101
|
Matone A, O'Grada CM, Dillon ET, Morris C, Ryan MF, Walsh M, Gibney ER, Brennan L, Gibney MJ, Morine MJ, Roche HM. Body mass index mediates inflammatory response to acute dietary challenges. Mol Nutr Food Res 2015; 59:2279-92. [DOI: 10.1002/mnfr.201500184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Alice Matone
- The Microsoft Research; University of Trento Centre for Computational Systems Biology (COSBI); Rovereto Italy
| | - Colm M. O'Grada
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health and Population Science; University College Dublin; Belfield Dublin Ireland
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Eugene T. Dillon
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health and Population Science; University College Dublin; Belfield Dublin Ireland
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Ciara Morris
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Miriam F. Ryan
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Marianne Walsh
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Eileen R. Gibney
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Lorraine Brennan
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin; Belfield Dublin Ireland
| | - Michael J. Gibney
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
| | - Melissa J. Morine
- The Microsoft Research; University of Trento Centre for Computational Systems Biology (COSBI); Rovereto Italy
- Department of Mathematics; University of Trento; Trento Italy
| | - Helen M. Roche
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health and Population Science; University College Dublin; Belfield Dublin Ireland
- Institute of Food and Health; University College Dublin; Belfield Dublin Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin; Belfield Dublin Ireland
| |
Collapse
|
102
|
Abstract
Obesity and being overweight are linked with a cluster of metabolic and vascular disorders that have been termed the metabolic syndrome. This syndrome promotes the incidence of cardiovascular diseases that are an important public health problem because they represent a major cause of death worldwide. Whereas there is not a universally-accepted set of diagnostic criteria, most expert groups agree that this syndrome is defined by an endothelial dysfunction, an impaired insulin sensitivity and hyperglycemia, dyslipidemia, abdominal obesity and hypertension. Epidemiological studies suggest that the beneficial cardiovascular health effects of diets rich in green tea are, in part, mediated by their flavonoid content, with particular benefits provided by members of this family such as epigallocatechin gallate (EGCG). Although their bioavailability is discussed, various studies suggest that EGCG modulates cellular and molecular mechanisms of various symptoms leading to metabolic syndrome. Therefore, according to in vitro and in vivo model data, this review attempts to increase our understanding about the beneficial properties of EGCG to prevent metabolic syndrome.
Collapse
|
103
|
Amyloid-beta mediates the receptor of advanced glycation end product-induced pro-inflammatory response via toll-like receptor 4 signaling pathway in retinal ganglion cell line RGC-5. Int J Biochem Cell Biol 2015; 64:1-10. [DOI: 10.1016/j.biocel.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/02/2014] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
|
104
|
Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, Cooke AA, Coll RC, McAllan L, Nilaweera KN, O'Reilly ME, Tierney AC, Morine MJ, Alcala-Diaz JF, Lopez-Miranda J, O'Connor DP, O'Neill LA, McGillicuddy FC, Roche HM. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 2015; 64:2116-28. [PMID: 25626736 DOI: 10.2337/db14-1098] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/14/2015] [Indexed: 12/18/2022]
Abstract
Saturated fatty acid (SFA) high-fat diets (HFDs) enhance interleukin (IL)-1β-mediated adipose inflammation and insulin resistance. However, the mechanisms by which different fatty acids regulate IL-1β and the subsequent effects on adipose tissue biology and insulin sensitivity in vivo remain elusive. We hypothesized that the replacement of SFA for monounsaturated fatty acid (MUFA) in HFDs would reduce pro-IL-1β priming in adipose tissue and attenuate insulin resistance via MUFA-driven AMPK activation. MUFA-HFD-fed mice displayed improved insulin sensitivity coincident with reduced pro-IL-1β priming, attenuated adipose IL-1β secretion, and sustained adipose AMPK activation compared with SFA-HFD-fed mice. Furthermore, MUFA-HFD-fed mice displayed hyperplastic adipose tissue, with enhanced adipogenic potential of the stromal vascular fraction and improved insulin sensitivity. In vitro, we demonstrated that the MUFA oleic acid can impede ATP-induced IL-1β secretion from lipopolysaccharide- and SFA-primed cells in an AMPK-dependent manner. Conversely, in a regression study, switching from SFA- to MUFA-HFD failed to reverse insulin resistance but improved fasting plasma insulin levels. In humans, high-SFA consumers, but not high-MUFA consumers, displayed reduced insulin sensitivity with elevated pycard-1 and caspase-1 expression in adipose tissue. These novel findings suggest that dietary MUFA can attenuate IL-1β-mediated insulin resistance and adipose dysfunction despite obesity via the preservation of AMPK activity.
Collapse
Affiliation(s)
- Orla M Finucane
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Claire L Lyons
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Aoife M Murphy
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Clare M Reynolds
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Rut Klinger
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Niamh P Healy
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Aoife A Cooke
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Rebecca C Coll
- Inflammatory Research Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Liam McAllan
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | | | - Marcella E O'Reilly
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Audrey C Tierney
- Department of Dietetics and Human Nutrition, La Trobe University, Melbourne, Victoria, Australia
| | - Melissa J Morine
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Juan F Alcala-Diaz
- Lipids and Atherosclerosis Research Unit, Reina Sofía University Hospital, and CIBER Phyisiopathology of Obesity and Nutrition (CIBEROBN), University of Córdoba, Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Research Unit, Reina Sofía University Hospital, and CIBER Phyisiopathology of Obesity and Nutrition (CIBEROBN), University of Córdoba, Córdoba, Spain
| | - Darran P O'Connor
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Luke A O'Neill
- Inflammatory Research Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fiona C McGillicuddy
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, Conway Institute of Biomedical and Biomolecular Research, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
105
|
Liu XJ, Wang BW, Zhang C, Xia MZ, Chen YH, Hu CQ, Wang H, Chen X, Xu DX. Vitamin d deficiency attenuates high-fat diet-induced hyperinsulinemia and hepatic lipid accumulation in male mice. Endocrinology 2015; 156:2103-13. [PMID: 25774554 DOI: 10.1210/en.2014-2037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is increasingly recognized that vitamin D deficiency is associated with increased risks of metabolic disorders among overweight children. A recent study showed that vitamin D deficiency exacerbated inflammation in nonalcoholic fatty liver disease through activating toll-like receptor 4 in a high-fat diet (HFD) rat model. The present study aimed to further investigate the effects of vitamin D deficiency on HFD-induced insulin resistance and hepatic lipid accumulation. Male ICR mice (35 d old) were randomly assigned into 4 groups as follows. In control diet and vitamin D deficiency diet (VDD) groups, mice were fed with purified diets. In HFD and VDD+HFD groups, mice were fed with HFD. In VDD and VDD+HFD groups, vitamin D in feed was depleted. Feeding mice with vitamin D deficiency diet did not induce obesity, insulin resistance, and hepatic lipid accumulation. By contrary, vitamin D deficiency markedly alleviated HFD-induced overweight, hyperinsulinemia, and hepatic lipid accumulation. Moreover, vitamin D deficiency significantly attenuated HFD-induced up-regulation of hepatic peroxisome proliferator-activated receptor γ, which promoted hepatic lipid uptake and lipid droplet formation, and its target gene cluster of differentiation 36. In addition, vitamin D deficiency up-regulated carnitine palmitoyltrans 2, the key enzyme for fatty acid β-oxidation, and uncoupling protein 3, which separated oxidative phosphorylation from ATP production, in adipose tissue. These data suggest that vitamin D deficiency is not a direct risk factor for obesity, insulin resistance, and hepatic lipid accumulation. Vitamin D deficiency alleviates HFD-induced overweight, hyperinsulinemia, and hepatic lipid accumulation through promoting fatty acid β-oxidation and elevating energy expenditure in adipose tissue.
Collapse
Affiliation(s)
- Xiao-Jing Liu
- Department of Toxicology (X.-J.L., B.-W.W., C.Z., Y.-H.C., C.-Q.H., H.W., D.-X.X.), Anhui Medical University, Hefei, China, 230032; Anhui Provincial Key Laboratory of Population Health and Aristogenics (X.-J.L., Y.-H.C., H.W., D.-X.X.), Hefei, China, 230032; First Affiliated Hospital (X.-J.L., X.C.), Anhui Medical University, Hefei, China, 230032; and School of Life Science (M.-Z.X.), Anhui Medical University, Hefei, China, 230032
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Murphy AM, Lyons CL, Finucane OM, Roche HM. Interactions between differential fatty acids and inflammatory stressors-impact on metabolic health. Prostaglandins Leukot Essent Fatty Acids 2015; 92:49-55. [PMID: 24947613 DOI: 10.1016/j.plefa.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 12/26/2022]
Abstract
Current interest in obesity has established a clear link between diets high in fat and metabolic complications such as Type 2 Diabetes. Dietary fats and their metabolites act as stressors to induce a pro-inflammatory immune response which dysregulates many essential metabolic functions. Recent research suggests that different dietary fats may have varying inflammatory potentials. However the molecular mechanisms involved in the cross talk between dietary fat composition and the 'immuno-metabolism' remain enigmatic. It is probable that lipids, and their derivatives, differentially regulate IL-1β activation and inflammatory signaling via the NLRP3 inflammasome complex. Also from the translational perspective, certain nutrient sensitive genotypes and potential gene nutrient interactions offer the possibility to reduce inflammation through personalized nutrition approaches.
Collapse
Affiliation(s)
- Aoife M Murphy
- Nutrigenomics Research Group, UCD Conway Institute & UCD Institute of Food & Health, School of Public Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire L Lyons
- Nutrigenomics Research Group, UCD Conway Institute & UCD Institute of Food & Health, School of Public Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M Finucane
- Nutrigenomics Research Group, UCD Conway Institute & UCD Institute of Food & Health, School of Public Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, UCD Conway Institute & UCD Institute of Food & Health, School of Public Health, University College Dublin, Belfield, Dublin 4, Ireland..
| |
Collapse
|
107
|
Adipose tissue dysregulation and metabolic consequences in childhood and adolescent obesity: potential impact of dietary fat quality. Proc Nutr Soc 2014; 74:67-82. [PMID: 25497038 DOI: 10.1017/s002966511400158x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence suggests that at a population level, childhood and adolescent obesity increase the long-term risk of chronic diseases such as type 2 diabetes and CVD. At an individual level, however, the metabolic consequences of obesity in youth vary immensely. Despite comparable BMI, some adolescents develop impaired glucose tolerance while others maintain normal glucose homeostasis. It has been proposed that the variation in the capacity to store lipid in the subcutaneous adipose tissue (SAT) may partially discriminate metabolically healthy from unhealthy obesity. In positive energy balance, a decreased capacity to expand SAT may drive lipid accumulation to visceral adipose tissue, liver and skeletal muscle. This state of lipotoxicity is associated with chronic low-grade inflammation, insulin resistance and dyslipidaemia. The present review examines the differential adipose tissue development and function in children and adolescents who exhibit metabolic dysregulation compared with those who are protected. Additionally, the role of manipulating dietary fat quality to potentially prevent and treat metabolic dysfunction in obesity will be discussed. The findings of the present review highlight the need for further randomised controlled trials to establish the effect of dietary n-3 PUFA on the metabolic phenotype of obese children and adolescents. Furthermore, using a personalised nutrition approach to target interventions to those at risk of, or those with established metabolic dysregulation may optimise the efficacy of modifying dietary fat quality.
Collapse
|
108
|
Bakar MHA, Sarmidi MR, Kai CK, Huri HZ, Yaakob H. Amelioration of mitochondrial dysfunction-induced insulin resistance in differentiated 3T3-L1 adipocytes via inhibition of NF-κB pathways. Int J Mol Sci 2014; 15:22227-57. [PMID: 25474091 PMCID: PMC4284705 DOI: 10.3390/ijms151222227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 01/14/2023] Open
Abstract
A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, University Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development, University Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Cheng Kian Kai
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, University Teknologi Malaysia, Skudai 81310, Malaysia.
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Harisun Yaakob
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), University Teknologi Malaysia, Skudai 81310, Malaysia.
| |
Collapse
|
109
|
Bergamo P, Luongo D, Miyamoto J, Cocca E, Kishino S, Ogawa J, Tanabe S, Rossi M. Immunomodulatory activity of a gut microbial metabolite of dietary linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, associated with improved antioxidant/detoxifying defences. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
110
|
Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol 2014; 30:91-8. [PMID: 25282339 DOI: 10.1016/j.coi.2014.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 02/08/2023]
Abstract
Cell death cannot go unnoticed. It demands that the surrounding cells clear away the corpses in a manner appropriate to the type of cell death. Dying cells represent a threat to the body that should be eliminated by the host immune response. Inflammasome activation followed by IL-1alpha release and IL-1beta maturation is crucial for tackling pathological conditions, including infections, whereas inflammasome activation precedes inflammatory pyroptotic cell death. On the other hand, recent studies have shown that the inflammasome plays an important role in the pathogenesis of metabolic diseases, including obesity, diabetes, and atherosclerosis. Here, we review current knowledge of the association between cell death, excess metabolites, and inflammasome activation as it relates to chronic inflammatory diseases.
Collapse
|
111
|
Reynolds CM, Vickers MH, Harrison CJ, Segovia SA, Gray C. High fat and/or high salt intake during pregnancy alters maternal meta-inflammation and offspring growth and metabolic profiles. Physiol Rep 2014; 2:2/8/e12110. [PMID: 25096554 PMCID: PMC4246600 DOI: 10.14814/phy2.12110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A high intake of fat or salt during pregnancy perturbs placental function, alters fetal development, and predisposes offspring to metabolic disease in adult life. Despite its relevance to modern dietary habits, the developmental programming effects of excessive maternal fat and salt, fed in combination, have not been examined. We investigated the effects of moderately high maternal fat and/or salt intake on maternal metainflammation and its consequences on fetal and weanling growth and metabolic profile. Female Sprague–Dawley rats were fed a standard control diet (CD), 4% salt diet (SD), 45% fat diet (HF) or 4% salt/45% fat combined diet (HFSD) 3 weeks prior to and throughout pregnancy and lactation. Plasma and tissue samples were collected at day 18 of pregnancy from mother and fetus, and at postnatal day 24 in weanlings. Markers of adipose tissue inflammation, macrophage infiltration, lipogenesis, nutrient transport, and storage were altered in pregnant dams receiving high‐fat and/or ‐salt diets. This was accompanied by increased fat mass in high‐fat groups and differential hepatic lipid and glucose homeostasis. Offspring of high fat‐fed mothers had reduced fetal weight, displayed catch‐up growth, increased fat mass, and altered metabolic profiles at weaning. Maternal diets high in fat and/or salt affect maternal metabolic parameters, fetal growth and development, metabolic status, and adipoinsular axis in the weanling. Results presented here highlight the importance of diet in expectant mothers or women considering pregnancy. Furthermore, the potential for maternal nutritional intervention strategies may be employed to modify the metabolic disease risk in adult offspring during later life. We investigated the effects of moderately high maternal fat and/or salt intake on maternal metainflammation and its consequences on fetal and weanling growth and metabolic profile. Maternal diets high in fat and/or salt affect maternal metabolic parameters, fetal growth and development, metabolic status, and adipoinsular axis in the weanling. Results presented here highlight the importance of diet in expectant mothers or women considering pregnancy.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Claudia J Harrison
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Stephanie A Segovia
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Clint Gray
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| |
Collapse
|
112
|
Myles IA. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J 2014; 13:61. [PMID: 24939238 PMCID: PMC4074336 DOI: 10.1186/1475-2891-13-61] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023] Open
Abstract
While numerous changes in human lifestyle constitute modern life, our diet has been gaining attention as a potential contributor to the increase in immune-mediated diseases. The Western diet is characterized by an over consumption and reduced variety of refined sugars, salt, and saturated fat. Herein our objective is to detail the mechanisms for the Western diet's impact on immune function. The manuscript reviews the impacts and mechanisms of harm for our over-indulgence in sugar, salt, and fat, as well as the data outlining the impacts of artificial sweeteners, gluten, and genetically modified foods; attention is given to revealing where the literature on the immune impacts of macronutrients is limited to either animal or in vitro models versus where human trials exist. Detailed attention is given to the dietary impact on the gut microbiome and the mechanisms by which our poor dietary choices are encoded into our gut, our genes, and are passed to our offspring. While today's modern diet may provide beneficial protection from micro- and macronutrient deficiencies, our over abundance of calories and the macronutrients that compose our diet may all lead to increased inflammation, reduced control of infection, increased rates of cancer, and increased risk for allergic and auto-inflammatory disease.
Collapse
Affiliation(s)
- Ian A Myles
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike Building 33, Room 2W10A, Bethesda, MD, 20892, Maryland.
| |
Collapse
|
113
|
Jia L, Vianna CR, Fukuda M, Berglund ED, Liu C, Tao C, Sun K, Liu T, Harper MJ, Lee CE, Lee S, Scherer PE, Elmquist JK. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun 2014; 5:3878. [PMID: 24815961 PMCID: PMC4080408 DOI: 10.1038/ncomms4878] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammation; however which Tlr4 expressing cells mediate this effect is unknown. Here we show that mice deficient in hepatocyte Tlr4 (Tlr4LKO) exhibit improved glucose tolerance, enhanced insulin sensitivity, and ameliorated hepatic steatosis despite the development of obesity after a high fat diet (HFD) challenge. Furthermore, Tlr4LKO mice have reduced macrophage content in white adipose tissue, as well as decreased tissue and circulating inflammatory markers. In contrast, the loss of Tlr4 activity in myeloid cells has little effect on insulin sensitivity. Collectively, these data indicate that the activation of Tlr4 on hepatocytes contributes to obesity-associated inflammation and insulin resistance, and suggest that targeting hepatocyte Tlr4 might be a useful therapeutic strategy for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Lin Jia
- 1] Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2]
| | - Claudia R Vianna
- 1] Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2]
| | - Makoto Fukuda
- 1] Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2]
| | - Eric D Berglund
- 1] Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2] Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Chen Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Caroline Tao
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kai Sun
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Matthew J Harper
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joel K Elmquist
- 1] Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA [2] Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| |
Collapse
|
114
|
Reynolds CM, Li M, Gray C, Vickers MH. Early-life growth hormone treatment to offspring of undernourished mothers alters metabolic parameters in primary adipocytes in adulthood. Growth Factors 2014; 32:34-40. [PMID: 24392751 DOI: 10.3109/08977194.2013.870169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Maternal undernutrition (UN) is associated with the development of obesity and metabolic complications in adult offspring. This study investigated the impact of preweaning growth hormone (GH) treatment on adipocyte functionality in adult male offspring. Sprague-Dawley rats were assigned either standard (C) or undernourished (UN) diet (50% ad libitum) throughout gestation. Postnatal day 3-21, male C/UN pups received either saline (CS, UNS) or GH (2.5 µg/g/d; CGH, UNGH) by subcutaneous injection. Primary adipocytes were isolated following the collagenase digestion of adipose tissue. Primary adipocytes from UN offspring had significantly increased the secretion of pro-inflammatory cytokines accompanied by increased cytokine/cytokine receptor expression. This correlated with increased TLR4/NF-κB signaling. While increased inflammatory potential was not observed in adipocytes derived from UNGH offspring, there was a clear alteration in the expression of genes relating to carbohydrate and lipid metabolism along with nutrient transporters. Overall, preweaning GH treatment alters detrimental patterns of development, which predispose UN offspring to obesity and insulin resistance.
Collapse
|
115
|
Afman L, Milenkovic D, Roche HM. Nutritional aspects of metabolic inflammation in relation to health--insights from transcriptomic biomarkers in PBMC of fatty acids and polyphenols. Mol Nutr Food Res 2014; 58:1708-20. [PMID: 24449395 DOI: 10.1002/mnfr.201300559] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 11/08/2022]
Abstract
Recent research has highlighted potential important interaction between metabolism and inflammation, within the context of metabolic health and nutrition, with a view to preventing diet-related disease. In addition to this, there is a paucity of evidence in relation to accurate biomarkers that are capable of reflecting this important biological interplay or relationship between metabolism and inflammation, particularly in relation to diet and health. Therefore the objective of this review is to highlight the potential role of transcriptomic approaches as a tool to capture the mechanistic basis of metabolic inflammation. Within this context, this review has focused on the potential of peripheral blood mononuclear cells transcriptomic biomarkers, because they are an accessible tissue that may reflect metabolism and subacute chronic inflammation. Also these pathways are often dysregulated in the common diet-related diseases obesity, type 2 diabetes, and cardiovascular disease, thus may be used as markers of systemic health. The review focuses on fatty acids and polyphenols, two classes of nutrients/nonnutrient food components that modulate metabolism/inflammation, which we have used as an example of a proof-of-concept with a view to understanding the extent to which transcriptomic biomarkers are related to nutritional status and/or sensitive to dietary interventions. We show that both nutritional components modulate inflammatory markers at the transcriptomic level with the capability of profiling pro- and anti-inflammatory mechanisms in a bidirectional fashion; to this end transcriptomic biomarkers may have potential within the context of metabolic inflammation. This transcriptomic biomarker approach may be a sensitive indicator of nutritional status and metabolic health.
Collapse
Affiliation(s)
- Lydia Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, The Netherlands
| | | | | |
Collapse
|
116
|
Freiwald A, Weidner C, Witzke A, Huang SY, Meierhofer D, Sauer S. Comprehensive proteomic datasets for studying adipocyte-macrophage cell-cell communication. Proteomics 2013; 13:3424-8. [DOI: 10.1002/pmic.201300271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/22/2013] [Accepted: 10/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Anja Freiwald
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Christopher Weidner
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Annabell Witzke
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Sheng-Yu Huang
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - David Meierhofer
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Sascha Sauer
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| |
Collapse
|
117
|
Wang L, You J, Zhong B, Ren C, Zhang Y, Li M, Zhang G, Jia R, Ying S, Wang F. Scd1 mammary-specific vector constructed and overexpressed in goat fibroblast cells resulting in an increase of palmitoleic acid and oleic acid. Biochem Biophys Res Commun 2013; 443:389-94. [PMID: 24309099 DOI: 10.1016/j.bbrc.2013.11.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 11/29/2022]
Abstract
Stearoyl-CoA desaturase-1 (Scd1) is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids. Overexpression of Scd1 in transgenic animals would modify the nutritional value of ruminant-derived foods by increasing the monounsaturated fatty acid (MUFA) and decreasing the saturated fatty acid (SFA) content. The aim of this study was to develop an effective Scd1 vector that is specifically expressed in dairy goat mammary glands. We successfully amplified the goat full length Scd1 cDNA and evaluated its activity in goat ear skin-derived fibroblast cells (GEFCs) by lipid analysis. In addition, we constructed a mammary gland-specific expression vector and confirmed efficient expression of Scd1 in goat mammary epithelial cells (GMECs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that Scd1-overexpression resulted in an increase in levels of palmitoleic acid (16:1n-7) and oleic acid (18:1n-9), from 1.73 ± 0.02% to 2.54 ± 0.02% and from 27.25 ± 0.13% to 30.37 ± 0.04%, respectively (both p<0.01) and the ratio of MUFA to SFA was increased. This work lays a foundation for the generation of Scd1 transgenic goats.
Collapse
Affiliation(s)
- Lizhong Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jihao You
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bushuai Zhong
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Meng Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ruoxin Jia
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shijia Ying
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
118
|
Bao S, Cao Y, Fan C, Fan Y, Bai S, Teng W, Shan Z. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats. Mol Nutr Food Res 2013; 58:677-86. [PMID: 24259392 DOI: 10.1002/mnfr.201300335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/01/2013] [Accepted: 09/09/2013] [Indexed: 12/20/2022]
Abstract
SCOPE In this study, we investigated the beneficial effects and the underlying mechanism of epigallocatechin gallate (EGCG) in adipose tissues of rats fed with a high-fat diet (HFD). METHODS AND RESULTS Fasting plasma insulin, epididymal fat coefficient and free fatty acids, homeostasis model assessment-insulin resistance index, and the average glucose infusion rate were determined. EGCG significantly decreased free fatty acids, fasting insulin, homeostasis model assessment-insulin resistance index, and epididymal fat coefficient, and increased glucose infusion rate in HFD group. The levels of toll-like receptor 4, TNF receptor associated factor 6, inhibitor-kappa-B kinase β, p-nuclear factor κB, tumor necrosis factor α, and IL-6 in the EGCG group were all significantly lower than the HFD control group. EGCG also decreased the level of phosphorylated insulin receptor substrate 1 and increased phosphoinositide-3-kinase and glucose transporter isoform 4 in the HFD group. Decreased macrophage infiltration was in EGCG group versus HFD group, and the protein level of CD68 in EGCG group was also significantly lower than that of HFD group. CONCLUSION EGCG attenuated inflammation by decreasing the content of macrophages, interfered the toll-like receptor 4 mediated inflammatory response pathway, thus, improving insulin signaling in adipose tissues.
Collapse
Affiliation(s)
- Suqing Bao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | | | | | | | | | | | | |
Collapse
|
119
|
Stienstra R, Stefan N. Tipping the inflammatory balance: inflammasome activation distinguishes metabolically unhealthy from healthy obesity. Diabetologia 2013; 56:2343-6. [PMID: 23995473 DOI: 10.1007/s00125-013-3040-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/09/2013] [Indexed: 12/16/2022]
Abstract
Expansion of adipose tissue mass, predominantly in the visceral depot, strongly associates with the development of metabolic complications that are often observed in obesity. In addition, in obesity, an increased prevalence of nonalcoholic fatty liver disease and reduced cardiorespiratory fitness are observed. However, not all obese individuals develop metabolic abnormalities. To better understand the molecular mechanisms that predispose obese humans to the development of metabolic diseases, comparing the metabolically healthy obese (MHO) vs an unhealthy obese phenotype (MUO) may be of great value. A new study by Esser et al (DOI: 10.1007/s00125-013-3023-9 ) now provides important evidence that the MHO phenotype is associated with a lower activation of the NOD-like receptor family pyrin domain containing-3 (NLPR3) inflammasome in macrophages of visceral adipose tissue and a more favourable inflammatory profile as compared with the MUO phenotype. This finding could promote novel studies in humans to decipher stimuli and mechanisms leading to increased inflammasome activity, not only in adipose tissue, but also in other organs that are involved in the regulation of metabolism.
Collapse
Affiliation(s)
- Rinke Stienstra
- Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | |
Collapse
|
120
|
O'Grada CM, Morine MJ, Morris C, Ryan M, Dillon ET, Walsh M, Gibney ER, Brennan L, Gibney MJ, Roche HM. PBMCs reflect the immune component of the WAT transcriptome--implications as biomarkers of metabolic health in the postprandial state. Mol Nutr Food Res 2013; 58:808-20. [PMID: 24170299 DOI: 10.1002/mnfr.201300182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 12/23/2022]
Abstract
SCOPE Food and nutrition studies often require accessing metabolically active tissues, including adipose tissue. This can involve invasive biopsy procedures that can be a limiting factor in study design. In contrast, peripheral blood mononuclear cells (PBMCs) are a population of circulating immune cells that are easily accessible through venipuncture. As transcriptomics is of growing importance in food and metabolism research, understanding the transcriptomic relationship between these tissue types can provide insight into the utility of PBMCs in this field. METHODS AND RESULTS We examine this relationship within eight subjects, in two postprandial states (following oral lipid tolerance test and oral glucose tolerance test). Multivariate analysis techniques were used to examine variation between tissues, samples, and subjects in order to define which genes havecommon/disparate expression profiles associated with highly defined metabolic phenotypes. We demonstrate global similarities in gene expression between PBMCs and white adipose tissue, irrespective of the metabolic challenge type. Closer examination of individual genes revealed this similarity to be strongest in pathways related to immune response/inflammation. Notably, the expression of metabolism-related nuclear receptors, including PPARs, LXR, etc. was discordant between tissues CONCLUSION The PBMC transcriptome may therefore provide a unique insight into the inflammatory component of metabolic health, as opposed to directly reflecting the metabolic component of the adipose tissue transcriptome.
Collapse
Affiliation(s)
- Colm M O'Grada
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, School of Public Health and Population Science, University College Dublin, Belfield, Dublin, Ireland; Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
McGillicuddy FC, Reynolds CM, Finucane O, Coleman E, Harford KA, Grant C, Sergi D, Williams LM, Mills KHG, Roche HM. Long-term exposure to a high-fat diet results in the development of glucose intolerance and insulin resistance in interleukin-1 receptor I-deficient mice. Am J Physiol Endocrinol Metab 2013; 305:E834-44. [PMID: 23921145 PMCID: PMC3798700 DOI: 10.1152/ajpendo.00297.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Emerging evidence has demonstrated that saturated fatty acids prime pro-IL-1β production and inflammasome-mediated IL-1β activation is critical in obesity-associated insulin resistance (IR). Nonetheless, IL-1 receptor I-deficient (IL-1RI(-/-)) mice develop mature-onset obesity despite consuming a low-fat diet (LFD). With this apparent contradiction, the present study evaluated whether IL-1RI(-/-) mice were protected against long-term (6 mo) high-fat diet (HFD)-induced IR. Male wild-type and IL-1RI(-/-) mice were fed LFD or HFD for 3 or 6 mo, and glucose and insulin tolerance tests were performed. Adipose insulin sensitivity, cytokine profiles, and adipocyte morphology were assessed. The adipogenic potential of stromal vascular fraction was determined. Hepatic lipid accumulation and insulin sensitivity were characterized. IL-1RI(-/-) mice developed glucose intolerance and IR after 6 mo HFD compared with 3 mo HFD, coincident with enhanced weight gain, hyperinsulinemia, and hyperleptinemia. The aggravated IR phenotype was associated with loss of adipose functionality, switch from adipocyte hyperplasia to hypertrophy and hepatosteatosis. Induction of adipogenic genes was reduced in IL-1RI(-/-) preadipocytes after 6 mo HFD compared with 3 mo HFD. Obese LFD-IL-1RI(-/-) mice exhibited preserved metabolic health. IL-1RI(-/-) mice develop glucose intolerance and IR after 6 mo HFD intervention. While mature-onset obesity is evident in LFD-IL-1RI(-/-) mice, the additional metabolic insult of HFD was required to drive adipose inflammation and systemic IR. These findings indicate an important interaction between dietary fat and IL-1, relevant to optimal metabolic health.
Collapse
Affiliation(s)
- Fiona C McGillicuddy
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
L'homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, Legrand-Poels S. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res 2013; 54:2998-3008. [PMID: 24006511 DOI: 10.1194/jlr.m037861] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The NLRP3 inflammasome is involved in many obesity-associated diseases, such as type 2 diabetes, atherosclerosis, and gouty arthritis, through its ability to induce interleukin (IL)-1β release. The molecular link between obesity and inflammasome activation is still unclear, but free fatty acids have been proposed as one triggering event. Here we reported opposite effects of saturated fatty acids (SFAs) compared with unsaturated fatty acids (UFAs) on NLRP3 inflammasome in human monocytes/macrophages. Palmitate and stearate, both SFAs, triggered IL-1β secretion in a caspase-1/ASC/NLRP3-dependent pathway. Unlike SFAs, the UFAs oleate and linoleate did not lead to IL-1β secretion. In addition, they totally prevented the IL-1β release induced by SFAs and, with less efficiency, by a broad range of NLRP3 inducers, including nigericin, alum, and monosodium urate. UFAs did not affect the transcriptional effect of SFAs, suggesting a specific effect on the NLRP3 activation. These results provide a new anti-inflammatory mechanism of UFAs by preventing the activation of the NLRP3 inflammasome and, therefore, IL-1β processing. By this way, UFAs might play a protective role in NLRP3-associated diseases.
Collapse
Affiliation(s)
- Laurent L'homme
- Laboratory of Virology and Immunology, GIGA-Signal Transduction
| | | | | | | | | | | | | |
Collapse
|
123
|
Reynolds CM, Li M, Gray C, Vickers MH. Preweaning growth hormone treatment ameliorates adipose tissue insulin resistance and inflammation in adult male offspring following maternal undernutrition. Endocrinology 2013; 154:2676-86. [PMID: 23715866 DOI: 10.1210/en.2013-1146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that early-life nutritional alterations lead to increased risk of obesity and metabolic disorders in adult life. Although it is clear that obesity gives rise to chronic low-grade inflammation, there is little evidence regarding the role of inflammation in the adipose tissue of undernourished (UN) offspring. GH reduces fat mass and has antiinflammatory properties. The present study examined the effect of maternal UN on adipose inflammation in adult offspring and whether GH treatment during a critical period of developmental plasticity could ameliorate metabolic dysfunction associated with a poor start to life. Sprague Dawley rats were assigned to chow (C) or UN (50% ad libitum; UN) diet throughout gestation. Male C and UN pups received saline (control saline [CS]/UN) or GH (2.5 μg/g/d; control growth hormone [CGH]/undernourished growth hormone [UNGH]) from days 3-21. Postweaning males were further randomized and fed either chow or high-fat diet until day 160. An ex vivo glucose uptake assay demonstrated adipose tissue from UN offspring displayed attenuated insulin-stimulated glucose uptake compared with CS, CGH, and UNGH. This was associated with increased insulin receptor, glucose transporter 4, and insulin receptor substrate 1 gene expression. Furthermore, UN demonstrated enhanced TNFα and IL-1β secretion from adipose explants and stromal vascular fraction cultures accompanied by increased adipose tissue gene expression of several key proinflammatory genes and markers of macrophage infiltration. Overall, UN offspring displayed a more potent immunophenotype, which correlated with decreased insulin sensitivity. Preweaning GH treatment negates these detrimental effects, indicating the potential for reversing metabolic dysfunction in UN adult offspring.
Collapse
Affiliation(s)
- C M Reynolds
- Liggins Institute and Gravida, National Research Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | | | | | | |
Collapse
|
124
|
Pre-weaning growth hormone treatment ameliorates bone marrow macrophage inflammation in adult male rat offspring following maternal undernutrition. PLoS One 2013; 8:e68262. [PMID: 23844177 PMCID: PMC3699531 DOI: 10.1371/journal.pone.0068262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/31/2013] [Indexed: 01/22/2023] Open
Abstract
Maternal undernutrition (UN) is associated with the development of obesity and metabolic complications in adult offspring. While the role of inflammation in obesity and related comorbidities has been well established, there is little evidence regarding the effects of maternal UN-induced programming on immune function in male adult offspring. This study examines the effects growth hormone (GH), which is known to induce anti-inflammatory effects, on maternal UN-induced bone marrow macrophage (BMM) function in adult male offspring. Sprague-Dawley rats were assigned to chow (C) or UN (50% ad libitum; UN) diet throughout gestation. Male C and UN pups received saline (CS/UNS) or GH (2.5 µg/g/d; CGH/UNGH) from day 3–21. Bone marrow hematopoietic cells were differentiated to a macrophage phenotype in the presence of M-CSF (50 ng/ml). Differentiated bone marrow macrophages (BMM) were stimulated with LPS (100 ng/ml) for 6 h. UNS-derived BMM had significantly increased secretion and expression of IL-1β and IL-6 following LPS stimulation. This was accompanied by increased expression of IL-1R1, IL-6R and TLR4. Pre-weaning GH treatment reversed this pro-inflammatory phenotype. Furthermore UNGH displayed increased expression of markers of alternative (M2) macrophage activation, mannose receptor and PPARγ. This study demonstrates that fetal UN exposure primes hematopoietic immune cells to a more potent pro-inflammatory phenotype with heightened cytokine secretion and receptor expression. Furthermore these cells are pre-disposed to pro-inflammatory M1 macrophage phenotype which has wide-reaching and important effects in terms of obesity and metabolic disease.
Collapse
|
125
|
Borén J, Taskinen MR, Olofsson SO, Levin M. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med 2013; 274:25-40. [PMID: 23551521 DOI: 10.1111/joim.12071] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity increases the risk of metabolic diseases, including insulin resistance and type 2 diabetes, as well as cardiovascular disease. In addition to lipid accumulation in adipose tissue, obesity is associated with increased lipid storage in ectopic tissues, such as skeletal muscle and liver. Furthermore, lipid accumulation in the heart may result in cardiac dysfunction and heart failure. It has recently been demonstrated that intracellular lipid accumulation in ectopic tissues leads to pathological responses and impaired insulin signalling. Here, we will review the current understanding of how lipid storage and lipid droplet physiology affect the risk of developing metabolic diseases.
Collapse
Affiliation(s)
- J Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
126
|
The NLRP3 Inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediators Inflamm 2013; 2013:678627. [PMID: 23843683 PMCID: PMC3697790 DOI: 10.1155/2013/678627] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/13/2013] [Accepted: 05/22/2013] [Indexed: 01/13/2023] Open
Abstract
The combination of obesity and type 2 diabetes is a serious health problem, which is projected to afflict 300 million people worldwide by 2020. Both clinical and translational laboratory studies have demonstrated that chronic inflammation is associated with obesity and obesity-related conditions such as insulin resistance. However, the precise etiopathogenetic mechanisms linking obesity to diabetes remain to be elucidated, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the “inflammasome,” a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin- (IL-) 1β and IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in metabolic disease pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the detrimental metabolic consequences of the metabolic inflammation.
Collapse
|
127
|
Cloonan SM, Choi AMK. Mitochondria: sensors and mediators of innate immune receptor signaling. Curr Opin Microbiol 2013; 16:327-38. [PMID: 23757367 PMCID: PMC6010029 DOI: 10.1016/j.mib.2013.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022]
Abstract
By integrating stress signals with inputs from other cellular organelles, eukaryotic mitochondria are dynamic sensing systems that can confer substantial impact on innate immune signaling in both health and disease. This review highlights recently discovered elements of innate immune receptor signaling (TLR, RLR, NLR, and CLR) associated with mitochondrial function and discusses the role of mitochondria in the initiation and/or manifestation of inflammatory diseases and disorders. We also highlight the role of mitochondria as therapeutic targets for inflammatory disease.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
128
|
McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne) 2013; 4:52. [PMID: 23675368 PMCID: PMC3650620 DOI: 10.3389/fendo.2013.00052] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/22/2013] [Indexed: 12/11/2022] Open
Abstract
Obesity and associated chronic inflammation initiate a state of insulin resistance (IR). The secretion of chemoattractants such as MCP-1 and MIF and of cytokines IL-6, TNF-α, and IL-1β, draw immune cells including dendritic cells, T cells, and macrophages into adipose tissue (AT). Dysfunctional AT lipid metabolism leads to increased circulating free fatty acids, initiating inflammatory signaling cascades in the population of infiltrating cells. A feedback loop of pro-inflammatory cytokines exacerbates this pathological state, driving further immune cell infiltration and cytokine secretion and disrupts the insulin signaling cascade. Disruption of normal AT function is causative of defects in hepatic and skeletal muscle glucose homeostasis, resulting in systemic IR and ultimately the development of type 2 diabetes. Pharmaceutical strategies that target the inflammatory milieu may have some potential; however there are a number of safety concerns surrounding such pharmaceutical approaches. Nutritional anti-inflammatory interventions could offer a more suitable long-term alternative; whilst they may be less potent than some pharmaceutical anti-inflammatory agents, this may be advantageous for long-term therapy. This review will investigate obese AT biology, initiation of the inflammatory, and insulin resistant environment; and the mechanisms through which dietary anti-inflammatory components/functional nutrients may be beneficial.
Collapse
Affiliation(s)
- Maeve A. McArdle
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Orla M. Finucane
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Ruth M. Connaughton
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Aoibheann M. McMorrow
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health, Physiotherapy and Population Science, University College DublinDublin, Republic of Ireland
| |
Collapse
|
129
|
López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN. Mitochondrial dysfunction and the inflammatory response. Mitochondrion 2013; 13:106-18. [PMID: 23333405 DOI: 10.1016/j.mito.2013.01.003] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/30/2012] [Accepted: 01/07/2013] [Indexed: 12/18/2022]
Abstract
Inflammation has been linked to multiple degenerative and acute diseases as well as the aging process. Moreover, mitochondrial alterations play a central role in these processes. Mitochondria have an important role in pro-inflammatory signaling; similarly, pro-inflammatory mediators may also alter mitochondrial function. Both of these processes increase mitochondrial oxidative stress, promoting a vicious inflammatory cycle. Additionally, damage-associated molecular patterns derived from mitochondria could contribute to inflammasome formation and caspase-1 activation, while alterations in mitochondrial autophagy may cause inflammation. Strategies aimed at controlling excessive oxidative stress within mitochondria may represent both preventive and therapeutic interventions in inflammation.
Collapse
Affiliation(s)
- María J López-Armada
- Aging and Inflammation Research Laboratory, Instituto de Investigación Biomédica A Coruña (INIBIC)-Complexo Hospitalario Universitario A Coruña (CHUAC)-SERGAS, Xubias 84, 15006, A Coruña, Spain.
| | | | | | | |
Collapse
|
130
|
Are dietary cholesterol intake and serum cholesterol levels related to nonalcoholic Fatty liver disease in obese children? CHOLESTEROL 2012; 2012:572820. [PMID: 22811894 PMCID: PMC3395125 DOI: 10.1155/2012/572820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/16/2012] [Indexed: 12/15/2022]
Abstract
Background. Nonalcoholic fatty liver disease (NAFLD) in children has been recognized as a major health burden. Serum lipids as well as dietary cholesterol (DC) intake may positively relate to development of NAFLD. The purpose of this study was to investigate anthropometric, biochemical, and dietary intake parameters of obese Greek children with and without NAFLD. Materials and Methods. Eighty-five obese children aged 8–15 (45 boys/40 girls) participated in the study. NAFLD was diagnosed by ultrasonography (US) in all subjects. Liver indexes were measured in all children. A 3-day dietary was recorded for all subjects. Results. 38 out of 85 children (44.7%) were found to have fatty liver. Obese children with increased levels of TC (95% CI: 1.721–3.191), low density lipoprotein (LDL) (95% CI: 1.829–3.058), and increased dietary cholesterol intakes (95% CI: 1.511–2.719) were 2.541, 2.612, and 2.041 times more likely to develop NAFLD compared with the children without NAFLD. Conclusion. The present study showed that TC, LDL, and DC were the strongest risk factors of development of NAFLD. Reducing body weight and dietary cholesterol intakes as well as decreasing serum TC and LDL levels are urgently necessary in order to prevent NAFLD and possible other health implications later in life.
Collapse
|