101
|
Corum MR, Venkannagari H, Hryc CF, Baker ML. Predictive modeling and cryo-EM: A synergistic approach to modeling macromolecular structure. Biophys J 2024; 123:435-450. [PMID: 38268190 PMCID: PMC10912932 DOI: 10.1016/j.bpj.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Over the last 15 years, structural biology has seen unprecedented development and improvement in two areas: electron cryo-microscopy (cryo-EM) and predictive modeling. Once relegated to low resolutions, single-particle cryo-EM is now capable of achieving near-atomic resolutions of a wide variety of macromolecular complexes. Ushered in by AlphaFold, machine learning has powered the current generation of predictive modeling tools, which can accurately and reliably predict models for proteins and some complexes directly from the sequence alone. Although they offer new opportunities individually, there is an inherent synergy between these techniques, allowing for the construction of large, complex macromolecular models. Here, we give a brief overview of these approaches in addition to illustrating works that combine these techniques for model building. These examples provide insight into model building, assessment, and limitations when integrating predictive modeling with cryo-EM density maps. Together, these approaches offer the potential to greatly accelerate the generation of macromolecular structural insights, particularly when coupled with experimental data.
Collapse
Affiliation(s)
- Michael R Corum
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Harikanth Venkannagari
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Corey F Hryc
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas.
| |
Collapse
|
102
|
Altman PX, Ozorowski G, Stanfield RL, Haakenson J, Appel M, Parren M, Lee WH, Sang H, Woehl J, Saye-Francisco K, Joyce C, Song G, Porter K, Landais E, Andrabi R, Wilson IA, Ward AB, Mwangi W, Smider VV, Burton DR, Sok D. Immunization of cows with HIV envelope trimers generates broadly neutralizing antibodies to the V2-apex from the ultralong CDRH3 repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580058. [PMID: 38405899 PMCID: PMC10888833 DOI: 10.1101/2024.02.13.580058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The generation of broadly neutralizing antibodies (bnAbs) to specific HIV epitopes of the HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The current animal models we use have been unable to reliable produce a broadly neutralizing antibody response, with the exception of cows. Cows have rapidly and reliably produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models other engineered immunogens previously have been able to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n=4) with two regiments of V2-apex focusing immunogens to investigate whether antibody responses could be directed to the V2-apex on Env. Group 1 were immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 were immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows respectively. The best bnAbs had both medium breadth and potency. Potent and broad responses developed later than previous CD4bs cow bnAbs and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target multiple broadly neutralizing epitopes on the HIV surface reveals important insight into the generation of immunogens and testing in the cow animal model. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.
Collapse
Affiliation(s)
- Pilar X. Altman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeremy Haakenson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Michael Appel
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas, USA
| | - Jordan Woehl
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Karen Saye-Francisco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Katelyn Porter
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A. Wilson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B. Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas, USA
| | - Vaughn V. Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Devin Sok
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative, New York, NY, USA
- Lead contact
| |
Collapse
|
103
|
Mycroft-West CJ, Abdelkarim S, Duyvesteyn HME, Gandhi NS, Skidmore MA, Owens RJ, Wu L. Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1. Nat Commun 2024; 15:1326. [PMID: 38351061 PMCID: PMC10864358 DOI: 10.1038/s41467-024-45419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Sahar Abdelkarim
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK
| | - Neha S Gandhi
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- School of Chemistry and Physics, Queensland University of Technology, QLD 4000, Brisbane, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mark A Skidmore
- Centre for Glycoscience Research and Training, Keele University, ST5 5BG, Newcastle-Under-Lyme, UK
| | - Raymond J Owens
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK
| | - Liang Wu
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK.
| |
Collapse
|
104
|
Jojoa-Cruz S, Burendei B, Lee WH, Ward AB. Structure of mechanically activated ion channel OSCA2.3 reveals mobile elements in the transmembrane domain. Structure 2024; 32:157-167.e5. [PMID: 38103547 PMCID: PMC10872982 DOI: 10.1016/j.str.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Members of the OSCA/TMEM63 family are mechanically activated ion channels and structures of some OSCA members have revealed the architecture of these channels and structural features that are potentially involved in mechanosensation. However, these structures are all in a similar state and information about the motion of different elements of the structure is limited, preventing a deeper understanding of how these channels work. Here, we used cryoelectron microscopy to determine high-resolution structures of Arabidopsis thaliana OSCA1.2 and OSCA2.3 in peptidiscs. The structure of OSCA1.2 matches previous structures of the same protein in different environments. Yet, in OSCA2.3, the TM6a-TM7 linker adopts a different conformation that constricts the pore on its cytoplasmic side. Furthermore, coevolutionary sequence analysis uncovered a conserved interaction between the TM6a-TM7 linker and the beam-like domain (BLD). Our results reveal conformational heterogeneity and differences in conserved interactions between the TMD and BLD among members of the OSCA family.
Collapse
Affiliation(s)
- Sebastian Jojoa-Cruz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Batuujin Burendei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
105
|
Turlington ZR, Vaz Ferreira de Macedo S, Perry K, Belsky SL, Faust JA, Snider MJ, Hicks KA. Ligand bound structure of a 6-hydroxynicotinic acid 3-monooxygenase provides mechanistic insights. Arch Biochem Biophys 2024; 752:109859. [PMID: 38104959 DOI: 10.1016/j.abb.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
6-Hydroxynicotinic acid 3-monooxygenase (NicC) is a bacterial enzyme involved in the degradation of nicotinic acid. This enzyme is a Class A flavin-dependent monooxygenase that catalyzes a unique decarboxylative hydroxylation. The unliganded structure of this enzyme has previously been reported and studied using steady- and transient-state kinetics to support a comprehensive kinetic mechanism. Here we report the crystal structure of the H47Q NicC variant in both a ligand-bound (solved to 2.17 Å resolution) and unliganded (1.51 Å resolution) form. Interestingly, in the liganded form, H47Q NicC is bound to 2-mercaptopyridine (2-MP), a contaminant present in the commercial stock of 6-mercaptopyridine-3-carboxylic acid(6-MNA), a substrate analogue. 2-MP binds weakly to H47Q NicC and is not a substrate for the enzyme. Based on kinetic and thermodynamic characterization, we have fortuitously captured a catalytically inactive H47Q NicC•2-MP complex in our crystal structure. This complex reveals interesting mechanistic details about the reaction catalyzed by 6-hydroxynicotinic acid 3-monooxygenase.
Collapse
Affiliation(s)
- Zachary R Turlington
- Department of Chemistry, State University of New York at Cortland, Cortland, NY, 13045, United States
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, United States
| | - Sam L Belsky
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Jennifer A Faust
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Mark J Snider
- Department of Chemistry, The College of Wooster, Wooster, OH, 44691, United States
| | - Katherine A Hicks
- Department of Chemistry, State University of New York at Cortland, Cortland, NY, 13045, United States.
| |
Collapse
|
106
|
Dimitrova-Paternoga L, Kasvandik S, Beckert B, Granneman S, Tenson T, Wilson DN, Paternoga H. Structural basis of ribosomal 30S subunit degradation by RNase R. Nature 2024; 626:1133-1140. [PMID: 38326618 PMCID: PMC10901742 DOI: 10.1038/s41586-024-07027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.
Collapse
Affiliation(s)
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Sander Granneman
- Centre for Engineering Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
107
|
Helena-Bueno K, Rybak MY, Ekemezie CL, Sullivan R, Brown CR, Dingwall C, Baslé A, Schneider C, Connolly JPR, Blaza JN, Csörgő B, Moynihan PJ, Gagnon MG, Hill CH, Melnikov SV. A new family of bacterial ribosome hibernation factors. Nature 2024; 626:1125-1132. [PMID: 38355796 PMCID: PMC10901736 DOI: 10.1038/s41586-024-07041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.
Collapse
Affiliation(s)
| | - Mariia Yu Rybak
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Rudi Sullivan
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - James N Blaza
- Department of Chemistry, University of York, York, UK
- York Structural Biology Laboratory, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | - Matthieu G Gagnon
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chris H Hill
- York Structural Biology Laboratory, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
108
|
Acar DD, Witkowski W, Wejda M, Wei R, Desmet T, Schepens B, De Cae S, Sedeyn K, Eeckhaut H, Fijalkowska D, Roose K, Vanmarcke S, Poupon A, Jochmans D, Zhang X, Abdelnabi R, Foo CS, Weynand B, Reiter D, Callewaert N, Remaut H, Neyts J, Saelens X, Gerlo S, Vandekerckhove L. Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warranted. EBioMedicine 2024; 100:104960. [PMID: 38232633 PMCID: PMC10803917 DOI: 10.1016/j.ebiom.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING Full list of funders is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Delphine Diana Acar
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Wojciech Witkowski
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Magdalena Wejda
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Ruifang Wei
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tim Desmet
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sieglinde De Cae
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Hannah Eeckhaut
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sandrine Vanmarcke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | | | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xin Zhang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Caroline S Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven 3000, Belgium
| | - Dirk Reiter
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Han Remaut
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
109
|
Thompson MK, Sharma N, Thorn A, Prakash A. Deciphering the crystal structure of a novel nanobody against the NEIL1 DNA glycosylase. Acta Crystallogr D Struct Biol 2024; 80:137-146. [PMID: 38289715 PMCID: PMC10836396 DOI: 10.1107/s205979832400038x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Nanobodies (VHHs) are single-domain antibodies with three antigenic CDR regions and are used in diverse scientific applications. Here, an ∼14 kDa nanobody (A5) specific for the endonuclease VIII (Nei)-like 1 or NEIL1 DNA glycosylase involved in the first step of the base-excision repair pathway was crystallized and its structure was determined to 2.1 Å resolution. The crystals posed challenges due to potential twinning and anisotropic diffraction. Despite inconclusive twinning indicators, reprocessing in an orthorhombic setting and molecular replacement in space group P21212 enabled the successful modeling of 96% of residues in the asymmetric unit, with final Rwork and Rfree values of 0.199 and 0.229, respectively.
Collapse
Affiliation(s)
- Marlo K Thompson
- Mitchell Cancer Institute, University of South Alabama Health, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Nidhi Sharma
- Mitchell Cancer Institute, University of South Alabama Health, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | - Andrea Thorn
- Institut für Nanostruktur und Festkörperphysik, Universität Hamburg, Hamburg, Germany
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
110
|
Xu Y, Nam KH. Data of the subatomic resolution structure of glucose isomerase complexed with xylitol inhibitor. Data Brief 2024; 52:109916. [PMID: 38235177 PMCID: PMC10792680 DOI: 10.1016/j.dib.2023.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Glucose isomerase (GI) is a crucial enzyme in industrial processes, including the production of high-fructose corn syrup, biofuels, and other renewable chemicals. Understanding the mechanisms of GI inhibition by GI inhibitors can offer valuable insights into enhancing production efficiency. We previously reported the subatomic resolution structure of Streptomyces rubiginosus GI (SruGI) complexed with a xylitol inhibitor, determined at 0.99 Å resolution, was reported. Structural analysis showed that the xylitol inhibitor is partially bound to the M1 binding site at the SruGI active site, enabling it to distinguish the xylitol-bound and -free state of SruGI. This structural information demonstrates that xylitol binding to the M1 site causes a conformational change in the metal binding site and the substrate binding channel of SruGI. Herein, detailed information on data collection and processing procedures of the subatomic resolution structure of the SruGI complexed with xylitol was reported.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, South Korea
| |
Collapse
|
111
|
Taheri A, Wang Z, Singal B, Guo F, Al-Bassam J. Cryo-EM structures of the tubulin cofactors reveal the molecular basis for the biogenesis of alpha/beta-tubulin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577855. [PMID: 38405852 PMCID: PMC10889022 DOI: 10.1101/2024.01.29.577855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Microtubule polarity and dynamic polymerization originate from the self-association properties of the a-tubulin heterodimer. For decades, it has remained poorly understood how the tubulin cofactors, TBCD, TBCE, TBCC, and the Arl2 GTPase mediate a-tubulin biogenesis from α- and β-tubulins. Here, we use cryogenic electron microscopy to determine structures of tubulin cofactors bound to αβ-tubulin. These structures show that TBCD, TBCE, and Arl2 form a heterotrimeric cage-like TBC-DEG assembly around the a-tubulin heterodimer. TBCD wraps around Arl2 and almost entirely encircles -tubulin, while TBCE forms a lever arm that anchors along the other end of TBCD and rotates α-tubulin. Structures of the TBC-DEG-αβ-tubulin assemblies bound to TBCC reveal the clockwise rotation of the TBCE lever that twists a-tubulin by pulling its C-terminal tail while TBCD holds -tubulin in place. Altogether, these structures uncover transition states in αβ-tubulin biogenesis, suggesting a vise-like mechanism for the GTP-hydrolysis dependent a-tubulin biogenesis mediated by TBC-DEG and TBCC. These structures provide the first evidence of the critical functions of the tubulin cofactors as enzymes that regulate the invariant organization of αβ-tubulin, by catalyzing α- and β-tubulin assembly, disassembly, and subunit exchange which are crucial for regulating the polymerization capacities of αβ-tubulins into microtubules.
Collapse
|
112
|
Ghanim GE, Sekne Z, Balch S, van Roon AMM, Nguyen THD. 2.7 Å cryo-EM structure of human telomerase H/ACA ribonucleoprotein. Nat Commun 2024; 15:746. [PMID: 38272871 PMCID: PMC10811338 DOI: 10.1038/s41467-024-45002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Telomerase is a ribonucleoprotein (RNP) enzyme that extends telomeric repeats at eukaryotic chromosome ends to counterbalance telomere loss caused by incomplete genome replication. Human telomerase is comprised of two distinct functional lobes tethered by telomerase RNA (hTR): a catalytic core, responsible for DNA extension; and a Hinge and ACA (H/ACA) box RNP, responsible for telomerase biogenesis. H/ACA RNPs also have a general role in pseudouridylation of spliceosomal and ribosomal RNAs, which is critical for the biogenesis of the spliceosome and ribosome. Much of our structural understanding of eukaryotic H/ACA RNPs comes from structures of the human telomerase H/ACA RNP. Here we report a 2.7 Å cryo-electron microscopy structure of the telomerase H/ACA RNP. The significant improvement in resolution over previous 3.3 Å to 8.2 Å structures allows us to uncover new molecular interactions within the H/ACA RNP. Many disease mutations are mapped to these interaction sites. The structure also reveals unprecedented insights into a region critical for pseudouridylation in canonical H/ACA RNPs. Together, our work advances understanding of telomerase-related disease mutations and the mechanism of pseudouridylation by eukaryotic H/ACA RNPs.
Collapse
Affiliation(s)
| | - Zala Sekne
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | | | | |
Collapse
|
113
|
Lawson CL, Kryshtafovych A, Pintilie GD, Burley SK, Černý J, Chen VB, Emsley P, Gobbi A, Joachimiak A, Noreng S, Prisant M, Read RJ, Richardson JS, Rohou AL, Schneider B, Sellers BD, Shao C, Sourial E, Williams CI, Williams CJ, Yang Y, Abbaraju V, Afonine PV, Baker ML, Bond PS, Blundell TL, Burnley T, Campbell A, Cao R, Cheng J, Chojnowski G, Cowtan KD, DiMaio F, Esmaeeli R, Giri N, Grubmüller H, Hoh SW, Hou J, Hryc CF, Hunte C, Igaev M, Joseph AP, Kao WC, Kihara D, Kumar D, Lang L, Lin S, Maddhuri Venkata Subramaniya SR, Mittal S, Mondal A, Moriarty NW, Muenks A, Murshudov GN, Nicholls RA, Olek M, Palmer CM, Perez A, Pohjolainen E, Pothula KR, Rowley CN, Sarkar D, Schäfer LU, Schlicksup CJ, Schröder GF, Shekhar M, Si D, Singharoy A, Sobolev OV, Terashi G, Vaiana AC, Vedithi SC, Verburgt J, Wang X, Warshamanage R, Winn MD, Weyand S, Yamashita K, Zhao M, Schmid MF, Berman HM, Chiu W. Outcomes of the EMDataResource Cryo-EM Ligand Modeling Challenge. RESEARCH SQUARE 2024:rs.3.rs-3864137. [PMID: 38343795 PMCID: PMC10854310 DOI: 10.21203/rs.3.rs-3864137/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.
Collapse
Affiliation(s)
- Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Grigore D. Pintilie
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Stephen K. Burley
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA USA
| | - Jiří Černý
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, CZ
| | | | - Paul Emsley
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alberto Gobbi
- Discovery Chemistry, Genentech Inc, South San Francisco, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Sigrid Noreng
- Structural Biology, Genentech Inc, South San Francisco, USA
| | | | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | - Bohdan Schneider
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, CZ
| | | | - Chenghua Shao
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | - Ying Yang
- Structural Biology, Genentech Inc, South San Francisco, USA
| | - Venkat Abbaraju
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew L. Baker
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Burnley
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Arthur Campbell
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | | | - Kevin D. Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Reza Esmaeeli
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nabin Giri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Jie Hou
- Department of Computer Science, Saint Louis University, St. Louis, MO, USA
| | - Corey F. Hryc
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnel P. Joseph
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Dilip Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lijun Lang
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Sean Lin
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Sumit Mittal
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Muenks
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - Mateusz Olek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Colin M. Palmer
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Emmi Pohjolainen
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karunakar R. Pothula
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Luisa U. Schäfer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Christopher J. Schlicksup
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gunnar F. Schröder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mrinal Shekhar
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dong Si
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Andrea C. Vaiana
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Nature’s Toolbox (NTx), Rio Rancho, NM, USA
| | | | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Martyn D. Winn
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Michael F. Schmid
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Helen M. Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Wah Chiu
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| |
Collapse
|
114
|
Kumar N, Sharma S, Kaushal PS. Cryo- EM structure of the mycobacterial 70S ribosome in complex with ribosome hibernation promotion factor RafH. Nat Commun 2024; 15:638. [PMID: 38245551 PMCID: PMC10799931 DOI: 10.1038/s41467-024-44879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Ribosome hibernation is a key survival strategy bacteria adopt under environmental stress, where a protein, hibernation promotion factor (HPF), transitorily inactivates the ribosome. Mycobacterium tuberculosis encounters hypoxia (low oxygen) as a major stress in the host macrophages, and upregulates the expression of RafH protein, which is crucial for its survival. The RafH, a dual domain HPF, an orthologue of bacterial long HPF (HPFlong), hibernates ribosome in 70S monosome form, whereas in other bacteria, the HPFlong induces 70S ribosome dimerization and hibernates its ribosome in 100S disome form. Here, we report the cryo- EM structure of M. smegmatis, a close homolog of M. tuberculosis, 70S ribosome in complex with the RafH factor at an overall 2.8 Å resolution. The N- terminus domain (NTD) of RafH binds to the decoding center, similarly to HPFlong NTD. In contrast, the C- terminus domain (CTD) of RafH, which is larger than the HPFlong CTD, binds to a distinct site at the platform binding center of the ribosomal small subunit. The two domain-connecting linker regions, which remain mostly disordered in earlier reported HPFlong structures, interact mainly with the anti-Shine Dalgarno sequence of the 16S rRNA.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
115
|
Roske Y, Cappel C, Cremer N, Hoffmann P, Koudelka T, Tholey A, Heinemann U, Daumke O, Damme M. Structural analysis of PLD3 reveals insights into the mechanism of lysosomal 5' exonuclease-mediated nucleic acid degradation. Nucleic Acids Res 2024; 52:370-384. [PMID: 37994783 PMCID: PMC10783504 DOI: 10.1093/nar/gkad1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.
Collapse
Affiliation(s)
- Yvette Roske
- Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Cedric Cappel
- Biochemical Institute, Kiel University, Kiel, Germany
| | - Nils Cremer
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straβe 10, 13125 Berlin, Germany
| | | | - Tomas Koudelka
- Institute of Experimental Medicine, Kiel University, 24188 Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, Kiel University, 24188 Kiel, Germany
| | - Udo Heinemann
- Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oliver Daumke
- Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Markus Damme
- Biochemical Institute, Kiel University, Kiel, Germany
| |
Collapse
|
116
|
Nishimura M, Fujii T, Tanaka H, Maehara K, Morishima K, Shimizu M, Kobayashi Y, Nozawa K, Takizawa Y, Sugiyama M, Ohkawa Y, Kurumizaka H. Genome-wide mapping and cryo-EM structural analyses of the overlapping tri-nucleosome composed of hexasome-hexasome-octasome moieties. Commun Biol 2024; 7:61. [PMID: 38191828 PMCID: PMC10774305 DOI: 10.1038/s42003-023-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, 111 TW, Alexander Drive, Research Triangle Park, NC, 27707, USA
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
117
|
Heo L, Feig M. One bead per residue can describe all-atom protein structures. Structure 2024; 32:97-111.e6. [PMID: 38000367 PMCID: PMC10872525 DOI: 10.1016/j.str.2023.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/16/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Atomistic resolution is the standard for high-resolution biomolecular structures, but experimental structural data are often at lower resolution. Coarse-grained models are also used extensively in computational studies to reach biologically relevant spatial and temporal scales. This study explores the use of advanced machine learning networks for reconstructing atomistic models from reduced representations. The main finding is that a single bead per amino acid residue allows construction of accurate and stereochemically realistic all-atom structures with minimal loss of information. This suggests that lower resolution representations of proteins may be sufficient for many applications when combined with a machine learning framework that encodes knowledge from known structures. Practical applications include the rapid addition of atomistic detail to low-resolution structures from experiment or computational coarse-grained models. The application of rapid, deterministic all-atom reconstruction within multi-scale frameworks is further demonstrated with a rapid protocol for the generation of accurate models from cryo-EM densities close to experimental structures.
Collapse
Affiliation(s)
- Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
118
|
Saccuzzo EG, Mebrat MD, Scelsi HF, Kim M, Ma MT, Su X, Hill SE, Rheaume E, Li R, Torres MP, Gumbart JC, Van Horn WD, Lieberman RL. Competition between inside-out unfolding and pathogenic aggregation in an amyloid-forming β-propeller. Nat Commun 2024; 15:155. [PMID: 38168102 PMCID: PMC10762032 DOI: 10.1038/s41467-023-44479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Mubark D Mebrat
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Hailee F Scelsi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Minjoo Kim
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Elisa Rheaume
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
- School of Physics, Georgia Institute of Technology, Atlanta, USA
| | - Wade D Van Horn
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA.
- School of Molecular Sciences, Arizona State University, Tempe, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA.
| |
Collapse
|
119
|
Tetter S, Arseni D, Murzin AG, Buhidma Y, Peak-Chew SY, Garringer HJ, Newell KL, Vidal R, Apostolova LG, Lashley T, Ghetti B, Ryskeldi-Falcon B. TAF15 amyloid filaments in frontotemporal lobar degeneration. Nature 2024; 625:345-351. [PMID: 38057661 PMCID: PMC10781619 DOI: 10.1038/s41586-023-06801-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.
Collapse
Affiliation(s)
| | - Diana Arseni
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Yazead Buhidma
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tammaryn Lashley
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
120
|
Lövestam S, Li D, Wagstaff JL, Kotecha A, Kimanius D, McLaughlin SH, Murzin AG, Freund SMV, Goedert M, Scheres SHW. Disease-specific tau filaments assemble via polymorphic intermediates. Nature 2024; 625:119-125. [PMID: 38030728 PMCID: PMC10764278 DOI: 10.1038/s41586-023-06788-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Intermediate species in the assembly of amyloid filaments are believed to play a central role in neurodegenerative diseases and may constitute important targets for therapeutic intervention1,2. However, structural information about intermediate species has been scarce and the molecular mechanisms by which amyloids assemble remain largely unknown. Here we use time-resolved cryogenic electron microscopy to study the in vitro assembly of recombinant truncated tau (amino acid residues 297-391) into paired helical filaments of Alzheimer's disease or into filaments of chronic traumatic encephalopathy3. We report the formation of a shared first intermediate amyloid filament, with an ordered core comprising residues 302-316. Nuclear magnetic resonance indicates that the same residues adopt rigid, β-strand-like conformations in monomeric tau. At later time points, the first intermediate amyloid disappears and we observe many different intermediate amyloid filaments, with structures that depend on the reaction conditions. At the end of both assembly reactions, most intermediate amyloids disappear and filaments with the same ordered cores as those from human brains remain. Our results provide structural insights into the processes of primary and secondary nucleation of amyloid assembly, with implications for the design of new therapies.
Collapse
Affiliation(s)
| | - David Li
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
121
|
Feuillard J, Couston J, Benito Y, Hodille E, Dumitrescu O, Blaise M. Biochemical and structural characterization of a class A β-lactamase from Nocardia cyriacigeorgica. Acta Crystallogr F Struct Biol Commun 2024; 80:13-21. [PMID: 38168018 PMCID: PMC10833343 DOI: 10.1107/s2053230x23010671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Nocardia are Gram-positive bacteria from the Actinobacteria phylum. Some Nocardia species can infect humans and are usually considered to be opportunist pathogens, as they often infect immunocompromised patients. Although their clinical incidence is low, many Nocardia species are now considered to be emerging pathogens. Primary sites of infection by Nocardia are the skin or the lungs, but dissemination to other body parts is very frequent. These disseminated infections are very difficult to treat and thus are tackled with multiple classes of antibiotics, in addition to the traditional treatment targeting the folate pathway. β-Lactams are often included in the regimen, but many Nocardia species present moderate or strong resistance to some members of this drug class. Genomic, microbiological and biochemical studies have reported the presence of class A β-lactamases (ABLs) in a handful of Nocardia species, but no structural investigation of Nocardia β-lactamases has yet been performed. In this study, the expression, purification and preliminary biochemical characterization of an ABL from an N. cyriacigeorgica (NCY-1) clinical strain are reported. The crystallization and the very high resolution crystal structure of NCY-1 are also described. The sequence and structural analysis of the protein demonstrate that NCY-1 belongs to the class A1 β-lactamases and show its very high conservation with ABLs from other human-pathogenic Nocardia. In addition, the presence of one molecule of citrate tightly bound in the catalytic site of the enzyme is described. This structure may provide a solid basis for future drug development to specifically target Nocardia spp. β-lactamases.
Collapse
Affiliation(s)
| | - Julie Couston
- IRIM, Montpellier University, CNRS, Montpellier, France
| | - Yvonne Benito
- Institut des Agents Infectieux, Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Centre de Biologie Nord, Lyon, France
| | - Elisabeth Hodille
- Institut des Agents Infectieux, Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Centre de Biologie Nord, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Lyon 1, Lyon, France
| | - Oana Dumitrescu
- Institut des Agents Infectieux, Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Centre de Biologie Nord, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Lyon 1, Lyon, France
| | | |
Collapse
|
122
|
Felker D, Lee K, Pospiech TH, Morishima Y, Zhang H, Lau M, Southworth DR, Osawa Y. Mapping interactions of calmodulin and neuronal NO synthase by crosslinking and mass spectrometry. J Biol Chem 2024; 300:105464. [PMID: 37979917 PMCID: PMC10716779 DOI: 10.1016/j.jbc.2023.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
Neuronal nitric oxide synthase (nNOS) is a homodimeric cytochrome P450-like enzyme that catalyzes the conversion of L-arginine to nitric oxide in the presence of NADPH and molecular oxygen. The binding of calmodulin (CaM) to a linker region between the FAD/FMN-containing reductase domain, and the heme-containing oxygenase domain is needed for electron transfer reactions, reduction of the heme, and NO synthesis. Due to the dynamic nature of the reductase domain and low resolution of available full-length structures, the exact conformation of the CaM-bound active complex during heme reduction is still unresolved. Interestingly, hydrogen-deuterium exchange and mass spectrometry studies revealed interactions of the FMN domain and CaM with the oxygenase domain for iNOS, but not nNOS. This finding prompted us to utilize covalent crosslinking and mass spectrometry to clarify interactions of CaM with nNOS. Specifically, MS-cleavable bifunctional crosslinker disuccinimidyl dibutyric urea was used to identify thirteen unique crosslinks between CaM and nNOS as well as 61 crosslinks within the nNOS. The crosslinks provided evidence for CaM interaction with the oxygenase and reductase domain residues as well as interactions of the FMN domain with the oxygenase dimer. Cryo-EM studies, which gave a high-resolution model of the oxygenase domain, along with crosslink-guided docking provided a model of nNOS that brings the FMN within 15 Å of the heme in support for a more compact conformation than previously observed. These studies also point to the utility of covalent crosslinking and mass spectrometry in capturing transient dynamic conformations that may not be captured by hydrogen-deuterium exchange and mass spectrometry experiments.
Collapse
Affiliation(s)
- Dana Felker
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kanghyun Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Thomas H Pospiech
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Yoshihiro Morishima
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Miranda Lau
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
123
|
Jindal S, Pedersen DV, Gera N, Chandler J, Patel R, Neill A, Cone J, Zhang Y, Yuan CX, Millman EE, Carlin D, Puffer B, Sheridan D, Andersen GR, Tamburini P. Characterization of the bispecific VHH antibody gefurulimab (ALXN1720) targeting complement component 5, and designed for low volume subcutaneous administration. Mol Immunol 2024; 165:29-41. [PMID: 38142486 DOI: 10.1016/j.molimm.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/29/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023]
Abstract
The bispecific antibody gefurulimab (also known as ALXN1720) was developed to provide patients with a subcutaneous treatment option for chronic disorders involving activation of the terminal complement pathway. Gefurulimab blocks the enzymatic cleavage of complement component 5 (C5) into the biologically active C5a and C5b fragments, which triggers activation of the terminal complement cascade. Heavy-chain variable region antigen-binding fragment (VHH) antibodies targeting C5 and human serum albumin (HSA) were isolated from llama immune-based libraries and humanized. Gefurulimab comprises an N-terminal albumin-binding VHH connected to a C-terminal C5-binding VHH via a flexible linker. The purified bispecific VHH antibody has the expected exact size by mass spectrometry and can be formulated at greater than 100 mg/mL. Gefurulimab binds tightly to human C5 and HSA with dissociation rate constants at pH 7.4 of 54 pM and 0.9 nM, respectively, and cross-reacts with C5 and serum albumin from cynomolgus monkeys. Gefurulimab can associate with C5 and albumin simultaneously, and potently inhibits the terminal complement activity from human serum initiated by any of the three complement pathways in Wieslab assays. Electron microscopy and X-ray crystallography revealed that the isolated C5-binding VHH recognizes the macroglobulin (MG) 4 and MG5 domains of the antigen and thereby is suggested to sterically prevent C5 binding to its activating convertase. Gefurulimab also inhibits complement activity supported by the rare C5 allelic variant featuring an R885H substitution in the MG7 domain. Taken together, these data suggest that gefurulimab may be a promising candidate for the potential treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Siddharth Jindal
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | | | - Nimish Gera
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Julian Chandler
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Rekha Patel
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Alyssa Neill
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Josh Cone
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Yuchun Zhang
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Chao-Xing Yuan
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Ellen E Millman
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Dan Carlin
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA.
| | - Bridget Puffer
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Douglas Sheridan
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Universitetsbyen 83, Aarhus University, Aarhus, Denmark
| | - Paul Tamburini
- Alexion, AstraZeneca Rare Disease, 100 College Street, New Haven, CT 06510, USA
| |
Collapse
|
124
|
Buchel G, Nayak AR, Herbine K, Sarfallah A, Sokolova VO, Zamudio-Ochoa A, Temiakov D. Structural basis for DNA proofreading. Nat Commun 2023; 14:8501. [PMID: 38151585 PMCID: PMC10752894 DOI: 10.1038/s41467-023-44198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement of the mismatched base into the exonuclease site. Altogether, our findings suggest a conserved 'bolt-action' mechanism of proofreading based on iterative cycles of DNAP translocation without dissociation from the DNA, facilitating primer transfer between catalytic sites. Functional assays and mutagenesis corroborate this mechanism, connecting pathogenic mutations to crucial structural elements in proofreading steps.
Collapse
Affiliation(s)
- Gina Buchel
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Ashok R Nayak
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Karl Herbine
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Azadeh Sarfallah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Viktoriia O Sokolova
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Angelica Zamudio-Ochoa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
125
|
Karki S, Javanainen M, Rehan S, Tranter D, Kellosalo J, Huiskonen JT, Happonen L, Paavilainen V. Molecular view of ER membrane remodeling by the Sec61/TRAP translocon. EMBO Rep 2023; 24:e57910. [PMID: 37983950 DOI: 10.15252/embr.202357910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown. Here, we present the structure of the core Sec61/TRAP complex bound to a mammalian ribosome by cryogenic electron microscopy (cryo-EM). Ribosome interactions anchor the Sec61/TRAP complex in a conformation that renders the ER membrane locally thinner by significantly curving its lumenal leaflet. We propose that TRAP stabilizes the ribosome exit tunnel to assist nascent polypeptide insertion through Sec61 and provides a ratcheting mechanism into the ER lumen mediated by direct polypeptide interactions.
Collapse
Affiliation(s)
- Sudeep Karki
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matti Javanainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Shahid Rehan
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Protein Biochemistry and Structural Biology, Omass Therapeutics Ltd, Oxford, UK
| | - Dale Tranter
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Juho Kellosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ville Paavilainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
126
|
Mulvaney T, Kretsch RC, Elliott L, Beton JG, Kryshtafovych A, Rigden DJ, Das R, Topf M. CASP15 cryo-EM protein and RNA targets: Refinement and analysis using experimental maps. Proteins 2023; 91:1935-1951. [PMID: 37994556 PMCID: PMC10697286 DOI: 10.1002/prot.26644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
CASP assessments primarily rely on comparing predicted coordinates with experimental reference structures. However, experimental structures by their nature are only models themselves-their construction involves a certain degree of subjectivity in interpreting density maps and translating them to atomic coordinates. Here, we directly utilized density maps to evaluate the predictions by employing a method for ranking the quality of protein chain predictions based on their fit into the experimental density. The fit-based ranking was found to correlate well with the CASP assessment scores. Overall, the evaluation against the density map indicated that the models are of high accuracy, and occasionally even better than the reference structure in some regions of the model. Local assessment of predicted side chains in a 1.52 Å resolution map showed that side-chains are sometimes poorly positioned. Additionally, the top 118 predictions associated with 9 protein target reference structures were selected for automated refinement, in addition to the top 40 predictions for 11 RNA targets. For both proteins and RNA, the refinement of CASP15 predictions resulted in structures that are close to the reference target structure. This refinement was successful despite large conformational changes often being required, showing that predictions from CASP-assessed methods could serve as a good starting point for building atomic models in cryo-EM maps for both proteins and RNA. Loop modeling continued to pose a challenge for predictors, and together with the lack of consensus amongst models in these regions suggests that modeling, in combination with model-fit to the density, holds the potential for identifying more flexible regions within the structure.
Collapse
Affiliation(s)
- Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Rachael C Kretsch
- Biophysics Program, Stanford University School of Medicine, California, USA
| | - Luc Elliott
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Joseph G Beton
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
| | | | - Daniel J Rigden
- Institute of Systems, Molecular & Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Rhiju Das
- Biophysics Program, Stanford University School of Medicine, California, USA
- Department of Biochemistry, Stanford University School of Medicine, California, USA
- Howard Hughes Medical Institute, Stanford University, California, USA
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
127
|
Zielinski M, Peralta Reyes FS, Gremer L, Schemmert S, Frieg B, Schäfer LU, Willuweit A, Donner L, Elvers M, Nilsson LNG, Syvänen S, Sehlin D, Ingelsson M, Willbold D, Schröder GF. Cryo-EM of Aβ fibrils from mouse models find tg-APP ArcSwe fibrils resemble those found in patients with sporadic Alzheimer's disease. Nat Neurosci 2023; 26:2073-2080. [PMID: 37973869 PMCID: PMC10689242 DOI: 10.1038/s41593-023-01484-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023]
Abstract
The use of transgenic mice displaying amyloid-β (Aβ) brain pathology has been essential for the preclinical assessment of new treatment strategies for Alzheimer's disease. However, the properties of Aβ in such mice have not been systematically compared to Aβ in the brains of patients with Alzheimer's disease. Here, we determined the structures of nine ex vivo Aβ fibrils from six different mouse models by cryogenic-electron microscopy. We found novel Aβ fibril structures in the APP/PS1, ARTE10 and tg-SwDI models, whereas the human type II filament fold was found in the ARTE10, tg-APPSwe and APP23 models. The tg-APPArcSwe mice showed an Aβ fibril whose structure resembles the human type I filament found in patients with sporadic Alzheimer's disease. A detailed assessment of the Aβ fibril structure is key to the selection of adequate mouse models for the preclinical development of novel plaque-targeting therapeutics and positron emission tomography imaging tracers in Alzheimer's disease.
Collapse
Affiliation(s)
- Mara Zielinski
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - Lothar Gremer
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sarah Schemmert
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Benedikt Frieg
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Luisa U Schäfer
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Lili Donner
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Lars N G Nilsson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
128
|
Page KR, Nguyen VN, Pleiner T, Tomaleri GP, Wang ML, Guna A, Wang TY, Chou TF, Voorhees RM. Role of a holo-insertase complex in the biogenesis of biophysically diverse ER membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569054. [PMID: 38076791 PMCID: PMC10705394 DOI: 10.1101/2023.11.28.569054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of sec61 (BOS) complex, a component of the 'multipass translocon', was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC•BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, multipass translocon, and Sec61 for biogenesis of diverse membrane proteins in human cells.
Collapse
|
129
|
Whitehead JD, Decool H, Leyrat C, Carrique L, Fix J, Eléouët JF, Galloux M, Renner M. Structure of the N-RNA/P interface indicates mode of L/P recruitment to the nucleocapsid of human metapneumovirus. Nat Commun 2023; 14:7627. [PMID: 37993464 PMCID: PMC10665349 DOI: 10.1038/s41467-023-43434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illness in young children. The HMPV polymerase (L) binds an obligate cofactor, the phosphoprotein (P). During replication and transcription, the L/P complex traverses the viral RNA genome, which is encapsidated within nucleoproteins (N). An essential interaction between N and a C-terminal region of P tethers the L/P polymerase to the template. This N-P interaction is also involved in the formation of cytoplasmic viral factories in infected cells, called inclusion bodies. To define how the polymerase component P recognizes N-encapsidated RNA (N-RNA) we employed cryogenic electron microscopy (cryo-EM) and molecular dynamics simulations, coupled to activity assays and imaging of inclusion bodies in cells. We report a 2.9 Å resolution structure of a triple-complex between multimeric N, bound to both RNA and the C-terminal region of P. Furthermore, we also present cryo-EM structures of assembled N in different oligomeric states, highlighting the plasticity of N. Combined with our functional assays, these structural data delineate in molecular detail how P attaches to N-RNA whilst retaining substantial conformational dynamics. Moreover, the N-RNA-P triple complex structure provides a molecular blueprint for the design of therapeutics to potentially disrupt the attachment of L/P to its template.
Collapse
Affiliation(s)
- Jack D Whitehead
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Hortense Decool
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Loic Carrique
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenna Fix
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| | - Max Renner
- Department of Chemistry, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
130
|
Han Q, Su Y, Smith KM, Binns J, Drummond CJ, Darmanin C, Greaves TL. Probing ion-binding at a protein interface: Modulation of protein properties by ionic liquids. J Colloid Interface Sci 2023; 650:1393-1405. [PMID: 37480654 DOI: 10.1016/j.jcis.2023.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023]
Abstract
Ions are important to modulate protein properties, including solubility and stability, through specific ion effects. Ionic liquids (ILs) are designer salts with versatile ion combinations with great potential to control protein properties. Although protein-ion binding of common metals is well-known, the IL effect on proteins is not well understood. Here, we employ the model protein lysozyme in dilute and concentrated IL solutions to determine the specific ion binding effect on protein phase behaviour, activity, size and conformational change, aggregation and intermolecular interactions. A combination of spectroscopic techniques, activity assays, small-angle X-ray scattering, and crystallography highlights that ILs, particularly their anions, bind to specific sites in the protein hydration layer via polar contacts on charged, polar and aromatic residues. The specific ion binding can induce more flexible loop regions in lysozyme, while the ion binding in the bulk phase can be more dynamic in solution. Overall, the protein behaviour in ILs depends on the net effect of nonspecific interactions and specific ion binding. Compared to formate, the nitrate anion induced high protein solubility, low activity, elongated shape and aggregation, which is largely owing to its higher propensity for ion binding. These findings provide new insights into protein-IL binding interactions and using ILs to modulate protein properties.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuyu Su
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Kate M Smith
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3168, Australia; Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232 Villigen, Switzerland
| | - Jack Binns
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Connie Darmanin
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
131
|
Aniana A, Nashed NT, Ghirlando R, Coates L, Kneller DW, Kovalevsky A, Louis JM. Insights into the mechanism of SARS-CoV-2 main protease autocatalytic maturation from model precursors. Commun Biol 2023; 6:1159. [PMID: 37957287 PMCID: PMC10643566 DOI: 10.1038/s42003-023-05469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
A critical step for SARS-CoV-2 assembly and maturation involves the autoactivation of the main protease (MProWT) from precursor polyproteins. Upon expression, a model precursor of MProWT mediates its own release at its termini rapidly to yield a mature dimer. A construct with an E290A mutation within MPro exhibits time dependent autoprocessing of the accumulated precursor at the N-terminal nsp4/nsp5 site followed by the C-terminal nsp5/nsp6 cleavage. In contrast, a precursor containing E290A and R298A mutations (MProM) displays cleavage only at the nsp4/nsp5 site to yield an intermediate monomeric product, which is cleaved at the nsp5/nsp6 site only by MProWT. MProM and the catalytic domain (MPro1-199) fused to the truncated nsp4 region also show time-dependent conversion in vitro to produce MProM and MPro1-199, respectively. The reactions follow first-order kinetics indicating that the nsp4/nsp5 cleavage occurs via an intramolecular mechanism. These results support a mechanism involving an N-terminal intramolecular cleavage leading to an increase in the dimer population and followed by an intermolecular cleavage at the C-terminus. Thus, targeting the predominantly monomeric MPro precursor for inhibition may lead to the identification of potent drugs for treatment.
Collapse
Affiliation(s)
- Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892-0520, USA
| | - Nashaat T Nashed
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892-0520, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892-0520, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Daniel W Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
- New England Biolabs, 240 County Road, Ipswich, MA, 01938-2723, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
132
|
Ghanbarpour A, Cohen SE, Fei X, Kinman LF, Bell TA, Zhang JJ, Baker TA, Davis JH, Sauer RT. A closed translocation channel in the substrate-free AAA+ ClpXP protease diminishes rogue degradation. Nat Commun 2023; 14:7281. [PMID: 37949857 PMCID: PMC10638403 DOI: 10.1038/s41467-023-43145-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
AAA+ proteases degrade intracellular proteins in a highly specific manner. E. coli ClpXP, for example, relies on a C-terminal ssrA tag or other terminal degron sequences to recognize proteins, which are then unfolded by ClpX and subsequently translocated through its axial channel and into the degradation chamber of ClpP for proteolysis. Prior cryo-EM structures reveal that the ssrA tag initially binds to a ClpX conformation in which the axial channel is closed by a pore-2 loop. Here, we show that substrate-free ClpXP has a nearly identical closed-channel conformation. We destabilize this closed-channel conformation by deleting residues from the ClpX pore-2 loop. Strikingly, open-channel ClpXP variants degrade non-native proteins lacking degrons faster than the parental enzymes in vitro but degraded GFP-ssrA more slowly. When expressed in E. coli, these open channel variants behave similarly to the wild-type enzyme in assays of filamentation and phage-Mu plating but resulted in reduced growth phenotypes at elevated temperatures or when cells were exposed to sub-lethal antibiotic concentrations. Thus, channel closure is an important determinant of ClpXP degradation specificity.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Steven E Cohen
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Xue Fei
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Laurel F Kinman
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Tristan A Bell
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Jia Jia Zhang
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Tania A Baker
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Joseph H Davis
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA.
| | - Robert T Sauer
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA.
| |
Collapse
|
133
|
Couston J, Guo Z, Wang K, Gourdon P, Blaise M. Cryo-EM structure of the trehalose monomycolate transporter, MmpL3, reconstituted into peptidiscs. Curr Res Struct Biol 2023; 6:100109. [PMID: 38034087 PMCID: PMC10682824 DOI: 10.1016/j.crstbi.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Mycobacteria have an atypical thick and waxy cell wall. One of the major building blocks of such mycomembrane is trehalose monomycolate (TMM). TMM is a mycolic acid ester of trehalose that possesses long acyl chains with up to 90 carbon atoms. TMM represents an essential component of mycobacteria and is synthesized in the cytoplasm, and then flipped over the plasma membrane by a specific transporter known as MmpL3. Over the last decade, MmpL3 has emerged as an attractive drug target to combat mycobacterial infections. Recent three-dimensional structures of MmpL3 determined by X-ray crystallography and cryo-EM have increased our understanding of the TMM transport, and the mode of action of inhibiting compounds. These structures were obtained in the presence of detergent and/or in a lipidic environment. In this study, we demonstrate the possibility of obtaining a high-quality cryo-EM structure of MmpL3 without any presence of detergent through the reconstitution of the protein into peptidiscs. The structure was determined at an overall resolution of 3.2 Å and demonstrates that the overall structure of MmpL3 is preserved as compared to previous structures. Further, the study identified a new structural arrangement of the linker that fuses the two subdomains of the transmembrane domain, suggesting the feature may serve a role in the transport process.
Collapse
Affiliation(s)
- Julie Couston
- IRIM, CNRS, University of Montpellier, Montpellier, France
| | - Zongxin Guo
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden
| | - Mickaël Blaise
- IRIM, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
134
|
Jia M, Zhao H, Morano NC, Lu H, Lui YM, Du H, Becker JE, Yuen KY, Ho DD, Kwong PD, Shapiro L, To KKW, Wu X. Allosteric Neutralization by Human H7N9 Antibodies. RESEARCH SQUARE 2023:rs.3.rs-3429355. [PMID: 37986867 PMCID: PMC10659534 DOI: 10.21203/rs.3.rs-3429355/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The avian influenza A virus H7N9 causes severe human infections with more than 30% fatality despite the use of neuraminidase inhibitors. Currently there is no H7N9-specific prevention or treatment for humans. From a 2013 H7N9 convalescent case occurred in Hong Kong, we isolated four H7 hemagglutinin (HA)-reactive monoclonal antibodies (mAbs) by single B cell cloning, with three mAbs directed to the HA globular head domain (HA1) and one to the HA stem region (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralized H7N9 and protected mice from a lethal H7N9/AH1 challenge. Cryo-EM structures revealed that H7.HK1 and H7.HK2 bind to a β14-centered surface partially overlapping with the antigenic site D of HA1 and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on the adjacent protomer, thus affectively blocking viral entry. The more potent mAb H7.HK2 retained full HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, which is consistent with structural data showing that the antigenic mutations of 2016-2017 from the 2013 H7N9 only occurred at the periphery of the mAb epitope. The HA2-directed mAb H7.HK4 lacked neutralizing activity but protected mice from the lethal H7N9/AH1 challenge when engineered to mouse IgG2a enabling Fc effector function in mice. Used in combination with H7.HK2 at a suboptimal dose, H7.HK4 augmented mouse protection. Our data demonstrated an allosteric mechanism of mAb neutralization and augmented protection against H7N9 when a HA1-directed neutralizing mAb and a HA2-directed non-neutralizing mAb were combined.
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
| | - Nicholas C. Morano
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yin-Ming Lui
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haijuan Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E. Becker
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Peter D. Kwong
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Sha Tin, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY 10016, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
135
|
Maurer SK, Mayer MP, Ward SJ, Boudjema S, Halawa M, Zhang J, Caulton SG, Emsley J, Dreveny I. Ubiquitin-specific protease 11 structure in complex with an engineered substrate mimetic reveals a molecular feature for deubiquitination selectivity. J Biol Chem 2023; 299:105300. [PMID: 37777157 PMCID: PMC10637973 DOI: 10.1016/j.jbc.2023.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Ubiquitin-specific proteases (USPs) are crucial for controlling cellular proteostasis and signaling pathways but how deubiquitination is selective remains poorly understood, in particular between paralogues. Here, we developed a fusion tag method by mining the Protein Data Bank and trapped USP11, a key regulator of DNA double-strand break repair, in complex with a novel engineered substrate mimetic. Together, this enabled structure determination of USP11 as a Michaelis-like complex that revealed key S1 and S1' binding site interactions with a substrate. Combined mutational, enzymatic, and binding experiments identified Met77 in linear diubiquitin as a significant residue that leads to substrate discrimination. We identified an aspartate "gatekeeper" residue in the S1' site of USP11 as a contributing feature for discriminating against linear diubiquitin. When mutated to a glycine, the corresponding residue in paralog USP15, USP11 acquired elevated activity toward linear diubiquitin in-gel shift assays, but not controls. The reverse mutation in USP15 confirmed that this position confers paralog-specific differences impacting diubiquitin cleavage rates. The results advance our understanding of the molecular basis for the higher selectivity of USP11 compared to USP15 and may aid targeted inhibitor development. Moreover, the reported carrier-based crystallization strategy may be applicable to other challenging targets.
Collapse
Affiliation(s)
- Sigrun K Maurer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Matthias P Mayer
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Stephanie J Ward
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Sana Boudjema
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mohamed Halawa
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jiatong Zhang
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Simon G Caulton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Ingrid Dreveny
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
136
|
Oosterheert W, Blanc FEC, Roy A, Belyy A, Sanders MB, Hofnagel O, Hummer G, Bieling P, Raunser S. Molecular mechanisms of inorganic-phosphate release from the core and barbed end of actin filaments. Nat Struct Mol Biol 2023; 30:1774-1785. [PMID: 37749275 PMCID: PMC10643162 DOI: 10.1038/s41594-023-01101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
The release of inorganic phosphate (Pi) from actin filaments constitutes a key step in their regulated turnover, which is fundamental to many cellular functions. The mechanisms underlying Pi release from the core and barbed end of actin filaments remain unclear. Here, using human and bovine actin isoforms, we combine cryo-EM with molecular-dynamics simulations and in vitro reconstitution to demonstrate how actin releases Pi through a 'molecular backdoor'. While constantly open at the barbed end, the backdoor is predominantly closed in filament-core subunits and opens only transiently through concerted amino acid rearrangements. This explains why Pi escapes rapidly from the filament end but slowly from internal subunits. In a nemaline-myopathy-associated actin variant, the backdoor is predominantly open in filament-core subunits, resulting in accelerated Pi release and filaments with drastically shortened ADP-Pi caps. Our results provide the molecular basis for Pi release from actin and exemplify how a disease-linked mutation distorts the nucleotide-state distribution and atomic structure of the filament.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Florian E C Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ankit Roy
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Institute for Biophysics, Goethe University, Frankfurt am Main, Germany.
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
137
|
Fregoso FE, Boczkowska M, Rebowski G, Carman PJ, van Eeuwen T, Dominguez R. Mechanism of synergistic activation of Arp2/3 complex by cortactin and WASP-family proteins. Nat Commun 2023; 14:6894. [PMID: 37898612 PMCID: PMC10613254 DOI: 10.1038/s41467-023-42229-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023] Open
Abstract
Cortactin coactivates Arp2/3 complex synergistically with WASP-family nucleation-promoting factors (NPFs) and stabilizes branched networks by linking Arp2/3 complex to F-actin. It is poorly understood how cortactin performs these functions. We describe the 2.89 Å resolution cryo-EM structure of cortactin's N-terminal domain (Cort1-76) bound to Arp2/3 complex. Cortactin binds Arp2/3 complex through an inverted Acidic domain (D20-V29), which targets the same site on Arp3 as the Acidic domain of NPFs but with opposite polarity. Sequences N- and C-terminal to cortactin's Acidic domain do not increase its affinity for Arp2/3 complex but contribute toward coactivation with NPFs. Coactivation further increases with NPF dimerization and for longer cortactin constructs with stronger binding to F-actin. The results suggest that cortactin contributes to Arp2/3 complex coactivation with NPFs in two ways, by helping recruit the complex to F-actin and by stabilizing the short-pitch (active) conformation, which are both byproducts of cortactin's core function in branch stabilization.
Collapse
Affiliation(s)
- Fred E Fregoso
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
138
|
Rzechorzek NJ, Kunzelmann S, Purkiss AG, Silva Dos Santos M, MacRae JI, Taylor IA, Fugger K, West SC. Mechanism of substrate hydrolysis by the human nucleotide pool sanitiser DNPH1. Nat Commun 2023; 14:6809. [PMID: 37884503 PMCID: PMC10603095 DOI: 10.1038/s41467-023-42544-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors are used in the clinic to treat BRCA-deficient breast, ovarian and prostate cancers. As their efficacy is potentiated by loss of the nucleotide salvage factor DNPH1 there is considerable interest in the development of highly specific small molecule DNPH1 inhibitors. Here, we present X-ray crystal structures of dimeric DNPH1 bound to its substrate hydroxymethyl deoxyuridine monophosphate (hmdUMP). Direct interaction with the hydroxymethyl group is important for substrate positioning, while conserved residues surrounding the base facilitate target discrimination. Glycosidic bond cleavage is driven by a conserved catalytic triad and proceeds via a two-step mechanism involving formation and subsequent disruption of a covalent glycosyl-enzyme intermediate. Mutation of a previously uncharacterised yet conserved glutamate traps the intermediate in the active site, demonstrating its role in the hydrolytic step. These observations define the enzyme's catalytic site and mechanism of hydrolysis, and provide important insights for inhibitor discovery.
Collapse
Affiliation(s)
- Neil J Rzechorzek
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrew G Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mariana Silva Dos Santos
- Metabolomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kasper Fugger
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
139
|
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, Gati C. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 2023; 186:4956-4973.e21. [PMID: 37852260 PMCID: PMC7615941 DOI: 10.1016/j.cell.2023.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Yadav
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Chahat Soni
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samanwita Mohapatra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Cornelius Gati
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Department of Quantitative and Computational Biology, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
140
|
Kikuchi M, Takase S, Konuma T, Noritsugu K, Sekine S, Ikegami T, Ito A, Umehara T. GAS41 promotes H2A.Z deposition through recognition of the N terminus of histone H3 by the YEATS domain. Proc Natl Acad Sci U S A 2023; 120:e2304103120. [PMID: 37844223 PMCID: PMC10614846 DOI: 10.1073/pnas.2304103120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023] Open
Abstract
Glioma amplified sequence 41 (GAS41), which has the Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain that recognizes lysine acetylation (Kac), regulates gene expression as a subunit of the SRCAP (SNF2-related CREBBP activator protein) complex that deposits histone H2A.Z at promoters in eukaryotes. The YEATS domains of the proteins AF9 and ENL recognize Kac by hydrogen bonding the aromatic cage to arginine situated just before K9ac or K27ac in the N-terminal tail of histone H3. Curiously, the YEATS domain of GAS41 binds most preferentially to the sequence that contains K14ac of H3 (H3K14ac) but lacks the corresponding arginine. Here, we biochemically and structurally elucidated the molecular mechanism by which GAS41 recognizes H3K14ac. First, stable binding of the GAS41 YEATS domain to H3K14ac required the N terminus of H3 (H3NT). Second, we revealed a pocket in the GAS41 YEATS domain responsible for the H3NT binding by crystallographic and NMR analyses. This pocket is away from the aromatic cage that recognizes Kac and is unique to GAS41 among the YEATS family. Finally, we showed that E109 of GAS41, a residue essential for the formation of the H3NT-binding pocket, was crucial for chromatin occupancy of H2A.Z and GAS41 at H2A.Z-enriched promoter regions. These data suggest that binding of GAS41 to H3NT via its YEATS domain is essential for its intracellular function.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama230-0045, Japan
| | - Shohei Takase
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Tsuyoshi Konuma
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama230-0045, Japan
| | - Kota Noritsugu
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Saaya Sekine
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Takahisa Ikegami
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama230-0045, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama230-0045, Japan
| |
Collapse
|
141
|
Blikstad C, Dugan EJ, Laughlin TG, Turnšek JB, Liu MD, Shoemaker SR, Vogiatzi N, Remis JP, Savage DF. Identification of a carbonic anhydrase-Rubisco complex within the alpha-carboxysome. Proc Natl Acad Sci U S A 2023; 120:e2308600120. [PMID: 37862384 PMCID: PMC10614612 DOI: 10.1073/pnas.2308600120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 10/22/2023] Open
Abstract
Carboxysomes are proteinaceous organelles that encapsulate key enzymes of CO2 fixation-Rubisco and carbonic anhydrase-and are the centerpiece of the bacterial CO2 concentrating mechanism (CCM). In the CCM, actively accumulated cytosolic bicarbonate diffuses into the carboxysome and is converted to CO2 by carbonic anhydrase, producing a high CO2 concentration near Rubisco and ensuring efficient carboxylation. Self-assembly of the α-carboxysome is orchestrated by the intrinsically disordered scaffolding protein, CsoS2, which interacts with both Rubisco and carboxysomal shell proteins, but it is unknown how the carbonic anhydrase, CsoSCA, is incorporated into the α-carboxysome. Here, we present the structural basis of carbonic anhydrase encapsulation into α-carboxysomes from Halothiobacillus neapolitanus. We find that CsoSCA interacts directly with Rubisco via an intrinsically disordered N-terminal domain. A 1.98 Å single-particle cryoelectron microscopy structure of Rubisco in complex with this peptide reveals that CsoSCA binding is predominantly mediated by a network of hydrogen bonds. CsoSCA's binding site overlaps with that of CsoS2, but the two proteins utilize substantially different motifs and modes of binding, revealing a plasticity of the Rubisco binding site. Our results advance the understanding of carboxysome biogenesis and highlight the importance of Rubisco, not only as an enzyme but also as a central hub for mediating assembly through protein interactions.
Collapse
Affiliation(s)
- Cecilia Blikstad
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala75120, Sweden
| | - Eli J. Dugan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Thomas G. Laughlin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Julia B. Turnšek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Mira D. Liu
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Sophie R. Shoemaker
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Nikoleta Vogiatzi
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala75120, Sweden
| | - Jonathan P. Remis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - David F. Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| |
Collapse
|
142
|
Lou YC, Huang HY, Yeh HH, Chiang WH, Chen C, Wu KP. Structural basis of transcriptional activation by the OmpR/PhoB-family response regulator PmrA. Nucleic Acids Res 2023; 51:10049-10058. [PMID: 37665001 PMCID: PMC10570014 DOI: 10.1093/nar/gkad724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
PmrA, an OmpR/PhoB-family response regulator, triggers gene transcription responsible for polymyxin resistance in bacteria by recognizing promoters where the canonical-35 element is replaced by the pmra-box, representing the PmrA recognition sequence. Here, we report a cryo-electron microscopy (cryo-EM) structure of a bacterial PmrA-dependent transcription activation complex (TAC) containing a PmrA dimer, an RNA polymerase σ70 holoenzyme (RNAPH) and the pbgP promoter DNA. Our structure reveals that the RNAPH mainly contacts the PmrA C-terminal DNA-binding domain (DBD) via electrostatic interactions and reorients the DBD three base pairs upstream of the pmra-box, resulting in a dynamic TAC conformation. In vivo assays show that the substitution of the DNA-recognition residue eliminated its transcriptional activity, while variants with altered RNAPH-interacting residues resulted in enhanced transcriptional activity. Our findings suggest that both PmrA recognition-induced DNA distortion and PmrA promoter escape play crucial roles in its transcriptional activation.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Biomedical Translation Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Yu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Hong Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Hung Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
143
|
Ringe RP, Colin P, Ozorowski G, Allen JD, Yasmeen A, Seabright GE, Lee JH, Antanasijevic A, Rantalainen K, Ketas T, Moore JP, Ward AB, Crispin M, Klasse PJ. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. PLoS Pathog 2023; 19:e1011601. [PMID: 37903160 PMCID: PMC10635575 DOI: 10.1371/journal.ppat.1011601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023] Open
Abstract
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.
Collapse
Affiliation(s)
- Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| |
Collapse
|
144
|
Nissley AJ, Kamal TS, Cate JHD. Interactions between terminal ribosomal RNA helices stabilize the E. coli large ribosomal subunit. RNA (NEW YORK, N.Y.) 2023; 29:1500-1508. [PMID: 37419664 PMCID: PMC10578474 DOI: 10.1261/rna.079690.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro. RNA tags in the Escherichia coli 50S subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild-type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes.
Collapse
Affiliation(s)
- Amos J Nissley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | - Tammam S Kamal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
145
|
Roel-Touris J, Nadal M, Marcos E. Single-chain dimers from de novo immunoglobulins as robust scaffolds for multiple binding loops. Nat Commun 2023; 14:5939. [PMID: 37741853 PMCID: PMC10517939 DOI: 10.1038/s41467-023-41717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Antibody derivatives have sought to recapitulate the antigen binding properties of antibodies, but with improved biophysical attributes convenient for therapeutic, diagnostic and research applications. However, their success has been limited by the naturally occurring structure of the immunoglobulin dimer displaying hypervariable binding loops, which is hard to modify by traditional engineering approaches. Here, we devise geometrical principles for de novo designing single-chain immunoglobulin dimers, as a tunable two-domain architecture that optimizes biophysical properties through more favorable dimer interfaces. Guided by these principles, we computationally designed protein scaffolds that were hyperstable, structurally accurate and robust for accommodating multiple functional loops, both individually and in combination, as confirmed through biochemical assays and X-ray crystallography. We showcase the modularity of this architecture by deep-learning-based diversification, opening up the possibility for tailoring the number, positioning, and relative orientation of ligand-binding loops targeting one or two distal epitopes. Our results provide a route to custom-design robust protein scaffolds for harboring multiple functional loops.
Collapse
Affiliation(s)
- Jorge Roel-Touris
- Protein Design and Modeling Lab, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marta Nadal
- Protein Design and Modeling Lab, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Enrique Marcos
- Protein Design and Modeling Lab, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
146
|
Spínola-Amilibia M, Illanes-Vicioso R, Ruiz-López E, Colomer-Vidal P, Rodriguez-Ventura F, Peces Pérez R, Arias CF, Torroba T, Solà M, Arias-Palomo E, Bertocchini F. Plastic degradation by insect hexamerins: Near-atomic resolution structures of the polyethylene-degrading proteins from the wax worm saliva. SCIENCE ADVANCES 2023; 9:eadi6813. [PMID: 37729416 PMCID: PMC10511194 DOI: 10.1126/sciadv.adi6813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
Plastic waste management is a pressing ecological, social, and economic challenge. The saliva of the lepidopteran Galleria mellonella larvae is capable of oxidizing and depolymerizing polyethylene in hours at room temperature. Here, we analyze by cryo-electron microscopy (cryo-EM) G. mellonella's saliva directly from the native source. The three-dimensional reconstructions reveal that the buccal secretion is mainly composed of four hexamerins belonging to the hemocyanin/phenoloxidase family, renamed Demetra, Cibeles, Ceres, and a previously unidentified factor termed Cora. Functional assays show that this factor, as its counterparts Demetra and Ceres, is also able to oxidize and degrade polyethylene. The cryo-EM data and the x-ray analysis from purified fractions show that they self-assemble primarily into three macromolecular complexes with striking structural differences that likely modulate their activity. Overall, these results establish the ground to further explore the hexamerins' functionalities, their role in vivo, and their eventual biotechnological application.
Collapse
Affiliation(s)
- Mercedes Spínola-Amilibia
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Ramiro Illanes-Vicioso
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Elena Ruiz-López
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Pere Colomer-Vidal
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Francisco Rodriguez-Ventura
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Rosa Peces Pérez
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Clemente F. Arias
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos, GISC, Madrid, Spain
| | - Tomas Torroba
- Department of Chemistry, Faculty of Science and PCT, University of Burgos, Burgos, Spain
| | - Maria Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Ernesto Arias-Palomo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Federica Bertocchini
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
147
|
Akey CW, Echeverria I, Ouch C, Nudelman I, Shi Y, Wang J, Chait BT, Sali A, Fernandez-Martinez J, Rout MP. Implications of a multiscale structure of the yeast nuclear pore complex. Mol Cell 2023; 83:3283-3302.e5. [PMID: 37738963 PMCID: PMC10630966 DOI: 10.1016/j.molcel.2023.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Nuclear pore complexes (NPCs) direct the nucleocytoplasmic transport of macromolecules. Here, we provide a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryogenic electron microscopy and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. We resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring reveals an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution.
Collapse
Affiliation(s)
- Christopher W Akey
- Department of Pharmacology, Physiology and Biophysics, Boston University, Chobanian and Avedisian School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - Ignacia Echeverria
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christna Ouch
- Department of Pharmacology, Physiology and Biophysics, Boston University, Chobanian and Avedisian School of Medicine, 700 Albany Street, Boston, MA 02118, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | - Ilona Nudelman
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
148
|
Lende SSF, Barnkob NM, Hansen RW, Bansia H, Vestergaard M, Rothemejer FH, Worsaae A, Brown D, Pedersen ML, Rahimic AHF, Juhl AK, Gjetting T, Østergaard L, Georges AD, Vuillard LM, Schleimann MH, Koefoed K, Tolstrup M. Discovery of neutralizing SARS-CoV-2 antibodies enriched in a unique antigen specific B cell cluster. PLoS One 2023; 18:e0291131. [PMID: 37729215 PMCID: PMC10511142 DOI: 10.1371/journal.pone.0291131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Despite development of effective SARS-CoV-2 vaccines, a sub-group of vaccine non-responders depends on therapeutic antibodies or small-molecule drugs in cases of severe disease. However, perpetual viral evolution has required continuous efficacy monitoring as well as exploration of new therapeutic antibodies, to circumvent resistance mutations arising in the viral population. We performed SARS-CoV-2-specific B cell sorting and subsequent single-cell sequencing on material from 15 SARS-CoV-2 convalescent participants. Through screening of 455 monoclonal antibodies for SARS-CoV-2 variant binding and virus neutralization, we identified a cluster of activated B cells highly enriched for SARS-CoV-2 neutralizing antibodies. Epitope binning and Cryo-EM structure analysis identified the majority of neutralizing antibodies having epitopes overlapping with the ACE2 receptor binding motif (class 1 binders). Extensive functional antibody characterization identified two potent neutralizing antibodies, one retaining SARS-CoV-1 neutralizing capability, while both bind major common variants of concern and display prophylactic efficacy in vivo. The transcriptomic signature of activated B cells harboring broadly binding neutralizing antibodies with therapeutic potential identified here, may be a guide in future efforts of rapid therapeutic antibody discovery.
Collapse
Affiliation(s)
- Stine Sofie Frank Lende
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Harsh Bansia
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, United States of America
| | | | - Frederik Holm Rothemejer
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Deijona Brown
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, United States of America
| | - Maria Lange Pedersen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Anna Karina Juhl
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
| | - Torben Gjetting
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, United States of America
- Antibody Technology, Novo Nordisk A/S, Måløv, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Amédée Des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, United States of America
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, United States of America
- PhD Programs in Biochemistry, and Chemistry, Graduate Center, City University of New York, New York, NY, United States of America
| | | | | | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
149
|
Alteen MG, Deme JC, Alvarez CP, Loppnau P, Hutchinson A, Seitova A, Chandrasekaran R, Silva Ramos E, Secker C, Alqazzaz M, Wanker EE, Lea SM, Arrowsmith CH, Harding RJ. Delineation of functional subdomains of Huntingtin protein and their interaction with HAP40. Structure 2023; 31:1121-1131.e6. [PMID: 37390814 PMCID: PMC10527579 DOI: 10.1016/j.str.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
The huntingtin (HTT) protein plays critical roles in numerous cellular pathways by functioning as a scaffold for its many interaction partners and HTT knock out is embryonic lethal. Interrogation of HTT function is complicated by the large size of this protein so we studied a suite of structure-rationalized subdomains to investigate the structure-function relationships within the HTT-HAP40 complex. Protein samples derived from the subdomain constructs were validated using biophysical methods and cryo-electron microscopy, revealing they are natively folded and can complex with validated binding partner, HAP40. Derivatized versions of these constructs enable protein-protein interaction assays in vitro, with biotin tags, and in cells, with luciferase two-hybrid assay-based tags, which we use in proof-of-principle analyses to further interrogate the HTT-HAP40 interaction. These open-source biochemical tools enable studies of fundamental HTT biochemistry and biology, will aid the discovery of macromolecular or small-molecule binding partners and help map interaction sites across this large protein.
Collapse
Affiliation(s)
- Matthew G Alteen
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; POINT Biopharma, 22 St Clair Avenue E Suite 1201, Toronto, ON M4T 2S3, Canada
| | - Justin C Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Claudia P Alvarez
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; SCIEX, 71 Four Valley Dr, Vaughan, ON L4K 4V8, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Renu Chandrasekaran
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Eduardo Silva Ramos
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Mona Alqazzaz
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
150
|
Torino S, Dhurandhar M, Stroobants A, Claessens R, Efremov RG. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. Nat Methods 2023; 20:1400-1408. [PMID: 37592181 DOI: 10.1038/s41592-023-01967-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/27/2023] [Indexed: 08/19/2023]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) allows reconstruction of high-resolution structures of proteins in different conformations. Protein function often involves transient functional conformations, which can be resolved using time-resolved cryo-EM (trEM). In trEM, reactions are arrested after a defined delay time by rapid vitrification of protein solution on the EM grid. Despite the increasing interest in trEM among the cryo-EM community, making trEM samples with a time resolution below 100 ms remains challenging. Here we report the design and the realization of a time-resolved cryo-plunger that combines a droplet-based microfluidic mixer with a laser-induced generator of microjets that allows rapid reaction initiation and plunge-freezing of cryo-EM grids. Using this approach, a time resolution of 5 ms was achieved and the protein density map was reconstructed to a resolution of 2.1 Å. trEM experiments on GroEL:GroES chaperonin complex resolved the kinetics of the complex formation and visualized putative short-lived conformations of GroEL-ATP complex.
Collapse
Affiliation(s)
- Stefania Torino
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mugdha Dhurandhar
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annelore Stroobants
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Claessens
- Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|