the different types of COVID-19 candidate vaccines that are currently being evaluated in preclinical and clinical trial phases along with advantages, disadvantages or adverse reactions, if any.
Collapse
Affiliation(s)
- Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
148
|
Abstract
A variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Jordan was identified during the second wave of infection. The genome of this variant has a unique set of mutations that suggest local evolution. Due to the continuous emergence of new variants worldwide, molecular surveillance is crucial for fighting the pandemic.
Collapse
|
149
|
Ahsan R, Tahsili MR, Ebrahimi F, Ebrahimie E, Ebrahimi M. Image processing unravels the evolutionary pattern of SARS-CoV-2 against SARS and MERS through position-based pattern recognition. Comput Biol Med 2021; 134:104471. [PMID: 34004573 PMCID: PMC8106241 DOI: 10.1016/j.compbiomed.2021.104471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
SARS-COV-2, Severe Acute Respiratory Syndrome (SARS), and the Middle East respiratory syndrome-related coronavirus (MERS) viruses are from the coronaviridae family; the former became a global pandemic (with low mortality rate) while the latter were confined to a limited region (with high mortality rates). To investigate the possible structural differences at basic levels for the three viruses, genomic and proteomic sequences were downloaded and converted to polynomial datasets. Seven attribute weighting (feature selection) models were employed to find the key differences in their genome's nucleotide sequence. Most attribute weighting models selected the final nucleotide sequences (from 29,000th nucleotide positions to the end of the genome) as significantly different among the three virus classes. The genome and proteome sequences of this hot zone area (which corresponds to the 3'UTR region and encodes for nucleoprotein (N)) and Spike (S) protein sequences (as the most important viral protein) were converted into binary images and were analyzed by image processing techniques and Convolutional deep Neural Network (CNN). Although the predictive accuracy of CNN for Spike (S) proteins was low (0.48%), the machine-based learning algorithms were able to classify the three members of coronaviridae viruses with 100% accuracy based on 3'UTR region. For the first time ever, the relationship between the possible structural differences of coronaviruses at the sequential levels and their pathogenesis are being reported, which paves the road to deciphering the high pathogenicity of the SARS-COV-2 virus.
Collapse
Affiliation(s)
- Reza Ahsan
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Faezeh Ebrahimi
- Faculty of Life Sciences and Biotechnology, Department of Microbiology and Microbial Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, 3086, Australia,School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia
| | - Mansour Ebrahimi
- Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran,School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia,Corresponding author. Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran
| |
Collapse
|
150
|
Taherkhani R, Taherkhani S, Farshadpour F. Dynamics of host immune responses to SARS-CoV-2. World J Clin Cases 2021; 9:4480-4490. [PMID: 34222416 PMCID: PMC8223819 DOI: 10.12998/wjcc.v9.i18.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the most recent global health threat, is spreading throughout the world with worrisome speed, and the current wave of coronavirus disease 2019 (COVID-19) seems to have no mercy. While this mysterious virus challenges our ability to control viral infections, our opportunities to control the COVID-19 pandemic are gradually fading. Currently, pandemic management relies on preventive interventions. Although prevention is a good strategy to mitigate SARS-CoV-2 transmission, it still cannot be considered an absolute solution to eliminate this pandemic. Currently, developing a potent immunity against this viral infection seems to be the most promising strategy to drive down this ongoing global tragedy. However, with the emergence of new challenges in the context of immune responses to COVID-19, the road to control this devastating pandemic seems bumpier; thus, it is pivotal to characterize the dynamics of host immune responses to COVID-19, in order to develop efficient prophylactic and therapeutic tools. This begs the question of whether the effector mechanisms of the immune system are indeed potent or a possible contributing factor to developing more severe and lethal forms of COVID-19. In this review, the possible role of the immunopathologic phenomena including antibody-dependent enhancement, cytokine storm, and original antigenic sin in severity and mortality of COVID-19 will be discussed.
Collapse
Affiliation(s)
- Reza Taherkhani
- Department of Virology, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
- Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Sakineh Taherkhani
- School of Medicine, Arak University of Medical Sciences, Arak 3848176589, Iran
| | - Fatemeh Farshadpour
- Department of Virology, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
- Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| |
Collapse
|