101
|
Stoyanov S, Sun W, Düsedau HP, Cangalaya C, Choi I, Mirzapourdelavar H, Baidoe-Ansah D, Kaushik R, Neumann J, Dunay IR, Dityatev A. Attenuation of the extracellular matrix restores microglial activity during the early stage of amyloidosis. Glia 2020; 69:182-200. [PMID: 32865286 DOI: 10.1002/glia.23894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
In the advanced stages of Alzheimer's disease (AD), microglia are transformed to an activated phenotype with thickened and retracted processes, migrate to the site of amyloid-beta (Aβ) plaques, and proliferate. In the early stages of AD, it is still poorly understood whether the microglial function is altered and which factors may regulate these changes. Here, we focused on studying microglia in the retrosplenial cortex (RSC) in 3- to 4-month-old 5xFAD mice as a transgenic mouse model of AD. At this age, there are neither Aβ plaques, nor activation of microglia, nor dysregulation in the expression of genes encoding major extracellular matrix (ECM) molecules or extracellular proteases in the RSC. Still, histochemical evaluation of the fine structure of neural ECM revealed increased levels of Wisteria floribunda agglutinin labeling in holes of perineuronal nets and changes in the perimeter of ECM barriers around the holes in 5xFAD mice. Two-photon vital microscopy demonstrated normal morphology and resting motility of microglia but strongly diminished number of microglial cells that migrated to the photolesion site in 5xFAD mice. Enzymatic digestion of ECM by chondroitinase ABC (ChABC) ameliorated this defect. Accordingly, the characterization of cell surface markers by flow cytometry demonstrated altered expression of microglial CD45. Moreover, ChABC treatment reduced the invasion of myeloid-derived mononuclear cells into the RSC of 5xFAD mice. Hence, the migration of both microglia and myeloid cells is altered during the early stages of amyloidosis and can be restored at least partially by the attenuation of the ECM.
Collapse
Affiliation(s)
- Stoyan Stoyanov
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Weilun Sun
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Carla Cangalaya
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Biochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - Ilseob Choi
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - David Baidoe-Ansah
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jens Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
102
|
Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, Rose-John S, Ruitenberg MJ, Vukovic J. Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell 2020; 180:833-846.e16. [PMID: 32142677 DOI: 10.1016/j.cell.2020.02.013] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.
Collapse
Affiliation(s)
- Emily F Willis
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kelli P A MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Quan H Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adahir Labrador Garrido
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel B R Harley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Perry F Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Wayne A Schroder
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Abi G Yates
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Daniel C Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Stefan Rose-John
- Biochemisches Institut, Christian Albrechts Universität Kiel, Kiel, Germany
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
103
|
Jurga AM, Paleczna M, Kuter KZ. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front Cell Neurosci 2020; 14:198. [PMID: 32848611 PMCID: PMC7424058 DOI: 10.3389/fncel.2020.00198] [Citation(s) in RCA: 523] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory processes and microglia activation accompany most of the pathophysiological diseases in the central nervous system. It is proven that glial pathology precedes and even drives the development of multiple neurodegenerative conditions. A growing number of studies point out the importance of microglia in brain development as well as in physiological functioning. These resident brain immune cells are divergent from the peripherally infiltrated macrophages, but their precise in situ discrimination is surprisingly difficult. Microglial heterogeneity in the brain is especially visible in their morphology and cell density in particular brain structures but also in the expression of cellular markers. This often determines their role in physiology or pathology of brain functioning. The species differences between rodent and human markers add complexity to the whole picture. Furthermore, due to activation, microglia show a broad spectrum of phenotypes ranging from the pro-inflammatory, potentially cytotoxic M1 to the anti-inflammatory, scavenging, and regenerative M2. A precise distinction of specific phenotypes is nowadays essential to study microglial functions and tissue state in such a quickly changing environment. Due to the overwhelming amount of data on multiple sets of markers that is available for such studies, the choice of appropriate markers is a scientific challenge. This review gathers, classifies, and describes known and recently discovered protein markers expressed by microglial cells in their different phenotypes. The presented microglia markers include qualitative and semi-quantitative, general and specific, surface and intracellular proteins, as well as secreted molecules. The information provided here creates a comprehensive and practical guide through the current knowledge and will facilitate the choosing of proper, more specific markers for detailed studies on microglia and neuroinflammatory mechanisms in various physiological as well as pathological conditions. Both basic research and clinical medicine need clearly described and validated molecular markers of microglia phenotype, which are essential in diagnostics, treatment, and prevention of diseases engaging glia activation.
Collapse
Affiliation(s)
- Agnieszka M Jurga
- Maj Institute of Pharmacology, Department of Neuropsychopharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Martyna Paleczna
- Maj Institute of Pharmacology, Department of Neuropsychopharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Z Kuter
- Maj Institute of Pharmacology, Department of Neuropsychopharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
104
|
Zhao J, Bi W, Zhang J, Xiao S, Zhou R, Tsang CK, Lu D, Zhu L. USP8 protects against lipopolysaccharide-induced cognitive and motor deficits by modulating microglia phenotypes through TLR4/MyD88/NF-κB signaling pathway in mice. Brain Behav Immun 2020; 88:582-596. [PMID: 32335193 DOI: 10.1016/j.bbi.2020.04.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) regulates inflammation in vitro; however, the mechanisms by which USP8 inhibits neuroinflammation and its pathophysiological functions are not completely understood. In this study, we aimed to determine whether USP8 exerts neuroprotective effects in a mouse model of lipopolysaccharide (LPS)-induced cognitive and motor impairment. We commenced intracerebroventricular USP8 administration 7 days prior to i.p. injection of LPS (750 μg/kg). All treatments and behavioral experiments were performed once per day for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. USP8 attenuated LPS-induced cognitive and motor impairments in mice. Moreover, USP8 downregulated several pro-inflammatory cytokines [nitric oxide (NO), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and interleukin-1β (IL-1β)] in the serum and brain, and the relevant protein factors [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)] in the brain. Furthermore, USP8 upregulated the anti-inflammatory mediators interleukin (IL)-4 and IL-10 in the serum and brain, and promoted a shift from pro-inflammatory to anti-inflammatory microglial phenotypes. The LPS-induced microglial pro-inflammatory phenotype was abolished by TLR4 inhibitor and in TLR4-/- mice; these effects were similar to those of USP8 treatment. Mechanistically, we found that USP8 increased the expression of neuregulin receptor degradation protein-1 (Nrdp1), potently downregulated the expression of TLR4 and myeloid differentiation primary response protein 88 (MyD88) protein, and inhibited the phosphorylation of IκB kinase (IKK) β and kappa B-alpha (IκBα), thereby reducing nuclear translocation of p65 by inhibiting the activation of the nuclear factor-kappaB (NF-κB) signaling pathway in LPS-induced mice. Our results demonstrated that USP8 exerts protective effects against LPS-induced cognitive and motor deficits in mice by modulating microglial phenotypes via TLR4/MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- JiaYi Zhao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - JiaWei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - RuiYi Zhou
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - Chi Kwan Tsang
- Clinical Neuoscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province 510630, China
| | - DaXiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China.
| |
Collapse
|
105
|
Kerkhofs D, van Hagen BT, Milanova IV, Schell KJ, van Essen H, Wijnands E, Goossens P, Blankesteijn WM, Unger T, Prickaerts J, Biessen EA, van Oostenbrugge RJ, Foulquier S. Pharmacological depletion of microglia and perivascular macrophages prevents Vascular Cognitive Impairment in Ang II-induced hypertension. Am J Cancer Res 2020; 10:9512-9527. [PMID: 32863942 PMCID: PMC7449902 DOI: 10.7150/thno.44394] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Hypertension is a major risk factor for cerebral small vessel disease, the most prevalent cause of vascular cognitive impairment. As we have shown, hypertension induced by a prolonged Angiotensin II infusion is associated with increased permeability of the blood-brain barrier (BBB), chronic activation of microglia and myelin loss. In this study we therefore aim to determine the contribution of microglia to hypertension-induced cognitive impairment in an experimental hypertension model by a pharmacological depletion approach. Methods: For this study, adult Cx3Cr1gfp/wtxThy1yfp/0 reporter mice were infused for 12 weeks with Angiotensin II or saline and subgroups were treated with PLX5622, a highly selective CSF1R tyrosine kinase inhibitor. Systolic blood pressure (SBP) was measured via tail-cuff. Short- and long-term spatial memory was assessed during an Object Location task and a Morris Water Maze task (MWM). Microglia depletion efficacy was assessed by flow cytometry and immunohistochemistry. BBB leakages, microglia phenotype and myelin integrity were assessed by immunohistochemistry. Results: SBP, heart weight and carotid pulsatility were increased by Ang II and were not affected by PLX5622. Short-term memory was significantly impaired in Ang II hypertensive mice, and partly prevented in Ang II mice treated with PLX5622. Histological and flow cytometry analysis revealed almost complete ablation of microglia and a 60% depletion of brain resident perivascular macrophages upon CSF1R inhibition. Number and size of BBB leakages were increased in Ang II hypertensive mice, but not altered by PLX5622 treatment. Microglia acquired a pro-inflammatory phenotype at the site of BBB leakages in both Saline and Ang II mice and were successfully depleted by PLX5622. There was however no significant change in myelin integrity at the site of leakages. Conclusion: Our results show that depletion of microglia and PVMs, by CSF1R inhibition prevents short-term memory impairment in Ang II induced hypertensive mice. We suggest this beneficial effect is mediated by the major decrease of pro-inflammatory microglia within BBB leakages. This novel finding supports the critical role of brain immune cells in the pathogenesis of hypertension-related cognitive impairment. An adequate modulation of microglia /PVM density and phenotype may constitute a relevant approach to prevent and/or limit the progression of vascular cognitive impairment.
Collapse
|
106
|
Cai Z, Ye T, Xu X, Gao M, Zhang Y, Wang D, Gu Y, Zhu H, Tong L, Lu J, Chen Z, Huang C. Antidepressive properties of microglial stimulation in a mouse model of depression induced by chronic unpredictable stress. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109931. [PMID: 32201112 DOI: 10.1016/j.pnpbp.2020.109931] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022]
Abstract
The decrease of microglia in the hippocampus is a novel mechanism for depression onset. Reversal of this decrease can ameliorate stress-induced depression-like behaviors in rodents. However, the property of this therapeutic strategy remains unclear. We addressed this issue by designing a series of behavioral experiments. Results showed that a single lipopolysaccharide (LPS) injection at the dose of 75 and 100 μg/kg, but not at 30 or 50 μg/kg, produced obvious antidepressant effects in chronic unpredictable stress (CUS) mice at 5 h after the drug administration. In the time-dependent experiment, a single LPS injection (100 μg/kg) ameliorated the CUS-induced depression-like behaviors in mice at 5 and 8 h, but not at 3 h, after the drug administration. The antidepressant effect of a single LPS injection persisted at least 10 days and disappeared at 14 days after the drug administration. 14 days after the first injection, a second LPS injection (100 μg/kg) still produced antidepressant effects in chronically-stressed mice who re-displayed depression-like behaviors at 5 h after the drug administration. The antidepressant effect of LPS appears to be dependent on microglia, as at 5 h after LPS administration (100 μg/kg), the CUS-induced decrease in microglial numbers and Iba-1 mRNA levels in the hippocampus was reversed markedly, and inhibition of microglia by minocycline (40 mg/kg) or PLX33297 (290 mg/kg) prevented the antidepressant effect of LPS in CUS mice. These results indicate that a single LPS injection displays rapid and sustained antidepressant effects in chronically stressed mice likely through stimulating hippocampal microglia.
Collapse
Affiliation(s)
- Zixuan Cai
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Ting Ye
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Xing Xu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Minhui Gao
- Department of Pharmacology, Nantong Health College of Jiangsu Province, #288 Zhenxing East Road, Nantong 226010, Jiangsu Province, China
| | - Yaru Zhang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Dan Wang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Yiming Gu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Haojie Zhu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Lijuan Tong
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Jiashu Lu
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, #210 Yingchun Road, Taizhou 225300, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Chao Huang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
107
|
Yu L, Su X, Li S, Zhao F, Mu D, Qu Y. Microglia and Their Promising Role in Ischemic Brain Injuries: An Update. Front Cell Neurosci 2020; 14:211. [PMID: 32754016 PMCID: PMC7365911 DOI: 10.3389/fncel.2020.00211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic brain injuries are common diseases with high morbidity, disability, and mortality rates, which have significant impacts on human health and life. Microglia are resident cells of the central nervous system (CNS). The inflammatory responses mediated by microglia play an important role in the occurrence and development of ischemic brain injuries. This article summarizes the activation, polarization, depletion, and repopulation of microglia after ischemic brain injuries, proposing new treatment strategies for such injuries through the modulation of microglial function.
Collapse
Affiliation(s)
- Luting Yu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shiping Li
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Fengyan Zhao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
108
|
Var SR, Byrd-Jacobs CA. Role of Macrophages and Microglia in Zebrafish Regeneration. Int J Mol Sci 2020; 21:E4768. [PMID: 32635596 PMCID: PMC7369716 DOI: 10.3390/ijms21134768] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, there is no treatment for recovery of human nerve function after damage to the central nervous system (CNS), and there are limited regenerative capabilities in the peripheral nervous system. Since fish are known for their regenerative abilities, understanding how these species modulate inflammatory processes following injury has potential translational importance for recovery from damage and disease. Many diseases and injuries involve the activation of innate immune cells to clear damaged cells. The resident immune cells of the CNS are microglia, the primary cells that respond to infection and injury, and their peripheral counterparts, macrophages. These cells serve as key modulators of development and plasticity and have been shown to be important in the repair and regeneration of structure and function after injury. Zebrafish are an emerging model for studying macrophages in regeneration after injury and microglia in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. These fish possess a high degree of neuroanatomical, neurochemical, and emotional/social behavioral resemblance with humans, serving as an ideal simulator for many pathologies. This review explores literature on macrophage and microglial involvement in facilitating regeneration. Understanding innate immune cell behavior following damage may help to develop novel methods for treating toxic and chronic inflammatory processes that are seen in trauma and disease.
Collapse
|
109
|
Casali BT, MacPherson KP, Reed-Geaghan EG, Landreth GE. Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies. Neurobiol Dis 2020; 142:104956. [PMID: 32479996 DOI: 10.1016/j.nbd.2020.104956] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a prominent neurodegenerative disorder characterized by deposition of β-amyloid (Aβ)-containing extracellular plaques, accompanied by a microglial-mediated inflammatory response, that leads to cognitive decline. Microglia perform many disease-modifying functions such as phagocytosis of plaques, plaque compaction, and modulation of inflammation through the secretion of cytokines. Microglia are reliant upon colony-stimulating factor receptor-1 (CSF1R) activation for survival. In AD mouse models, chronic targeted depletion of microglia via CSF1R antagonism attenuates plaque formation in early disease but fails to alter plaque burden in late disease. It is unclear if acute depletion of microglia during the peak period of plaque deposition will alter disease pathogenesis, and if so, whether these effects are reversible upon microglial repopulation. To test this, we administered the CSF1R antagonist PLX5622 to the 5XFAD mouse model of AD at four months of age for approximately one month. In a subset of mice, the drug treatment was discontinued, and the mice were fed a control diet for an additional month. We evaluated plaque burden and composition, microgliosis, inflammatory marker expression, and neuritic dystrophy. In 5XFAD animals, CSF1R blockade for 28 days depleted microglia across brain regions by over 50%, suppressed microgliosis, and reduced plaque burden. In microglial-depleted AD animals, neuritic dystrophy was enhanced, and increased diffuse-like plaques and fewer compact-like plaques were observed. Removal of PLX5622 elicited microglial repopulation and subsequent plaque remodeling, resulting in more compact plaques predominating microglia-repopulated regions. We found that microglia limit diffuse plaques by maintaining compact-like plaque properties, thereby blocking the progression of neuritic dystrophy. Microglial repopulation reverses these effects. Collectively, we show that microglia are neuroprotective through maintenance of plaque compaction and morphologies during peak disease progression.
Collapse
Affiliation(s)
- Brad T Casali
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| | - Kathryn P MacPherson
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| | - Erin G Reed-Geaghan
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
110
|
Benmamar-Badel A, Owens T, Wlodarczyk A. Protective Microglial Subset in Development, Aging, and Disease: Lessons From Transcriptomic Studies. Front Immunol 2020; 11:430. [PMID: 32318054 PMCID: PMC7147523 DOI: 10.3389/fimmu.2020.00430] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Microglial heterogeneity has been the topic of much discussion in the scientific community. Elucidation of their plasticity and adaptability to disease states triggered early efforts to characterize microglial subsets. Over time, their phenotypes, and later on their homeostatic signature, were revealed, through the use of increasingly advanced transcriptomic techniques. Recently, an increasing number of these "microglial signatures" have been reported in various homeostatic and disease contexts. Remarkably, many of these states show similar overlapping microglial gene expression patterns, both in homeostasis and in disease or injury. In this review, we integrate information from these studies, and we propose a unique subset, for which we introduce a core signature, based on our own research and reports from the literature. We describe that this subset is found in development and in normal aging as well as in diverse diseases. We discuss the functions of this subset as well as how it is induced.
Collapse
Affiliation(s)
- Anouk Benmamar-Badel
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
- Department of Neurology, Slagelse Hospital, Institute of Regional Health Research, Slagelse, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Odense, Denmark
| |
Collapse
|
111
|
Hu L, Zhang S, Ooi K, Wu X, Wu J, Cai J, Sun Y, Wang J, Zhu D, Chen F, Xia C. Microglia-Derived NLRP3 Activation Mediates the Pressor Effect of Prorenin in the Rostral Ventrolateral Medulla of Stress-Induced Hypertensive Rats. Neurosci Bull 2020; 36:475-492. [PMID: 32242284 PMCID: PMC7186257 DOI: 10.1007/s12264-020-00484-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023] Open
Abstract
Increased microglial activation and neuroinflammation within autonomic brain regions such as the rostral ventrolateral medulla (RVLM) have been implicated in stress-induced hypertension (SIH). Prorenin, a member of the brain renin-angiotensin system (RAS), can directly activate microglia. The present study aimed to investigate the effects of prorenin on microglial activation in the RVLM of SIH rats. Rats were subjected to intermittent electric foot-shocks plus noise, this stress was administered for 2 h twice daily for 15 consecutive days, and mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) were monitored. The results showed that MAP and RSNA were augmented, and this paralleled increased pro-inflammatory phenotype (M1) switching. Prorenin and its receptor (PRR) expression and the NLR family pyrin domain containing 3 (NLRP3) activation were increased in RVLM of SIH rats. In addition, PLX5622 (a microglial depletion agent), MCC950 (a NLRP3 inhibitor), and/or PRO20 (a (Pro)renin receptor antagonist) had antihypertensive effects in the rats. The NLRP3 expression in the RVLM was decreased in SIH rats treated with PLX5622. Mito-tracker staining showed translocation of NLRP3 from mitochondria to the cytoplasm in prorenin-stimulated microglia. Prorenin increased the ROS-triggering M1 phenotype-switching and NLRP3 activation, while MCC950 decreased the M1 polarization. In conclusion, upregulated prorenin in the RVLM may be involved in the pathogenesis of SIH, mediated by activation of the microglia-derived NLRP3 inflammasome. The link between prorenin and NLRP3 in microglia provides insights for the treatment of stress-related hypertension.
Collapse
Affiliation(s)
- Li Hu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shutian Zhang
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China
| | - Kokwin Ooi
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiaxiang Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Jian Cai
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yinggang Sun
- Department of Cardiovascular Diseases, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China
| | - Fuxue Chen
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Basic Medicine College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
112
|
Identification of a pro-elongation effect of diallyl disulfide, a major organosulfur compound in garlic oil, on microglial process. J Nutr Biochem 2020; 78:108323. [DOI: 10.1016/j.jnutbio.2019.108323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/30/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
|
113
|
Cranial irradiation acutely and persistently impairs injury-induced microglial proliferation. Brain Behav Immun Health 2020; 4:100057. [PMID: 34589843 PMCID: PMC8474291 DOI: 10.1016/j.bbih.2020.100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play multiple roles in maintaining CNS homeostasis and mediating tissue repair, including proliferating in response to brain injury and disease. Cranial irradiation (CI), used for the treatment of brain tumors, has a long-lasting anti-proliferative effect on a number of cell types in the brain, including oligodendrocyte progenitor and neural progenitor cells; however, the effect of CI on CNS-resident microglial proliferation is not well characterized. Using a sterile cortical needle stab injury model in mice, we found that the ability of CNS-resident microglia to proliferate in response to injury was impaired by prior CI, in a dose-dependent manner, and was nearly abolished by a 20 Gy dose. Similarly, in a metastatic tumor model, prior CI (20 Gy) reduced microglial proliferation in response to tumor growth. The effect of irradiation was long-lasting; 20 Gy CI 6 months prior to stab injury significantly impaired microglial proliferation. We also investigated how stab and/or irradiation impacted levels of P2Y12R, CD68, CSF1, IL-34 and CSF1R, factors involved in the brain’s normal response to injury. P2Y12R, CD68, CSF1, and IL-34 expression were altered by stab similarly in irradiated mice and controls; however, CSF1R was differentially affected. qRT-PCR and flow cytometry analyses demonstrated that CI reduced overall Csf1r mRNA levels and microglial specific CSF1R protein expression, respectively. Interestingly, Csf1r mRNA levels increased after injury in unirradiated controls; however, Csf1r levels were persistently decreased in irradiated mice, and did not increase in response to stab. Together, our data demonstrate that CI leads to a significant and lasting impairment of microglial proliferation, possibly through a CSF1R-mediated mechanism. Irradiation leads to a long-term deficit in injury-induced microglial proliferation. Irradiation reduces microglial proliferation associated with tumor growth. Irradiation decreases microglial CSF1R and prevents its upregulation after injury.
Collapse
|
114
|
Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. J Neurosci 2020; 40:2960-2974. [PMID: 32094203 DOI: 10.1523/jneurosci.2402-19.2020] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/03/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic neuroinflammation with sustained microglial activation occurs following severe traumatic brain injury (TBI) and is believed to contribute to subsequent neurodegeneration and neurological deficits. Microglia, the primary innate immune cells in brain, are dependent on colony stimulating factor 1 receptor (CSF1R) signaling for their survival. In this preclinical study, we examined the effects of delayed depletion of chronically activated microglia on functional recovery and neurodegeneration up to 3 months postinjury. A CSF1R inhibitor, Plexxikon (PLX) 5622, was administered to adult male C57BL/6J mice at 1 month after controlled cortical impact to remove chronically activated microglia, and the inhibitor was withdrawn 1-week later to allow for microglial repopulation. Following TBI, the repopulated microglia displayed a ramified morphology similar to that of Sham uninjured mice, whereas microglia in vehicle-treated TBI mice showed the typical chronic posttraumatic hypertrophic morphology. PLX5622 treatment limited TBI-associated neuropathological changes at 3 months postinjury; these included a smaller cortical lesion, reduced hippocampal neuron cell death, and decreased NOX2- and NLRP3 inflammasome-associated neuroinflammation. Furthermore, delayed depletion of chronically activated microglia after TBI led to widespread changes in the cortical transcriptome and altered gene pathways involved in neuroinflammation, oxidative stress, and neuroplasticity. Using a variety of complementary neurobehavioral tests, PLX5622-treated TBI mice also had improved long-term motor and cognitive function recovery through 3 months postinjury. Together, these studies demonstrate that chronic phase removal of neurotoxic microglia after TBI using CSF1R inhibitors markedly reduce chronic neuroinflammation and associated neurodegeneration, as well as related motor and cognitive deficits.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a debilitating neurological disorder that can seriously impact the patient's quality of life. Microglial-mediated neuroinflammation is induced after severe TBI and contributes to neurological deficits and on-going neurodegenerative processes. Here, we investigated the effect of breaking the neurotoxic neuroinflammatory loop at 1-month after controlled cortical impact in mice by pharmacological removal of chronically activated microglia using a colony stimulating factor 1 receptor (CSF1R) inhibitor, Plexxikon 5622. Overall, we show that short-term elimination of microglia during the chronic phase of TBI followed by repopulation results in long-term improvements in neurological function, suppression of neuroinflammatory and oxidative stress pathways, and a reduction in persistent neurodegenerative processes. These studies are clinically relevant and support new concepts that the therapeutic window for TBI may be far longer than traditionally believed if chronic and evolving microglial-mediated neuroinflammation can be inhibited or regulated in a precise manner.
Collapse
|
115
|
Ma D, Zhao Y, Huang L, Xiao Z, Chen B, Shi Y, Shen H, Dai J. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation. Biomaterials 2020; 237:119830. [PMID: 32036301 DOI: 10.1016/j.biomaterials.2020.119830] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/28/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
Abstract
Microglia/macrophage mediated-inflammation, a main contributor to the microenvironment after spinal cord injury (SCI), persists for a long period of time and affects SCI repair. However, the effects of microglia/macrophage mediated-inflammation on neurogenic differentiation of endogenous neural stem/progenitor cells (NSPCs) are not well understood. In this study, to attenuate activated microglia/macrophage mediated-inflammation in the spinal cord of complete transection SCI mice, a combination of photo-crosslinked hydrogel transplantation and CSF1R inhibitor (PLX3397) treatment was used to replace the prolonged, activated microglia/macrophages via cell depletion and repopulation. This combined treatment in SCI mice produced a significant reduction in CD68-positive reactive microglia/macrophages and mRNA levels of pro-inflammatory factors, and a substantial increase in the number of Tuj1-positive neurons in the lesion area compared with single treatment methods. Moreover, most of the newborn Tuj1-positive neurons were confirmed to be generated from endogenous NSPCs using a genetic fate mapping mouse line (Nestin-CreERT2; LSL-tdTomato) that can label and trace NSPC marker-nestin expressing cells and their progenies. Collectively, our findings show that the combined treatment method for inhibiting microglia/macrophage mediated-inflammation promotes endogenous NSPC neurogenesis and improves functional recovery, which provides a promising therapeutic strategy for complete transection SCI.
Collapse
Affiliation(s)
- Dezun Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lei Huang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
116
|
Abstract
Microglia are resident macrophages of the CNS that are involved in its development, homeostasis and response to infection and damage. Microglial activation is a common feature of neurological disorders, and although in some instances this activation can be damaging, protective and regenerative functions of microglia have been revealed. The most prominent example of the regenerative functions is a role for microglia in supporting regeneration of myelin after injury, a process that is critical for axonal health and relevant to numerous disorders in which loss of myelin integrity is a prevalent feature, such as multiple sclerosis, Alzheimer disease and motor neuron disease. Although drugs that are intended to promote remyelination are entering clinical trials, the mechanisms by which remyelination is controlled and how microglia are involved are not completely understood. In this Review, we discuss work that has identified novel regulators of microglial activation - including molecular drivers, population heterogeneity and turnover - that might influence their pro-remyelination capacity. We also discuss therapeutic targeting of microglia as a potential approach to promoting remyelination.
Collapse
|
117
|
Coleman LG, Zou J, Crews FT. Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. J Neuroinflammation 2020; 17:27. [PMID: 31954398 PMCID: PMC6969463 DOI: 10.1186/s12974-019-1678-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Microglia are critical mediators of neuroimmune pathology across multiple neurologic disorders. Microglia can be persistently activated or “primed” by Toll-like receptor (TLR) activation, ethanol, stress, and other insults. Thus, strategies to prevent or reverse microglial priming may be beneficial for conditions that involve progressively increasing microglial activation. Microglial depletion with repopulation is emerging as a potential therapy to normalize chronic immune activation. Primary organotypic hippocampal slice culture (OHSC) allows for the study of neuroimmune activation as well as microglial depletion and repopulation without involvement of peripheral immune activation. OHSC undergoes functional maturation and retains cytoarchitecture similar to in vivo. Methods OHSC underwent microglial depletion with the CSF1R antagonist PLX3397 with or without repopulation after removal of PLX3397. Immune, trophic, and synaptic gene changes in response to agonists of TLRs 2, 3, 4, 7, and 9 as well as ethanol were assessed in the settings of microglial depletion and repopulation. Gi-DREADD inhibition of microglia was used to confirm select findings seen with depletion. The ability of microglial repopulation to prevent progressive proinflammatory gene induction by chronic ethanol was also investigated. Results Microglia were depleted (> 90%) by PLX3397 in OHSC. Microglial depletion blunted proinflammatory responses to several TLR agonists as well as ethanol, which was mimicked by Gi-DREADD inhibition of OHSC microglia. Removal of PLX3397 was followed by complete repopulation of microglia. OHSCs with repopulated microglia showed increased baseline expression of anti-inflammatory cytokines (e.g., IL-10), microglial inhibitory signals (e.g., CX3CL1), and growth factors (e.g., BDNF). This was associated with blunted induction (~ 50%) of TNFα and IL-1β in response to agonists to TLR4 and TLR7. Further, chronic cycled ethanol from 4 days in vitro (DIV) to 16DIV caused immediate 2-fold inductions of TNFα and IL-1β that grew to ~4-fold of age-matched control slices by 40DIV. This persistent inflammatory gene expression was completely reversed by microglial depletion and repopulation after chronic ethanol. Conclusions Microglia in OHSCs mediate proinflammatory responses to TLR agonists and ethanol. Microglial repopulation promoted an anti-inflammatory, trophic neuroenvironment and normalized proinflammatory gene expression. This supports the possibility of microglial depletion with repopulation as a strategy to reverse chronic neuroimmune activation.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, USA. .,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, Chapel Hill, NC, USA.
| | - Jian Zou
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, The University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
118
|
Abstract
Microglia are increasingly shown to be key players in neuron development and synapse connectivity. However, the underlying mechanisms by which microglia regulate neuron function remain poorly understood in part because such analysis is challenging in the brain where neurons and synapses are intermingled and connectivity is only beginning to be mapped. Here, we discuss the features and function of microglia in the ordered mammalian retina where the laminar organization of neurons and synapses facilitates such molecular studies. We discuss microglia origins and consider the evidence for molecularly distinct microglia subpopulations and their potential for differential roles with a particular focus on the early stages of retina development. We then review the models and methods used for the study of these cells and discuss emerging data that link retina microglia to the genesis and survival of particular retina cell subtypes. We also highlight potential roles for microglia in shaping the development and organization of the vasculature and discuss cellular and molecular mechanisms involved in this process. Such insights may help resolve the mechanisms by which retinal microglia impact visual function and help guide studies of related features in brain development and disease.
Collapse
Affiliation(s)
- Fenge Li
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
119
|
Ferle V, Repouskou A, Aspiotis G, Raftogianni A, Chrousos G, Stylianopoulou F, Stamatakis A. Synergistic effects of early life mild adversity and chronic social defeat on rat brain microglia and cytokines. Physiol Behav 2019; 215:112791. [PMID: 31870943 DOI: 10.1016/j.physbeh.2019.112791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Exposure to early life stress affects the development and function of the brain and when followed by adversities in adulthood, the negative effects of stress are enhanced. Microglia has been proposed as a potential mediator of this phenomenon. In the present study, we investigated the long-term effects of mild early life stress, the consequences of a stressor in adulthood as well as their interaction on microglial and cytokine (PPARγ, IL-1β and TNFα) levels in the brain of adult male rats. As an early life stress we used a model of maternal neglect, in which the dam is present but non-accessible to the pup for 15 min during postnatal days 10-13; as a stressor in adulthood we exposed animals to chronic social defeat (CSD) for 3 weeks. We determined in the hippocampus, prefrontal cortex and amygdala, the number of Iba-1+ microglial cells, the number of PPARγ+ cells as well as the relative expression of PPARγ, IL-1β and TNFα mRNA by qPCR. Following exposure to CSD, the number of Iba-1+ cells was increased in the hippocampus and the prefrontal cortex of adult animals exposed to mild early life stress, while in the absence of CSD no such difference was observed. Moreover, following CSD PPARγ levels were increased in the hippocampus of adult males exposed as neonates to "maternal neglect". Our findings support the notion that early life stress, even a mild one, primes microglia and enhances its reactivity to a second stressful event, later in life, in accord with the "two-hit" hypothesis.
Collapse
Affiliation(s)
- Vasiliki Ferle
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Anastasia Repouskou
- Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, Greece.
| | - George Aspiotis
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Androniki Raftogianni
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - George Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, Aghia Sofia Children's Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Fotini Stylianopoulou
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece.
| | - Antonios Stamatakis
- Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
120
|
Alekseeva OS, Kirik OV, Gilerovich EG, Korzhevskii DE. Microglia of the Brain: Origin, Structure, Functions. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s002209301904001x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
121
|
Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, Spevak W, Lin J, Phan NY, Habets G, Rymar A, Tsang G, Walters J, Nespi M, Singh P, Broome S, Ibrahim P, Zhang C, Bollag G, West BL, Green KN. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nat Commun 2019; 10:3758. [PMID: 31434879 PMCID: PMC6704256 DOI: 10.1038/s41467-019-11674-z] [Citation(s) in RCA: 481] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Many risk genes for the development of Alzheimer's disease (AD) are exclusively or highly expressed in myeloid cells. Microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for their survival. We designed and synthesized a highly selective brain-penetrant CSF1R inhibitor (PLX5622) allowing for extended and specific microglial elimination, preceding and during pathology development. We find that in the 5xFAD mouse model of AD, plaques fail to form in the parenchymal space following microglial depletion, except in areas containing surviving microglia. Instead, Aβ deposits in cortical blood vessels reminiscent of cerebral amyloid angiopathy. Altered gene expression in the 5xFAD hippocampus is also reversed by the absence of microglia. Transcriptional analyses of the residual plaque-forming microglia show they exhibit a disease-associated microglia profile. Collectively, we describe the structure, formulation, and efficacy of PLX5622, which allows for sustained microglial depletion and identify roles of microglia in initiating plaque pathogenesis.
Collapse
Affiliation(s)
- Elizabeth Spangenberg
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | - Joshua Crapser
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | | | | | | | - Jack Lin
- Plexxikon Inc, Berkeley, CA, 94710, USA
| | - Nicole Y Phan
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Kim N Green
- Department of Neurobiology and Behavior, University of California Irvine (UCI), Irvine, CA, 92697, USA.
| |
Collapse
|
122
|
Mehdipour M, Etienne J, Chen CC, Gathwala R, Rehman M, Kato C, Liu C, Liu Y, Zuo Y, Conboy MJ, Conboy IM. Rejuvenation of brain, liver and muscle by simultaneous pharmacological modulation of two signaling determinants, that change in opposite directions with age. Aging (Albany NY) 2019; 11:5628-5645. [PMID: 31422380 PMCID: PMC6710051 DOI: 10.18632/aging.102148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
We hypothesize that altered intensities of a few morphogenic pathways account for most/all the phenotypes of aging. Investigating this has revealed a novel approach to rejuvenate multiple mammalian tissues by defined pharmacology. Specifically, we pursued the simultaneous youthful in vivo calibration of two determinants: TGF-beta which activates ALK5/pSmad 2,3 and goes up with age, and oxytocin (OT) which activates MAPK and diminishes with age. The dose of Alk5 inhibitor (Alk5i) was reduced by 10-fold and the duration of treatment was shortened (to minimize overt skewing of cell-signaling pathways), yet the positive outcomes were broadened, as compared with our previous studies. Alk5i plus OT quickly and robustly enhanced neurogenesis, reduced neuro-inflammation, improved cognitive performance, and rejuvenated livers and muscle in old mice. Interestingly, the combination also diminished the numbers of cells that express the CDK inhibitor and marker of senescence p16 in vivo. Summarily, simultaneously re-normalizing two pathways that change with age in opposite ways (up vs. down) synergistically reverses multiple symptoms of aging.
Collapse
Affiliation(s)
- Melod Mehdipour
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ranveer Gathwala
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maryam Rehman
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cameron Kato
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yutong Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
123
|
McDonough A, Weinstein JR. The role of microglia in ischemic preconditioning. Glia 2019; 68:455-471. [PMID: 31386233 DOI: 10.1002/glia.23695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
Abstract
Ischemic preconditioning (IPC) is an experimental phenomenon in which a brief ischemic stimulus confers protection against a subsequent prolonged ischemic event. Initially thought to be due to mechanistic changes in neurons, our understanding of IPC has evolved to encompass a global reprogramming of the Central Nervous System (CNS) after transient ischemia/reperfusion that requires innate immune signaling pathways including Toll-like receptors (TLRs) and Type I interferons. Microglia are the CNS resident neuroimmune cells that express these key innate immune receptors. Studies suggest that microglia are required for IPC-mediated neuronal and axonal protection. Multiple paradigms targeting TLRs have converged on a distinctive Type I interferon response in microglia that is critical for preconditioning-mediated protection against ischemia. These pathways can be targeted through administration of TLR agonists, cytokines including interferon-β, and pharmaceutical agents that induce preconditioning through cross-tolerance mechanisms. Transcriptomic analyses and single cell RNA studies point to specific gene expression signatures in microglia that functionally shift these mutable cells to an immunomodulatory or protective phenotype. Although there are technological challenges and gaps in knowledge to overcome, the targeting of specific molecular signaling pathways in microglia is a promising direction for development of novel and effective pharmacotherapies for stroke. Studies on preconditioning in animal models, including nonhuman primates, show promise as prophylactic preconditioning treatments for selected at risk patient populations. In addition, our growing understanding of the mechanisms of IPC-mediated protection is identifying novel cellular and molecular targets for therapeutic interventions that could apply broadly to both acute stroke and chronic vascular cognitive impairment patients.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington
| | - Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington.,Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
124
|
The Ameliorative Effects of the Ethyl Acetate Extract of Salicornia europaea L. and Its Bioactive Candidate, Irilin B, on LPS-Induced Microglial Inflammation and MPTP-Intoxicated PD-Like Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6764756. [PMID: 31379989 PMCID: PMC6652089 DOI: 10.1155/2019/6764756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Hyperactivation of microglia, the resident innate immune cells of the central nervous system, exacerbates various neurodegenerative disorders, including Parkinson's disease (PD). Parkinson's disease is generally characterized by a severe loss of dopaminergic neurons in the nigrostriatal pathway, with substantial neuroinflammation and motor deficits. This was experimentally replicated in animal models, using neurotoxins, i.e., LPS (lipopolysaccharides) and MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Salicornia europaea L. (SE) has been used as a dietary supplement in Korea and Europe for several years, due to its nutritional and therapeutic value. In this study, we intend to investigate the antineuroinflammatory and anti-PD-like effects of the bioactive fraction/candidate of the SE extract. Initially, we screened various fractions of SE extract using an in vitro antioxidant assay. The optimal fraction was investigated for its in vitro antineuroinflammatory potential in LPS-stimulated BV-2 microglial cells and in vivo anti-PD-like potential in MPTP-intoxicated mice. Subsequently, to identify the potential candidate responsible for the elite therapeutic potential of the optimal fraction, we conducted antioxidant activity-guided isolation and purification; the bioactive candidate was structurally characterized using nuclear magnetic resonance spectroscopy and chromatographic techniques and further investigated for its in vitro antioxidative and antineuroinflammatory potential. The results of our study indicate that SE-EA and its bioactive candidate, Irilin B, effectively alleviate the deleterious effect of microglia-mediated neuroinflammation and promote antioxidative effects. Thus, they exhibit potential as therapeutic candidates against neuroinflammatory and oxidative stress-mediated PD-like neurodegenerative complications.
Collapse
|
125
|
Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D, Dillenburg A, Borger E, Soong D, Richardson JC, Kuhlmann T, Williams A, Pollard JW, des Rieux A, Priller J, Miron VE. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat Neurosci 2019; 22:1046-1052. [PMID: 31182869 PMCID: PMC6597360 DOI: 10.1038/s41593-019-0418-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Failed regeneration of CNS myelin contributes to clinical decline in neuroinflammatory and neurodegenerative diseases, for which there is an unmet therapeutic need. Here we reveal that efficient remyelination requires death of proinflammatory microglia followed by repopulation to a pro-regenerative state. We propose that impaired microglia death and/or repopulation may underpin dysregulated microglia activation in neurological diseases, and we reveal therapeutic targets to promote white matter regeneration.
Collapse
Affiliation(s)
- Amy F Lloyd
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire L Davies
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rebecca K Holloway
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Yasmine Labrak
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Graeme Ireland
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Dario Carradori
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Dillenburg
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Eva Borger
- Medical Research Council Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Daniel Soong
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jill C Richardson
- Neurosciences Therapeutic Area Unit, GlaxoSmithKline R&D Ltd, Stevenage, UK
- Discovery Research MRL UK, Merck Sharp & Dohme, The London Bioscience Innovation Centre, London, UK
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Anna Williams
- Medical Research Council Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, Brussels, Belgium
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
126
|
Liu Y, Given KS, Dickson EL, Owens GP, Macklin WB, Bennett JL. Concentration-dependent effects of CSF1R inhibitors on oligodendrocyte progenitor cells ex vivo and in vivo. Exp Neurol 2019; 318:32-41. [PMID: 31029597 DOI: 10.1016/j.expneurol.2019.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/18/2023]
Abstract
Microglia are the principal resident immune cells in the central nervous system (CNS) and play important roles in CNS development, maintenance and repair. The survival and development of microglia depends on colony-stimulating factor 1 receptor (CSF1R), a member of the platelet-derived growth factor receptor (PDGFR) family of tyrosine kinases. Recently pharmacological CSF1R inhibition has been used to investigate the effects of microglial depletion in numerous animal models of CNS disease. However, the effects of CSF1R inhibitors on other cell types in the CNS remains incompletely characterized. In this report, we compared the effect of two commonly used CSF1R inhibitors, PLX5622 and PLX3397, on microglia and oligodendrocyte progenitor cell (OPC) numbers. In ex vivo cerebellar slices and adult mouse brain, both PLX compounds caused robust microglia loss; the kinetics of microglial depletion was more rapid with PLX5622. While high-doses of PLX5622 and PLX3397 reduced OPC number in primary cultures in vitro and ex vivo, low-doses of PLX5622 did not affect the number of OPCs or mature oligodendroglia in culture or in vivo. In adult mice, treatment with PLX5622 had no effect on OPC numbers for 7 days; however, a mild reduction was observed after 21 days in some CNS regions. In contrast, PLX3397 caused significant OPC loss after 7 days of treatment, despite only modest microglia depletion. Neither PLX compound had a remarkable effect on mature oligodendrocytes or myelin protein expression following long-term oral administration. Our results show that CSF1R inhibition with PLX5622 can selectively deplete microglia ex vivo and in vivo without affecting OPC number, demonstrating that microglia are not essential for OPC viability in ex vivo slice cultures or adult CNS tissues.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Katherine S Given
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin L Dickson
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Gregory P Owens
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wendy B Macklin
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA; Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey L Bennett
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA; Program in Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
127
|
Tapp ZM, Godbout JP, Kokiko-Cochran ON. A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Front Neurol 2019; 10:345. [PMID: 31068886 PMCID: PMC6491704 DOI: 10.3389/fneur.2019.00345] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI.
Collapse
Affiliation(s)
- Zoe M Tapp
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
128
|
Microglial Cells Depletion Increases Inflammation and Modifies Microglial Phenotypes in an Animal Model of Severe Sepsis. Mol Neurobiol 2019; 56:7296-7304. [PMID: 31020614 DOI: 10.1007/s12035-019-1606-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/12/2019] [Indexed: 01/20/2023]
Abstract
Sepsis-associated encephalopathy is highly prevalent and has impact both in early and late morbidity and mortality. The mechanisms by which sepsis induces brain dysfunction include neuroinflammation, disrupted blood-brain barrier, oxidative stress, and microglial activation, but the cellular and molecular mechanisms involved in these events are not completely understood. Our objective was to determine the effects of microglial depletion in the early systemic and brain inflammatory response and its impact in phenotypes expression in an animal model of sepsis. Animals were subjected to CLP, and depletion of microglial cells was accomplished by administration of (Lipo)-encapsulated clodronate and microglial repopulation by doxycycline. Clod-lip treatment was effective in decreasing microglia density in the hippocampus of animals. Pro-inflammatory cytokines were increased in the CLP+PBS, and liposomes administration increased even further these cytokines mainly 7 days, suggesting that microglial depletion exacerbates both local and systemic inflammation. In contrast, repopulation with doxycycline was able to revert the cytokine levels in both serum and cerebral structures on day 7 and 14 after repopulation. There were no differences in the correlation between M1 and M2 markers by real-time PCR, but immunohistochemistry showed significant increase in CD11b expression in CLP+PBS with greater expression in CLP + liposomes in the hippocampus. These results suggest that the depletion of microglia during severe sepsis development could be associated with early exacerbation of brain and systemic inflammation and repopulation is able to revert this condition, once a rapid neurological recovery is noticed until 7 days after sepsis.
Collapse
|
129
|
Weber MD, McKim DB, Niraula A, Witcher KG, Yin W, Sobol CG, Wang Y, Sawicki CM, Sheridan JF, Godbout JP. The Influence of Microglial Elimination and Repopulation on Stress Sensitization Induced by Repeated Social Defeat. Biol Psychiatry 2019; 85:667-678. [PMID: 30527629 PMCID: PMC6440809 DOI: 10.1016/j.biopsych.2018.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Stress is associated with an increased prevalence of anxiety and depression. Repeated social defeat (RSD) stress in mice increases the release of monocytes from the bone marrow that are recruited to the brain by microglia. These monocytes enhance inflammatory signaling and augment anxiety. Moreover, RSD promotes stress sensitization, in which exposure to acute stress 24 days after cessation of RSD causes anxiety recurrence. The purpose of this study was to determine whether microglia were critical to stress sensitization and exhibited increased reactivity to subsequent acute stress or immune challenge. METHODS Mice were exposed to RSD, microglia were eliminated by colony-stimulating factor 1 receptor antagonism (PLX5622) and allowed to repopulate, and responses to acute stress or immune challenge (lipopolysaccharide) were determined 24 days after RSD sensitization. RESULTS Microglia maintained a unique messenger RNA signature 24 days after RSD. Moreover, elimination of RSD-sensitized microglia prevented monocyte accumulation in the brain and blocked anxiety recurrence following acute stress (24 days). When microglia were eliminated prior to RSD and repopulated and mice were subjected to acute stress, there was monocyte accumulation in the brain and anxiety in RSD-sensitized mice. These responses were unaffected by microglial elimination/repopulation. This may be related to neuronal sensitization that persisted 24 days after RSD. Following immune challenge, there was robust microglial reactivity in RSD-sensitized mice associated with prolonged sickness behavior. Here, microglial elimination/repopulation prevented the amplified immune reactivity ex vivo and in vivo in RSD-sensitized mice. CONCLUSIONS Microglia and neurons remain sensitized weeks after RSD, and only the immune reactivity component of RSD-sensitized microglia was prevented by elimination/repopulation.
Collapse
Affiliation(s)
- Michael D Weber
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Daniel B McKim
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Anzela Niraula
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Wenyuan Yin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Carly G Sobol
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Yufen Wang
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Caroline M Sawicki
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - John F Sheridan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, Ohio; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio.
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
130
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
131
|
Prior Exposure to Immunosuppressors Sensitizes Retinal Microglia and Accelerates Optic Nerve Regeneration in Zebrafish. Mediators Inflamm 2019; 2019:6135795. [PMID: 30881223 PMCID: PMC6387731 DOI: 10.1155/2019/6135795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
As adult mammals lack the capacity to replace or repair damaged neurons, degeneration and trauma (and subsequent dysfunction) of the central nervous system (CNS) seriously constrains the patient's life quality. Recent work has shown that appropriate modulation of acute neuroinflammation upon CNS injury can trigger a regenerative response; yet, the underlying cellular and molecular mechanisms remain largely elusive. In contrast to mammals, zebrafish retain high regenerative capacities into adulthood and thus form a powerful model to study the contribution of neuroinflammation to successful regeneration. Here, we used pharmacological immunosuppression methods to study the role of microglia/macrophages during optic nerve regeneration in adult zebrafish. We first demonstrated that systemic immunosuppression with dexamethasone (dex) impedes regeneration after optic nerve injury. Secondly, and strikingly, local intravitreal application of dex or clodronate liposomes prior to injury was found to sensitize retinal microglia. Consequently, we observed an exaggerated inflammatory response to subsequent optic nerve damage, along with enhanced tectal reinnervation. In conclusion, we found a strong positive correlation between the acute inflammatory response in the retina and the regenerative capacity of the optic nerve in adult zebrafish subjected to nerve injury.
Collapse
|
132
|
Funk KE, Klein RS. CSF1R antagonism limits local restimulation of antiviral CD8 + T cells during viral encephalitis. J Neuroinflammation 2019; 16:22. [PMID: 30704498 PMCID: PMC6354430 DOI: 10.1186/s12974-019-1397-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Microglia are resident macrophages of the central nervous system (CNS) locally maintained through colony-stimulating factor 1 receptor (CSF1R) signaling. Microglial depletion via CSF1R inactivation improves cognition in mouse models of neuroinflammation, but limits virologic control in the CNS of mouse models of neurotropic infections by unknown mechanisms. We hypothesize that CSF1R plays a critical role in myeloid cell responses that restrict viral replication and locally restimulate recruited antiviral T cells within the CNS. METHODS The impact of CSF1R signaling during West Nile virus infection was assessed in vivo using a mouse model of neurotropic infection. Pharmacological inactivation of CSF1R was achieved using PLX5622 prior to infection with virulent or attenuated strains of West Nile virus (WNV), an emerging neuropathogen. The subsequent effect of CSF1R antagonism on virologic control was assessed by measuring mortality and viral titers in the CNS and peripheral organs. Immune responses were assessed by flow cytometric-based phenotypic analyses of both peripheral and CNS immune cells. RESULTS Mice treated with CSF1R antagonist prior to infection exhibited higher susceptibility to lethal WNV infection and lack of virologic control in both the CNS and periphery. CSFR1 antagonism reduced B7 co-stimulatory signals on peripheral and CNS antigen-presenting cells (APCs) by depleting CNS cellular sources, which limited local reactivation of CNS-infiltrating virus-specific T cells and reduced viral clearance. CONCLUSIONS Our results demonstrate the impact of CSF1R antagonism on APC activation in the CNS and periphery and the importance of microglia in orchestrating the CNS immune response following neurotropic viral infection. These data will be an important consideration when assessing the benefit of CSF1R antagonism, which has been investigated as a therapeutic for neurodegenerative conditions, in which neuroinflammation is a contributing factor.
Collapse
Affiliation(s)
- Kristen E. Funk
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63110 USA
| | - Robyn S. Klein
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110 USA
- Department of Neurosciences, Washington University School of Medicine, Saint Louis, MO 63110 USA
| |
Collapse
|
133
|
Valles SL, Iradi A, Aldasoro M, Vila JM, Aldasoro C, de la Torre J, Campos-Campos J, Jorda A. Function of Glia in Aging and the Brain Diseases. Int J Med Sci 2019; 16:1473-1479. [PMID: 31673239 PMCID: PMC6818212 DOI: 10.7150/ijms.37769] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Microglia cells during aging, neurodegeneration and neuroinflammation show different morphological and transcriptional profiles (related to axonal direction and cell adhesion). Furthermore, expressions of the receptors on the surface and actin formation compared to young are also different. This review delves into the role of glia during aging and the development of the diseases. The susceptibility of different regions of the brain to disease are linked to the overstimulation of signals related to the immune system during aging, as well as the damaging impact of these cascades on the functionality of different populations of microglia present in each region of the brain. Furthermore, a decrease in microglial phagocytosis has been related to many diseases and also has been detected during aging. In this paper we also describe the role of glia in different illness, such as AD, ALS, pain related disorders, cancer, developmental disorders and the problems produced by opening of the blood brain barrier. Future studies will clarify many points planted by this review.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Jose M Vila
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | | | - Juan Campos-Campos
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, Spain
| |
Collapse
|
134
|
Elmore MRP, Hohsfield LA, Kramár EA, Soreq L, Lee RJ, Pham ST, Najafi AR, Spangenberg EE, Wood MA, West BL, Green KN. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell 2018; 17:e12832. [PMID: 30276955 PMCID: PMC6260908 DOI: 10.1111/acel.12832] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/02/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia, the resident immune cell of the brain, can be eliminated via pharmacological inhibition of the colony‐stimulating factor 1 receptor (CSF1R). Withdrawal of CSF1R inhibition then stimulates microglial repopulation, effectively replacing the microglial compartment. In the aged brain, microglia take on a “primed” phenotype and studies indicate that this coincides with age‐related cognitive decline. Here, we investigated the effects of replacing the aged microglial compartment with new microglia using CSF1R inhibitor‐induced microglial repopulation. With 28 days of repopulation, replacement of resident microglia in aged mice (24 months) improved spatial memory and restored physical microglial tissue characteristics (cell densities and morphologies) to those found in young adult animals (4 months). However, inflammation‐related gene expression was not broadly altered with repopulation nor the response to immune challenges. Instead, microglial repopulation resulted in a reversal of age‐related changes in neuronal gene expression, including expression of genes associated with actin cytoskeleton remodeling and synaptogenesis. Age‐related changes in hippocampal neuronal complexity were reversed with both microglial elimination and repopulation, while microglial elimination increased both neurogenesis and dendritic spine densities. These changes were accompanied by a full rescue of age‐induced deficits in long‐term potentiation with microglial repopulation. Thus, several key aspects of the aged brain can be reversed by acute noninvasive replacement of microglia.
Collapse
Affiliation(s)
- Monica R. P. Elmore
- Department of Neurobiology and Behavior; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders (UCI MIND); Irvine California
| | - Lindsay A. Hohsfield
- Department of Neurobiology and Behavior; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders (UCI MIND); Irvine California
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior; University of California; Irvine California
| | - Lilach Soreq
- University College London; London UK
- The Francis Crick Institute; London UK
| | - Rafael J. Lee
- Department of Neurobiology and Behavior; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders (UCI MIND); Irvine California
| | - Stephanie T. Pham
- Department of Neurobiology and Behavior; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders (UCI MIND); Irvine California
| | - Allison R. Najafi
- Department of Neurobiology and Behavior; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders (UCI MIND); Irvine California
| | - Elizabeth E. Spangenberg
- Department of Neurobiology and Behavior; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders (UCI MIND); Irvine California
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior; University of California; Irvine California
| | | | - Kim N. Green
- Department of Neurobiology and Behavior; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders (UCI MIND); Irvine California
| |
Collapse
|
135
|
O'Neil SM, Witcher KG, McKim DB, Godbout JP. Forced turnover of aged microglia induces an intermediate phenotype but does not rebalance CNS environmental cues driving priming to immune challenge. Acta Neuropathol Commun 2018; 6:129. [PMID: 30477578 PMCID: PMC6260864 DOI: 10.1186/s40478-018-0636-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/23/2023] Open
Abstract
Microglia are the resident innate immune cells of the central nervous system. Limited turnover throughout the lifespan leaves microglia susceptible to age-associated dysfunction. Indeed, we and others have reported microglia develop a pro-inflammatory or "primed" profile with age, characterized by increased expression of inflammatory mediators (e.g., MHC-II, CD68, IL-1β). Moreover, immune challenge with lipopolysaccharide (LPS) causes an exaggerated and prolonged neuroinflammatory response mediated by primed microglia in the aged brain. Recent studies show colony-stimulating factor 1 receptor (CSF1R) antagonism results in rapid depletion of microglia without significant complications. Therefore, we hypothesized that CSF1R antagonist-mediated depletion of microglia in the aged brain would result in repopulation with new and unprimed microglia. Here we provide novel evidence that microglia in the brain of adult (6-8 weeks old) and aged (16-18 months old) BALB/c mice were depleted following 3-week oral PLX5622 administration. When CSF1R antagonism was stopped, microglia repopulated equally in the adult and aged brain. Microglial depletion and repopulation reversed age-associated increases in microglial CD68+ lysosome enlargement and lipofuscin accumulation. Microglia-specific RNA sequencing revealed 511 differentially expressed genes with age. Of these, 117 genes were reversed by microglial repopulation (e.g., Apoe, Tgfb2, Socs3). Nevertheless, LPS challenge still induced an exaggerated microglial inflammatory response in the aged brain compared to adults. RNA sequencing of whole-brain tissue revealed an age-induced inflammatory signature, including reactive astrocytes, that was not restored by microglial depletion and repopulation. Furthermore, the microenvironment of the aged brain produced soluble factors that influenced developing microglia ex vivo and induced a profile primed to LPS challenge. Thus, the aged brain microenvironment promotes microglial priming despite repopulation of new microglia. Collectively, aged microglia proliferate and repopulate the brain, but these new cells still adopt a pro-inflammatory profile in the aged brain.
Collapse
Affiliation(s)
- Shane M O'Neil
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel B McKim
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, 231 IBMR Building, 460 Medical Center Drive, Columbus, OH, 43210, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
136
|
Groh J, Klein D, Berve K, West BL, Martini R. Targeting microglia attenuates neuroinflammation-related neural damage in mice carrying human PLP1
mutations. Glia 2018; 67:277-290. [DOI: 10.1002/glia.23539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology; University Hospital Wuerzburg; Wuerzburg Germany
| | - Dennis Klein
- Department of Neurology, Section of Developmental Neurobiology; University Hospital Wuerzburg; Wuerzburg Germany
| | - Kristina Berve
- Department of Neurology, Section of Developmental Neurobiology; University Hospital Wuerzburg; Wuerzburg Germany
| | | | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology; University Hospital Wuerzburg; Wuerzburg Germany
| |
Collapse
|
137
|
Najafi AR, Crapser J, Jiang S, Ng W, Mortazavi A, West BL, Green KN. A limited capacity for microglial repopulation in the adult brain. Glia 2018; 66:2385-2396. [PMID: 30370589 PMCID: PMC6269202 DOI: 10.1002/glia.23477] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/21/2023]
Abstract
Microglia are the resident immune cell of the central nervous system (CNS), and serve to protect and maintain the local brain environment. Microglia are critically dependent on signaling through the colony-stimulating factor 1 receptor (CSF1R); administration of CSF1R inhibitors that cross the blood brain barrier (BBB) lead to the elimination of up to 99% of microglia, depending on CNS exposure and treatment duration. Once microglia are depleted, withdrawal of inhibitor stimulates repopulation of the entire CNS with new cells, conceivably enabling a therapeutic strategy for beneficial renewal of the entire microglial tissue. We have explored the kinetics and limits of this repopulation event and show that the rate of microglial repopulation is proportional to the extent of microglial depletion - greater depletion of microglia results in more rapid repopulation. Using a CSF1R inhibitor formulation that eliminates approximately 99% of microglia within 7 days, we subjected mice to multiple rounds of elimination (7 days' treatment) and repopulation (7 days' recovery) and found that the brain only has the capacity for a single complete repopulation event; subsequent elimination and CSF1R inhibitor withdrawal fail to repopulate the brain. However, if the recovery time between, or after, cycles is extended sufficiently then the brain can ultimately repopulate. These kinetic studies define the opportunities and possible limits of the remarkable renewal capacities of microglia.
Collapse
Affiliation(s)
- Allison R. Najafi
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Joshua Crapser
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Shan Jiang
- Department of Development and Cell Biology, University of California, Irvine, CA 92697
| | - Winnie Ng
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Ali Mortazavi
- Department of Development and Cell Biology, University of California, Irvine, CA 92697
| | | | - Kim N. Green
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| |
Collapse
|
138
|
Han J, Zhu K, Zhang X, Harris RA. Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia 2018; 67:217-231. [PMID: 30378163 PMCID: PMC6635749 DOI: 10.1002/glia.23529] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
Microglia are prominent immune cells in the central nervous system (CNS) and are critical players in both neurological development and homeostasis, and in neurological diseases when dysfunctional. Our previous understanding of the phenotypes and functions of microglia has been greatly extended by a dearth of recent investigations. Distinct genetically defined subsets of microglia are now recognized to perform their own independent functions in specific conditions. The molecular profiling of single microglial cells indicates extensively heterogeneous reactions in different neurological disorders, resulting in multiple potentials for crosstalk with other kinds of CNS cells such as astrocytes and neurons. In settings of neurological diseases it could thus be prudent to establish effective cell‐based therapies by targeting entire microglial networks. Notably, activated microglial depletion through genetic targeting or pharmacological therapies within a suitable time window can stimulate replenishment of the CNS niche with new microglia. Additionally, enforced repopulation through provision of replacement cells also represents a potential means of exchanging dysfunctional with functional microglia. In each setting the newly repopulated microglia might have the potential to resolve ongoing neuroinflammation. In this review, we aim to summarize the most recent knowledge of microglia and to highlight microglial depletion and subsequent repopulation as a promising cell replacement therapy. Although glial cell replacement therapy is still in its infancy and future translational studies are still required, the approach is scientifically sound and provides new optimism for managing the neurotoxicity and neuroinflammation induced by activated microglia.
Collapse
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Keying Zhu
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Xing‐Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical NeuroscienceKarolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at SolnaStockholmSweden
| |
Collapse
|
139
|
Witcher KG, Bray CE, Dziabis JE, McKim DB, Benner BN, Rowe RK, Kokiko-Cochran ON, Popovich PG, Lifshitz J, Eiferman DS, Godbout JP. Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia 2018; 66:2719-2736. [PMID: 30378170 DOI: 10.1002/glia.23523] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
Microglia undergo dynamic structural and transcriptional changes during the immune response to traumatic brain injury (TBI). For example, TBI causes microglia to form rod-shaped trains in the cerebral cortex, but their contribution to inflammation and pathophysiology is unclear. The purpose of this study was to determine the origin and alignment of rod microglia and to determine the role of microglia in propagating persistent cortical inflammation. Here, diffuse TBI in mice was modeled by midline fluid percussion injury (FPI). Bone marrow chimerism and BrdU pulse-chase experiments revealed that rod microglia derived from resident microglia with limited proliferation. Novel data also show that TBI-induced rod microglia were proximal to axotomized neurons, spatially overlapped with dense astrogliosis, and aligned with apical pyramidal dendrites. Furthermore, rod microglia formed adjacent to hypertrophied microglia, which clustered among layer V pyramidal neurons. To better understand the contribution of microglia to cortical inflammation and injury, microglia were eliminated prior to TBI by CSF1R antagonism (PLX5622). Microglial elimination did not affect cortical neuron axotomy induced by TBI, but attenuated rod microglial formation and astrogliosis. Analysis of 262 immune genes revealed that TBI caused profound cortical inflammation acutely (8 hr) that progressed in nature and complexity by 7 dpi. For instance, gene expression related to complement, phagocytosis, toll-like receptor signaling, and interferon response were increased 7 dpi. Critically, these acute and chronic inflammatory responses were prevented by microglial elimination. Taken together, TBI-induced neuronal injury causes microglia to structurally associate with neurons, augment astrogliosis, and propagate diverse and persistent inflammatory/immune signaling pathways.
Collapse
Affiliation(s)
| | - Chelsea E Bray
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Julia E Dziabis
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Daniel B McKim
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Brooke N Benner
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | | | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| |
Collapse
|
140
|
Rosi S. The final frontier: Transient microglia reduction after cosmic radiation exposure mitigates cognitive impairments and modulates phagocytic activity. Brain Circ 2018; 4:109-113. [PMID: 30450416 PMCID: PMC6187945 DOI: 10.4103/bc.bc_24_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 11/21/2022] Open
Abstract
Microglia are the primary immune element within the brain, which are responsible for monitoring synapse function and neuron health. Exposure to cosmic radiation has the potential to cause long-term cognitive deficits in rodent models and therefore indicates a difficult challenge for future astronauts piloting interplanetary travel. Here, we discuss the potential of transient microglia depletion after the injury to ameliorate the harsh microenvironment of the brain and eliminate any potential long-term cognitive effects. Repopulation of microglia enables phagocytic phenotypes to be circumvented, via the reduction of Phagocytic and lysosomal markers, potentially being responsible for increased neuroprotection. Brief depletion of microglia after irradiation mitigated the development of any long-term memory deficits, comparable to healthy animals. Chronically, microglial levels were not affected by cosmic radiation followed by temporary microglia depletion. Following repopulation, improved recognition memory was paralleled by downregulated complement receptor C5aR. Preserved synapse function also demonstrated the therapeutic ability of microglia depletion as it corresponded with fewer phagocytic microglia phenotypes. The understanding of long-term radiation-induced cognitive impairments is vital for the protection of future astronauts and equally as important for current cancer patients. Temporary microglia depletion showed promise in preventing any deleterious cognitive impairments following exposure to elements of cosmic radiation, such as helium and high-charge nuclei.
Collapse
Affiliation(s)
- Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA.,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA.,Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, CA, USA
| |
Collapse
|
141
|
Depletion of embryonic microglia using the CSF1R inhibitor PLX5622 has adverse sex-specific effects on mice, including accelerated weight gain, hyperactivity and anxiolytic-like behaviour. Brain Behav Immun 2018; 73:682-697. [PMID: 30056204 DOI: 10.1016/j.bbi.2018.07.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022] Open
Abstract
Microglia are the resident immune cells in the central nervous system (CNS). Originally thought to be primarily responsible for disposing of cellular debris and responding to neural insults, emerging research now shows that microglia are highly dynamic cells involved in a variety of neurodevelopmental processes. The hypothalamus is a brain region critical for maintaining homeostatic processes such as energy balance, thirst, food intake, reproduction, and circadian rhythms. Given that microglia colonize the embryonic brain alongside key steps of hypothalamic development, here we tested whether microglia are required for the proper establishment of this brain region. The Colony-stimulating factor-1 receptor (Csf1r) is expressed by microglia, macrophages and osteoclasts, and is required for their proliferation, differentiation, and survival. Therefore, to eliminate microglia from the fetal brain, we treated pregnant dams with the CSF1R inhibitor PLX5622. We showed that approximately 99% of microglia were eliminated by embryonic day 15.5 (E15.5) after pregnant dams were placed on a PLX5622 diet starting at E3.5. Following microglia depletion, we observed elevated numbers of apoptotic cells accumulating throughout the developing hypothalamus. Once the PLX5622 diet was removed, microglia repopulated the postnatal brain within 7 days and did not appear to repopulate from Nestin+ precursors. Embryonic microglia depletion also resulted in a decreased litter size, as well as an increase in the number of pups that died within the first two postnatal days of life. In pups that survived, the elimination of microglia in the fetal brain resulted in a decrease in the number of Pro-opiomelanocortin (POMC) neurons and a concomitant accelerated weight gain starting at postnatal day 5 (P5), suggesting that microglia could be important for the development of cell types key to hypothalamic satiety centers. Moreover, surviving PLX5622 exposed animals displayed craniofacial and dental abnormalities, perhaps due to non-CNS effects of PLX5622 on macrophages and/or osteoclasts. Finally, depletion of microglia during embryogenesis had long-term sex-specific effects on behaviour, including the development of hyperactivity and anxiolytic-like behaviour in juvenile and adult female mice, respectively. Together, these data demonstrate an important role for microglia during the development of the embryonic hypothalamus, and perhaps the CNS more broadly.
Collapse
|
142
|
Nestor J, Arinuma Y, Huerta TS, Kowal C, Nasiri E, Kello N, Fujieda Y, Bialas A, Hammond T, Sriram U, Stevens B, Huerta PT, Volpe BT, Diamond B. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J Exp Med 2018; 215:2554-2566. [PMID: 30185634 PMCID: PMC6170183 DOI: 10.1084/jem.20180776] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 02/03/2023] Open
Abstract
Cognitive impairment occurs in 40-90% of patients with systemic lupus erythematosus (SLE), which is characterized by autoantibodies to nuclear antigens, especially DNA. We discovered that a subset of anti-DNA antibodies, termed DNRAbs, cross reacts with the N-methyl-d-aspartate receptor (NMDAR) and enhances NMDAR signaling. In patients, DNRAb presence associates with spatial memory impairment. In a mouse model, DNRAb-mediated brain pathology proceeds through an acute phase of excitotoxic neuron loss, followed by persistent alteration in neuronal integrity and spatial memory impairment. The latter pathology becomes evident only after DNRAbs are no longer detectable in the brain. Here we investigate the mechanism of long-term neuronal dysfunction mediated by transient exposure to antibody. We show that activated microglia and C1q are critical mediators of neuronal damage. We further show that centrally acting inhibitors of angiotensin-converting enzyme (ACE) can prevent microglial activation and preserve neuronal function and cognitive performance. Thus, ACE inhibition represents a strong candidate for clinical trials aimed at mitigating cognitive dysfunction.
Collapse
Affiliation(s)
- Jacquelyn Nestor
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Yoshiyuki Arinuma
- Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Tomás S Huerta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Czeslawa Kowal
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Elham Nasiri
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Nina Kello
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology Faculty of Medicine and Graduate School of Medicine Hokkaido University, Sapporo, Japan
| | - Alison Bialas
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Tim Hammond
- Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Beth Stevens
- Kirby Neurobiology Center Boston Children's Hospital, Boston, MA
| | - Patricio T Huerta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
- Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Bruce T Volpe
- Center for Biomedical Sciences, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY
| |
Collapse
|
143
|
Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. J Neuroinflammation 2018; 15:276. [PMID: 30249283 PMCID: PMC6154824 DOI: 10.1186/s12974-018-1313-3] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, most cases of which lack a clear causative event. This has made the disease difficult to characterize and, thus, diagnose. Although some cases are genetically linked, there are many diseases and lifestyle factors that can lead to an increased risk of developing AD, including traumatic brain injury, diabetes, hypertension, obesity, and other metabolic syndromes, in addition to aging. Identifying common factors and trends between these conditions could enhance our understanding of AD and lead to the development of more effective treatments. Although the immune system is one of the body’s key defense mechanisms, chronic inflammation has been increasingly linked with several age-related diseases. Moreover, it is now well accepted that chronic inflammation has an important role in the onset and progression of AD. In this review, the different inflammatory signals associated with AD and its risk factors will be outlined to demonstrate how chronic inflammation may be influencing individual susceptibility to AD. Our goal is to bring attention to potential shared signals presented by the immune system during different conditions that could lead to the development of successful treatments.
Collapse
Affiliation(s)
- Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia
| | - Mallone L Silva
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.,Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
144
|
Liu Y, Given KS, Owens GP, Macklin WB, Bennett JL. Distinct patterns of glia repair and remyelination in antibody-mediated demyelination models of multiple sclerosis and neuromyelitis optica. Glia 2018; 66:2575-2588. [PMID: 30240044 DOI: 10.1002/glia.23512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) and neuromyelitis optica (NMO) are inflammatory demyelinating disorders of the central nervous system with evidence of antibody-mediated pathology. Using ex vivo organotypic mouse cerebellar slice cultures, we have demonstrated that recombinant antibodies (rAbs) cloned from cerebrospinal fluid plasmablasts of MS and NMO patients target myelin- and astrocyte-specific antigens to induce disease-specific oligodendrocyte loss and myelin degradation. In this study, we examined glial cell responses and myelin integrity during recovery from disease-specific antibody-mediated injury. Following exposure to MS rAb and human complement (HC) in cerebellar explants, myelinating oligodendrocytes repopulated the demyelinated tissue and formed new myelin sheaths along axons. Remyelination was accompanied by pronounced microglial activation. In contrast, following treatment with NMO rAb and HC, there was rapid regeneration of astrocytes and pre-myelinating oligodendrocytes but little formation of myelin sheaths on preserved axons. Deficient remyelination was associated with progressive axonal loss and the return of microglia to a resting state. Our results indicate that antibody-mediated demyelination in MS and NMO show distinct capacities for recovery associated with differential injury to adjacent axons and variable activation of microglia. Remyelination was rapid in MS rAb plus HC-induced demyelination. By contrast, oligodendrocyte maturation and remyelination failed following NMO rAb-mediated injury despite the rapid restoration of astrocytes and preservation of axons in early lesions.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine S Given
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory P Owens
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Program in Neuroscience, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey L Bennett
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado.,Program in Neuroscience, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
145
|
Gargouri B, Yousif NM, Bouchard M, Fetoui H, Fiebich BL. Inflammatory and cytotoxic effects of bifenthrin in primary microglia and organotypic hippocampal slice cultures. J Neuroinflammation 2018; 15:159. [PMID: 29793499 PMCID: PMC5968622 DOI: 10.1186/s12974-018-1198-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pyrethroids, such as bifenthrin (BF), are among the most widely used class of insecticides that pose serious risks to human and wildlife health. Pyrethroids are proposed to affect astrocytic functions and to cause neuron injury in the central nervous system (CNS). Microglia are key cells involved in innate immune responses in the CNS, and microglia activation has been linked to inflammation and neurotoxicity. However, little information is known about the effects of BF-induced toxicity in primary microglial cells as well as in organotypic hippocampal slice cultures (OHSCs). METHODS Oxidative stress and inflammatory responses induced by BF were evaluated in primary microglial cells and OHSCs incubated with different concentrations of BF (1-20 μM) for 4 and 24 h. mRNA and protein synthesis of cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), nuclear erythroid-2 like factor-2 (Nrf-2), and microsomal prostaglandin synthase-1 (mPGES-1) was also studied by qPCR and Western blot. Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Neurotoxicity in OHSCs was analyzed by propidium iodide (PI) staining and confocal microscopy. RESULTS Exposure of microglial cells to BF for 24 h resulted in a dose-dependent reduction in the number of viable cells. At sub-cytotoxic concentrations, BF increased reactive oxygen species (ROS), TNF-alpha synthesis, and prostaglandin E2 (PGE2) production, at both 4- and 24-h time points, respectively. Furthermore, BF incubation decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and increased lipid peroxidation, protein oxidation, and H2O2 formation. In addition, BF significantly induced protein synthesis and mRNA expression of oxidative and inflammatory mediators after 4 and 24 h, including Nrf-2, COX-2, mPGES-1, and nuclear factor kappaB (NF-kappaB). A 24-h exposure of OHSCs to BF also increased neuronal death compared to untreated controls. Furthermore, depletion of microglia from OHSCs potently enhanced neuronal death induced by BF. CONCLUSIONS Overall, BF exhibited cytotoxic effects in primary microglial cells, accompanied by the induction of various inflammatory and oxidative stress markers including the Nrf-2/COX-2/mPGES-1/NF-kappaB pathways. Moreover, the study provided evidence that BF induced neuronal death in OHSCs and suggests that microglia exert a protective function against BF toxicity.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
- Laboratory of Translational Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Nizar M. Yousif
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, Main Station, Montreal, P.O. Box 6128, Montreal, Quebec H3C 3J7 Canada
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
146
|
Krukowski K, Feng X, Paladini MS, Chou A, Sacramento K, Grue K, Riparip LK, Jones T, Campbell-Beachler M, Nelson G, Rosi S. Temporary microglia-depletion after cosmic radiation modifies phagocytic activity and prevents cognitive deficits. Sci Rep 2018; 8:7857. [PMID: 29777152 PMCID: PMC5959907 DOI: 10.1038/s41598-018-26039-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Microglia are the main immune component in the brain that can regulate neuronal health and synapse function. Exposure to cosmic radiation can cause long-term cognitive impairments in rodent models thereby presenting potential obstacles for astronauts engaged in deep space travel. The mechanism/s for how cosmic radiation induces cognitive deficits are currently unknown. We find that temporary microglia depletion, one week after cosmic radiation, prevents the development of long-term memory deficits. Gene array profiling reveals that acute microglia depletion alters the late neuroinflammatory response to cosmic radiation. The repopulated microglia present a modified functional phenotype with reduced expression of scavenger receptors, lysosome membrane protein and complement receptor, all shown to be involved in microglia-synapses interaction. The lower phagocytic activity observed in the repopulated microglia is paralleled by improved synaptic protein expression. Our data provide mechanistic evidence for the role of microglia in the development of cognitive deficits after cosmic radiation exposure.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Xi Feng
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Maria Serena Paladini
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Austin Chou
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Kristen Sacramento
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Lara-Kirstie Riparip
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Mary Campbell-Beachler
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Gregory Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA. .,Kavli Institute of Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
147
|
Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice. J Neurosci 2018; 38:4610-4620. [PMID: 29712789 DOI: 10.1523/jneurosci.3030-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/06/2018] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly.SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging human individuals. Both in mice and humans, these alterations were accompanied by endoneurial macrophages. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by blocking a cytokine receptor, essential for macrophage survival. The treatment strongly reduced macrophage numbers and substantially improved nerve structure and muscle strength. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may be helpful for treatment weakness and reduced mobility in the elderly.
Collapse
|
148
|
Aqueous Extract of Dendropanax morbiferus Leaves Effectively Alleviated Neuroinflammation and Behavioral Impediments in MPTP-Induced Parkinson's Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3175214. [PMID: 29849878 PMCID: PMC5925162 DOI: 10.1155/2018/3175214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a commonly reported age-related neurodegenerative disorder. Microglial-mediated neuroinflammation is one of the cardinal hallmarks of various neurodegenerative disorders, including PD progression. Inadequate therapeutic strategies and substantial adverse effects of well-established drug candidates demand new therapeutic leads to treat PD. Dendropanax morbifera (DM) is an endemic plant species of South Korea, and it has been used extensively as traditional medicine to treat numerous clinical complications. In this study, we conducted an initial profiling of the few major phytoconstituents of aqueous DM leaf extracts (DML) and quantified the same using high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (HPLC-ESI-MS/MS). We subsequently evaluated the antineuroinflammatory activity and ameliorative potential of DML in both in vitro and in vivo experimental PD models. The prophylactic treatment of DML effectually improved the behavioral deficits, curbed the microglial-mediated neuroinflammation, and protected dopaminergic (DA) neuronal loss by restoring tyrosine hydroxylase (TH) levels in brain tissue of the MPTP-induced PD mouse model. We conducted chromatographic profiling and identified chlorogenic acid (CA) as a major constituent (19.5 mg/g of BuOH fraction), which has been well documented as an antioxidant and anti-inflammatory agent. This was found to be in harmony with our in vitro results, where DML suppressed the level of inflammatory mediators and allied the signaling pathway in LPS-stimulated microglial cells. The results of our study indicate that DML and its bioactive constituents can be developed as potential therapeutic candidates against progressive PD complications.
Collapse
|
149
|
Kokiko-Cochran ON, Godbout JP. The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer's Disease. Front Immunol 2018; 9:672. [PMID: 29686672 PMCID: PMC5900037 DOI: 10.3389/fimmu.2018.00672] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered.
Collapse
Affiliation(s)
- Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
150
|
Zhang Y, Zhao L, Wang X, Ma W, Lazere A, Qian HH, Zhang J, Abu-Asab M, Fariss RN, Roger JE, Wong WT. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. SCIENCE ADVANCES 2018; 4:eaap8492. [PMID: 29750189 PMCID: PMC5943055 DOI: 10.1126/sciadv.aap8492] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/12/2018] [Indexed: 05/30/2023]
Abstract
Microglia have been discovered to undergo repopulation following ablation. However, the functionality of repopulated microglia and the mechanisms regulating microglia repopulation are unknown. We examined microglial homeostasis in the adult mouse retina, a specialized neural compartment containing regular arrays of microglia in discrete synaptic laminae that can be directly visualized. Using in vivo imaging and cell-fate mapping techniques, we discovered that repopulation originated from residual microglia proliferating in the central inner retina that subsequently spread by centrifugal migration to fully recapitulate pre-existing microglial distributions and morphologies. Repopulating cells fully restored microglial functions including constitutive "surveying" process movements, behavioral and physiological responses to retinal injury, and maintenance of synaptic structure and function. Microglial repopulation was regulated by CX3CL1-CX3CR1 signaling, slowing in CX3CR1 deficiency and accelerating with exogenous CX3CL1 administration. Microglial homeostasis following perturbation can fully recover microglial organization and function under the regulation of chemokine signaling between neurons and microglia.
Collapse
Affiliation(s)
- Yikui Zhang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam Lazere
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hao-hua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhang
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mones Abu-Asab
- Section on Histopathology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert N. Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jerome E. Roger
- Centre d’Etude et de Recherche Thérapeutique en Ophtalmologie (CERTO), Retina France, Orsay, France
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|