101
|
Levenson CW, Tassabehji NM. Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev 2004; 3:251-63. [PMID: 15231236 DOI: 10.1016/j.arr.2004.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 03/29/2004] [Indexed: 01/21/2023]
Abstract
While there have been significant advances made in our understanding of the cellular and molecular mechanisms that regulate iron absorption, transport, storage, and utilization, the effect of ageing on these mechanisms and the role of iron in the ageing process is not fully understood. Thus, this review will provide an overview of the iron regulatory mechanisms that may be a factor in the ageing process. Additional reviews in this volume represent an attempt to explore the very latest information on the regulation of iron with a particular emphasis on age-related pathology including mitochondrial function, Parkinson's disease, Alzheimer's disease, stroke, and cardiovascular disease.
Collapse
Affiliation(s)
- Cathy W Levenson
- Program in Neuroscience and Department of Nutrition, Food and Exercise Sciences, 237 Biomedical Research Facility, Florida State University, Tallahassee, FL 32306-4340, USA.
| | | |
Collapse
|
102
|
Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K, Lauterbur PC, Greenough WT. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 2003; 117:1037-46. [PMID: 12654355 DOI: 10.1016/s0306-4522(02)00664-4] [Citation(s) in RCA: 406] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plastic changes in motor cortex capillary structure and function were examined in three separate experiments in adult rats following prolonged exercise. The first two experiments employed T-two-star (T(2)*)-weighted and flow-alternating inversion recovery (FAIR) functional magnetic resonance imaging to assess chronic changes in blood volume and flow as a result of exercise. The third experiment used an antibody against the CD61 integrin expressed on developing capillaries to determine if motor cortex capillaries undergo structural modifications. In experiment 1, T(2)*-weighted images of forelimb regions of motor cortex were obtained following 30 days of either repetitive activity on a running wheel or relative inactivity. The proton signal intensity was markedly reduced in the motor cortex of exercised animals compared with that of controls. This reduction was not attributable to alterations of vascular iron levels. These results are therefore most consistent with increased capillary perfusion or blood volume of forelimb regions of motor cortex. FAIR images acquired during experiment 2 under normocapnic and hypercapnic conditions indicated that resting cerebral blood flow was not altered under normal conditions but was elevated in response to high levels of CO(2), suggesting that prolonged exercise increases the size of a capillary reserve. Finally, the immunohistological data indicated that exercise induces robust growth of capillaries (angiogenesis) within 30 days from the onset of the exercise regimen. Analysis of other regions failed to find any changes in perfusion or capillary structure suggesting that this motor activity-induced plasticity may be specific to motor cortex.These data indicate that capillary growth occurs in motor areas of the cerebral cortex as a robust adaptation to prolonged motor activity. In addition to capillary growth, the vascular system also experiences heightened flow under conditions of activation. These changes are chronic and observable even in the anesthetized animal and are measurable using noninvasive techniques.
Collapse
Affiliation(s)
- R A Swain
- Department of Psychology, University of Illinois, 61801, Urbana, IL, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
Heme and iron metabolism are of considerable interest and importance in normal brain function as well as in neurodegeneration and neuropathologically following traumatic injury and hemorrhagic stroke. After a cerebral hemorrhage, large numbers of hemoglobin-containing red blood cells are released into the brain's parenchyma and/or subarachnoid space. After hemolysis and the subsequent release of heme from hemoglobin, several pathways are employed to transport and metabolize this heme and its iron moiety to protect the brain from potential oxidative stress. Required for these processes are various extracellular and intracellular transporters and storage proteins, the heme oxygenase isozymes and metabolic proteins with differing localizations in the various brain-cell types. In the past several years, additional new genes and proteins have been discovered that are involved in the transport and metabolism of heme and iron in brain and other tissues. These discoveries may provide new insights into neurodegenerative diseases like Alzheimer's, Parkinson's, and Friedrich's ataxia that are associated with accumulation of iron in specific brain regions or in specific organelles. The present review will examine the uptake and metabolism of heme and iron in the brain and will relate these processes to blood removal and to the potential mechanisms underlying brain injury following cerebral hemorrhage.
Collapse
Affiliation(s)
- Kenneth R Wagner
- Departments of Neurology, Pediatrics and Neuroscience Programl, Unviersity of Cincinnati College of Medicine, Cincinnati, Ohio 45220, USA.
| | | | | | | | | |
Collapse
|
104
|
Schmitt AB, Breuer S, Liman J, Buss A, Schlangen C, Pech K, Hol EM, Brook GA, Noth J, Schwaiger FW. Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat. BMC Neurosci 2003; 4:8. [PMID: 12756057 PMCID: PMC161801 DOI: 10.1186/1471-2202-4-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2002] [Accepted: 05/19/2003] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood. RESULTS To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (approximately 15%) have been demonstrated to be differentially expressed. CONCLUSIONS The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues.
Collapse
Affiliation(s)
- Andreas B Schmitt
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Sebastian Breuer
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Jan Liman
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Armin Buss
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Christiane Schlangen
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Katrin Pech
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Elly M Hol
- Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands
| | - Gary A Brook
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Johannes Noth
- Department of Neurology, Aachen University Medical School, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Franz-Werner Schwaiger
- Department of Neuromorphology, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
105
|
Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 2003; 37:899-909. [PMID: 12670420 DOI: 10.1016/s0896-6273(03)00126-0] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies on postmortem brains from Parkinson's patients reveal elevated iron in the substantia nigra (SN). Selective cell death in this brain region is associated with oxidative stress, which may be exacerbated by the presence of excess iron. Whether iron plays a causative role in cell death, however, is controversial. Here, we explore the effects of iron chelation via either transgenic expression of the iron binding protein ferritin or oral administration of the bioavailable metal chelator clioquinol (CQ) on susceptibility to the Parkinson's-inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrapyridine (MPTP). Reduction in reactive iron by either genetic or pharmacological means was found to be well tolerated in animals in our studies and to result in protection against the toxin, suggesting that iron chelation may be an effective therapy for prevention and treatment of the disease.
Collapse
|
106
|
Weinzierl M, Mautes AE, Lin Y, Noble LJ. Attenuated induction of heme oxygenase after intrathecal exposure to lysed blood in mice overexpressing superoxide dismutase. Neurosci Lett 2003; 336:13-6. [PMID: 12493591 DOI: 10.1016/s0304-3940(02)01233-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of heme oxygenase-1 (HO-1) in the spinal cord was studied in adult wildtype and transgenic mice overexpressing the antioxidant copper, zinc superoxide dismutase (CuZn SOD) 24 h after intrathecal infusion of heterologous lysed blood. Double immunolabeling techniques were used to determine the extent to which HO-1 was induced in astrocytes and microglia/macrophages. HO-1 was induced in both astrocytes and microglia/macrophages in the dorsal horns near the site of infusion of lysed blood in all mice. However, the number of HO-1 labeled cells was significantly less in the transgenic as compared to the wildtype animals. Together, these findings suggest that lysed blood preferentially induces HO-1 in glia and macrophages through the generation of oxidative stress.
Collapse
|
107
|
Thompson K, Menzies S, Muckenthaler M, Torti FM, Wood T, Torti SV, Hentze MW, Beard J, Connor J. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J Neurosci Res 2003; 71:46-63. [PMID: 12478613 DOI: 10.1002/jnr.10463] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several neurodegenerative disorders such as Parkinson's Disease (PD) and Alzheimer's Disease (AD) are associated with elevated brain iron accumulation relative to the amount of ferritin, the intracellular iron storage protein. The accumulation of more iron than can be adequately stored in ferritin creates an environment of oxidative stress. We developed a heavy chain (H) ferritin null mutant in an attempt to mimic the iron milieu of the brain in AD and PD. Animals homozygous for the mutation die in utero but the heterozygotes (+/-) are viable. We examined heterozygous and wild-type (wt) mice between 6 and 8 months of age. Macroscopically, the brains of +/- mice were well formed and did not differ from control brains. There was no evidence of histopathology in the brains of the heterozygous mice. Iron levels in the brain of the +/- and wild-type (+/+) mice were similar, but +/- mice had less than half the levels of H-ferritin. The other iron management proteins transferrin, transferrin receptor, light chain ferritin, Divalent Metal Transporter 1, ceruloplasmin, were increased in the +/- mice compared to +/+ mice. The relative amounts of these proteins in relation to the iron concentration are similar to that found in AD and PD. Thus, we hypothesized that the brains of the heterozygote mice should have an increase in indices of oxidative stress. In support of this hypothesis, there was a decrease in total superoxide dismutase (SOD) activity in the heterozygotes coupled with an increase in oxidatively modified proteins. In addition, apoptotic markers Bax and caspase-3 were detected in neurons of the +/- mice but not in the wt. Thus, we have developed a mouse model that mimics the protein profile for iron management seen in AD and PD that also shows evidence of oxidative stress. These results suggest that this mouse may be a model to determine the role of iron mismanagement in neurodegenerative disorders and for testing antioxidant therapeutic strategies.
Collapse
Affiliation(s)
- Khristy Thompson
- Department of Neuroscience and Anatomy, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. J Biol Chem 2002; 277:45518-28. [PMID: 12198135 DOI: 10.1074/jbc.m207435200] [Citation(s) in RCA: 384] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Iron-responsive elements (IREs) are the RNA stem loops that control cellular iron homeostasis by regulating ferritin translation and transferrin receptor mRNA stability. We mapped a novel iron-responsive element (IRE-Type II) within the 5'-untranslated region (5'-UTR) of the Alzheimer's amyloid precursor protein (APP) transcript (+51 to +94 from the 5'-cap site). The APP mRNA IRE is located immediately upstream of an interleukin-1 responsive acute box domain (+101 to +146). APP 5'-UTR conferred translation was selectively down-regulated in response to intracellular iron chelation using three separate reporter assays (chloramphenicol acetyltransferase, luciferase, and red fluorescent protein reflecting an inhibition of APP holoprotein translation in response to iron chelation. Iron influx reversed this inhibition. As an internal control to ensure specificity, a viral internal ribosome entry sequence was unresponsive to intracellular iron chelation with desferrioxamine. Using RNA mobility shift assays, the APP 5'-UTRs, encompassing the IRE, bind specifically to recombinant iron-regulatory proteins (IRP) and to IRP from neuroblastoma cell lysates. IRP binding to the APP 5'-UTR is reduced after treatment of cells with desferrioxamine and increased after interleukin-1 stimulation. IRP binding is abrogated when APP cRNA probe is mutated in the core IRE domain (Delta4 bases:Delta83AGAG86). Iron regulation of APP mRNA through the APP 5'-UTR points to a role for iron in the metabolism of APP and confirms that this RNA structure can be a target for the selection of small molecule drugs, such as desferrioxamine (Fe chelator) and clioquinol (Fe, Cu, and Zn chelator), which reduce Abeta peptide burden during Alzheimer's disease.
Collapse
Affiliation(s)
- Jack T Rogers
- Genetics and Aging Research Unit, Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129-4404, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Usunoff KG, Itzev DE, Ovtscharoff WA, Marani E. Neuromelanin in the human brain: a review and atlas of pigmented cells in the substantia nigra. Arch Physiol Biochem 2002; 110:257-369. [PMID: 12516659 DOI: 10.1076/apab.110.4.257.11827] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- K G Usunoff
- Department of Anatomy and Histology, Medical University, Sofia, Bulgaria
| | | | | | | |
Collapse
|
110
|
Han J, Day JR, Connor JR, Beard JL. H and L ferritin subunit mRNA expression differs in brains of control and iron-deficient rats. J Nutr 2002; 132:2769-74. [PMID: 12221243 DOI: 10.1093/jn/132.9.2769] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mRNA expression of ferritin subunits has not been studied thoroughly in the brain regions of iron-deficient rats. Sprague-Dawley rats (n = 26; 21 d old) were randomly assigned to an iron-deficient (3.5 mg Fe/kg diet) or a control diet (35 mg Fe/kg diet) for 6 wk. Ferritin protein and mRNA contents were quantified and the cellular expression of ferritin subunits in brain was determined. H and L ferritin had the same mRNA locations in nearly all brain regions. Both ferritin subunit mRNAs had heterogeneous distributions and there was a regional effect across brain regions. Iron deficiency did not affect the amount of ferritin mRNA in most brain regions, suggesting the post-transcriptional regulation of messengers by iron status. H ferritin protein was predominant in neurons and oligodendrocytes, whereas L ferritin protein and iron predominated in microglia cells and astrocytes as well as in oligodendrocytes and neurons. Ferritin mRNA was detectable only in neurons. Iron deficiency did not induce new types of cells containing either ferritin protein or mRNA. The fact that ferritin protein was found in four types of cells whereas mRNA was found in only one type of cell suggests that the site of ferritin synthesis is different from protein location in the brain. All of these data suggest that regulation of ferritin subunits is cellular and/or regional specific.
Collapse
Affiliation(s)
- Jian Han
- Department of Nutrition, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
111
|
Cairo G, Ronchi R, Buccellato FR, Veber D, Santambrogio P, Scalabrino G. Regulation of the ferritin H subunit by vitamin B12 (cobalamin) in rat spinal cord. J Neurosci Res 2002; 69:117-24. [PMID: 12111823 DOI: 10.1002/jnr.10267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cobalamin-deficient (Cbl-D) central neuropathy is a pure myelinolytic disease, in which gliosis is also observed. Iron is abundant in the mammalian central nervous system, where it is required for various essential functions including myelinogenesis. It is predominantly located in the white matter and oligodendrocytes, which also actively synthesize the major iron proteins (e.g., ferritin, transferrin). We investigated the expression of the main proteins of iron metabolism in the spinal cord (SC) of totally gastrectomized Cbl-D rats 2 months after surgery (i.e., when the Cbl-D status has become severe). There were no significant changes in iron content, the activity of iron regulatory proteins, or the expression of transferrin or its receptor in the SC. We observed a significant decrease in the levels of both H and L ferritin subunits, with a more marked reduction in the latter. Post-operative cobalamin replacement therapy normalized only the H-ferritin subunits, and only in the SC. Our results therefore suggest that permanent cobalamin deficiency affects iron metabolism in the rat SC preferentially from a functional point of view, because H-ferritin is known to be involved in the uptake and release of iron.
Collapse
Affiliation(s)
- Gaetano Cairo
- Institute of General Pathology, Center for Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
112
|
Walker BL, Tiong JW, Jefferies WA. Iron metabolism in mammalian cells. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 211:241-78. [PMID: 11597005 DOI: 10.1016/s0074-7696(01)11020-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Most living things require iron to exist. Iron has many functions within cells but is rarely found unbound because of its propensity to catalyze the formation of toxic free radicals. Thus the regulation of iron requirements by cells and the acquisition and uptake of iron into tissues in multicellular organisms is tightly regulated. In humans, understanding iron transport and utility has recently been advanced by a "great conjunction" of molecular genetics in simple organisms, identifying genes involved in genetic diseases of metal metabolism and by the application of traditional cell physiology approaches. We are now able to approach a rudimentary understanding of the "iron cycle" within mammals. In the future, this information will be applied toward modulating the outcome of therapies designed to overcome diseases involving metals.
Collapse
Affiliation(s)
- B L Walker
- Biomedical Research Centre, and Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
113
|
Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, Becker G. Brain iron pathways and their relevance to Parkinson's disease. J Neurochem 2001; 79:225-36. [PMID: 11677250 DOI: 10.1046/j.1471-4159.2001.00608.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A central role of iron in the pathogenesis of Parkinson's disease (PD), due to its increase in substantia nigra pars compacta dopaminergic neurons and reactive microglia and its capacity to enhance production of toxic reactive oxygen radicals, has been discussed for many years. Recent transcranial ultrasound findings and the observation of the ability of iron to induce aggregation and toxicity of alpha-synuclein have reinforced the critical role of iron in the pathogenesis of nigrostriatal injury. Presently the mechanisms involved in the disturbances of iron metabolism in PD remain obscure. In this review we summarize evidence from recent studies suggesting disturbances of iron metabolism in PD at possibly different levels including iron uptake, storage, intracellular metabolism, release and post-transcriptional control. Moreover we outline that the interaction of iron with other molecules, especially alpha-synuclein, may contribute to the process of neurodegeneration. Because many neurodegenerative diseases show increased accumulation of iron at the site of neurodegeneration, it is believed that maintenance of cellular iron homeostasis is crucial for the viability of neurons.
Collapse
Affiliation(s)
- D Berg
- Department of Neurology, Bayerische Julius-Maximilians-Universität Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
The ability of the brain to store a readily bioavailable source of iron is essential for normal neurologic function because both iron deficiency and iron excess in the brain have serious neurologic consequences. The blood-brain barrier presents unique challenges to timely and adequate delivery of iron to the brain. The regional compartmentalization of neurologic function and a myriad of cell types provide additional challenges. Furthermore, iron-dependent events within the central nervous system (CNS) are age dependent (e.g., myelination) or region specific (e.g., dopamine synthesis). Thus the mechanisms for maintaining the delicate balance of CNS iron concentration must be considered on a region-specific and age-specific basis. Confounding factors that influence brain iron acquisition in addition to age-specific and region-specific requirements are dietary factors and disease. This article raises and addresses the novel concept of regional regulation of brain iron uptake by reviewing the developmental patterns of iron accumulation and expression of proteins responsible for maintaining iron homeostasis in a region-specific and cell-specific manner. Understanding these mechanisms is essential for generating insights into diseases such as Hallervorden-Spatz syndrome, in which excess iron accumulation in the brain plays a significant role in the disease process, and should also unveil windows of opportunity for replenishing the brain in a state of iron deficiency.
Collapse
Affiliation(s)
- J R Connor
- Department of Neuroscience and Anatomy, Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
115
|
Zecca L, Gallorini M, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 2001; 76:1766-73. [PMID: 11259494 DOI: 10.1046/j.1471-4159.2001.00186.x] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Information on the molecular distribution and ageing trend of brain iron in post-mortem material from normal subjects is scarce. Because it is known that neuromelanin and ferritin form stable complexes with iron(III), in this study we measured the concentration of iron, ferritin and neuromelanin in substantia nigra from normal subjects, aged between 1 and 90 years, dissected post mortem. Iron levels in substantia nigra were 20 ng/mg in the first year of life, had increased to 200 ng/mg by the fourth decade and remained stable until 90 years of age. The H-ferritin concentration was also very low (29 ng/mg) during the first year of life but increased rapidly to values of approximately 200 ng/mg at 20 years of age, which then remained constant until the eighth decade of life. L-Ferritin also showed an increasing trend during life although the concentrations were approximately 50% less than that of H-ferritin at each age point. Neuromelanin was not detectable during the first year, increased to approximately 1000 ng/mg in the second decade and then increased continuously to 3500 ng/mg in the 80th year. A Mössbauer study revealed that the high-spin trivalent iron is probably arranged in a ferritin-like iron--oxyhydroxide cluster form in the substantia nigra. Based on this data and on the low H- and L-ferritin content in neurones it is concluded that neuromelanin is the major iron storage in substantia nigra neurones in normal individuals.
Collapse
Affiliation(s)
- L Zecca
- Institute of Advanced Biomedical Technologies-CNR, Segrate, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Chi SI, Wang CK, Chen JJ, Chau LY, Lin TN. Differential regulation of H- and L-ferritin messenger RNA subunits, ferritin protein and iron following focal cerebral ischemia-reperfusion. Neuroscience 2001; 100:475-84. [PMID: 11098110 DOI: 10.1016/s0306-4522(00)00317-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Iron may catalyse the production of reactive oxygen species during post-ischemic reoxygenation and subsequently lead to brain damage. Ferritin, an iron sequestering and storage protein, can also be a source of iron after ischemic insult. However, its role in ischemia-reperfusion has not been carefully investigated. In the present study, we examined the temporal and spatial induction profiles of both H- and L-ferritin messenger RNA and protein in a well-defined focal cerebral ischemia model. Results of northern blot analysis showed a delayed and prolonged induction of both H- and L-ferritin messenger RNA in the ischemic cortex of rats subjected to 60min ischemic insult. A significant induction of both H- and L-ferritin messenger RNA was observed at 12h and remained elevated for up to 336h after the onset of reperfusion. At the peak level, quantitative analysis of the blot indicated a 2.5-fold and a six-fold increase in H- and L-ferritin messenger RNA, respectively, compared with the sham-operated controls. No apparent change in the levels of either messenger RNA was observed in the contralateral side. Results of in situ hybridization studies revealed constitutive expression of both H- and L-ferritin messenger RNA throughout the brain in sham-operated animals, in particular the hippocampus and the piriform cortex. Nevertheless, the signal intensity of H-ferritin messenger RNA was much higher than that of L-ferritin messenger RNA. Seventy-two hours after 60min ischemia, marked expression of H-ferritin messenger RNA was observed in the area surrounding the middle cerebral artery irrigated cortex, the medial part of the caudoputamen and in the subfield of the CA1 hippocampal region of the ipsilateral hemisphere. Similarly, a large induction of L-ferritin messenger RNA was also noted in several areas, including the middle cerebral artery irrigated cortex, the lateral part of the caudoputamen and the stratum pyramidale of the CA1 hippocampal region, which were totally different from areas where H-ferritin messenger RNA was found. At 336h after ischemia, increased expression of H-ferritin messenger RNA was observed in the peri-necrosis and ipsilateral thalamus regions, while L-ferritin messenger RNA was noted exclusively at the edge within the necrosis. Results of immunohistochemical study further revealed that ferritin immunoreactivity was present in the same areas where increased ferritin messenger RNA was found. Sixty-minute ischemia also led to iron deposition in discrete areas. Iron deposition was highly associated with the induction of ferritin, particularly in the macrophage- and microglia-positive areas where cell death or tissue necrosis was noted.In summary, our initial findings indicate that ischemic insult leads to induction of both H- and L-ferritin messenger RNA. In the present study, although the temporal induction profiles were similar, the major expression areas for these two genes were totally different. Ferritin immunoreactivity was observed in the same areas where increased ferritin messenger RNA was found. Ischemia also resulted in iron deposition, which highly associated with the ferritin immunoreactivity. The exact regulatory mechanism and pathological significance for the differential expression of H- and L-ferritin genes following ischemia/reperfusion remain to be clarified.
Collapse
Affiliation(s)
- S I Chi
- Division of Neuroscience Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
117
|
Mautes AE, Bergeron M, Sharp FR, Panter SS, Weinzierl M, Guenther K, Noble LJ. Sustained induction of heme oxygenase-1 in the traumatized spinal cord. Exp Neurol 2000; 166:254-65. [PMID: 11085891 DOI: 10.1006/exnr.2000.7520] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oxidative stress contributes to secondary injury after spinal cord trauma. Among the consequences of oxidative stress is the induction of heme oxygenase-1 (HO-1), an inducible isozyme that metabolizes heme to iron, biliverdin, and carbon monoxide. Here we examine the induction of HO-1 in the hemisected spinal cord, a model that results in reproducible degeneration in the ipsilateral white matter. HO-1 was induced in microglia and macrophages from 24 h to at least 42 days after injury. Within the first week after injury, HO-1 was induced in both the gray and the white matter. Thereafter, HO-1 expression was limited to degenerating fiber tracts. HSP70, a heat shock protein induced mainly by the presence of denatured proteins, was consistently colocalized with HO-1 in the microglia and macrophages. This study to demonstrates long-term induction of HO-1 and HSP70 in microglia and macrophages after traumatic injury and an association between induction of HO-1 and Wallerian degeneration. White matter degeneration is characterized by phagocytosis of cellular debris and remodeling of surviving tissue. This results in the metabolism, synthesis, and turnover of heme and heme proteins. Thus, sustained induction of HO-1 and HSP70 in microglia and macrophages suggests that tissue degeneration is an ongoing process, lasting 6 weeks and perhaps even longer.
Collapse
Affiliation(s)
- A E Mautes
- Department of Neurosurgery, University of California at San Francisco, San Francisco, California, 94143, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Ishimoto T, Fujimori K, Kasai M, Taguchi T. Dendritic translocation of the rat ferritin H chain mRNA. Biochem Biophys Res Commun 2000; 272:789-93. [PMID: 10860832 DOI: 10.1006/bbrc.2000.2857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the mechanism regulating the selective transport of mRNAs to synaptic sites, we compared the synaptosomal mRNAs with those from the forebrain using the differential display method. The ferritin H chain mRNA was found to be highly enriched in the synaptosomes. In situ hybridization for the ferritin H chain mRNA in the cultured dissociated neurons and in the hippocampal brain slices demonstrated its existence in the dendritic region. These data clearly indicate the selective translocation of the ferritin H chain mRNA into the dendrites and suggested the local expression of ferritin at the synapse.
Collapse
Affiliation(s)
- T Ishimoto
- Department of Organic Materials, Osaka National Research Institute, Japan
| | | | | | | |
Collapse
|
119
|
Lomnitski L, Nyska A, Shohami E, Chen Y, Michaelson DM. Increased levels of intracellular iron in the brains of ApoE-deficient mice with closed head injury. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2000; 52:177-83. [PMID: 10965994 DOI: 10.1016/s0940-2993(00)80118-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies have revealed that apolipoprotein E (apoE)-deficient mice have distinct memory deficits and neurochemical derangements and are oxidatively stressed prior to and following closed head injury. The objective of this study was to evaluate the possibility that the enhanced susceptibility of apoE-deficient mice to closed head injury is related to impairments in their antioxidative iron-chelating mechanisms. ApoE-deficient and control mice were subjected to closed had injury, after which the extent of brain-damage and the level of iron-containing cells were assessed. Examination of the brain-damaged areas in the injured mice revealed that, by Day 3 post injury, animals of both groups were maximally and similarly affected. While the size of the damaged area of the injured control mice diminished significantly by Day 7, however recovery was not observed in injured apoE-deficient mice up to at least 14 days post-injury. Histopathologically, the decrease in the damaged areas in the control mice was interpreted as related to decreased edema. Numbers of iron-containing cells at Days 3 and 7 after injury were greater in the brains of control mice than in the apoE-deficient mice. Whereas the number of iron-containing cells in injured control mice decreased at days 9 and 14-post injury, that of the injured apoE-deficient mice plateaued by Day 9 at a level more than two-fold higher than the maximal level seen for controls. The size of the damaged areas and the number of iron-containing cells were correlated (P < 0.03) for both mouse groups at days 9 and 14 after injury. The data suggest that the increased susceptibility of apoE-deficient mice to closed head injury may be due, at least in part, to impaired iron scavenging and sustained oxidative stress.
Collapse
Affiliation(s)
- L Lomnitski
- Department of Neurobiochemistry, The Geroge S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | | | |
Collapse
|
120
|
Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience 2000; 95:425-32. [PMID: 10658622 DOI: 10.1016/s0306-4522(99)00455-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virtually any neurological disorder leads to activation of resident microglia and invasion of blood-borne macrophages, which are accompanied by an increase in number and change in phenotype of astrocytes, a phenomenon generally termed reactive astrocytosis. One of the functions attributed to activation of astrocytes is thought to involve restoration of tissue damage. Hitherto, the role of astrocytes in the inflammatory reaction occurring in Parkinson's disease has not received much attention. In the present study, we examined the inflammatory events in autopsies of the substantia nigra and putamen from Parkinson's disease patients using age-matched autopsies from normal patients as controls. In the substantia nigra, activation of microglia was consistently observed in all Parkinson's disease autopsies as verified from immunohistochemical detection of CR3/43 and ferritin. Activation of resident microglia was not observed in the putamen. No differences were observed between controls and Parkinson's disease autopsies from the substantia nigra and putamen, in terms of distribution, cellular density or cellular morphology of astrocytes stained for glial fibrillary acidic protein or metallothioneins I and II, the latter sharing high affinity for metal ions and known to be induced in reactive astrocytes, possibly to exert anti-oxidative effects. Together, these findings indicate that the inflammatory process in Parkinson's disease is characterized by activation of resident microglia without reactive astrocytosis, suggesting that the progressive loss of dopaminergic neurons in Parkinson's disease is an ongoing neurodegenerative process with a minimum of involvement of the surrounding nervous tissue. The absence of reactive astrocytosis in Parkinson's disease contrasts what follows in virtually any other neurological disorder and may indicate that the inflammatory process in Parkinson's disease is a unique phenomenon.
Collapse
Affiliation(s)
- B Mirza
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
121
|
Levenson CW, Fitch CA. Effect of altered thyroid hormone status on rat brain ferritin H and ferritin L mRNA during postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 119:105-9. [PMID: 10648877 DOI: 10.1016/s0165-3806(99)00163-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The iron binding protein ferritin is a heterogeneous mix of 24 heavy (H) and light (L) subunits. The H subunit is associated with iron utilization, while the L subunit is responsible for iron storage. Examination of the developmental pattern of mRNA abundance in rat brain revealed that ferritin L mRNA is highest at birth and declines during the first postnatal week. A similar decline was seen in ferritin H mRNA, but was followed by an increase in ferritin H mRNA in the second postnatal week which continued through postnatal day 21. The pattern of H mRNA regulation is similar to that in previous reports of total ferritin protein in the developing rat brain and is consistent with the fact that brain ferritin is predominately ferritin H. The effect of thyroid hormone on the developmental regulation of ferritin mRNAs was examined by the subcutaneous injection of a single dose of exogenous thyroxine (T(4); 2 microg/g) on postnatal day 1. Hypothyroidism was induced in pregnant dams with propylthiouracil (PTU; 0.05% in drinking water) from gestational day 7. Northern analysis from postnatal days 2-21 showed that T(4) increased ferritin H mRNA throughout development, while ferritin L mRNA was decreased compared to age-matched controls. PTU treatment decreased ferritin H and increased L mRNA in the later stages (days 14-21) of development. Given the distinct functions of ferritin H and L this suggests a role for thyroid hormone in the ability of the brain to regulate stored vs. utilizable iron during critical periods of development.
Collapse
Affiliation(s)
- C W Levenson
- Program in Neuroscience and Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306-4340, USA.
| | | |
Collapse
|
122
|
He Y, Lee T, Leong SK. Time course of dopaminergic cell death and changes in iron, ferritin and transferrin levels in the rat substantia nigra after 6-hydroxydopamine (6-OHDA) lesioning. Free Radic Res 1999; 31:103-12. [PMID: 10490239 DOI: 10.1080/10715769900301611] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Parkinson's disease is characterized by dopaminergic cell death in the substantia nigra. The underlying mechanism is, however, unknown. Though there are increasing lines of evidence showing iron accumulation in the Parkinsonian substantia nigra, it still remains obscure whether increased iron is the primary cause of dopaminergic cell death, or just a consequence of the pathological process. It is also unclear how iron gains access to the Parkinsonian SN. To gain more understanding in these areas, the present study investigated the time course of dopaminergic cell death and of changes in the level of iron, ferritin and transferrin. The results showed that iron was increased after the significant nigral dopaminergic cell death induced by 6-hydroxydopamine injection into the rat substantia nigra. On the other hand, the expression of transferrin was decreased. However, there was a temporal increase in the number of ferritin positive microglia. The results indicated that iron increase was not the primary cause of dopaminergic cell death in the Parkinsonian rat. It was most likely the result of an accumulation of iron-laden microglia.
Collapse
Affiliation(s)
- Y He
- Department of Surgery, National University of Singapore, Singapore
| | | | | |
Collapse
|
123
|
LeVine SM, Lynch SG, Ou CN, Wulser MJ, Tam E, Boo N. Ferritin, transferrin and iron concentrations in the cerebrospinal fluid of multiple sclerosis patients. Brain Res 1999; 821:511-5. [PMID: 10064838 DOI: 10.1016/s0006-8993(98)01360-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concentrations of ferritin, transferrin and iron were measured in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) and control patients. Ferritin levels were significantly elevated in the CSF of chronic progressive active MS patients (4.71+/-0.54 ng/ml) compared to levels in normal individuals (3.07+/-0.17 ng/ml). MS patients with active or stable relapsing-remitting disease had ferritin levels that were comparable to those found in normal individuals. There were no significant differences in transferrin or iron levels in the CSF between MS and normal individuals. Both ferritin and transferrin levels were elevated in patients that had high CSF IgG values but not in patients with a high IgG index. Since ferritin binds iron, the increase of CSF ferritin levels in chronic progressive MS patients could be a defense mechanism to protect against iron induced oxidative injury. Ferritin levels could be a laboratory measure that helps to distinguish between chronic progressive and relapsing-remitting MS.
Collapse
Affiliation(s)
- S M LeVine
- Department of Molecular and Integrative Physiology and the Mental Retardation and Human Development Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Hansen TM, Nielsen H, Bernth N, Moos T. Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:186-97. [PMID: 10064889 DOI: 10.1016/s0169-328x(99)00011-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In non-neuronal tissue, ferritin subunit mRNAs are regulated by post-transcriptional mechanisms leading to decreased ferritin protein synthesis during iron deficiency. Biochemical studies have demonstrated that the cerebral ferritin concentration declines during iron deficiency, suggesting that expression of ferritin subunit mRNAs in the brain may be regulated by mechanisms similar to those of non-neuronal tissue. However, as ferritin expression has been only vaguely studied in brain, this hypothesis remains to be tested. We investigated the influence of dietary iron deficiency on the cellular distribution of ferritin protein using immunohistochemistry and H- and L-ferritin subunit mRNAs by non-radioactive in situ hybridization. Pregnant rats were subjected to an iron depleted diet (6.4 mg/kg) from the day of conception. Litters were kept on the same diet until euthanized at the postnatal age of 10 weeks. This treatment reduced brain iron levels from approximately 57 to 26 microgram/g. Reducing the iron stores reduced histochemical detectable iron and the expression of ferritin immunoreactivity in neurons, oligodendrocyte-like and microglia-like cells. In normal rats, H- and L-ferritin subunit mRNAs were expressed in virtually all neurons and non-neuronal cells. The cerebral expression of the ferritin subunit mRNAs was not affected by iron deficiency. The levels of ferritin subunit mRNAs in the brain were also unaltered from iron deficiency when examined by Northern blotting. In conclusion, brain levels of iron and ferritin protein are highly susceptible to dietary iron deficiency, whereas the cerebral expression of H- and L-ferritin subunit mRNAs remains unchanged.
Collapse
Affiliation(s)
- T M Hansen
- Department of Medical Anatomy, Section A, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | | | | | | |
Collapse
|
125
|
Abstract
Although the aetiology of Parkinson's disease (PD) and related neurodegenerative disorders is still unknown, recent evidence from human and experimental animal models suggests that a misregulation of iron metabolism, iron-induced oxidative stress and free radical formation are major pathogenic factors. These factors trigger a cascade of deleterious events leading to neuronal death and the ensuing biochemical disturbances of clinical relevance. A review of the available data in PD provides the following evidence in support of this hypothesis: (i) an increase of iron in the brain, which in PD selectively involves neuromelanin in substantia nigra (SN) neurons; (ii) decreased availability of glutathione (GSH) and other antioxidant substances; (iii) increase of lipid peroxidation products and reactive oxygen (O2)species (ROS); and (iv) impaired mitochondrial electron transport mechanisms. Most of these changes appear to be closely related to interactions between iron and neuromelanin, which result in accumulation of iron and a continuous production of cytotoxic species leading to neuronal death. Some of these findings have been reproduced in animal models using 6-hydroxydopamine, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), iron loading and beta-carbolines, although none of them is an accurate model for PD in humans. Although it is not clear whether iron accumulation and oxidative stress are the initial events causing cell death or consequences of the disease process, therapeutic efforts aimed at preventing or at least delaying disease progression by reducing the overload of iron and generation of ROS may be beneficial in PD and related neurodegenerative disorders. Current pharmacotherapy of PD, in addition to symptomatic levodopa treatment, includes 'neuroprotective' strategies with dopamine agonists, monoamine oxidase-B inhibitors (MAO-B), glutamate antagonists, catechol O-methyltransferase inhibitors and other antioxidants or free radical scavengers. In the future, these agents could be used in combination with, or partly replaced by, iron chelators and lazaroids that prevent iron-induced generation of deleterious substances. Although experimental and preclinical data suggest the therapeutic potential of these drugs, their clinical applicability will be a major challenge for future research.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Vienna, Austria.
| |
Collapse
|
126
|
Abstract
Transferrin (Tf) donates iron (Fe) to the brain by means of receptor-mediated endocytosis of Tf at the brain barriers. As Tf transport through the brain barriers is restricted, Fe is probably released into the brain extracellular compartment as non-Tf-bound iron (NTBI). To evaluate NTBI in the brain and cerebrospinal fluid (CSF), different aged rats (P15, P20, P56) were injected intravenously with [59Fe-125I]Tf followed by sampling of CSF and brain tissue. Between 80 and 93% of 59Fe in CSF was absorbed with anti-Tf and 1 and 5% with anti-ferritin antibodies. The fraction of 59Fe from CSF passing through a 30,000 molecular weight (MW) cutoff filter was approximately 5% (P15), 10% (P20), and 15% (P56). Measurements of Fe and Tf concentrations in CSF of P20 rats revealed that the Fe-binding capacity of Tf was exceeded. In the supernatants of brain homogenates, between 94 and 99% of 59Fe was absorbed with anti-Tf and anti-ferritin antibodies. The respective fractions of 59Fe in the supernatants passing through the 30 kD cutoff filter were 4% (P15), 2% (P20), and 6% (P56). In brain homogenates mixed before filtering with desferroxamine (DFO) or nitrilotriacetic acid (NTA) which complex loosely protein-bound Fe and non-protein-bound Fe, these 59Fe fractions were 2-fold higher. The results indicate that NTBI is present extracellularly in CSF and probably in brain interstitium.
Collapse
Affiliation(s)
- T Moos
- Department of Medical Anatomy A, Panum Institute, University of Copenhagen, Denmark.
| | | |
Collapse
|
127
|
|
128
|
Abstract
Astrocytes provide a vital protective function in the brain. These cells are also vulnerable to oxidative stress, thus their loss of function could contribute to neurodegeneration. The goal of this study is to develop a cell culture model to study oxidative stress in astrocytes. Enriched astrocytic cultures were generated from neonatal mice. tertiary-butyl hydroperoxide (t-bOOH) was used as an exogenous peroxide and lactate dehydrogenase (LDH) release as a measure of loss of viability. Exposure to t-bOOH resulted in a linear increase in astrocytic death reaching 91.2% after 4 h exposure. That cell death was due to oxidative injury, was shown by the ability of the antioxidant N,N'-diphenyl-1,4-phenylenediamine (DPPD) to protect the t-bOOH treated cells. The involvement of iron in cell toxicity was demonstrated by the ability of the iron specific chelator desferal (DF) to completely prevent t-bOOH induced LDH release. Cells treated with a lipid soluble iron compound 3,5, 5-trimethyl (hexanoyl) ferrocene (TMH-Ferrocene), were more vulnerable to t-bOOH whereas neither ferrous ammonium sulfate (FAS) nor ferric ammonium citrate (FAC) had an effect. The increased sensitivity of the cells exposed to TMHF was reversible with the iron chelator desferal. Addition of recombinant human heavy chain ferritin or human apo-transferrin (Tf) did not alter LDH release. Electron microscopic analysis indicated astrocytes exposed to t-bOOH exhibited mitochondrial swelling prior to cell death (lactate dehydrogenase release). Additional increases in mitochondrial swelling were seen when the astrocytes were exposed to the lipophilic iron compound TMH-ferrocene and t-bOOH. These studies show that astrocytes are exquisitely sensitive to oxidative stress and that their vulnerability is related to and enhanced by iron. Decreased mitochondrial function in response to oxidative stress may precede cell death.
Collapse
Affiliation(s)
- S J Robb
- George M. Leader Family Laboratory, Department of Neuroscience and Anatomy, Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, PA 17033, USA
| | | |
Collapse
|
129
|
Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, Sharp FR. Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab 1998; 18:257-73. [PMID: 9498842 DOI: 10.1097/00004647-199803000-00004] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heme oxygenase-1 gene, HO-1, induced by heme, ischemia, and heat shock, metabolizes heme to biliverdin, free iron, and carbon monoxide. Though the distribution of HO-1 has been described in normal rat brain, little is known about how extracellular heme proteins in the subarachnoid space distribute in brain. To address this issue, hemoglobin was injected into the cisterna magna of adult rats. Expression of HO-1 in these animals was compared with saline-injected, BSA-injected, and uninjected controls. Western blot analysis showed that 24 hours after injection oxyhemoglobin increased HO-1 levels approximately four- to fivefold in all brain regions studied compared with saline-injected and BSA-injected controls. In the brain, HO-1 immunoreactivity was evident at 4 hours and peaked at 24 hours after oxyhemoglobin injections, returning to control levels by 4 to 8 days. This HO-1 induction was detected mainly in cells with small, rounded somas bearing two to four truncated processes, a morphology consistent with that of microglia. These cells were double-stained with the microglial marker, OX42, in every brain region examined. It is proposed that subarachnoid hemoglobin may be taken up into microglia wherein heme induces HO-1.
Collapse
Affiliation(s)
- C P Turner
- Department of Neurology, University of California, Veterans Affairs Medical Center, San Francisco 94121, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Bergeron M, Ferriero DM, Sharp FR. Developmental expression of heme oxygenase-1 (HSP32) in rat brain: an immunocytochemical study. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 105:181-94. [PMID: 9541737 DOI: 10.1016/s0165-3806(97)00169-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heme oxygenase (HO) is a microsomal enzyme that oxidatively cleaves heme molecules to produce bile pigments, iron and carbon monoxide. In normal adult rat brain, HO-2 is the most abundant isozyme whereas HO-1 is present at very low levels except in select cell populations. Because its promoter region has NF-kB and AP-1 sites, heat-shock and heme-responsive elements, the HO-1 isozyme can be induced by a variety of stimuli. Since the expression and activity of several transcription factors such as NF-kB, Fos/Jun, and CREB show specific changes during development, we postulated that HO-1 expression may show similar developmental regulation. Using immunocytochemistry and Western blotting, this study demonstrates the development changes of HO-1 protein expression in normal brain from rats at postnatal day 7 (P7), P14, P21, and adult. Brain HO-1 immunoreactivity was highest at P7 in most brain regions including the white matter in areas of myelinogenesis, cerebral cortex, hippocampus, thalamus and hypothalamus and, in the blood vessel endothelial cells throughout the brain. In most regions, the adult pattern was reached by P21 with HO-1 protein localized almost exclusively to the dentate regions of hippocampus, some thalamic and hypothalamic nuclei, with little or no staining of endothelium, white matter and cortex. In a few select areas such as the substantia nigra, globus pallidus, ventromedial hypothalamic nucleus and the lateral preoptic nuclei area, little or no cellular HO-1 staining was observed at P7 whereas increased staining was found with maturation and adulthood. These results show that HO-1 protein expression is regulated in different cell types of specific regions of the rat brain during development.
Collapse
Affiliation(s)
- M Bergeron
- Department of Neurology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
131
|
Bergeron M, Ferriero DM, Vreman HJ, Stevenson DK, Sharp FR. Hypoxia-ischemia, but not hypoxia alone, induces the expression of heme oxygenase-1 (HSP32) in newborn rat brain. J Cereb Blood Flow Metab 1997; 17:647-58. [PMID: 9236721 DOI: 10.1097/00004647-199706000-00006] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme to produce bile pigments and carbon monoxide. The HO-1 isozyme is induced by a variety of agents such as heat, heme, and hydrogen peroxide. Evidence suggests that the bile pigments serve as antioxidants in cells with compromised defense mechanisms. Because hypoxia-ischemia (HI) increases the level of oxygen free radicals, the induction of HO-1 expression in the brain during ischemia could modulate the response to oxidative stress. To study the possible involvement of HO-1 in neonatal hypoxia-induced ischemic tolerance, we examined the brains of newborn rat pups exposed to 8% O2 (for 2.5 to 3 hours), and the brain of chronically hypoxic rat pups with congenital cardiac defects (Wistar Kyoto; WKY/ NCr). Heme oxygenase-1 immunostaining did not change after either acute or chronic hypoxia, suggesting that HO-1 is not a good candidate for explaining hypoxia preconditioning in newborn rat brain. To study the role of HO-1 in neonatal HI, 1-week-old rats were subjected to right carotid coagulation and exposure to 8% O2/92% N2 for 2.5 hours. Whereas HO enzymatic activity was unchanged in ipsilateral cortex and subcortical regions compared with the contralateral hemisphere or control brains, immunocytochemistry and Western blot analysis showed increased HO-1 staining in ipsilateral cortex, hippocampus, and striatum at 12 to 24 hours up to 7 days after HI. Double fluorescence immunostaining showed that HO-1 was expressed mostly in ED-1 positive macrophages. Because activated brain macrophages have been associated with the release of several cytotoxic molecules, the presence of HO-1 positive brain macrophages may determine the tissue vulnerability after HI injury.
Collapse
Affiliation(s)
- M Bergeron
- Department of Neurology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
132
|
Goto K, Mochizuki H, Imai H, Akiyama H, Mizuno Y. An immuno-histochemical study of ferritin in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Brain Res 1996; 724:125-8. [PMID: 8816266 DOI: 10.1016/0006-8993(96)00284-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Iron is increased in the substantia nigra of patients with Parkinson's disease, but the mechanism of its accumulation is unknown. We report the distribution of ferritin in the basal ganglia of hemiparkinsonian monkeys made by MPTP. We stereotactically injected MPTP unilaterally into the caudate nucleus of four monkeys, and the substantia nigra and the basal ganglia regions were stained for L-ferritin by an immunohistochemical method. The ferritin immuno-staining was most intense in the pallidum and the pars reticulata of the substantia nigra on both injected and non-injected sides. No significant difference was noted in the immunostaining for ferritin in the pars compacta of the substantia nigra between the injected and the non-injected side. Iron was increased in the pars compacta of the substantia nigra of this hemiparkinsonian monkeys in our previous study. Normal ferritin immunostaining on the injected side would indicate that iron accumulation is not related to altered metabolism of L-ferritin in this model.
Collapse
Affiliation(s)
- K Goto
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
133
|
Abstract
Oligodendrocytes are the predominant iron-containing cells in the brain. Iron-containing oligodendrocytes are found near neuronal cell bodies, along blood vessels, and are particularly abundant within white matter tracts. Iron-positive cells in white matter are present from birth and eventually reside in defined patches of cells in the adult. These patches of iron-containing cells typically have a blood vessel in their center. Ferritin, the iron storage protein, is also expressed early in development in oligodendrocytes in a regional and cellular pattern similar to that seen for iron. Recently, the functionally distinct subunits of ferritin have been analyzed; only heavy (H)-chain ferritin is found in oligodendrocytes early in development. H-ferritin is associated with high iron utilization and low iron storage. Consistent with the expression of H-ferritin is the expression of transferrin receptors (for iron acquisition) on immature oligodendrocytes. Transferrin protein accumulation and mRNA expression in the brain are both dependent on a viable population of oligodendrocytes and may have an autocrine function to assist oligodendrocytes in iron acquisition. Although apparently the majority of oligodendrocytes in white matter tracts contain ferritin, transferrin, and iron, not all of them do, indicating that there is a subset of oligodendrocytes in white matter tracts. The only known function of oligodendrocytes is myelin production, and both a direct and indirect relationship exists between iron acquisition and myelin production. Iron is directly involved in myelin production as a required co-factor for cholesterol and lipid biosynthesis and indirectly because of its requirement for oxidative metabolism (which occurs in oligodendrocytes at a higher rate than other brain cells). Factors (such as cytokines) and conditions such as iron deficiency may reduce iron acquisition by oligodendrocytes and the susceptibility of oligodendrocytes to oxidative injury may be a result of their iron-rich cytoplasm. Thus, the many known phenomena that decrease oligodendrocyte survival and/or myelin production may mediate their effect through a final common pathway that involves disruptions in iron availability or intracellular management of iron.
Collapse
Affiliation(s)
- J R Connor
- Department of Neuroscience and Anatomy, M.S. Hershey Medical Center, Pennsylvania State University College of Medicine 17033, USA
| | | |
Collapse
|
134
|
|
135
|
Matz P, Turner C, Weinstein PR, Massa SM, Panter SS, Sharp FR. Heme-oxygenase-1 induction in glia throughout rat brain following experimental subarachnoid hemorrhage. Brain Res 1996; 713:211-22. [PMID: 8724993 DOI: 10.1016/0006-8993(95)01511-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The heme released following subarachnoid hemorrhage is metabolized by heme-oxygenase (HO) to biliverdin and carbon monoxide (CO) with the release of iron. The HO reaction is important since heme may contribute to vasospasm and increase oxidative stress in cells. HO is comprised of at least two isozymes, HO-2 and HO-1. HO-1, also known as heat shock protein HSP32, is inducible by many factors including heme and heat shock. HO-2 does not respond to these stresses. To begin to examine HO activity following subarachnoid hemorrhage (SAH), the expression of HO-1 and HO-2 was investigated after experimental SAH in adult rats. Immunocytochemistry for HO-1, HO-2 and HSP70 proteins was performed at 1, 2, 3 and 4 days after injections of lysed blood, whole blood, oxyhemoglobin and saline into the cisterna magna. A large increase in HO-1 immunoreactivity was seen in cells throughout brain following injections of lysed blood, whole blood, and oxyhemoglobin but not saline. Lysed blood, whole blood and oxyhemoglobin induced HO-1 in all of the cortex, hippocampus, striatum, thalamus, forebrain white matter and in cerebellar cortex. HO-1 immunoreactivity was greatest in those regions adjacent to the basal subarachnoid cisterns where blood and oxyhemoglobin concentrations were likely highest. Double immunofluorescence studies showed the HO-1 positive cells to be predominately microglia, though HO-1 was induced in some astrocytes. HO-1 expression resolved by 48 h. HO-2 immunoreactivity was abundant but did not change following injections of blood. A generalized induction of HSP70 heat shock protein was not observed following injections of lysed blood, whole blood, oxyhemoglobin, or saline. These results suggest that HO-1 is induced in microglia throughout rat brain as a general, parenchymal response to the presence of oxyhemoglobin in the subarachnoid space and not as a stress response. This microglial HO-1 response could be protective against the lipid peroxidation and vasospasm induced by hemoglobin, by increasing heme clearance and iron sequestration, and enhancing the production of the antioxidant bilirubin.
Collapse
Affiliation(s)
- P Matz
- Department of Neurology and Neurosurgery, University of California, San Francisco, USA.
| | | | | | | | | | | |
Collapse
|
136
|
Abstract
All organs including the brain contain iron, and the proteins involved in iron uptake (transferrin and transferrin receptor) and intracellular storage (ferritin). However, because the brain resides behind a barrier and has a heterogeneous population of cells, there are aspects of its iron management that are unique. Iron management, the timely delivery of appropriate amounts of iron, is crucial to normal brain development and function. Mismanagement of cellular iron can result not only in decreased metabolic activity but increased vulnerability to oxidative damage. There is regional specificity in cell deposition of iron and the iron regulatory proteins. However, the sequestration of iron in the brain seems primarily the responsibility of oligodendrocytes, as these cells contain most of the stainable iron in the brain. Transferrin, the iron-mobilizing protein, is also found predominantly in these cells. The transferrin receptor is abundantly expressed on blood vessels, large neurons in the cortex, striatum, and hippocampus, and is also present on oligodendrocytes and astrocytes. Ferritin, the intracellular iron storage protein, consists of 2 subunits which are functionally distinct, and we provide evidence in this report that the cellular distribution of the ferritin subunits is also distinct. In addition, changes in the cellular distribution of iron and its associated regulatory proteins occur in Alzheimer's disease. Neuritic plaques contain relatively large amounts of stainable iron, and the surrounding cells robustly immunostain for ferritin and the transferrin receptor. Analysis of the cellular distribution of iron indicates the different levels of requirement of iron in the brain by different cell types and should ultimately elucidate how cells acquire and maintain this essential component of oxidative metabolism. In addition, changes in the ability of cells to deliver and manage iron may provide insight into altered metabolic activity with age and disease as well as identify cell populations at risk for iron-induced oxidative stress.
Collapse
Affiliation(s)
- J R Connor
- Department of Neuroscience and Anatomy, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | |
Collapse
|
137
|
Abstract
Brain iron research began in the late nineteenth century when Zaleski (1886) made a quantitative analysis of one human brain and correlated iron levels with observations on stained slices and some microscopic sections. Gradually, the realization grew that the central nervous system (CNS) contained iron which was different from hemoglobin-iron. This non-heme iron was found in highest concentrations in globus pallidus, substantia nigra, red nucleus, and dentate nucleus. The enhancement of the traditional histochemical stain, potassium ferrocyanide in hydrochloric acid, by incubating the reacted sections in a solution of diaminobenzidine and hydrogen peroxide, revealed iron in many cell types of the CNS, including neurons, microglia, oligodendroglia, and some astrocytes. A large proportion of the soluble brain iron was shown to be present in ferritin. Brain ferritin was found to be very similar to the protein from other organs in that it contained heavy and light subunits. Several investigators reported the presence of other iron-related proteins in the central nervous system, including transferrin, transferrin receptor, and the ferritin repressor protein. Brain was shown to respond to the extravasation of blood by converting the iron in heme to hemosiderin by a sequence of steps which was quite similar to the process in extracerebral organs. The methods of molecular biology have contributed greatly to our understanding of brain iron but many questions remain about its unique anatomical distribution and its role in degenerative diseases such as Parkinson's disease and Alzheimer's dementia.
Collapse
Affiliation(s)
- A H Koeppen
- Neurology and Research Services, Veterans Affairs Medical Center, Albany, NY 12208, USA
| |
Collapse
|
138
|
Dickinson TK, Connor JR. Cellular distribution of iron, transferrin, and ferritin in the hypotransferrinemic (Hp) mouse brain. J Comp Neurol 1995; 355:67-80. [PMID: 7636015 DOI: 10.1002/cne.903550109] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hypotransferrinemic (Hp) mice have a point mutation or small deletion in the transferrin (Tf) gene, resulting in defective splicing of precursor Tf mRNA. Hp animals produce < 1% of normal Tf levels and require supplemental serum or purified Tf for survival. Because of the lack of endogenous brain Tf, we examined regional and cellular distributions of iron and iron regulatory proteins (Tf and ferritin) in selected brain regions of Hp mice. The regional distribution of iron, Tf, and ferritin in Hp brain was similar to normal except for the pattern of iron staining in hippocampus. The cellular distribution of iron, ferritin, and Tf was similar between Hp and normal animals. The predominant cell type staining for Tf and iron was oligodendrocytes. Qualitative observations suggest that the number of cells staining for iron was similar between Hp and normal mice, whereas the number of Hp Tf-positive cells was reduced. Ferritin immunostaining was similar in both cases. However, ferritin-positive cells were predominantly astrocytes, an observation unique to mice among species studied previously. Western blot analysis revealed that Tf present in Hp brain was of exogenous origin (from supplemental injections). Presumably, Tf transports the iron found in Hp oligodendrocytes. These data demonstrate that, despite reduced endogenous Hp brain Tf, iron and plasma Tf migrate or are transported to the appropriate cells (oligodendrocytes), bringing into question the role of endogenous brain Tf in extracellular iron transport.
Collapse
Affiliation(s)
- T K Dickinson
- George M. Leader Family Laboratory For Alzheimer's Disease Research, Department of Neuroscience and Anatomy, Pennsylvania State University, College of Medicine, M.S. Hershey Medical Center, Hershey 17033, USA
| | | |
Collapse
|