101
|
Poo C, Isaacson JS. An early critical period for long-term plasticity and structural modification of sensory synapses in olfactory cortex. J Neurosci 2007; 27:7553-8. [PMID: 17626216 PMCID: PMC6672607 DOI: 10.1523/jneurosci.1786-07.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/07/2007] [Accepted: 06/09/2007] [Indexed: 11/21/2022] Open
Abstract
Critical periods for plasticity of thalamic sensory inputs play an important role in developing neocortical circuits. During an early postnatal time window, pyramidal cells of visual, auditory, and somatosensory cortex undergo structural refinement and possess an enhanced ability for activity-dependent synaptic plasticity. In olfactory cortex, however, pyramidal cells receive direct sensory input from the olfactory bulb, and it is unclear whether the development of olfactory sensory circuits is governed by a critical period. Here, we show that NMDA receptor-dependent long-term potentiation and dendritic spine maturation occur only during a brief postnatal time window at sensory synapses of olfactory cortex pyramidal cells. In contrast, associational synapses onto the same cells retain the capacity for plasticity into adulthood.
Collapse
Affiliation(s)
- Cindy Poo
- Department of Neuroscience, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Jeffry S. Isaacson
- Department of Neuroscience, University of California, San Diego, School of Medicine, La Jolla, California 92093
| |
Collapse
|
102
|
Kajiwara R, Tominaga T, Takashima I. Olfactory information converges in the amygdaloid cortex via the piriform and entorhinal cortices: observations in the guinea pig isolated whole-brain preparation. Eur J Neurosci 2007; 25:3648-58. [PMID: 17610584 DOI: 10.1111/j.1460-9568.2007.05610.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The amygdaloid cortex (AC) has reciprocal connections with the entorhinal cortex (EC) and also receives projections from the olfactory bulb and the piriform cortex (PC). To assess the possibility that the AC and EC represent functionally coupled structures in the olfactory stream of information, we investigated the propagation pattern of neural activity in olfactory cortices--PC, AC and EC--using optical recordings with voltage-sensitive dyes in the guinea pig in vitro isolated whole-brain preparation. We observed two distinct pathways that convey neural activation evoked by olfactory nerve stimulation: a medial pathway from the PC to the AC, and a lateral pathway from the PC to the lateral EC along the rhinal sulcus. Besides being activated directly via the medial pathway, the AC was activated a second time via activity that propagated from the lateral EC. Lesion experiments revealed that the lateral pathway close to the rhinal sulcus is crucial for neural activation of the EC. Consistent with this activation pattern, we observed two separate, sharp downward deflections in field potential recordings, and we recorded synaptic potentials with multiple peaks from single neurons in the AC. Our findings suggest that the AC and EC are functionally coupled during olfactory information processing, and that this functional linkage may allow the AC to integrate olfactory sensation with information retained or processed in the EC.
Collapse
Affiliation(s)
- Riichi Kajiwara
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | |
Collapse
|
103
|
Weber M, Hart J, Richardson R. Effects of d-cycloserine on extinction of learned fear to an olfactory cue. Neurobiol Learn Mem 2007; 87:476-82. [PMID: 17275356 DOI: 10.1016/j.nlm.2006.12.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/28/2006] [Accepted: 12/21/2006] [Indexed: 11/19/2022]
Abstract
D-cycloserine (DCS), a partial NMDA receptor agonist, facilitates extinction of learned fear in rats and has been used to treat anxiety disorders in clinical populations. However, research into the effects of DCS on extinction is still in its infancy, with visual cues being the primary fear-eliciting stimuli under investigation. In both human and animal subjects odors have been found to associate strongly with aversive events. Therefore, this study examined the generality of the effects of DCS on extinction by testing odor cues. Sprague-Dawley rats were conditioned and extinguished to an odor using varying parameters, injected with either saline or DCS (15 mg/kg) following extinction, and then tested for a freezing response 24 h later. Experiment 1 demonstrated that after 3 odor-shock pairings, rats did not display short-term extinction and DCS had no effect on long-term extinction. Experiment 2 demonstrated that after 3 odor-noise pairings, rats displayed significant short-term extinction and DCS significantly facilitated long-term extinction. Following 2 odor-shock pairings in Experiment 3, half the rats displayed short-term extinction ("extinguishers") and half did not ("non-extinguishers"). DCS facilitated long-term extinction in the "extinguishers" condition but not in the "non-extinguishers" condition. In Experiment 4, following 2 odor-shock pairings and an extra extinction session, DCS had a significant facilitatory effect on long-term extinction. Thus, extinction of freezing to an odor cue was facilitated by systemic injections of DCS, but only when some amount of within-session extinction occurred prior to injection.
Collapse
Affiliation(s)
- Marianne Weber
- School of Psychology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
104
|
Akins MR, Benson DL, Greer CA. Cadherin expression in the developing mouse olfactory system. J Comp Neurol 2007; 501:483-97. [PMID: 17278136 DOI: 10.1002/cne.21270] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although odor receptors have been implicated in establishing the topography of olfactory sensory neurons (OSNs) in the olfactory bulb (OB), it is likely other molecules are also involved. The cadherins (CDHs) are a large family of cell adhesion molecules that mediate cell:cell interactions elsewhere in the central nervous system. However, their distribution and role in the olfactory system have remained largely unexplored. We previously demonstrated that intracellular binding partners of cadherins, the catenins, have unique spatiotemporal patterns of expression in the developing olfactory system. To further our understanding of cadherin function within the developing olfactory system, we now report on the localization of 11 classical cadherins-CDH1, 2, 3, 4, 5, 6, 8, 10, 11, 13, and 15. We demonstrate the expression of all but CDH5 and CDH15 in neuronal and/or glial cells in primary olfactory structures. CDH1 and CDH2 are expressed by OSNs; CDH2 expression closely parallels that seen for gamma-catenin in OSN axons. CDH3 and CDH11 are expressed by olfactory ensheathing glia, which surround OSN axons in the outer OB. CDH2, CDH4, and CDH6 are expressed within neuropil. CDH2, CDH4, CDH6, CDH8, CDH10, CDH11, and CDH13 are expressed by projection neurons within the main and accessory OBs. We conclude that cadherin proteins in the developing olfactory system are positioned to underlie the formation of the odorant map and local circuits within the OB.
Collapse
Affiliation(s)
- Michael R Akins
- Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut 06520-8082, USA
| | | | | |
Collapse
|
105
|
Saar D, Dadon M, Leibovich M, Sharabani H, Grossman Y, Heldman E. Opposing effects on muscarinic acetylcholine receptors in the piriform cortex of odor-trained rats. Learn Mem 2007; 14:224-8. [PMID: 17353547 PMCID: PMC1838562 DOI: 10.1101/lm.452307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We combined pharmacological studies and electrophysiological recordings to investigate modifications in muscarinic acetylcholine (ACh) receptors (mAChR) in the rat olfactory (piriform) cortex, following odor-discrimination rule learning. Rats were trained to discriminate between positive and negative cues in pairs of odors, until they reached a phase of high capability to learn unfamiliar odors, using the same paradigm ("rule learning"). It has been reported that at 1-3 d after the acquisition of odor-discrimination rule learning, pyramidal neurons in the rat piriform cortex show enhanced excitability, due to a reduction in the spike-activated potassium current I(AHP), which is modulated by ACh. Further, ACh and its analog, carbachol (CCh), lost the ability to reduce the I(AHP) in neurons from trained rats. Here we show that the reduced sensitivity to CCh in the piriform cortex results from a decrease in the number of mAChRs, as well as a reduction in the affinity of the receptors to CCh. Also, it has been reported that 3-8 d after the acquisition of odor-discrimination rule learning, synaptic transmission in the piriform cortex is enhanced, and paired-pulse facilitation (PPF) in response to twin stimulations is reduced. Here, intracellular recordings from pyramidal neurons show that CCh increases PPF in the piriform cortex from odor-trained rats more than in control rats, suggesting enhanced effect of ACh in inhibiting presynaptic glutamate release after odor training.
Collapse
Affiliation(s)
- Drorit Saar
- Department of Physiology, Faculty for Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
106
|
Recio JS, Weruaga E, Gómez C, Valero J, Briñón JG, Alonso JR. Changes in the connections of the main olfactory bulb after mitral cell selective neurodegeneration. J Neurosci Res 2007; 85:2407-21. [PMID: 17551987 DOI: 10.1002/jnr.21387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The connections of the main olfactory bulb (OB) of the mouse were studied with iontophoretic injections of biotinylated dextran amine. To sort efferences from mitral cells and tufted cells, the Purkinje cell degeneration (PCD) mouse was used. This mutant animal undergoes a specific neurodegeneration of mitral cells, whereas tufted cells do not degenerate. The unilateral tracer injections used were small and confined largely to the OB of both PCD and control mice at P120. Seven days after tracer injection, the efferences from the OB and the centrifugal afferences from secondary olfactory structures to it were studied. Although there is a large overlap of their target fields, mitral cell axons innervated more caudal regions of the olfactory cortex than tufted cell axons, thus providing definitive evidence of the differential projections of olfactory output neurons. Additionally, an important increase in retrogradely-labeled neurons was detected in the ipsilateral anterior olfactory nucleus of the mutant animals. This was not observed in any other secondary olfactory structure, suggesting a strengthening of the centrifugal input to the OB from that central area after mitral cell loss. Moreover, we recorded a complete loss of bilaterality in the olfactory connections of the PCD mice due to degeneration of the anterior commissure. These results point to an important reorganization of this essential olfactory circuit between the anterior olfactory nucleus and the OB, and hint at a transsynaptic level of plasticity not considered previously in literature.
Collapse
Affiliation(s)
- Javier S Recio
- Department of Cell Biology and Pathology, Institute for Neuroscience of Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
107
|
Howe MW, Feig SL, Osting SM, Haberly LB. Cellular and subcellular localization of Kir2.1 subunits in neurons and glia in piriform cortex with implications for K+ spatial buffering. J Comp Neurol 2007; 506:877-93. [DOI: 10.1002/cne.21534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
108
|
Roth TL, Moriceau S, Sullivan RM. Opioid modulation of Fos protein expression and olfactory circuitry plays a pivotal role in what neonates remember. Learn Mem 2006; 13:590-8. [PMID: 17015856 PMCID: PMC1783613 DOI: 10.1101/lm.301206] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/18/2006] [Indexed: 01/02/2023]
Abstract
Paradoxically, fear conditioning (odor-0.5 mA shock) yields a learned odor preference in the neonate, presumably due to a unique learning and memory circuit that does not include apparent amygdala participation. Post-training opioid antagonism with naltrexone (NTX) blocks consolidation of this odor preference and instead yields memory of a learned odor aversion. Here we characterize the neural circuitry underlying this switch during memory consolidation. Experiment 1 assessed post-training opioid modulation of Fos protein expression within olfactory circuitry (olfactory bulb, piriform cortex, amygdala). Odor-shock conditioning with no post-training treatment (odor preference) induced significant changes in Fos protein expression in the granule cell layer of the olfactory bulb and anterior piriform cortex. Post-training opioid receptor antagonism (odor aversion) prevented the learning-induced changes in the anterior piriform cortex and also induced significant changes in Fos protein expression in the central nucleus of the amygdala. Experiment 2 assessed intra-amygdala opioid modulation of neonate memory consolidation. Post-training infusion of NTX within the amygdala permitted consolidation of an odor aversion, while vehicle-infused pups continued to demonstrate an odor preference. Overall, results demonstrate that opioids modulate memory consolidation in the neonate via modulating Fos protein expression in olfactory circuitry. Furthermore, these results suggest that opioids are instrumental in suppressing neonate fear behavior via modulating the amygdala.
Collapse
Affiliation(s)
- Tania L Roth
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | |
Collapse
|
109
|
O'Rourke H, Fudge JL. Distribution of serotonin transporter labeled fibers in amygdaloid subregions: implications for mood disorders. Biol Psychiatry 2006; 60:479-90. [PMID: 16414028 PMCID: PMC2424282 DOI: 10.1016/j.biopsych.2005.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 11/27/2022]
Abstract
BACKGROUND The serotonin transporter 5-HTT mediates responses to serotonin reuptake inhibitors (SSRIs), a mainstay treatment in mood disorders. The amygdala, a key emotional processing center, has functional abnormalities in mood disorders, which resolve following successful SSRI treatment. To better understand the effects of SSRIs in mood disorders, we examined the distribution of 5-HTT labeled fibers relative to specific nuclear groups in the amygdala. METHODS Immunocytochemical techniques were used to chart 5-HTT labeled fibers in the amygdala in coronal sections through the brain of six adult Macaques. Nissl staining was used to define nuclear groups in the amygdala. RESULTS The serotonin transporter 5-HTT is distributed heterogeneously in the primate amygdala, with the lateral subdivision of the central nucleus, intercalated cell islands, amygdalohippocampal area, and the paralaminar nucleus showing the heaviest concentrations. CONCLUSIONS 5HTT-labeled fibers are very densely concentrated in output regions of the amygdala. High concentrations of 5-HTT-positive fibers in the central nucleus indicate that tight regulation of serotonin is critical in modulating fear responses mediated by this nucleus. High concentrations of 5-HTT-labeled fibers in the intercalated islands and parvicellular basal nucleus/paralaminar nucleus, which contain immature -appearing neurons, suggest a potential trophic role for serotonin in these subregions.
Collapse
Affiliation(s)
- Howard O'Rourke
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
110
|
Schlifke I, Kuteeva E, Hokfelt T, Kokaia M. Galanin expressed in the excitatory fibers attenuates synaptic strength and generalized seizures in the piriform cortex of mice. Exp Neurol 2006; 200:398-406. [PMID: 16630615 DOI: 10.1016/j.expneurol.2006.02.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/17/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
The neuropeptide galanin is considered to be an endogenous antiepileptic agent, presumably acting via inhibition of glutamate release. Previously, we have demonstrated that in mice ectopically overexpressing galanin in cortical and hippocampal neurons, particularly in granule cells and their axons, the mossy fibers, hippocampal kindling epileptogenesis is suppressed and is associated with attenuated frequency facilitation in mossy fiber-CA3 cell synapses. We hypothesized that changes in synaptic transmission might occur also in other excitatory synapses of the galanin overexpressing (GalOE) mouse, contributing to seizure suppression. Lateral olfactory tract (LOT) synapses, formed by axons of olfactory bulb (OB) mitral cells and targeting piriform cortex (PC) pyramidal cells, ectopically express galanin in GalOE mice. Using whole-cell patch-clamp recordings, we found that excitatory synaptic responses recorded in PC pyramidal cells during high frequency stimulation of the LOT were attenuated in GalOE mice as compared to wild-type controls. This effect was mimicked by bath application of galanin or its agonist galnon to wild-type slices, supporting the notion of ectopic galanin action. Since the high frequency activation induced in vitro resembles epileptic seizures in vivo, we asked whether the observed synaptic inhibition would result in altered epileptogenesis when animals were kindled via the same synapses. In male GalOE mice, we found that the latency to convulsions was prolonged, and once animals had experienced the first stage 5 seizure, generalized seizures were less sustainable. These data indicate that the PC is a possible target for epilepsy treatment by ectopically overexpressing galanin to modulate seizure activity.
Collapse
Affiliation(s)
- Irene Schlifke
- Experimental Epilepsy Group, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, 221 84 Lund, Sweden
| | | | | | | |
Collapse
|
111
|
Moriceau S, Wilson DA, Levine S, Sullivan RM. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala. J Neurosci 2006; 26:6737-48. [PMID: 16793881 PMCID: PMC1574366 DOI: 10.1523/jneurosci.0499-06.2006] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rat pups must learn maternal odor to support attachment behaviors, including nursing and orientation toward the mother. Neonates have a sensitive period for rapid, robust odor learning characterized by increased ability to learn odor preferences and decreased ability to learn odor aversions. Specifically, odor-0.5 mA shock association paradoxically causes an odor preference and coincident failure of amygdala activation in pups until postnatal day 10 (P10). Because sensitive-period termination coincides with a declining "stress hyporesponsive period" when corticosterone release is attenuated, we explored the role of corticosterone in sensitive-period termination. Odor was paired with 0.5 mA shock in either sensitive-period (P8) or postsensitive-period (P12) pups while manipulating corticosterone. We then assessed preference/aversion learning and the olfactory neural circuitry underlying its acquisition. Although sensitive-period control paired odor-shock pups learned an odor preference without amygdala participation, systemic (3 mg/kg, i.p.; 24 h and 30 min before training) or intra-amygdala corticosterone (50 or 100 ng; during training) permitted precocious odor-aversion learning and evoked amygdala neural activity similar to that expressed by older pups. In postsensitive-period (P12) pups, control paired odor-shock pups showed an odor aversion and amygdala activation, whereas corticosterone-depleted (adrenalectomized) paired odor-shock pups showed odor-preference learning and activation of an odor learning circuit characteristic of the sensitive period. Intra-amygdala corticosterone receptor antagonist (0.3 ng; during training) infused into postsensitive-period (P12) paired odor-shock pups also showed odor-preference learning. These results suggest corticosterone is important in sensitive-period termination and developmental emergence of olfactory fear conditioning, acting via the amygdala as a switch between fear and attraction. Because maternal stimulation of pups modulates the pups' endogenous corticosterone, this suggests maternal care quality may alter sensitive-period duration.
Collapse
Affiliation(s)
- Stephanie Moriceau
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | |
Collapse
|
112
|
Febo M, Numan M, Ferris CF. Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. J Neurosci 2006; 25:11637-44. [PMID: 16354922 PMCID: PMC6726012 DOI: 10.1523/jneurosci.3604-05.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxytocin is released in the maternal brain during breastfeeding and may help strengthen the mother-infant relationship. Here, we used functional magnetic resonance imaging to determine whether oxytocin modulates brain activity in postpartum day 4-8 dams receiving suckling stimulation. During imaging sessions, dams were exposed to pup suckling before and after administration of an oxytocin receptor antagonist. Another group of dams received oxytocin alone. Changes in brain activation in response to suckling closely matched that elicited by oxytocin administration. The overlapping brain areas included the olfactory system, nucleus accumbens, insular cortex, prefrontal cortex, ventral tegmental area, cortical amygdala, and several cortical and hypothalamic nuclei. Blockade of oxytocin receptors largely attenuated activation in these regions. The data suggest that oxytocin may strengthen mother-infant bond formation partly by acting through brain areas involved in regulating olfactory discrimination, emotions, and reward.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
113
|
Ramos-Moreno T, Galazo MJ, Porrero C, Martínez-Cerdeño V, Clascá F. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain. Eur J Neurosci 2006; 23:401-22. [PMID: 16420448 DOI: 10.1111/j.1460-9568.2005.04567.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reelin, a large extracellular matrix glycoprotein, is secreted by several neuron populations in the developing and adult rodent brain. Secreted Reelin triggers a complex signaling pathway by binding lipoprotein and integrin membrane receptors in target cells. Reelin signaling regulates migration and dendritic growth in developing neurons, while it can modulate synaptic plasticity in adult neurons. To identify which adult neural circuits can be modulated by Reelin-mediated signaling, we systematically mapped the distribution of Reelin in adult rat brain using sensitive immunolabeling techniques. Results show that the distribution of intracellular and secreted Reelin is both very widespread and specific. Some interneuron and projection neuron populations in the cerebral cortex contain Reelin. Numerous striatal neurons are weakly immunoreactive for Reelin and these cells are preferentially located in striosomes. Some thalamic nuclei contain Reelin-immunoreactive cells. Double-immunolabeling for GABA and Reelin reveals that the Reelin-immunoreactive cells in the visual thalamus are the intrinsic thalamic interneurons. High local concentrations of extracellular Reelin selectively outline several dendrite spine-rich neuropils. Together with previous mRNA data, our observations suggest abundant axoplasmic transport and secretion in pathways such as the retino-collicular tract, the entorhino-hippocampal ('perforant') path, the lateral olfactory tract or the parallel fiber system of the cerebellum. A preferential secretion of Reelin in these neuropils is consistent with reports of rapid, activity-induced structural changes in adult brain circuits.
Collapse
Affiliation(s)
- Tania Ramos-Moreno
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University, Ave. Arzobispo Morcillo s/n., Madrid 28029, Spain
| | | | | | | | | |
Collapse
|
114
|
Whalley BJ, Constanti A. Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility. Neuroscience 2006; 140:939-56. [PMID: 16616427 DOI: 10.1016/j.neuroscience.2006.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Aging/physiology
- Animals
- Animals, Newborn
- Causality
- Epilepsy/physiopathology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Female
- Male
- Muscarinic Agonists/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Olfactory Pathways/cytology
- Olfactory Pathways/growth & development
- Organ Culture Techniques
- Oxotremorine/pharmacology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor, Muscarinic M1/agonists
- Receptor, Muscarinic M1/metabolism
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- B J Whalley
- Department of Pharmacology, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
115
|
Swanson LW. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol 2006; 493:122-31. [PMID: 16254987 DOI: 10.1002/cne.20733] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the principles of cerebral hemisphere neural network organization is essential for understanding the biological foundations of cognition and affect-thinking and feeling. A tripartite model of cerebral structure-function organization is reviewed, with attention focused on a behavior control system differentiation that mediates voluntary influences on three fundamental classes of goal-oriented behavior common to all animals. The model postulates just three cerebral divisions, one cortical and two nuclear (lateral or striatal, and medial or pallidal), that together generate a triple descending projection to the brainstem/cord motor system. This minimal circuit element is topographically organized and regionally differentiated, with the map of cortical areas serving as a basic starting point. Virtually all of the cerebral hemisphere projects on the upper brainstem behavior control column, atop the motor system hierarchy. The latter's rostral segment helps control ingestive (eating and drinking), defensive (fight or flight), and reproductive (sexual and parental) motivated behaviors, whereas its caudal segment helps control foraging or exploratory behavior to obtain or avoid specific goal objects associated with all classes of motivated behavior.
Collapse
Affiliation(s)
- Larry W Swanson
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.
| |
Collapse
|
116
|
Ashwell KWS, Phillips JM. The anterior olfactory nucleus and piriform cortex of the echidna and platypus. BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:203-27. [PMID: 16493195 DOI: 10.1159/000091653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 11/17/2005] [Indexed: 11/19/2022]
Abstract
The cyto- and chemoarchitecture of the anterior olfactory nucleus and piriform cortex of the short-beaked echidna and platypus were studied to determine: (1) if these areas contain chemically distinct subdivisions, and (2) if the chemoarchitecture of those cortical olfactory regions differs from therians. Nissl and myelin staining were applied in conjunction with enzyme reactivity for NADPH diaphorase and acetylcholinesterase, and immunoreactivity for calcium-binding proteins (parvalbumin, calbindin and calretinin) and tyrosine hydroxylase. Golgi impregnations were also available for the echidna. In the echidna, the anterior olfactory nucleus is negligible in extent and merges at very rostral levels with a four-layered piriform cortex. Several rostrocaudally running subregions of the echidna piriform lobe could be identified on the basis of Nissl staining and calcium-binding protein immunoreactivity. Laminar-specific differences in calcium-binding protein immunoreactivity and NADPH-d-reactive neuron distribution were also noted. Neuron types identified in echidna piriform cortex included pyramidal neurons predominating in layers II and III and non-pyramidal neurons (e.g., multipolar profusely spiny and neurogliaform cells) in deeper layers. Horizontal cells were identified in both superficial and deep layers. By contrast, the platypus had a distinct anterior olfactory nucleus and a three-layered piriform cortex with no evidence of chemically distinct subregions within the piriform cortex. Volume of the paleocortex of the echidna was comparable to prosimians of similar body weight and, in absolute volume, exceeded that for eutherian insectivores such as T. ecaudatus and E. europaeus. The piriform cortex of the echidna shows evidence of regional differentiation, which in turn suggests highly specialized olfactory function.
Collapse
Affiliation(s)
- Ken W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, New South Wales, Sydney, Australia.
| | | |
Collapse
|
117
|
Martinez-Marcos A, Halpern M. Efferent connections of the main olfactory bulb in the opossum (Monodelphis domestica): A characterization of the olfactory entorhinal cortex in a marsupial. Neurosci Lett 2006; 395:51-6. [PMID: 16298058 DOI: 10.1016/j.neulet.2005.10.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/19/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
Olfactory projections have been investigated for decades, but few reports using modern, sensitive neural tracers are available. In marsupials, only lesion-degeneration studies exist and they are restricted to the genera Didelphis and Trichosurus. Some of the territories described as olfactory-recipient such as the upper portion of the rhinal fissure and the vomeronasal amygdala are, however, controversial. Also, the characterization of the olfactory portion of the entorhinal cortex is far from clear in acallosal mammals. The present report investigates, using biotinylated dextran-amine, the olfactory connections in the short-tailed opossum (Monodelphis domestica) and characterizes the olfactory portion of the entorhinal cortex in non-placental mammals. The data indicate that olfactory projections do not reach the upper portion of the rhinal fissure, but partially end in the vomeronasal amygdala, i.e., the medial and posteromedial cortical amygdaloid nuclei; thus, although olfactory and vomeronasal system have largely segregated outputs, areas of overlap should be restudied. The olfactory portion of the entorhinal cortex is much larger than previously described, extending up to the occipital pole of the cerebral hemisphere. Collectively, these data contribute to our understanding of the organization of the hippocampal formation in marsupials.
Collapse
Affiliation(s)
- Alino Martinez-Marcos
- Departamento de Ciencias Médicas, Facultad de Medicina, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avda. Almansa 14, 02006 Albacete, Spain.
| | | |
Collapse
|
118
|
Abstract
The past 15 years have seen significant advances in the study of olfaction, with particular emphasis on elucidating the molecular building blocks of the sensory process. However, much of the systems-level organization of olfaction remains unexplored. Here, we provide an overview at this level, highlighting results obtained from studying humans, whom we think provide an underutilized, yet critical, animal model for olfaction.
Collapse
Affiliation(s)
- Christina Zelano
- Program in Biophysics, University of California, Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|
119
|
Sánchez-Andrade G, James BM, Kendrick KM. Neural encoding of olfactory recognition memory. J Reprod Dev 2006; 51:547-58. [PMID: 16284449 DOI: 10.1262/jrd.17031] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our work with both sheep and mouse models has revealed many of the neural substrates and signalling pathways involved in olfactory recognition memory in the main olfactory system. A distributed neural system is required for initial memory formation and its short-term retention-the olfactory bulb, piriform and entorhinal cortices and hippocampus. Following memory consolidation, after 8 h or so, only the olfactory bulb and piriform cortex appear to be important for effective recall. Similarly, whereas the glutamate-NMDA/AMPA receptor-nitric oxide (NO)-cyclic GMP signalling pathway is important for memory formation it is not involved in recall post-consolidation. Here, within the olfactory bulb, up-regulation of class 1 metabotropic glutamate receptors appears to maintain the enhanced sensitivity at the mitral to granule cell synapses required for effective memory recall. Recently we have investigated whether fluctuating sex hormone levels during the oestrous cycle modulate olfactory recognition memory and the different neural substrates and signalling pathways involved. These studies have used two robust models of social olfactory memory in the mouse which either involve social or non social odours (habituation-dishabituation and social transmission of food preference tasks). In both cases significant improvement of learning retention occurs when original learning takes place during the proestrus phase of the ovarian cycle. This is probably the result of oestrogen changes at this time since transgenic mice lacking functional expression of oestrogen receptors (ERalpha and ERbeta, the two main oestrogen receptor sub-types) have shown problems in social recognition. Therefore, oestrogen appears to act at the level of the olfactory bulb by modulating both noradrenaline and the glutamate/NO signalling pathway.
Collapse
|
120
|
Mouly AM, Di Scala G. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat. Neuroscience 2005; 137:1131-41. [PMID: 16325349 DOI: 10.1016/j.neuroscience.2005.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 09/28/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
The rodent olfactory bulb sends direct projections to the piriform cortex and to two structures intimately implicated in memory processes, the entorhinal cortex and the amygdala. The piriform cortex has monosynaptic projections with the amygdala and the piriform cortex and is therefore in a position to modulate olfactory input either directly in the piriform cortex, or via the amygdala. In order to investigate this hypothesis, field potential signals induced in anesthetized rats by electrical stimulation of the olfactory bulb or the entorhinal cortex were recorded simultaneously in the piriform cortex (anterior part and posterior part) and the amygdala (basolateral nucleus and cortical nucleus). Single-site paired-pulse stimulation was used to assess the time courses of short-term inhibition and facilitation in each recording site in response to electrical stimulation of the olfactory bulb and entorhinal cortex. Paired-pulse stimulation of the olfactory bulb induced homosynaptic inhibition for short interpulse interpulse intervals (20-30 ms) in all the recording sites, with a significantly lower degree of inhibition in the anterior piriform cortex than in the other structures. At longer intervals (40-80 ms), paired-pulse facilitation was observed in all the structures. Paired-pulse stimulation of the entorhinal cortex mainly resulted in inhibition for the shortest interval duration (20 ms) in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. Double-site paired-pulse stimulation was then applied to determine if stimulation of the entorhinal cortex can modulate responses to olfactory bulb stimulation. For short interpulse intervals (20 ms) heterosynaptic inhibition was observed in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. The level of inhibition was greater in the basolateral nucleus than in the other structures. Taken together these data suggest that the entorhinal cortex exerts a main inhibitory effect on the olfactory input via the amygdala basolateral nucleus and to a lesser extent the piriform cortex. The potential role of these effects on the processing of olfactory information is discussed.
Collapse
Affiliation(s)
- A-M Mouly
- Institut des Sciences Cognitives, UMR 5015, Centre National de la Recherche Scientifique, Université Lyon 1, 67 Boulevard Pinel, 69675 Bron Cédex, France.
| | | |
Collapse
|
121
|
Brunjes PC, Illig KR, Meyer EA. A field guide to the anterior olfactory nucleus (cortex). ACTA ACUST UNITED AC 2005; 50:305-35. [PMID: 16229895 DOI: 10.1016/j.brainresrev.2005.08.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 02/05/2023]
Abstract
While portions of the mammalian olfactory system have been studied extensively, the anterior olfactory nucleus (AON) has been relatively ignored. Furthermore, the existing research is dispersed and obscured by many different nomenclatures and approaches. The present review collects and assembles the relatively sparse literature regarding the portion of the brain situated between the olfactory bulb and primary olfactory (piriform) cortex. Included is an overview of the area's organization, the functional, morphological and neurochemical characteristics of its cells and a comprehensive appraisal of its efferent and afferent fiber systems. Available evidence suggests the existence of subdivisions within the AON and demonstrates that the structure influences ongoing activity in many other olfactory areas. We conclude with a discussion of the AON's mysterious but complex role in olfactory information processing.
Collapse
Affiliation(s)
- Peter C Brunjes
- Department of Psychology, University of Virginia, 102 Gilmer Hall PO Box 400400, Charlottesville, VA 22904-4400, USA
| | | | | |
Collapse
|
122
|
Gottfried JA, Zald DH. On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. ACTA ACUST UNITED AC 2005; 50:287-304. [PMID: 16213593 DOI: 10.1016/j.brainresrev.2005.08.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
It is widely accepted that the orbitofrontal cortex (OFC) represents the main neocortical target of primary olfactory cortex. In non-human primates, the olfactory neocortex is situated along the basal surface of the caudal frontal lobes, encompassing agranular and dysgranular OFC medially and agranular insula laterally, where this latter structure wraps onto the posterior orbital surface. Direct afferent inputs arrive from most primary olfactory areas, including piriform cortex, amygdala, and entorhinal cortex, in the absence of an obligatory thalamic relay. While such findings are almost exclusively derived from animal data, recent cytoarchitectonic studies indicate a close anatomical correspondence between non-human primate and human OFC. Given this cross-species conservation of structure, it has generally been presumed that the olfactory projection area in human OFC occupies the same posterior portions of OFC as seen in non-human primates. This review questions this assumption by providing a critical survey of the localization of primate and human olfactory neocortex. Based on a meta-analysis of human functional neuroimaging studies, the region of human OFC showing the greatest olfactory responsivity appears substantially rostral and in a different cytoarchitectural area than the orbital olfactory regions as defined in the monkey. While this anatomical discrepancy may principally arise from methodological differences across species, these results have implications for the interpretation of prior human lesion and neuroimaging studies and suggest constraints upon functional extrapolations from animal data.
Collapse
Affiliation(s)
- Jay A Gottfried
- Department of Neurology and the Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 11-453, Chicago, IL 60611, USA.
| | | |
Collapse
|
123
|
Knafo S, Libersat F, Barkai E. Dynamics of learning-induced spine redistribution along dendrites of pyramidal neurons in rats. Eur J Neurosci 2005; 21:927-35. [PMID: 15787699 DOI: 10.1111/j.1460-9568.2005.03936.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that olfactory-discrimination (OD) learning is accompanied by enhanced spine density along proximal apical dendrites of layer II pyramidal neurons in the piriform (olfactory) cortex. Here we studied the temporal dynamics of learning-induced modifications in dendritic spine density throughout the dendritic trees of these neurons. We observed a transient increase in proximal apical spine density after OD learning, suggesting a strengthening of intrinsic excitatory inputs interconnecting neurons within the olfactory cortex. By contrast, the afferent pathway receiving direct input from the olfactory bulb shows spine pruning, suggesting that the connectivity is weakened. The changes in spine density can be attributed to a net change in number of spines, as the morphometric parameters of the dendrites are unaffected by learning. We suggest that spine density changes may represent a mechanism of selective synaptic reorganization required for olfactory learning consolidation.
Collapse
Affiliation(s)
- Shira Knafo
- Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University, Geersheva, Israel
| | | | | |
Collapse
|
124
|
ul Quraish A, Yang J, Murakami K, Oda S, Takayanagi M, Kimura A, Kakuta S, Kishi K. Quantitative analysis of axon collaterals of single superficial pyramidal cells in layer IIb of the piriform cortex of the guinea pig. Brain Res 2005; 1026:84-94. [PMID: 15476700 DOI: 10.1016/j.brainres.2004.07.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2004] [Indexed: 11/24/2022]
Abstract
To understand the functional organization of the piriform cortex (PC), the axon collaterals of three pyramidal cells in layer IIb of the anterior PC and one pyramidal cell in layer IIb of the posterior PC were labeled and quantitatively analyzed by intracellular biocytin injection in the guinea pig. Single pyramidal cells in the anterior and posterior PCs have widely distributed axon collaterals, which exhibit little tendency for patchy concentrations inside as well as outside the PC. The total lengths of the axon collaterals of the three fully analyzed pyramidal cells ranged from 68 to 156 mm, more than 50% of which were distributed in the PC. The total number of boutons of the three cells ranged from 6000 to 14,000, 5000-7000 of which were distributed in the PC. It was estimated that individual pyramidal cells in layer IIb form synaptic contacts with 2200 to 3000 other pyramidal cells in the PC, indicating that single pyramidal cells in layer IIb receive input from a large number of other pyramidal cells. This high connectivity of the network of pyramidal cells in the PC can be regarded as the neural network operating parallel distributed processing, which may play an important role in experience-induced enhancement in odorant discrimination in the PC.
Collapse
Affiliation(s)
- Afraz ul Quraish
- First Department of Anatomy, Toho University School of Medicine, Omori-nishi 5-21-16, Ota-ku, Tokyo 143-8540, Japan
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Yap CSL, Stapinski L, Richardson R. Behavioral expression of learned fear: Updating of early memories. Behav Neurosci 2005; 119:1467-76. [PMID: 16420151 DOI: 10.1037/0735-7044.119.6.1467] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of learned fear emerges in a response-specific sequence where freezing occurs before fear potentiated startle (FPS) to an odor conditioned stimulus (CS; Postnatal Day [PN] 16 vs. PN 23; e.g., Hunt, 1997; Richardson, Paxinos, & Lee, 2000). Studies have shown that learned fear is expressed in a manner appropriate to the animal's age at training and not its age at test (Richardson & Fan, 2002; Richardson et al., 2000). Specifically, animals trained with an odor CS at PN 16 exhibit avoidance but not FPS when tested at PN 23. The present study shows that subsequent training with a different CS can "update" an early memory, allowing it to be expressed in a manner appropriate to the animal's age at test. This updating effect appears to be modality specific, whereby the subsequent training must involve a CS of the same sensory modality as the original training.
Collapse
Affiliation(s)
- Carol S L Yap
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
126
|
Yamamoto K, Reiner A. Distribution of the limbic system-associated membrane protein (LAMP) in pigeon forebrain and midbrain. J Comp Neurol 2005; 486:221-42. [PMID: 15844168 DOI: 10.1002/cne.20562] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The limbic system-associated membrane protein (LAMP) is an adhesion molecule involved in specifying regional identity during development, and it is enriched in the neuropil of limbic brain regions in mammals but also found in some somatic structures. Although originally identified in rat, LAMP is present in diverse species, including avians. In this study, we used immunolabeling with a monoclonal antibody against rat LAMP to examine the distribution of LAMP in pigeon forebrain and midbrain. LAMP immunolabeling was prominent in many telencephalic regions previously noted as limbic in birds. These regions include the hippocampal complex, the medial nidopallium, and the ventromedial arcopallium. Subpallial targets of these pallial regions were also enriched in LAMP, such as the medial-most medial striatum. Whereas some telencephalic areas that have not been regarded as limbic were also LAMP-rich (e.g., the hyperpallium intercalatum and densocellulare of the Wulst, the mesopallium, and the intrapeduncular nucleus), most nonlimbic telencephalic areas were LAMP-poor (e.g., field L, the lateral nidopallium, and somatic basal ganglia). Similarly, in the diencephalon and midbrain, prominent LAMP labeling was observed in such limbic areas as the dorsomedial thalamus, the hypothalamus, the ventral tegmental area, and the central midbrain gray, as well as in a few nonlimbic areas such as nucleus rotundus, the shell of the nucleus pretectalis, the superficial tectum, and the parvocellular isthmic nucleus. Thus, as in mammals, LAMP in birds appears to be enriched in most known forebrain and midbrain limbic structures but is present as well in some somatic structures.
Collapse
Affiliation(s)
- Kei Yamamoto
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
127
|
Perlman WR, Webster MJ, Kleinman JE, Weickert CS. Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness. Biol Psychiatry 2004; 56:844-52. [PMID: 15576061 DOI: 10.1016/j.biopsych.2004.09.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 09/07/2004] [Accepted: 09/08/2004] [Indexed: 11/15/2022]
Abstract
BACKGROUND The amygdala is a limbic structure involved in the stress response and the regulation of emotional behaviors, both of which are disrupted in patients with neuropsychiatric illnesses. Because glucocorticoids are mediators of the stress response, we hypothesized that glucocorticoid receptor (GR) messenger ribonucleic acid (mRNA) levels might be altered in the amygdala. We also hypothesized that estrogen receptor alpha (ERalpha) mRNA expression might be altered in the amygdala, on the basis of observed gender differences in mental illness. METHODS Using quantitative film autoradiography after in situ hybridization with human GR and ERalpha probes, we measured mRNA levels on adjacent amygdala sections in four groups (n = 15 each of subjects with schizophrenia, major depressive disorder, and bipolar disorder, and unaffected control subjects) provided by the Stanley Consortium. RESULTS We detected main effects of diagnosis and exposure to antidepressant medication on the levels of both mRNAs but no main effect of gender. Compared with control subjects, GR mRNA expression was reduced in the basolateral/lateral nuclei in schizophrenia and bipolar disorder. Estrogen receptor alpha mRNA levels were reduced in the basomedial nucleus in major depressive disorder and bipolar disorder. CONCLUSIONS Our results support and extend previous findings describing a pattern of steroid hormone mRNA alterations that differs depending on which brain region is being examined in a given mental illness.
Collapse
Affiliation(s)
- William R Perlman
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
128
|
Sevelinges Y, Gervais R, Messaoudi B, Granjon L, Mouly AM. Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala. Learn Mem 2004; 11:761-9. [PMID: 15537739 PMCID: PMC534705 DOI: 10.1101/lm.83604] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of plasticity in the olfactory pathway. Training consisted of a single training session including six pairings of an odor CS with a mild foot-shock unconditioned stimulus (US). Twenty-four hours later, the animals were tested for retention of the CS as assessed by the amount of freezing exhibited in the presence of the learned odor. Behavioral data showed that trained animals exhibited a significantly higher level of freezing in response to the CS than control animals. In the same animals, EFPs were recorded in parallel in the anterior piriform cortex (aPC), posterior piriform cortex (pPC), cortical nucleus of the amygdala (CoA), and basolateral nucleus of the amygdala (BLA) following electrical stimulation of the olfactory bulb. Specifically, EFPs recorded before (baseline) and after (during the retention test) training revealed that trained animals exhibited a lasting increase (present before and during presentation of the CS) in EFP amplitude in CoA, which is the first amygdaloid target of olfactory information. In addition, a transient increase was observed in pPC and BLA during presentation of the CS. These data indicate that the olfactory and auditory fear-conditioning neural networks have both similarities and differences, and suggest that the fear-related behaviors in each sensory system may have at least some distinct characteristics.
Collapse
Affiliation(s)
- Yannick Sevelinges
- Institut des Sciences Cognitives, Unité Mixte de Recherche (UMR) 5015, Centre National de la Recherche Scientifique--Université Lyon 1, France
| | | | | | | | | |
Collapse
|
129
|
Santiago AC, Shammah-Lagnado SJ. Efferent connections of the nucleus of the lateral olfactory tract in the rat. J Comp Neurol 2004; 471:314-32. [PMID: 14991564 DOI: 10.1002/cne.20028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The efferent connections of the nucleus of the lateral olfactory tract (LOT) were examined in the rat with the Phaseolus vulgaris leucoagglutinin (PHA-L) technique. Our observations reveal that layers II and III of LOT have largely segregated outputs. Layer II projects chiefly ipsilaterally to the olfactory bulb and anterior olfactory nucleus, bilaterally to the anterior piriform cortex, dwarf cell cap regions of the olfactory tubercle and lateral shell of the accumbens, and contralaterally to the lateral part of the interstitial nucleus of the posterior limb of the anterior commissure. Layer III sends strong bilateral projections to the rostral basolateral amygdaloid complex, which are topographically organized, and provides bilateral inputs to the core of the accumbens, caudate-putamen, and agranular insular cortex (dorsal and posterior divisions). Layer II projects also to itself and to layers I and II of the contralateral LOT, whereas layer III projects to itself, to ipsilateral layer II, and to contralateral layer III of LOT. In double retrograde labeling experiments using Fluorogold and cholera toxin subunit b tracers, LOT neurons from layers II and III were found to provide collateral projections to homonymous structures on both sides of the brain. Unlike other parts of the olfactory amygdala, LOT neither projects directly to the extended amygdala nor to the hypothalamus. Thus, LOT seemingly influences nonpheromonal olfactory-guided behaviors, especially feeding, by acting on the olfactory bulb and on ventral striatal and basolateral amygdaloid districts that are tightly linked to lateral prefrontal cortical operations.
Collapse
Affiliation(s)
- Adriana C Santiago
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | |
Collapse
|
130
|
Sugitani M, Sugai T, Onoda N. Postsynaptic metabotropic glutamate receptor mGluR1 mediates the late component of signal propagation in the guinea pig piriform cortex: optical imaging study. Neurosci Lett 2004; 356:29-32. [PMID: 14746894 DOI: 10.1016/j.neulet.2003.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) were previously shown to mediate a postsynaptic late propagation component elicited by layer Ib stimulation in guinea pig piriform cortex slices. In the present study, the effects of some group specific or subtype specific mGluR antagonists on the late propagation component were investigated using an optical imaging method, in order to identify mGluR subtypes mediating it. A selective mGluR1 antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid most effectively suppressed the late component whereas a selective mGluR5 antagonist, selective group II or group III antagonists showed little or no suppressive effect. These results suggest that the late propagation component is mediated by mGluR1.
Collapse
Affiliation(s)
- Michio Sugitani
- Department of Physiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | | | | |
Collapse
|
131
|
Hassiotis M, Paxinos G, Ashwell KWS. Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. Areal organization. J Comp Neurol 2004; 475:493-517. [PMID: 15236232 DOI: 10.1002/cne.20193] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have examined the topography of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, and nonphosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase (AChE) and NADPH diaphorase. Myelinated fibers terminating in layer IV of the cortex were abundant in the primary sensory cortical areas (areas S1, R, and PV of somatosensory cortex; primary visual cortex) as well as the frontal cortex. Parvalbumin immunoreactivity was particularly intense in the neuropil and somata of somatosensory regions (S1, R, and PV areas) but was poor in motor cortex. Immunoreactivity with the SMI-32 antibody was largely confined to a single sublayer of layer V pyramidal neurons in discrete subregions of the somatosensory, visual, and auditory cortices, as well as a large field in the frontal cortex (Fr1). Surprisingly, SMI-32 neurons were absent from the motor cortex. In AChE preparations, S1, R, V1, and A regions displayed intense reactivity in supragranular layers. Our findings indicate that there is substantial regional differentiation in the expanded frontal cortex of this monotreme. Although we agree with many of the boundaries identified by previous authors in this unusual mammal (Abbie [1940] J. Comp. Neurol. 72:429-467), we present an updated nomenclature for cortical areas that more accurately reflects findings from functional and chemoarchitectural studies.
Collapse
Affiliation(s)
- Maria Hassiotis
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, New South Wales 2052, Australia
| | | | | |
Collapse
|
132
|
Weber M, Richardson R. Pretraining Inactivation of the Caudal Pontine Reticular Nucleus Impairs the Acquisition of Conditioned Fear-Potentiated Startle to an Odor, but Not a Light. Behav Neurosci 2004; 118:965-74. [PMID: 15506879 DOI: 10.1037/0735-7044.118.5.965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent data from developing rats suggest that structures downstream from the amygdala are involved in the acquisition of conditioned fear-potentiated startle (FPS). The authors tested this idea in adult rats by temporarily inactivating the structure critical for FPS, the caudal pontine reticular nucleus (PnC), during fear conditioning. When the conditioned stimulus (CS) was an odor, rats displayed freezing, but not FPS, at test. This effect was not due to a decrease in footshock sensitivity. Further, no savings were evident on retraining. When the CS was a light, inactivation of the PnC had no effect on the acquisition of FPS. Thus, the PnC may be crucial for the acquisition of conditioned FPS to an odor, but not a light.
Collapse
Affiliation(s)
- Marianne Weber
- School of Psychology, University of New South Wales, Sydney, 2052, NSW, Australia
| | | |
Collapse
|
133
|
Yamatani H, Sato Y, Fujisawa H, Hirata T. Chronotopic organization of olfactory bulb axons in the lateral olfactory tract. J Comp Neurol 2004; 475:247-60. [PMID: 15211465 DOI: 10.1002/cne.20155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The arrangement of axons in a tract can have a specific effect on the organization of functional neuronal circuits. Here we describe olfactory bulb axons chronologically arranged in the lateral olfactory tract. Newly differentiated projection neurons over the whole olfactory bulb are similarly marked with transient expression of c-kit protein. Their axons are assembled together and project into the ventral superficial part of the tract, displacing the older axons. This special assembly of the axons explains the nontopographic relationships between the olfactory bulb and the lateral olfactory tract axons that have been described in previous studies and could possibly influence the subsequent selection of the olfactory target areas by these axons.
Collapse
Affiliation(s)
- Hitoshi Yamatani
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies, Yata 1111, Mishima 411-8540, Japan
| | | | | | | |
Collapse
|
134
|
Nacher J, Pham K, Gil-Fernandez V, McEwen BS. Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience 2004; 126:503-9. [PMID: 15207367 DOI: 10.1016/j.neuroscience.2004.03.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 11/18/2022]
Abstract
Stress and stress-related hormones induce structural changes in neurons of the adult CNS. Neurons in the hippocampus, the amygdala and the prefrontal cortex undergo neurite remodeling after chronic stress. In the hippocampus some of these effects can be mimicked with chronic administration of adrenal steroids. These changes in neuronal structure may be mediated by certain molecules related to plastic events such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of PSA-NCAM persists in the adult hippocampus and it is up-regulated after chronic stress. The piriform cortex also displays considerable levels of PSA-NCAM during adulthood and indirect evidence suggests that it may also be the target of stress and stress related-hormones. Using immunohistochemistry we have studied the expression of PSA-NCAM and doublecortin (DCX; another protein implicated in neuronal structural plasticity) in the piriform cortex of adult rats subjected either to 21 days of chronic restraint stress or to oral corticosterone administration during the same period. Our results indicate that chronic stress and chronic corticosterone administration have differential effects on the expression of PSA-NCAM and DCX. While chronic stress increases the number of PSA-NCAM- and DCX-immunoreactive cells in the piriform cortex layer II, chronic corticosterone administration decreases these numbers. These findings indicate that stress and adrenal steroids affect the piriform cortex and suggest that in this region, as in the hippocampus, they may induce structural changes. This is a potential mechanism by which stress and corticosterone modulate functions of this limbic region, such as its participation in olfactory memory.
Collapse
Affiliation(s)
- J Nacher
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
135
|
Yang J, Ul Quraish A, Murakami K, Ishikawa Y, Takayanagi M, Kakuta S, Kishi K. Quantitative analysis of axon collaterals of single neurons in layer IIa of the piriform cortex of the guinea pig. J Comp Neurol 2004; 473:30-42. [PMID: 15067716 DOI: 10.1002/cne.20104] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To study the various types of neurons in layer IIa in the piriform cortex (PC) and the spatial distribution of their axons, axon collaterals of three neurons in layer IIa were labeled and quantitatively analyzed by intracellular injection of biocytin in the guinea pig. Individual neurons have highly distributed axon collaterals, which display a little tendency toward patchy concentrations inside as well as outside the PC. One semilunar cell in the posterior PC had 54-mm-long axon collaterals and 4,200 boutons, out of which 2,100 (49% of the total number of boutons) were distributed in the PC. One semilunar-pyramidal transitional cell in the posterior PC had 256-mm-long axon collaterals and 23,000 boutons, out of which 16,100 (70% of the total number of boutons) and 4,000 (18% of the total number of boutons) were respectively distributed in all layers and in layer Ia of the PC. One multipolar cell in the posterior PC had 188-mm-long axon collaterals and 18,000 boutons, out of which 13,700 (78% of the total number of boutons) were distributed in the PC. Our results revealed that the connection patterns of individual cells in layer IIa have most of the features required for an associative neural network, which may function as a content-addressable memory for the association of odor stimuli.
Collapse
Affiliation(s)
- Junli Yang
- First Department of Anatomy, Toho University School of Medicine, Ota-ku, Tokyo 143-8540, Japan
| | | | | | | | | | | | | |
Collapse
|
136
|
Chen S, Murakami K, Oda S, Kishi K. Quantitative analysis of axon collaterals of single cells in layer III of the piriform cortex of the guinea pig. J Comp Neurol 2003; 465:455-65. [PMID: 12966568 DOI: 10.1002/cne.10844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent physiological and morphological studies suggest that the piriform cortex (PC) functions like the association areas of the neocortex rather than the typical primary sensory area as was previously assumed. The axon connection patterns of single cells are important for understanding the functional organization of the PC. The axon collaterals of three single pyramidal cells and one spiny multipolar cell in layer III of the PC were labeled and quantitatively analyzed by intracellular injections of biocytin in guinea pigs. The individual pyramidal and spiny multipolar cells have highly distributed axon collaterals, which display little tendency for patchy concentrations, within the PC and multiple higher order behavior/reward/contextual-related areas, such as the prefrontal cortex, amygdaloid nuclei, and entorhinal cortex. For the pyramidal cells, the average length of axonal collaterals is 143 mm; the average number of boutons is 12,930. For the spiny multipolar cell, the length of the axonal collaterals is 88 mm; the number of boutons is 7,052. The pyramidal cells in the anterior subdivision of the PC (APC) have both rostrally and caudally directed intrinsic association fibers, whereas the pyramidal and spiny multipolar cells in the posterior subdivision (PPC) have predominantly caudally directed intrinsic association fibers in the PC. Our results reveal that the connection patterns of single cells in layer III resemble those of pyramidal cells in layer II, suggesting that the PC performs correlative functions analogous to those in the association area of other sensory systems. The rostrally-to-caudally directed connections in the APC provide a substrate for the recurrent process, whereas largely caudally directed connections in the PPC suggest the dominance of the feed-forward process.
Collapse
Affiliation(s)
- Shaoyun Chen
- First Department of Anatomy, Toho University School of Medicine, Omori-nishi 5-21-16, Ota-Ku, Tokyo 143-8540, Japan
| | | | | | | |
Collapse
|
137
|
Abstract
Previous work has identified a population of neurons within the anterior piriform cortex that undergo rapid apoptosis following de-afferentation by olfactory bulbectomy in adult rats. The specific initiation signal for apoptosis in this paradigm is unknown, but may include an activity-dependent trans-neuronal cascade. The present report examined the effect of adult-onset unilateral naris occlusion, which reduces olfactory bulb afferent excitation of piriform cortex, on apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling [TUNEL]) in the rat anterior piriform cortex. Adult Long-Evans hooded rats received unilateral naris occlusion or a control manipulation and were sacrificed after 1, 5, 7, 10 or 20 days later. For comparison, a second group of rats received a unilateral bulbectomy and were sacrificed 24 h later. Counts of TUNEL-stained cell profiles were performed for layers I/II and layer III of the anterior piriform cortex ipsilateral and contralateral to the manipulation. The results confirmed that unilateral bulbectomy produced a dramatic increase in TUNEL labeling in layers I/II of the ipsilateral piriform cortex 24 h after bulbectomy. Unilateral naris closure also produced enhanced TUNEL labeling, although the magnitude of the effect was less than that produced by bulbectomy, and enhanced TUNEL labeling was apparent both ipsilateral and contralateral to the sealed naris compared to controls. Deprivation-induced TUNEL labeling was detectable by 24 h post-closure, peaked at 5 days and was no different from controls by 20 days post-closure. Neither bulbectomy nor naris closure affected TUNEL labeling in layer III. Together, these results suggest that there is a population of superficial cells in piriform cortex whose survival is tightly regulated by sensory input.
Collapse
|
138
|
Martínez-Cerdeño V, Galazo MJ, Clascá F. Reelin-immunoreactive neurons, axons, and neuropil in the adult ferret brain: evidence for axonal secretion of reelin in long axonal pathways. J Comp Neurol 2003; 463:92-116. [PMID: 12811805 DOI: 10.1002/cne.10748] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reelin is a large secretable protein which, when developmentally defective, causes the reeler brain malformation in mice and a recessive form of lissencephaly with cerebellar hypoplasia in humans. In addition, Reelin is heavily expressed throughout the adult brain, although its function/s there are still poorly understood. To gain insight into which adult neuronal circuits may be under the influence of Reelin, we systematically mapped Reelin-immunoreactive neuronal somata, axons, and neuropil in the brain and brainstem of ferrets. Results show that Reelin immunoreactivity is found in widespread but specific sets of neuronal bodies, axonal tracts, and gray matter neuropil regions. Depending on the region, the immunoreactive neuronal somata correspond to interneurons, projection neurons, or both. Some well-defined axonal projection systems are immunoreactive, whereas most other white matter tracts are unlabeled. The labeled pathways include, among others, the lateral olfactory tract, the entorhinohippocampal (perforant) pathway, the retroflex bundle, and the stria terminalis. Labeled axons in these tracts contain large numbers of discrete, very small, immunoreactive particles, suggestive of secretory vesicles under the light microscope. The neuropil in the terminal arborization fields of these axons is also heavily immunoreactive. Taken together, our observations are consistent with the notion that some neurons may anterogradely transport Reelin along their axons in large membrane-bound secretory vesicles (Derer et al. [2001] J. Comp. Neurol. 440:136-143) and secrete it into their terminal arborization fields, which may be quite distant from the somata synthesizing the protein. These findings have implications for identifying where Reelin acts in adult brain circuits.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Neurodevelopment Laboratory, Department of Morphology, Autonoma University School of Medicine, E-28029 Madrid, Spain
| | | | | |
Collapse
|
139
|
Majak K, Pitkänen A. Projections from the periamygdaloid cortex to the amygdaloid complex, the hippocampal formation, and the parahippocampal region: A PHA-L study in the rat. Hippocampus 2003; 13:922-42. [PMID: 14750655 DOI: 10.1002/hipo.10134] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The periamygdaloid cortex, an amygdaloid region that processes olfactory information, projects to the hippocampal formation and parahippocampal region. To elucidate the topographic details of these projections, pathways were anterogradely traced using Phaseolus vulgaris leukoagglutinin (PHA-L) in 14 rats. First, we investigated the intradivisional, interdivisional, and intra-amygdaloid connections of various subfields [periamygdaloid subfield (PAC), medial subfield (PACm), sulcal subfield (PACs)] of the periamygdaloid cortex. Thereafter, we focused on projections to the hippocampal formation (dentate gyrus, hippocampus proper, subiculum) and to the parahippocampal region (presubiculum, parasubiculum, entorhinal, and perirhinal and postrhinal cortices). The PACm had the heaviest intradivisional projections and it also originated light interdivisional projections to other periamygdaloid subfields. Projections from the other subfields converged in the PACs. All subfields provided substantial intra-amygdaloid projections to the medial and posterior cortical nuclei. In addition, the PAC subfield projected to the ventrolateral and medial divisions of the lateral nucleus. The heaviest periamygdalohippocampal projections originated in the PACm and PACs, which projected moderately to the temporal end of the stratum lacunosum moleculare of the CA1 subfield and to the molecular layer of the ventral subiculum. The PACm also projected moderately to the temporal CA3 subfield. The heaviest projections to the entorhinal cortex originated in the PACs and terminated in the amygdalo-entorhinal, ventral intermediate, and medial subfields. Area 35 of the perirhinal cortex was lightly innervated by the PAC subfield. Thus, these connections might allow for olfactory information entering the amygdala to become associated with signals from other sensory modalities that enter the amygdala via other nuclei. Further, the periamygdalohippocampal pathways might form one route by which the amygdala modulates memory formation and retrieval in the medial temporal lobe memory system. These pathways can also facilitate the spread of seizure activity from the amygdala to the hippocampal and parahippocampal regions in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Katarzyna Majak
- Epilepsy Research Laboratory, Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | |
Collapse
|
140
|
Biella GR, Gnatkovsky V, Takashima I, Kajiwara R, Iijima T, de Curtis M. Olfactory input to the parahippocampal region of the isolated guinea pig brain reveals weak entorhinal-to-perirhinal interactions. Eur J Neurosci 2003; 18:95-101. [PMID: 12859341 DOI: 10.1046/j.1460-9568.2003.02730.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The processing of olfactory inputs by the parahippocampal region has a central role in the organization of memory in mammals. The olfactory input is relayed to the hippocampus via interposed synapses located in the piriform and entorhinal cortices. Whether olfactory afferents directly or indirectly project to other areas of the parahippocampal region beside the entorhinal cortex (EC) is uncertain. We performed an electrophysiological and imaging study of the propagation pattern of the olfactory input carried by the fibres that form the lateral olfactory tract (LOT) into the parahippocampal region of the in vitro isolated guinea pig preparation. Laminar analysis was performed on field potential depth profiles recorded with 16-channel silicon probes at different sites of the insular-parahippocampal cortex. The LOT input induced a large amplitude polysynaptic response in the lateral EC. Following appropriate LOT stimulation, a late response generated by the interposed activation of the hippocampus was observed in the medial EC. LOT stimulation did not induce any local response in area 36 of the perirhinal cortex (PRC), while a small amplitude potential with a delay similar to the lateral EC response was inconsistently observed in PRC area 35. No PRC potentials were observed following the responses evoked by LOT stimulation in either the lateral or the medial EC. These findings were substantiated by current source density analysis of PRC laminar profiles. To further verify the absence of EC-to-PRC field interactions after LOT stimulation, high-resolution optical imaging of neuronal activity was performed after perfusion of the isolated brain with the voltage-sensitive dye RH-795. The optical recordings confirmed that olfactory-induced activity in the EC does not induce massive PRC activation. The present findings suggest that the olfactory input into the parahippocampal region is confined to the entorhinal cortex. The results also imply that, as demonstrated for the PRC-to-EC pathway, the propagation of neuronal activity from the EC to the PRC is hindered, possibly by a powerful inhibitory control generated within the EC.
Collapse
Affiliation(s)
- G R Biella
- Dipartimento Neurofisiologia Sperimentale, Istituto Nazionale Neurologico, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
141
|
Abstract
The connections of the amygdala in rats, cats, and monkeys can be divided into three systems: (1) A largely forebrain system provides sensory information to the amygdala from the olfactory cortex, ascending taste/visceral pathways, posterior thalamus and sensory association cortex. Most of these connections are reciprocal and also support amygdaloid modulation of sensory processing. (2) A set of projections extends from the amygdala to the hypothalamus and brain stem, which appears to modulate visceral function in relation to emotional stimuli. (3) A forebrain circuit involves the amygdala with the ventromedial frontal, rostral insular, and rostral temporal cortical areas, the medial thalamus and ventromedial basal ganglia, and seems to be directly involved in emotional behavior and mood. All of these systems are present in all mammals studied; the major differences lie in the greater elaboration of the cerebral cortex in primates.
Collapse
Affiliation(s)
- Joseph L Price
- Department of Anatomy Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
142
|
Kilpatrick L, Cahill L. Modulation of memory consolidation for olfactory learning by reversible inactivation of the basolateral amygdala. Behav Neurosci 2003; 117:184-8. [PMID: 12619920 DOI: 10.1037/0735-7044.117.1.184] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the basolateral amygdala (BLA) in the consolidation of an association between an olfactory stimulus and footshock was investigated with a reversible lesion technique of post-training intra-BLA infusions of tetrodotoxin. Rats receiving tetrodotoxin infusions following paired odor-shock presentations spent more time near the odor, and reacted differently on contact with the odor when tested 24 hr after training, than did rats receiving paired presentations and saline infusions, but they did not differ from rats receiving unpaired presentations and saline infusions. The results indicate that the BLA plays a similar role in influencing consolidation of olfactory-based memory as it does for memory based on other modalities. Thus, these findings strengthen the view that the BLA plays a general role in modulation of memory storage for emotionally arousing events.
Collapse
Affiliation(s)
- Lisa Kilpatrick
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697-3800, USA
| | | |
Collapse
|
143
|
Fudge JL, Emiliano AB. The extended amygdala and the dopamine system: another piece of the dopamine puzzle. J Neuropsychiatry Clin Neurosci 2003; 15:306-16. [PMID: 12928506 PMCID: PMC2394680 DOI: 10.1176/jnp.15.3.306] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dopamine (DA) system has long been associated with the pathophysiology of psychosis. The DA theory of schizophrenia continues to find support in neuroreceptor imaging and ligand-binding studies that show excess DA transmission in patients, as compared to controls. The pathways that regulate the primate DA system, however, have yet to be fully elucidated. The amygdala, including its extended amygdala component, is involved in evaluating the emotional value of sensory stimuli. Since emotionally relevant sensory stimuli are distorted during psychotic episodes, we hypothesize that amygdaloid influences are likely to be significant modulators of the DA system. We reviewed evidence for direct projections from the central extended amygdala to specific subpopulations of DA neurons, and we discuss how these pathways may serve as important conduits of emotionally relevant information that can have immediate and long-term effects on DA regulation.
Collapse
Affiliation(s)
- Julie L Fudge
- Department of Psychiatry, University of Rochester, Rochester, New York 14642, USA.
| | | |
Collapse
|
144
|
Gilbert PE, Kesner RP. Localization of Function Within the Dorsal Hippocampus: The Role of the CA3 Subregion in Paired-Associate Learning. Behav Neurosci 2003; 117:1385-94. [PMID: 14674856 DOI: 10.1037/0735-7044.117.6.1385] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Computational models and electrophysiological data suggest that the CA3 subregion of the hippocampus supports the formation of arbitrary associations; however, no behavioral studies have been conducted to test this hypothesis. Rats with neurotoxin-induced lesions of dorsal dentate gyrus (DG), CA3, or CA1 were tested on object-place and odor-place paired-associate tasks to test whether the mechanism that supports paired-associate learning is localized to the CA3 subregion of the dorsal hippocampus or whether all hippocampal subregions contribute to paired-associate learning. The data indicate that rats with DG or CA1 lesions learned the tasks as well as controls; however, CA3-lesioned rats were impaired in learning the tasks. Thus, the CA3 subregion of the dorsal hippocampus contains a mechanism to support paired-associate learning.
Collapse
Affiliation(s)
- Paul E Gilbert
- Department of Head and Neck Surgery, University of California, San Diego, USA
| | | |
Collapse
|
145
|
López-Mascaraque L, de Castro F. The olfactory bulb as an independent developmental domain. Cell Death Differ 2002; 9:1279-86. [PMID: 12478464 DOI: 10.1038/sj.cdd.4401076] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Revised: 04/30/2002] [Accepted: 05/07/2002] [Indexed: 11/08/2022] Open
Abstract
The olfactory system is a good model to study the mechanisms underlying guidance of growing axons to their appropriate targets. The formation of the olfactory bulb involves differentiation of several populations of cells and the initiation of the central projections, all under the temporal and spatial patterns of gene expression. Moreover, the nature of interactions between the olfactory epithelium, olfactory bulb and olfactory cortex at early developmental stages is currently of great interest. To explore these questions more fully, the present review aims to correlate recent data from different developmental studies, to gain insight into the mechanisms involved in the specification and development of the olfactory system. From our studies in the pax6 mutant mice (Sey(Neu)/Sey(Neu)), it was concluded that the initial establishment of the olfactory bulb central projections is able to proceed independently of the olfactory sensory axons from the olfactory epithelium. The challenge that now remains is to consider the validity of the olfactory bulb as an independent development domain. In the course of evaluating these ideas, we will review the orchestra of molecular cues involved in the formation of the projection from the OB to the olfactory cortex.
Collapse
|
146
|
Sugitani M, Sugai T, Onoda N. Postsynaptic activity of metabotropic glutamate receptors in the piriform cortex. Neuroreport 2002; 13:1473-6. [PMID: 12167776 DOI: 10.1097/00001756-200208070-00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Effects of some glutamate receptor antagonists on signal propagation elicited by stimulation of association fibers in guinea pig piriform cortex slices were investigated using optical imaging. During simultaneous application of both NMDA and non-NMDA receptor antagonists (D-2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione, respectively) the postsynaptic activity was largely suppressed, and a weak although distinct late propagation component was found to survive. This latter component was reversibly suppressed by application of low Ca(2+) solution or a group I/II specific metabotropic glutamate receptor (mGluR) antagonist (+)-alpha-methyl-4-carboxyphenylglycine. These results suggest that mGluRs mediate postsynaptic excitation, which would play a crucial role in activating the reverberating positive feedback circuit effectively.
Collapse
Affiliation(s)
- Michio Sugitani
- Department of Physiology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | |
Collapse
|
147
|
Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 2002; 110:257-75. [PMID: 11958868 DOI: 10.1016/s0306-4522(01)00546-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ventral striatum is the part of the striatum associated with reward and goal-directed behaviors, which are mediated in part by inputs from the amygdala. The ventral striatum is divided into 'shell' and 'core' subterritories which have different connectional, histochemical and pharmacological properties. Behavioral studies also indicate that subterritories of the ventral striatum are differentially involved in specific goal-directed behaviors. The amygdala is a heterogeneous structure which has multiple nuclei involved in processing emotional information. While the existence of an amygdalostriatal pathway has long been established, the relationship between amygdaloid afferents and specific subterritories of the ventral striatum is not known. In this study we operationally defined the ventromedial striatum as the region receiving cortical inputs primarily from the orbital and medial prefrontal cortex. We placed retrograde tracer injections into subregions of the ventromedial striatum of macaques monkeys to determine the relative contribution of specific amygdaloid inputs to each region. Calbindin-D28k immunostaining was used to further define the shell subterritory of the ventromedial striatum. Based on these definitions, the amygdala innervates the entire ventromedial striatum, and has few to no inputs to the central striatum. The basal and accessory basal nuclei are the major source of input to the ventromedial striatum, innervating both the shell and ventromedial striatum outside the shell. However, a restricted portion of the dorsomedial shell receives few basal nucleus inputs. Afferent inputs from the basal nucleus subdivisions are arranged such that the parvicellular subdivision projects mainly to the ventral shell and core, and the magnocellular subdivision targets the ventral shell and ventromedial putamen. In contrast, the intermediate subdivision of the basal nucleus projects broadly across the ventromedial striatum avoiding only the dorsomedial shell. The shell has a specific set of connections derived from the medial part of the central nucleus and periamygdaloid cortex. Within the shell, the dorsomedial region is distinguished by additional inputs from the medial nucleus. The ventromedial caudate nucleus forms a unique transition zone with the shell, based on inputs from the periamygdaloid cortex. Together, these results indicate that subterritories of the ventromedial striatum are differentially modulated by amygdaloid nuclei which play roles in processing olfactory, visual/gustatory, multimodal sensory, and 'drive'-related stimuli.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester School of Medicine, New York 14642, USA
| | | | | | | | | |
Collapse
|
148
|
Saar D, Grossman Y, Barkai E. Learning-induced enhancement of postsynaptic potentials in pyramidal neurons. J Neurophysiol 2002; 87:2358-63. [PMID: 11976373 DOI: 10.1152/jn.2002.87.5.2358] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effect of olfactory learning-induced modifications in piriform (olfactory) cortex pyramidal neurons on the propagation of postsynaptic potentials (PSPs). Rats were trained to distinguish between odors in pairs, in an olfactory discrimination task. Three days after training completion, PSPs were evoked in layer II pyramidal cells in piriform cortex brain slices by electrical stimulation of two pathways. Stimulation of layer Ib activated the intra-cortical fibers that terminate on the proximal region of the apical and basal dendrites. Stimulation of layer Ia activated the afferent axons that originate from the olfactory bulb and terminate on the distal apical dendrites. We have previously shown that olfactory training is accompanied by enhanced synaptic transmission in the intrinsic pathway, but not in the afferent pathway at 3 days after training. Here we show that at this stage, in both pathways PSPs evoked in neurons from trained rats had significantly faster rise time measured at the soma compared with PSPs in neurons from pseudo-trained and naive rats. Activation of the slow afterhyperpolarization (AHP), which is generated by potassium channels probably located at the proximal region of both apical and basal dendrites, reduced the amplitude measured at the soma of the proximal intrinsic pathway PSPs more effectively than PSPs that were generated distally by the afferent fibers. Thus the amount of reduction by AHP was used as a measure for the relative distance of PSP-generating sites from the soma. In neurons from trained rats, despite the previously reported reduction in AHP amplitude, AHP conductance shunted the PSPs from both synaptic pathways more efficiently compared with neurons from the control rats. We suggest that in neurons from trained rats PSPs are electrotonicly closer to the soma.
Collapse
Affiliation(s)
- Drorit Saar
- Department of Physiology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
149
|
Yin Y, Miner JH, Sanes JR. Laminets: laminin- and netrin-related genes expressed in distinct neuronal subsets. Mol Cell Neurosci 2002; 19:344-58. [PMID: 11906208 DOI: 10.1006/mcne.2001.1089] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Laminins and netrins are families of related secreted proteins known to play critical roles in guiding the growth of peripheral and central axons, respectively. Here we report the identification of two novel cell surface glycoproteins that we name laminets because they resemble both laminins and netrins. Laminet-1 and -2 are selectively expressed in neurons, each in a distinct subset that includes populations in forebrain, midbrain, hindbrain, spinal cord, and spinal ganglia. In several forebrain regions, including main relays of the central olfactory pathway, laminet-1 and -2 are expressed in nonoverlapping neuronal subsets. Both laminets are subject to alternative splicing which, in the case of laminet-1, generates at least 10 distinct isoforms, each of which contains a unique combination of potential binding sites for ligands or counterreceptors. Their complex patterns of distribution and isoform diversity, along with their homology to known axon guidance molecules, suggest that laminets contribute to the patterning of neuronal connections.
Collapse
Affiliation(s)
- Yong Yin
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
150
|
Nacher J, Alonso-Llosa G, Rosell D, McEwen B. PSA-NCAM expression in the piriform cortex of the adult rat. Modulation by NMDA receptor antagonist administration. Brain Res 2002; 927:111-21. [PMID: 11821005 DOI: 10.1016/s0006-8993(01)03241-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Administration of NMDA receptor antagonists upregulates the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the adult hippocampus. Since the piriform cortex is also populated by PSA-NCAM immunoreactive neurons during adulthood, we sought to characterize them in detail and to test whether NMDA receptor antagonists also modulate PSA-NCAM in this cortical region. PSA-NCAM immunoreactivity is located mainly in layer II, where many neurogliaform and some pyramidal-semilunar transitional neurons are labeled. Many large neurons in layer III and endopiriform nucleus also express PSA-NCAM. Interestingly, some small labeled cells resembling migratory neuroblasts appear in these layers and in the ventral end of the corpus callosum subjacent to the piriform cortex. These putative migratory cells and some neurogliaform neurons in layer II do not express NeuN, a marker of differentiated neurons. Many of these PSA-NCAM immunoreactive cells also express doublecortin, a molecule involved in neuronal migration. The number of PSA-NCAM immunoreactive neurogliaform neurons increases significantly 7 days after the administration of an NMDA receptor antagonist. Moreover, 21 days after the treatment we observe a significant increase in the number of doublecortin expressing cells in the deep layers of the piriform cortex. These results expand the current knowledge of the neuronal populations expressing PSA-NCAM in the piriform cortex, suggesting that some of these cells could be involved in structural plastic events such as axonal outgrowth, synaptogenesis or even neuronal migration. Similar to the hippocampus, NMDA receptors appear to play a critical role in these processes in the adult piriform cortex.
Collapse
Affiliation(s)
- Juan Nacher
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|