101
|
Andújar E, Hernáez MJ, Kaschabek SR, Reineke W, Santero E. Identification of an extradiol dioxygenase involved in tetralin biodegradation: gene sequence analysis and purification and characterization of the gene product. J Bacteriol 2000; 182:789-95. [PMID: 10633115 PMCID: PMC94344 DOI: 10.1128/jb.182.3.789-795.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1999] [Accepted: 11/09/1999] [Indexed: 11/20/2022] Open
Abstract
A genomic region involved in tetralin biodegradation was recently identified in Sphingomonas strain TFA. We have cloned and sequenced from this region a gene designated thnC, which codes for an extradiol dioxygenase required for tetralin utilization. Comparison to similar sequences allowed us to define a subfamily of 1, 2-dihydroxynaphthalene extradiol dioxygenases, which comprises two clearly different groups, and to show that ThnC clusters within group 2 of this subfamily. 1,2-Dihydroxy-5,6,7, 8-tetrahydronaphthalene was found to be the metabolite accumulated by a thnC insertion mutant. The ring cleavage product of this metabolite exhibited behavior typical of a hydroxymuconic semialdehyde toward pH-dependent changes and derivatization with ammonium to give a quinoline derivative. The gene product has been purified, and its biochemical properties have been studied. The enzyme is a decamer which requires Fe(II) for activity and shows high activity toward its substrate (V(max), 40.5 U mg(-1); K(m), 18. 6 microM). The enzyme shows even higher activity with 1, 2-dihydroxynaphthalene and also significant activity toward 1, 2-dihydroxybiphenyl or methylated catechols. The broad substrate specificity of ThnC is consistent with that exhibited by other extradiol dioxygenases of the same group within the subfamily of 1, 2-dihydroxynaphthalene dioxygenases.
Collapse
Affiliation(s)
- E Andújar
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain
| | | | | | | | | |
Collapse
|
102
|
Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 2000; 100:235-350. [PMID: 11749238 DOI: 10.1021/cr9900275] [Citation(s) in RCA: 1387] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Ogihara T, Hikichi* S, Akita* M, Uchida T, Kitagawa T, Moro-oka* Y. An approach to the O2 activating mononuclear non-heme Fe enzymes: structural characterization of Fe(II)–acetato complex and formation of alkylperoxoiron(III) species with the highly hindered hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate. Inorganica Chim Acta 2000. [DOI: 10.1016/s0020-1693(99)00337-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
104
|
Hegg EL, Whiting AK, Saari RE, McCracken J, Hausinger RP, Que L. Herbicide-degrading alpha-keto acid-dependent enzyme TfdA: metal coordination environment and mechanistic insights. Biochemistry 1999; 38:16714-26. [PMID: 10600135 DOI: 10.1021/bi991796l] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TfdA is a non-heme iron enzyme which catalyzes the first step in the oxidative degradation of the widely used herbicide (2, 4-dichlorophenoxy)acetate (2,4-D). Like other alpha-keto acid-dependent enzymes, TfdA utilizes a mononuclear Fe(II) center to activate O(2) and oxidize substrate concomitant with the oxidative decarboxylation of alpha-ketoglutarate (alpha-KG). Spectroscopic analyses of various Cu(II)-substituted and Fe(II)-reconstituted TfdA complexes via electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), and UV-vis spectroscopies have greatly expanded our knowledge of the enzyme's active site. The metal center is coordinated to two histidine residues as indicated by the presence of a five-line pattern in the Cu(II) EPR signal, for which superhyperfine splitting is attributed to two equivalent nitrogen donor atoms from two imidazoles. Furthermore, a comparison of the ESEEM spectra obtained in H(2)O and D(2)O demonstrates that the metal maintains several solvent-accessible sites, a conclusion corroborated by the increase in multiplicity in the EPR superhyperfine splitting observed in the presence of imidazole. Addition of alpha-KG to the Cu-containing enzyme leads to displacement of an equatorial water on copper, as determined by ESEEM analysis. Subsequent addition of 2,4-D leads to the loss of a second water molecule, with retention of a third, axially bound water. In contrast to these results, in Fe(II)-reconstituted TfdA, the cosubstrate alpha-KG chelates to the metal via a C-1 carboxylate oxygen and the alpha-keto oxygen as revealed by characteristic absorption features in the optical spectrum of Fe-TfdA. This binding mode is maintained in the presence of substrate, although the addition of 2,4-D does alter the metal coordination environment, perhaps by creating an O(2)-binding site via solvent displacement. Indeed, loss of solvent to generate an open binding site upon the addition of substrate has also been suggested for the alpha-keto acid-dependent enzyme clavaminate synthase 2 [Zhou et al. (1998) J. Am. Chem. Soc. 120, 13539-13540]. Nitrosyl adducts of various Fe-TfdA complexes have also been investigated by optical and EPR spectroscopy. Of special interest is the tightly bound NO complex of Fe-TfdA.(alpha-KG).(2,4-D), which may represent an accurate model of the initial oxygen-bound species.
Collapse
Affiliation(s)
- E L Hegg
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
105
|
Funabiki T, Yamazaki T. Mechanism of oxygenative cleavage of catechols by nonheme iron complexes in relevance to catechol dioxygenases studied by quantum chemical calculations. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1169(99)00198-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
106
|
Schofield CJ, Zhang Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 1999; 9:722-31. [PMID: 10607676 DOI: 10.1016/s0959-440x(99)00036-6] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mononuclear nonheme-Fe(II)-dependent oxygenases comprise an extended family of oxidising enzymes, of which the 2-oxoglutarate-dependent oxygenases and related enzymes are the largest known subgroup. Recent crystallographic and mechanistic studies have helped to define the overall fold of the 2-oxoglutarate-dependent enzymes and have led to the identification of coordination chemistry closely related to that of other nonheme-Fe(II)-dependent oxygenases, suggesting related mechanisms for dioxygen activation that involve iron-mediated electron transfer.
Collapse
Affiliation(s)
- C J Schofield
- Department of Chemistry, The Oxford Centre for Molecular Sciences, The Dyson Perrins Laboratory, Oxford, OX1 3QY, UK
| | | |
Collapse
|
107
|
Miyauchi K, Adachi Y, Nagata Y, Takagi M. Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 1999; 181:6712-9. [PMID: 10542173 PMCID: PMC94136 DOI: 10.1128/jb.181.21.6712-6719.1999] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas (formerly Pseudomonas) paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH), a halogenated organic insecticide, as a sole source of carbon and energy. In a previous study, we showed that gamma-HCH is degraded to chlorohydroquinone (CHQ) and then to hydroquinone (HQ), although the rate of reaction from CHQ to HQ was slow (K. Miyauchi, S. K. Suh, Y. Nagata, and M. Takagi, J. Bacteriol. 180:1354-1359, 1998). In this study, we cloned and characterized a gene, designated linE, which is located upstream of linD and is directly involved in the degradation of CHQ. The LinE protein consists of 321 amino acids, and all of the amino acids which are reported to be essential for the activity of meta-cleavage dioxygenases are conserved in LinE. Escherichia coli overproducing LinE could convert both CHQ and HQ, producing gamma-hydroxymuconic semialdehyde and maleylacetate, respectively, with consumption of O(2) but could not convert catechol, which is one of the major substrates for meta-cleavage dioxygenases. LinE seems to be resistant to the acylchloride, which is the ring cleavage product of CHQ and which seems to react with water to be converted to maleylacetate. These results indicated that LinE is a novel type of meta-cleavage dioxygenase, designated (chloro)hydroquinone 1, 2-dioxygenase, which cleaves aromatic rings with two hydroxyl groups at para positions preferably. This study represents a direct demonstration of a new type of ring cleavage pathway for aromatic compounds, the hydroquinone pathway.
Collapse
Affiliation(s)
- K Miyauchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
108
|
Brühlmann F, Chen W. Transformation of polychlorinated biphenyls by a novel BphA variant through the meta-cleavage pathway. FEMS Microbiol Lett 1999; 179:203-8. [PMID: 10518716 DOI: 10.1111/j.1574-6968.1999.tb08728.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The transformation of 20 polychlorinated biphenyls (PCBs) through the meta-cleavage pathway by recombinant Escherichia coli cells expressing the bphEFGBC locus from Burkholderia cepacia LB400 and the bphA genes from different sources was compared. The analysis of PCB congeners for which hydroxylation was observed but no formation of the corresponding yellow meta-cleavage product demonstrated that only lightly chlorinated congeners including one tetrachlorobiphenyl (2,2',4,4'-CB) were transformed into their corresponding yellow meta-cleavage products. Although many other tetrachlorobiphenyls (2, 2',5,5'-CB, 2,2',3,5'-CB, 2,4,4',5-CB, 2,3',4',5-CB, 2,3',4,4'-CB) and one pentachlorobiphenyl (2,2',4,5,5'-CB) tested were depleted from resting cell suspensions, no yellow meta-cleavage products were observed. For most of these congeners, dihydrodiol compounds accumulated as the endproducts, indicating that the bphB-encoded biphenyl-2,3-dihydrodiol-2,3-dehydrogenase is a key limiting step for further degradation of highly chlorinated congeners. These results suggest that engineering the biphenyl dioxygenase alone is insufficient for an improved removal of PCB. Rather, improved degradation of PCBs is more likely to be achieved with recombinant strains containing metabolic pathways not only specifically engineered for expanding the initial dioxygenation but also for the mineralization of PCBs.
Collapse
Affiliation(s)
- F Brühlmann
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
109
|
Coulter ED, Moon N, Batie CJ, Dunham WR, Ballou DP. Electron paramagnetic resonance measurements of the ferrous mononuclear site of phthalate dioxygenase substituted with alternate divalent metal ions: direct evidence for ligation of two histidines in the copper(II)-reconstituted protein. Biochemistry 1999; 38:11062-72. [PMID: 10460161 DOI: 10.1021/bi9904499] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metalloenzyme phthalate dioxygenase (PDO) contains two iron-based sites. A Rieske-type [2Fe-2S] cluster serves as an electron-transferring cofactor, and a mononuclear iron site is the putative site of substrate oxygenation. A reductase, which contains FMN and a plant-type [2Fe-2S] ferredoxin domain, transfers electrons from NADH to the Rieske center. Any of the metal ions, Fe(II), Cu(II), Co(II), Mn(II), and Zn(II), can be used to populate the mononuclear site, but only Fe(II) is competent for effecting hydroxylation. Nevertheless, studies of how these metal ions affect both the EPR spectra of the reduced Rieske site and the kinetics of electron transfer in the PDO system indicated that each of these metal ions binds tightly and affects the protein similarly. In this study, EPR spectra were obtained from samples in which iron of the mononuclear site was replaced with Cu(II). The use of (63)Cu(II), in combination with PDO obtained from cultures grown on media enriched in (15)N [using ((15)NH(4))(2)SO(4) as a sole nitrogen source], [delta,epsilon-(15)N]histidine, as well as natural abundance sources of nitrogen, enabled detailed spectral analysis of the superhyperfine structure of the Cu(II) EPR lines. These studies clearly show that two histidines are coordinated to the mononuclear site. Coupled with previous studies [Bertini, I., Luchinat, C., Mincione, G., Parigi, G., Gassner G. T., and Ballou, D. P. (1996) J. Bioinorg. Chem. 1, 468-475] that show the presence of one or two water molecules coordinated to the iron, it is suggested that the mononuclear site is similar to several other mononuclear nonheme iron proteins, including naphthalene dioxygenase, for which crystal structures are available. The lack of observable EPR interaction signals between Cu(II) in the mononuclear site and the reduced Rieske center of PDO suggest that the two sites are at least 12 A apart, which is similar to that found in the naphthalene dioxygenase crystal structure.
Collapse
Affiliation(s)
- E D Coulter
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| | | | | | | | | |
Collapse
|
110
|
Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M, Mitsui Y. Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure 1999; 7:953-65. [PMID: 10467151 DOI: 10.1016/s0969-2126(99)80122-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sphingomonas paucimobilis SYK-6 utilizes an extradiol-type catecholic dioxygenase, the LigAB enzyme (a protocatechuate 4,5-dioxygenase), to oxidize protocatechuate (or 3,4-dihydroxybenzoic acid, PCA). The enzyme belongs to the family of class III extradiol-type catecholic dioxygenases catalyzing the ring-opening reaction of protocatechuate and related compounds. The primary structure of LigAB suggests that the enzyme has no evolutionary relationship with the family of class II extradiol-type catecholic dioxygenases. Both the class II and class III enzymes utilize a non-heme ferrous center for adding dioxygen to the substrate. By elucidating the structure of LigAB, we aimed to provide a structural basis for discussing the function of class III enzymes. RESULTS The crystal structure of substrate-free LigAB was solved at 2.2 A resolution. The molecule is an alpha2beta2 tetramer. The active site contains a non-heme iron coordinated by His12, His61, Glu242, and a water molecule located in a deep cleft of the beta subunit, which is covered by the alpha subunit. Because of the apparent oxidation of the Fe ion into the nonphysiological Fe(III) state, we could also solve the structure of LigAB complexed with a substrate, PCA. The iron coordination sphere in this complex is a distorted tetragonal bipyramid with one ligand missing, which is presumed to be the O2-binding site. CONCLUSIONS The structure of LigAB is completely different from those of the class II extradiol-type dioxygenases exemplified by the BphC enzyme, a 2,3-dihydroxybiphenyl 1,2-dioxygenase from a Pseudomonas species. Thus, as already implicated by the primary structures, no evolutionary relationship exists between the class II and III enzymes. However, the two classes of enzymes share many geometrical characteristics with respect to the nature of the iron coordination sphere and the position of a putative catalytic base, strongly suggesting a common catalytic mechanism.
Collapse
Affiliation(s)
- K Sugimoto
- Department of BioEngineering, Nagaoka University of Technology, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
111
|
Serre L, Sailland A, Sy D, Boudec P, Rolland A, Pebay-Peyroula E, Cohen-Addad C. Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway. Structure 1999; 7:977-88. [PMID: 10467142 DOI: 10.1016/s0969-2126(99)80124-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In plants and photosynthetic bacteria, the tyrosine degradation pathway is crucial because homogentisate, a tyrosine degradation product, is a precursor for the biosynthesis of photosynthetic pigments, such as quinones or tocophenols. Homogentisate biosynthesis includes a decarboxylation step, a dioxygenation and a rearrangement of the pyruvate sidechain. This complex reaction is carried out by a single enzyme, the 4-hydroxyphenylpyruvate dioxygenase (HPPD), a non-heme iron dependent enzyme that is active as a homotetramer in bacteria and as a homodimer in plants. Moreover, in humans, a HPPD deficiency is found to be related to tyrosinemia, a rare hereditary disorder of tyrosine catabolism. RESULTS We report here the crystal structure of Pseudomonas fluorescens HPPD refined to 2.4 A resolution (Rfree 27.6%; R factor 21.9%). The general topology of the protein comprises two barrel-shaped domains and is similar to the structures of Pseudomonas 2,3-dihydroxybiphenyl dioxygenase (DHBD) and Pseudomonas putida catechol 2,3-dioxygenase (MPC). Each structural domain contains two repeated betaalpha betabeta betaalpha modules. There is one non-heme iron atom per monomer liganded to the sidechains of His161, His240, Glu322 and one acetate molecule. CONCLUSIONS The analysis of the HPPD structure and its superposition with the structures of DHBD and MPC highlight some important differences in the active sites of these enzymes. These comparisons also suggest that the pyruvate part of the HPPD substrate (4-hydroxyphenylpyruvate) and the O2 molecule would occupy the three free coordination sites of the catalytic iron atom. This substrate-enzyme model will aid the design of new inhibitors of the homogentisate biosynthesis reaction.
Collapse
Affiliation(s)
- L Serre
- Institut de Biologie Structurale Jean-Pierre Ebel, CNRS/CEA, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
112
|
Davis MI, Wasinger EC, Westre TE, Zaleski JM, Orville AM, Lipscomb JD, Hedman B, Hodgson KO, Solomon EI. Spectroscopic Investigation of Reduced Protocatechuate 3,4-Dioxygenase: Charge-Induced Alterations in the Active Site Iron Coordination Environment. Inorg Chem 1999; 38:3676-3683. [PMID: 11671125 DOI: 10.1021/ic981464p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical reduction of the mononuclear ferric active site in the bacterial intradiol cleaving catecholic dioxygenase protocatechuate 3,4-dioxygenase (3,4-PCD, Brevibacterium fuscum) produces a high-spin ferrous center. We have applied circular dichroism (CD), magnetic circular dichroism (MCD), variable-temperature-variable-field (VTVH) MCD, X-ray absorption (XAS) pre-edge, and extended X-ray absorption fine structure (EXAFS) spectroscopies to investigate the geometric and electronic structure of the reduced iron center. Excited-state ligand field CD and MCD data indicate that the site is six-coordinate where the (5)E(g) excited-state splitting is 2033 cm(-)(1). VTVH MCD analysis of the ground state indicates that the site has negative zero-field splitting with a small rhombic splitting of the lowest doublet (delta = 1.6 +/- 0.3 cm(-)(1)). XAS pre-edge analysis also indicates a six-coordinate site while EXAFS analysis provides accurate bond lengths. Since previous spectroscopic analysis and the crystal structure of oxidized 3,4-PCD indicate a five-coordinate ferric active site, the results presented here show that the coordination number increases upon reduction. This is attributed to the coordination of a second solvent ligand. The coordination number increase relative to the oxidized site also appears to be associated with a large decrease in the ligand donor strength in the reduced enzyme due to protonation of the original hydroxide ligand.
Collapse
Affiliation(s)
- Mindy I. Davis
- Department of Chemistry and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California 94305, and Department of Biochemistry and the Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
It has recently been shown that shuffling of the amino acid sequences of family enzymes allows the generation of improved enzymes. Family shuffling is generally achieved by a DNase I treatment and then by PCR. Shuffling of the xylE and nahH genes, both encoding catechol 2,3-dioxygenases, was carried out by the published method. However, nahH-xylE hybrids were only formed at a very low frequency (less than 1%). Therefore, we developed improved methods for family shuffling by which DNA was cleaved by restriction enzymes instead of by DNase I. With the first improved method, five nahH fragments and five xylE fragments that had been generated by restriction enzyme digestion were subjected to the PCR reactions in two steps, the first being without a primer and the second with a set of primers. This method enabled nahH-xylE hybrid genes to be formed at a high frequency (almost 100%). With the second improved method, nahH and xylE were cleaved by several sets of restriction enzymes, and these digests were then reassembled in two steps. The nahH and xylE DNAs were each cleaved by two (or three) sets of restriction enzymes, and one type of nahH digest and one type of xylE digest were mixed, thus making four (or nine) different mixtures of the nahH and xylE digests. These mixtures were used as templates to carry out PCR without a primer. After the first PCR reaction, all the mixtures were combined, and a second PCR reaction was carried out without a primer. Following these two PCR assembly steps, a third PCR reaction was carried out with two primers to amplify the full-length nahH-xylE hybrid genes. This second method also yielded nahH-xylE hybrids at a frequency of 100%. The degree of recombination of the products with the second method was higher than that with the first method. These methods were used to isolate catechol 2,3-dioxygenases exhibiting relatively high stability at high temperature, one of them being respectively 13- and 26-fold more thermostable than XylE and NahH at 50 degrees C.
Collapse
Affiliation(s)
- M Kikuchi
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
| | | | | |
Collapse
|
114
|
Riegert U, Heiss G, Kuhm AE, Müller C, Contzen M, Knackmuss HJ, Stolz A. Catalytic properties of the 3-chlorocatechol-oxidizing 2, 3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas sp. strain BN6. J Bacteriol 1999; 181:4812-7. [PMID: 10438749 PMCID: PMC93966 DOI: 10.1128/jb.181.16.4812-4817.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2,3-dihydroxybiphenyl dioxygenase from Sphingomonas sp. strain BN6 (BphC1-BN6) differs from most other extradiol dioxygenases by its ability to oxidize 3-chlorocatechol to 3-chloro-2-hydroxymuconic semialdehyde by a distal cleavage mechanism. The turnover of different substrates and the effects of various inhibitors on BphC1-BN6 were compared with those of another 2,3-dihydroxybiphenyl dioxygenase from the same strain (BphC2-BN6) as well as with those of the archetypical catechol 2,3-dioxygenase (C23O-mt2) encoded by the TOL plasmid. Cell extracts containing C23O-mt2 or BphC2-BN6 converted the relevant substrates with an almost constant rate for at least 10 min, whereas BphC1-BN6 was inactivated significantly within the first minutes during the turnover of all substrates tested. Furthermore, BphC1-BN6 was much more sensitive than the other two enzymes to inactivation by the Fe(II) ion-chelating compound o-phenanthroline. The reason for inactivation of BphC1-BN6 appeared to be the loss of the weakly bound ferrous ion, which is the cofactor in the catalytic center. A mutant enzyme of BphC1-BN6 constructed by site-directed mutagenesis showed a higher stability to inactivation by o-phenanthroline and an increased catalytic efficiency for the conversion of 2,3-dihydroxybiphenyl and 3-methylcatechol but was still inactivated during substrate oxidation.
Collapse
Affiliation(s)
- U Riegert
- Institut für Mikrobiologie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
115
|
Seeger M, Zielinski M, Timmis KN, Hofer B. Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl Environ Microbiol 1999; 65:3614-21. [PMID: 10427057 PMCID: PMC91542 DOI: 10.1128/aem.65.8.3614-3621.1999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1999] [Accepted: 06/07/1999] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain LB400 is one of the most potent aerobic polychlorobiphenyl (PCB)-degrading microorganisms that have been characterized. Its PCB-dioxygenating activity originates predominantly or exclusively from the biphenyl dioxygenase encoded by its bph gene cluster. Analysis of the dioxygenation products of several di- to pentachlorinated biphenyls formed by this enzyme revealed a complex dependence of the regiospecificity and the yield of dioxygenation on the substitution patterns of both the oxidized and the nonoxidized rings. No dioxygenolytic attack involving chlorinated meta or para carbons was observed. Therefore, the ability of the enzyme to hydroxylate chlorinated carbons appears to be limited to the ortho position. However, it is not limited to monochlorinated rings, as evidenced by dioxygenation of the 2, 4-disubstituted ring at carbons 2 and 3. This site of attack is strikingly different from that of the 2,5-dichlorinated ring, which has been shown to be dihydroxylated at positions 3 and 4 (J. D. Haddock, J. R. Horton, and D. T. Gibson, J. Bacteriol. 177:20-26, 1995). These results demonstrate that a second substituent of ortho-chlorinated rings crucially influences the site of dioxygenation at this ring and thereby determines whether or not the initial chlorobiphenyl oxidation product is further metabolized through the bph-encoded pathway. The 2,4-dichlorinated ring can alternatively be attacked at carbons 5 and 6. The preferred site crucially depends on the substitution pattern of the other ring. The formation of more than a single dioxygenation product was found predominantly with congeners that contain two chlorinated rings, both of which are similarly prone to dioxygenation or one is substituted only at carbon 3.
Collapse
Affiliation(s)
- M Seeger
- Division of Microbiology, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
| | | | | | | |
Collapse
|
116
|
Novel iron(III) complexes with imidazole containing tripodal ligands as model systems for catechol dioxygenases. Inorganica Chim Acta 1999. [DOI: 10.1016/s0020-1693(99)00129-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
117
|
Rocklin AM, Tierney DL, Kofman V, Brunhuber NM, Hoffman BM, Christoffersen RE, Reich NO, Lipscomb JD, Que L. Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Proc Natl Acad Sci U S A 1999; 96:7905-9. [PMID: 10393920 PMCID: PMC22160 DOI: 10.1073/pnas.96.14.7905] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The final step of ethylene biosynthesis in plants is catalyzed by the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). In addition to ACC, Fe(II), O2, CO2, and ascorbate are required for in vitro enzyme activity. Direct evidence for the role of the Fe(II) center in the recombinant avocado ACCO has now been obtained through formation of enzyme.(substrate or cofactor).NO complexes. These NO adducts convert the normally EPR-silent ACCO complexes into EPR-active species with structural properties similar to those of the corresponding O2 complexes. It is shown here that the ternary Fe(II)ACCO.ACC.NO complex is readily formed, but no Fe(II)ACCO.ascorbate.NO complex could be observed, suggesting that ascorbate and NO are mutually exclusive in the active site. The binding modes of ACC and the structural analog alanine specifically labeled with 15N or 17O were examined by using Q-band electron nuclear double resonance (ENDOR). The data indicate that these molecules bind directly to the iron through both the alpha-amino and alpha-carboxylate groups. These observations are inconsistent with the currently favored mechanism for ACCO, in which it is proposed that both ascorbate and O2 bind to the iron as a step in O2 activation. We propose a different mechanism in which the iron serves instead to simultaneously bind ACC and O2, thereby fixing their relative orientations and promoting electron transfer between them to initiate catalysis.
Collapse
Affiliation(s)
- A M Rocklin
- Departments of Chemistry and Biochemistry, Molecular Biology and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Haigler BE, Johnson GR, Suen WC, Spain JC. Biochemical and genetic evidence for meta-ring cleavage of 2,4, 5-trihydroxytoluene in Burkholderia sp. strain DNT. J Bacteriol 1999; 181:965-72. [PMID: 9922262 PMCID: PMC93465 DOI: 10.1128/jb.181.3.965-972.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1998] [Accepted: 11/09/1998] [Indexed: 11/20/2022] Open
Abstract
2,4,5-Trihydroxytoluene (THT) oxygenase from Burkholderia sp. strain DNT catalyzes the conversion of THT to an unstable ring fission product. Biochemical and genetic studies of THT oxygenase were undertaken to elucidate the mechanism of the ring fission reaction. The THT oxygenase gene (dntD) was previously localized to the 1.2-kb DNA insert subcloned in the recombinant plasmid designated pJS76 (W. C. Suen and J. C. Spain, J. Bacteriol. 175:1831-1837, 1993). Analysis of the deduced amino acid sequence of DntD revealed the presence of the highly conserved residues characteristic of the catechol 2,3-dioxygenase gene family I. The deduced amino acid sequence of DntD corresponded to a molecular mass of 35 kDa. The native molecular masses for the THT oxygenase estimated by using gel filtration chromatography and nondenaturing gel electrophoresis were 67.4 and 77.8 kDa, respectively. The results suggested that the native protein consists of two identical subunits. The colorless protein contained 2 mol of iron per mol of protein. Stimulation of activity in the presence of ferrous iron and ascorbate suggested a requirement for ferrous iron in the active site. The properties of the enzyme are similar to those of the catechol 2,3-dioxygenases (meta-cleavage dioxygenases). In addition to THT, the enzyme exhibited activity towards 1,2,4-benzenetriol, catechol, 3- and 4-methylcatechol, and 3- and 4-chlorocatechol. The chemical analysis of the THT ring cleavage product showed that the product was 2, 4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid, consistent with extradiol ring fission of THT.
Collapse
Affiliation(s)
- B E Haigler
- Air Force Research Laboratory, Tyndall Air Force Base, Florida 32403-5323, USA
| | | | | | | |
Collapse
|
119
|
Mars AE, Kingma J, Kaschabek SR, Reineke W, Janssen DB. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J Bacteriol 1999; 181:1309-18. [PMID: 9973359 PMCID: PMC93510 DOI: 10.1128/jb.181.4.1309-1318.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth. A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol 2,3-dioxygenase (cbzE) was cloned and sequenced. The cbzE gene appeared to be plasmid localized and was found in a region that also harbors genes encoding a transposase, a ferredoxin that was homologous to XylT, an open reading frame with similarity to a protein of a meta-cleavage pathway with unknown function, and a 2-hydroxymuconic semialdehyde dehydrogenase. CbzE was most similar to catechol 2,3-dioxygenases of the 2.C subfamily of type 1 extradiol dioxygenases (L. D. Eltis and J. T. Bolin, J. Bacteriol. 178:5930-5937, 1996). The substrate range and turnover capacity with 3-chlorocatechol were determined for CbzE and four related catechol 2,3-dioxygenases. The results showed that CbzE was the only enzyme that could productively convert 3-chlorocatechol. Besides, CbzE was less susceptible to inactivation by methylated catechols. Hybrid enzymes that were made of CzbE and the catechol 2, 3-dioxygenase of P. putida UCC2 (TdnC) showed that the resistance of CbzE to suicide inactivation and its substrate specificity were mainly determined by the C-terminal region of the protein.
Collapse
Affiliation(s)
- A E Mars
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
120
|
Kita A, Kita S, Fujisawa I, Inaka K, Ishida T, Horiike K, Nozaki M, Miki K. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Ppseudomonas putida mt-2. Structure 1999; 7:25-34. [PMID: 10368270 DOI: 10.1016/s0969-2126(99)80006-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Catechol dioxygenases catalyze the ring cleavage of catechol and its derivatives in either an intradiol or extradiol manner. These enzymes have a key role in the degradation of aromatic molecules in the environment by soil bacteria. Catechol 2, 3-dioxygenase catalyzes the incorporation of dioxygen into catechol and the extradiol ring cleavage to form 2-hydroxymuconate semialdehyde. Catechol 2,3-dioxygenase (metapyrocatechase, MPC) from Pseudomonas putida mt-2 was the first extradiol dioxygenase to be obtained in a pure form and has been studied extensively. The lack of an MPC structure has hampered the understanding of the general mechanism of extradiol dioxygenases. RESULTS The three-dimensional structure of MPC has been determined at 2.8 A resolution by the multiple isomorphous replacement method. The enzyme is a homotetramer with each subunit folded into two similar domains. The structure of the MPC subunit resembles that of 2,3-dihydroxybiphenyl 1,2-dioxygenase, although there is low amino acid sequence identity between these enzymes. The active-site structure reveals a distorted tetrahedral Fe(II) site with three endogenous ligands (His153, His214 and Glu265), and an additional molecule that is most probably acetone. CONCLUSIONS The present structure of MPC, combined with those of two 2,3-dihydroxybiphenyl 1,2-dioxygenases, reveals a conserved core region of the active site comprising three Fe(II) ligands (His153, His214 and Glu265), one tyrosine (Tyr255) and two histidine (His199 and His246) residues. The results suggest that extradiol dioxygenases employ a common mechanism to recognize the catechol ring moiety of various substrates and to activate dioxygen. One of the conserved histidine residues (His199) seems to have important roles in the catalytic cycle.
Collapse
Affiliation(s)
- A Kita
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Vaillancourt FH, Han S, Fortin PD, Bolin JT, Eltis LD. Molecular basis for the stabilization and inhibition of 2, 3-dihydroxybiphenyl 1,2-dioxygenase by t-butanol. J Biol Chem 1998; 273:34887-95. [PMID: 9857017 DOI: 10.1074/jbc.273.52.34887] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steady-state cleavage of catechols by 2,3-dihydroxybiphenyl 1, 2-dioxygenase (DHBD), the extradiol dioxygenase of the biphenyl biodegradation pathway, was investigated using a highly active, anaerobically purified preparation of enzyme. The kinetic data obtained using 2,3-dihydroxybiphenyl (DHB) fit a compulsory order ternary complex mechanism in which substrate inhibition occurs. The Km for dioxygen was 1280 +/- 70 microM, which is at least 2 orders of magnitude higher than that reported for catechol 2,3-dioxygenases. Km and Kd for DHB were 22 +/- 2 and 8 +/- 1 microM, respectively. DHBD was subject to reversible substrate inhibition and mechanism-based inactivation. In air-saturated buffer, the partition ratios of catecholic substrates substituted at C-3 were inversely related to their apparent specificity constants. Small organic molecules that stabilized DHBD most effectively also inhibited the cleavage reaction most strongly. The steady-state kinetic data and crystallographic results suggest that the stabilization and inhibition are due to specific interactions between the organic molecule and the active site of the enzyme. t-Butanol stabilized the enzyme and inhibited the cleavage of DHB in a mixed fashion, consistent with the distinct binding sites occupied by t-butanol in the crystal structures of the substrate-free form of the enzyme and the enzyme-DHB complex. In contrast, crystal structures of complexes with catechol and 3-methylcatechol revealed relationships between the binding of these smaller substrates and t-butanol that are consistent with the observed competitive inhibition.
Collapse
Affiliation(s)
- F H Vaillancourt
- Department of Biochemistry, Pavillon Marchand, Université Laval, Québec City, P.Q. G1K 7P4, Canada
| | | | | | | | | |
Collapse
|
122
|
Gerlt JA, Babbitt PC. Mechanistically diverse enzyme superfamilies: the importance of chemistry in the evolution of catalysis. Curr Opin Chem Biol 1998; 2:607-12. [PMID: 9818186 DOI: 10.1016/s1367-5931(98)80091-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strategy that nature has used to evolve new catalytic activities from pre-existing enzymes (i.e. retention of substrate binding or of catalytic mechanism) has been controversial. Recent work supports a strategy in which a partial reaction, catalyzed by a progenitor, is retained, and the active-site architecture is modified to allow the intermediate generated to be directed to different products.
Collapse
Affiliation(s)
- J A Gerlt
- Department of Biochemistry, University of Illinois at Urbana-Champaign 61801, USA.
| | | |
Collapse
|
123
|
Bergdoll M, Eltis LD, Cameron AD, Dumas P, Bolin JT. All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Sci 1998; 7:1661-70. [PMID: 10082363 PMCID: PMC2144073 DOI: 10.1002/pro.5560070801] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The crystal structures of three proteins of diverse function and low sequence similarity were analyzed to evaluate structural and evolutionary relationships. The proteins include a bacterial bleomycin resistance protein, a bacterial extradiol dioxygenase, and human glyoxalase I. Structural comparisons, as well as phylogenetic analyses, strongly indicate that the modern family of proteins represented by these structures arose through a rich evolutionary history that includes multiple gene duplication and fusion events. These events appear to be historically shared in some cases, but parallel and historically independent in others. A significant early event is proposed to be the establishment of metal-binding in an oligomeric ancestor prior to the first gene fusion. Variations in the spatial arrangements of homologous modules are observed that are consistent with the structural principles of three-dimensional domain swapping, but in the unusual context of the formation of larger monomers from smaller dimers or tetramers. The comparisons support a general mechanism for metalloprotein evolution that exploits the symmetry of a homooligomeric protein to originate a metal binding site and relies upon the relaxation of symmetry, as enabled by gene duplication, to establish and refine specific functions.
Collapse
Affiliation(s)
- M Bergdoll
- Laboratoire de Biologie Structurale, Institut de Génétique et de Biologie Moléculaire et Cellulaire du CNRS, Illkirch, France
| | | | | | | | | |
Collapse
|
124
|
Saint-Jean AP, Phillips KR, Creighton DJ, Stone MJ. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping. Biochemistry 1998; 37:10345-53. [PMID: 9671502 DOI: 10.1021/bi980868q] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
3D domain swapping of proteins involves the interconversion of a monomer containing a single domain-domain interface and a 2-fold symmetrical dimer containing two equivalent intermolecular interfaces. Human glyoxalase I has the structure of a domain-swapped dimer [Cameron, A. D., Olin, B., Ridderström, M., Mannervik, B., and Jones, T. A. (1997) EMBO J. 16, 3386-3395] but Pseudomonas putida glyoxalase I has been reported to be monomeric [Rhee, H.-I., Murata, K., and Kimura, A. (1986) Biochem. Biophys. Res. Commun. 141, 993-999]. We show here that recombinant P. putida glyoxalase I is an active dimer (kcat approximately 500 +/- 100 s-1; KM approximately 0.4 +/- 0.2 mM) with two zinc ions per dimer. The zinc is required for structure and function. However, treatment of the dimer with glutathione yields an active monomer (kcat approximately 115 +/- 40 s-1; KM approximately 1.4 +/- 0.4 mM) containing a single zinc ion. The monomer is metastable and slowly reverts to the active dimer in the absence of glutathione. Thus, glyoxalase I appears to be a novel example of a single protein able to exist in two alternative domain-swapped forms. It is unique among domain-swapped proteins in that the active site and an essential metal binding site are apparently disassembled and reassembled by the process of domain swapping. Furthermore, it is the only example to date in which 3D domain swapping can be regulated by a small organic ligand.
Collapse
Affiliation(s)
- A P Saint-Jean
- Department of Chemistry, Indiana University, Bloomington 47405-0001, USA
| | | | | | | |
Collapse
|
125
|
Peng X, Egashira T, Hanashiro K, Masai E, Nishikawa S, Katayama Y, Kimbara K, Fukuda M. Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme. Appl Environ Microbiol 1998; 64:2520-7. [PMID: 9647824 PMCID: PMC106420 DOI: 10.1128/aem.64.7.2520-2527.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sphingomonas paucimobilis SYK-6 transforms 2,2'-dihydroxy-3,3'-dimethoxy-5,5'-dicarboxybiphenyl (DDVA), a lignin-related biphenyl compound, to 5-carboxyvanillic acid via 2,2',3-trihydroxy-3'-methoxy-5,5'-dicarboxybiphenyl (OH-DDVA) as an intermediate (15). The ring fission of OH-DDVA is an essential step in the DDVA degradative pathway. A 15-kb EcoRI fragment isolated from the cosmid library complemented the growth deficiency of a mutant on OH-DDVA. Subcloning and deletion analysis showed that a 1.4-kb DNA fragment included the gene responsible for the ring fission of OH-DDVA. An open reading frame encoding 334 amino acids was identified and designated ligZ. The deduced amino acid sequence of LigZ had 18 to 21% identity with the class III extradiol dioxygenase family, including the beta subunit (LigB) of protocatechuate 4,5-dioxygenase of SYK-6 (Y. Noda, S. Nishikawa, K.-I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki, J. Bacteriol. 172:2704-2709, 1990), catechol 2,3-dioxygenase I (MpcI) of Alcaligenes eutrophus JMP222 (M. Kabisch and P. Fortnagel, Nucleic Acids Res. 18:3405-3406, 1990), the catalytic subunit of the meta-cleavage enzyme (CarBb) for 2'-aminobiphenyl-2,3-diol from Pseudomonas sp. strain CA10 (S. I. Sato, N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori, J. Bacteriol. 179:4841-4849, 1997), and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) of Escherichia coli (E. L. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, and T. D. H. Bugg, J. Bacteriol. 178:5249-5256, 1996). The ring fission product formed from OH-DDVA by LigZ developed a yellow color with an absorption maximum at 455 nm, suggesting meta cleavage. Thus, LigZ was concluded to be a ring cleavage extradiol dioxygenase. LigZ activity was detected only for OH-DDVA and 2,2',3,3'-tetrahydroxy-5,5'-dicarboxybiphenyl and was dependent on the ferrous ion.
Collapse
Affiliation(s)
- X Peng
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Okuta A, Ohnishi K, Harayama S. PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene 1998; 212:221-8. [PMID: 9611265 DOI: 10.1016/s0378-1119(98)00153-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A method was developed to isolate central segments of catechol 2, 3-dioxygenase (C23O) genes from environmental samples and to insert these C23O gene segments into nahH (the structural gene for C23O encoded by catabolic plasmid NAH7) by replacing the corresponding nahH sequence with the isolated segments. To PCR-amplify the central C23O gene segments, a pair of degenerate primers was designed from amino acid sequences conserved among C23Os. Using these primers, central regions of the C23O genes were amplified from DNA isolated from a mixed culture of phenol-degrading or crude oil-degrading bacteria. Both the 5' and 3' regions of nahH were also PCR-amplified by using appropriate primers. These three PCR products, the 5'-nahH and 3'-nahH segments and the central C23O gene segments, were mixed and PCR-amplified again. Since the primers for the amplification of the central C23O gene segments were designed so that the 20 nucleotides at both ends of the segments are identical to the 3' end of the 5'-nahH segment and the 5' end of the 3'-nahH segment, respectively, the central C23O gene segments could anneal to both the 5'- and 3'-nahH segments. After the second PCR, hybrid C23O genes in the form of (5'-nahH segment-central C23O gene segment-3'-nahH segment) were amplified to full length. The resulting products were cloned into a vector and used to transform Escherichia coli. This method enabled divergent C23O sequences to be readily isolated, and more than 90% of the hybrid plasmids expressed C23O activity. Thus, the present method is useful to create, without isolating bacteria, a library of functional hybrid genes.
Collapse
Affiliation(s)
- A Okuta
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026, Japan
| | | | | |
Collapse
|
127
|
Riegert U, Heiss G, Fischer P, Stolz A. Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde. J Bacteriol 1998; 180:2849-53. [PMID: 9603871 PMCID: PMC107248 DOI: 10.1128/jb.180.11.2849-2853.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A 2,3-dihydroxybiphenyl 1,2-dioxygenase from the naphthalenesulfonate-degrading bacterium Sphingomonas sp. strain BN6 oxidized 3-chlorocatechol to a yellow product with a strongly pH-dependent absorption maximum at 378 nm. A titration curve suggested (de)protonation of an ionizable group with a pKa of 4.4. The product was isolated, purified, and converted, by treatment with diazomethane, to a dimethyl derivative and, by incubation with ammonium chloride, to a picolinic acid derivative. Mass spectra and 1H and 13C nuclear magnetic resonance (NMR) data for these two derivatives prove a 3-chloro-2-hydroxymuconic semialdehyde structure for the metabolite, resulting from distal (1,6) cleavage of 3-chlorocatechol. 3-Methylcatechol and 2,3-dihydroxybiphenyl are oxidized by this enzyme, in contrast, via proximal (2,3) cleavage.
Collapse
Affiliation(s)
- U Riegert
- Institut für Mikrobiologie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
128
|
Ogihara T, Hikichi S, Akita M, Moro-Oka Y. Synthesis, Structural Characterization, and Extradiol Oxygenation of Iron-Catecholato Complexes with Hydrotris(pyrazolyl)borate Ligands(,). Inorg Chem 1998; 37:2614-2615. [PMID: 11670392 DOI: 10.1021/ic9716215] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamako Ogihara
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | |
Collapse
|
129
|
Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 1998; 6:571-86. [PMID: 9634695 DOI: 10.1016/s0969-2126(98)00059-8] [Citation(s) in RCA: 373] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pseudomonas sp. NCIB 9816-4 utilizes a multicomponent enzyme system to oxidize naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene. The enzyme component catalyzing this reaction, naphthalene 1,2-dioxygenase (NDO), belongs to a family of aromatic-ring-hydroxylating dioxygenases that oxidize aromatic hydrocarbons and related compounds to cis-arene diols. These enzymes utilize a mononuclear non-heme iron center to catalyze the addition of dioxygen to their respective substrates. The present study was conducted to provide essential structural information necessary for elucidating the mechanism of action of NDO. RESULTS The three-dimensional structure of NDO has been determined at 2.25 A resolution. The molecule is an alpha 3 beta 3 hexamer. The alpha subunit has a beta-sheet domain that contains a Rieske [2Fe-2S] center and a catalytic domain that has a novel fold dominated by an antiparallel nine-stranded beta-pleated sheet against which helices pack. The active site contains a non-heme ferrous ion coordinated by His208, His213, Asp362 (bidentate) and a water molecule. Asn201 is positioned further away, 3.75 A, at the missing axial position of an octahedron. In the Rieske [2Fe-2S] center, one iron is coordinated by Cys81 and Cys101 and the other by His83 and His104. CONCLUSIONS The domain structure and iron coordination of the Rieske domain is very similar to that of the cytochrome bc1 domain. The active-site iron center of one of the alpha subunits is directly connected by hydrogen bonds through a single amino acid, Asp205, to the Rieske [2Fe-2S] center in a neighboring alpha subunit. This is likely to be the main route for electron transfer.
Collapse
Affiliation(s)
- B Kauppi
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
The past year has witnessed significant advances in the study of oxygen-activating nonheme iron enzymes. Thirteen crystal structures of substrate and substrate analog complexes of protocatechuate 3, 4-dioxygenase have revealed intimate details about changes at the enzyme active site during catalysis. Crystallographic data have established a 2-His-1-carboxylate facial triad as a structural motif common to a number of mononuclear nonheme iron enzymes, including isopenicillin N synthase, tyrosine hydroxylase and naphthalene dioxygenase. The first metrical data has been obtained for the high valent intermediates Q and X of methane monooxygenase and ribonucleotide reductase, respectively. The number of enzymes thought to have nonheme diiron sites has been expanded to include alkene monooxygenase from Xanthobacter strain Py2 and the membrane bound alkane hydroxylase from Pseudomonas oleovorans (AlkB). Finally, synthetic complexes have successfully mimicked chemistry performed by both mono- and dinuclear nonheme iron enzymes, such as the extradiol-cleaving catechol dioxygenases, lipoxygenase, alkane and alkene monoxygenases and fatty acid desaturases.
Collapse
Affiliation(s)
- S J Lange
- Department of Chemistry Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
131
|
Funabiki T, Yamazaki T, Fukui A, Tanaka T, Yoshida S. Oxidative Spaltung von Chlorbrenzkatechinen mit molekularem Sauerstoff unter Katalyse durch Nicht-Häm-Eisen(III)-Komplexe und deren Bedeutung als Chlorbrenzkatechin- Dioxygenase-Modellverbindungen. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19980216)110:4<527::aid-ange527>3.0.co;2-b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
132
|
D. H. Bugg T, J. Winfield C. Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Nat Prod Rep 1998. [DOI: 10.1039/a815513y] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
133
|
Hatta T, Shimada T, Yoshihara T, Yamada A, Masai E, Fukuda M, Kiyohara H. Meta-fission product hydrolases from a strong PCB degrader Rhodococcus sp. RHA1. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)86763-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
134
|
Hegg EL, Que L. The 2-His-1-carboxylate facial triad--an emerging structural motif in mononuclear non-heme iron(II) enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:625-9. [PMID: 9461283 DOI: 10.1111/j.1432-1033.1997.t01-1-00625.x] [Citation(s) in RCA: 388] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 2-His-1-carboxylate facial triad is a common feature of the active sites in a number of mononuclear non-heme iron(II) enzymes. This structural motif was established crystallographically for five different classes of enzymes and inferred from sequence similarity for two other classes. The 2-His-1-carboxylate facial triad anchors the iron in the active site and at the same time maintains three additional cis-oriented sites. These sites can be used to bind other endogenous ligands or exogenous ligands such as substrate and/or O2, giving the metal center great flexibility to use different mechanistic strategies to perform a variety of chemical transformations.
Collapse
Affiliation(s)
- E L Hegg
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
135
|
Erlandsen H, Fusetti F, Martinez A, Hough E, Flatmark T, Stevens RC. Crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria. NATURE STRUCTURAL BIOLOGY 1997; 4:995-1000. [PMID: 9406548 DOI: 10.1038/nsb1297-995] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 2.0 A crystal structure of the catalytic domain of human phenylalanine hydroxylase reveals a fold similar to that of tyrosine hydroxylase. It provides the first structural view of where mutations occur and a rationale to explain molecular mechanisms of the enzymatic phenotypes in the autosomal recessive disorder phenylketoneuria.
Collapse
|
136
|
Schofield CJ, Baldwin JE, Byford MF, Clifton I, Hajdu J, Hensgens C, Roach P. Proteins of the penicillin biosynthesis pathway. Curr Opin Struct Biol 1997; 7:857-64. [PMID: 9434907 DOI: 10.1016/s0959-440x(97)80158-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two sequential steps are common to the biosynthesis of all penicillin-derived antibiotics: the reaction of three L-amino acids to give L-delta-(alpha-aminoadipoyl)-L-cysteinyl-D-valine, and the oxidation of this tripeptide to give isopenicillin N. Recent studies on the peptide synthetase and oxidase enzymes responsible for these steps have implications for the mechanisms and structures of related enzymes involved in a range of metabolic processes.
Collapse
|
137
|
Hikichi S, Ogihara T, Fujisawa K, Kitajima N, Akita M, Moro-Oka Y. Synthesis and Characterization of the Benzoylformato Ferrous Complexes with the Hindered Tris(pyrazolyl)borate Ligand as a Structural Model for Mononuclear Non-Heme Iron Enzymes. Inorg Chem 1997; 36:4539-4547. [PMID: 11670119 DOI: 10.1021/ic960903m] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By using a hindered tripodal ligand, hydrotris(3-tert-butyl-5-isopropylpyrazol-1-yl)borate HB(3-tBu-5-iPrpz)(3), a series of monomeric ferrous complexes having acetate, hydroxide, and benzoylformate ligands were synthesized. Reaction of KHB(3-tBu-5-iPrpz)(3) with anhydrous Fe(OAc)(2) yielded acetato complexes Fe(OAc)[HB(3-tBu-5-iPrpz)(3)] (1) and Fe(OAc)[HB(3-tBu-5-iPrpz)(3)](3-iPr-5-tBupzH) (2). A hydroxo complex Fe(OH)[HB(3-tBu-5-iPrpz)(3)] (3) was prepared by the treatment of 1 or 2 with aqueous NaOH. The geometry of Fe(II) in 3 is a slightly distorted tetrahedron as determined by X-ray crystallography. The hydroxo complex 3 reacted with benzoylformic acid to give the benzoylformato complex Fe(O(2)CC(O)Ph)[HB(3-tBu-5-iPrpz)(3)] (4), which showed thermochromism which depended on the coordination geometry of the benzoylformate ligand. The Fe(II) ion in the colorless form of 4 isolated at 4 degrees C is coordinated by a tetrahedral N(3)O(1) ligand donor set including the unidentate benzoylformato ligand. On the other hand, the bluish purple form of 4 isolated at -20 degrees C has a five-coordinate trigonal bipyramidal Fe(II) center. The benzoylformate ligand in this bluish purple form works as a chelate ligand through coordination of the unidentate carboxylate oxygen atom as well as the ketonic oxygen atom. A benzoylformato complex containing an additional pyrazole, Fe(O(2)CC(O)Ph)[HB(3-tBu-5-iPrpz)(3)](3-iPr-5-tBupzH) (5), was obtained by the reaction of 3 with benzoylformic acid in the presence of 3-tert-butyl-5-isopropylpyrazole. The iron atom in 5 is coordinated by an N(4)O(1) ligand donor set with trigonal bipyramidal geometry. A hydrogen-bonding interaction between the carboxylate oxygen atom and the additional pyrazole's NH proton in 5 is suggested from the short distance between O(carboxylate) and N(pyrazole) observed in the X-ray structure and the absence of the nuNH vibration in the IR spectrum.
Collapse
Affiliation(s)
- Shiro Hikichi
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
| | | | | | | | | | | |
Collapse
|
138
|
Moon J, Kang E, Min KR, Kim CK, Min KH, Lee KS, Kim Y. Characterization of the gene encoding catechol 2,3-dioxygenase from Achromobacter xylosoxidans KF701. Biochem Biophys Res Commun 1997; 238:430-5. [PMID: 9299526 DOI: 10.1006/bbrc.1997.7312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Catechol 2,3-dioxygenase (C23O) catalyzes a meta cleavage of the aromatic ring in catechol to form 2-hydroxymuconic semialdehyde. A C23O gene was cloned from chromosomal DNA of A. xylosoxidans KF701, a soil bacterium degrading biphenyl, and expressed in E. coli HB101. In substrate specificity to catechol and its analogs, the C23O exhibited the highest aromatic ring-fission activity to catechol, and its relative activity to other dihydroxylated aromatics was 4-chlorocatechol > 4-methylcatechol > 3-methylcatechol >> 2, 3-dihydroxybiphenyl. Aromatic ring-fission activity of the C23O to catechol was about 40-fold higher than that to 2,3-dihydroxybiphenyl. Nucleotide sequence analysis of the C23O gene from A. xylosoxidans KF701 revealed an open reading frame consisting of 924 base pairs, and identified a putative ribosome-binding sequence (AGGTGA) at about 10 nucleotides upstream from the initiation codon. The open reading frame can encode a polypeptide chain with molecular weight of 34 kDa containing 307 amino acid residues. The deduced amino acid sequence of the C23O exhibited the highest homology with that of C23O from Pseudomonas sp. IC with 96% identity, and the least homology with that of C23O from P. putida F1 with 22% identity among reported C23O sequences. Furthermore, comparison of the C23O sequence with other extradiol dioxygenases has led to identification of evolutionally conserved amino acid residues whose possible catalytic and structural roles are proposed.
Collapse
Affiliation(s)
- J Moon
- College of Pharmacy, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
139
|
Orville AM, Lipscomb JD, Ohlendorf DH. Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: endogenous Fe3+ ligand displacement in response to substrate binding. Biochemistry 1997; 36:10052-66. [PMID: 9254600 DOI: 10.1021/bi970469f] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protocatechuate 3,4-dioxygenase (3,4-PCD) utilizes a ferric ion to catalyze the aromatic ring cleavage of 3,4-dihydroxybenzoate (PCA) by incorporation of both atoms of dioxygen to yield beta-carboxy-cis, cis-muconate. The crystal structures of the anaerobic 3,4-PCD.PCA complex, aerobic complexes with two heterocyclic PCA analogs, 2-hydroxyisonicotinic acid N-oxide (INO) and 6-hydroxynicotinic acid N-oxide (NNO), and ternary complexes of 3,4-PCD.INO.CN and 3,4-PCD. NNO.CN have been determined at 2.1-2.2 A resolution and refined to R-factors between 0.165 and 0.184. PCA, INO, and NNO form very similar, asymmetrically chelated complexes with the active site Fe3+ that result in dissociation of the endogenous axial tyrosinate Fe3+ ligand, Tyr447 (147beta). After its release from the iron, Tyr447 is stabilized by hydrogen bonding to Tyr16 (16alpha) and Asp413 (113beta) and forms the top of a small cavity adjacent to the C3-C4 bond of PCA. The equatorial Fe3+ coordination site within this cavity is unoccupied in the anaerobic 3,4-PCD.PCA complex but coordinates a solvent molecule in the 3,4-PCD.INO and 3,4-PCD.NNO complexes and CN- in the 3,4-PCD.INO.CN and 3,4-PCD.NNO.CN complexes. This shows that an O2 analog can occupy the cavity and suggests that electrophilic O2 attack on PCA is initiated from this site. Both the dissociation of the endogenous Tyr447 and the expansion of the iron coordination sphere are novel features of the 3,4-PCD. substrate complex which appear to play essential roles in the activation of substrate for O2 attack. Together, the structures presented here and in the preceding paper [Orville, A. M., Elango, N. , Lipscomb, J. D., & Ohlendorf, D. H. (1997) Biochemistry 36, 10039-10051] provide atomic models for several steps in the reaction cycle of 3,4-PCD and related Fe3+-containing dioxygenases.
Collapse
Affiliation(s)
- A M Orville
- Department of Biochemistry, Medical School, and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455-0347, USA
| | | | | |
Collapse
|
140
|
Sato SI, Ouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 1997; 179:4841-9. [PMID: 9244273 PMCID: PMC179332 DOI: 10.1128/jb.179.15.4841-4849.1997] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The DNA fragment encoding meta-cleavage enzymes and the meta-cleavage compound hydrolase, involved in carbazole degradation, was cloned from the carbazole-utilizing bacterium Pseudomonas sp. strain CA10. DNA sequence analysis of this 2.6-kb SmaI-SphI fragment revealed that there were three open reading frames (ORF1, ORF2, and ORF3, in this gene order). ORF1 and ORF2 were indispensable for meta-cleavage activity for 2'-aminobiphenyl-2,3-diol and its easily available analog, 2,3-dihydroxybiphenyl, and were designated carBa and carBb, respectively. The alignment of CarBb with other meta-cleavage enzymes indicated that CarBb may have a non-heme iron cofactor coordinating site. On the basis of the phylogenetic tree, CarBb was classified as a member of the protocatechuate 4,5-dioxygenase family. This unique extradiol dioxygenase, CarB, had significantly higher affinity and about 20-times-higher meta-cleavage activity for 2,3-dihydroxybiphenyl than for catechol derivatives. The putative polypeptide encoded by ORF3 was homologous with meta-cleavage compound hydrolases in other bacteria, and ORF3 was designated carC. The hydrolase activity of CarC for 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid, the meta-cleavage compound of 2,3-dihydroxybiphenyl, was 40 times higher than that for 2-hydroxy-6-oxohepta-2,4-dienoic acid, the meta-cleavage compound of 3-methylcatechol. Alignment analysis and the phylogenetic tree indicate that CarC has greatest homologies with hydrolases involved in the monoaromatic compound degradation pathway. These results suggest the possibility that CarC is a novel type of hydrolase.
Collapse
Affiliation(s)
- S I Sato
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
141
|
Goodwill KE, Sabatier C, Marks C, Raag R, Fitzpatrick PF, Stevens RC. Crystal structure of tyrosine hydroxylase at 2.3 A and its implications for inherited neurodegenerative diseases. NATURE STRUCTURAL BIOLOGY 1997; 4:578-85. [PMID: 9228951 DOI: 10.1038/nsb0797-578] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tyrosine hydroxylase (TyrOH) catalyzes the conversion of tyrosine to L-DOPA, the rate-limiting step in the biosynthesis of the catecholamines dopamine, adrenaline, and noradrenaline. TyrOH is highly homologous in terms of both protein sequence and catalytic mechanism to phenylalanine hydroxylase (PheOH) and tryptophan hydroxylase (TrpOH). The crystal structure of the catalytic and tetramerization domains of TyrOH reveals a novel alpha-helical basket holding the catalytic iron and a 40 A long anti-parallel coiled coil which forms the core of the tetramer. The catalytic iron is located 10 A below the enzyme surface in a 17 A deep active site pocket and is coordinated by the conserved residues His 331, His 336 and Glu 376. The structure provides a rationale for the effect of point mutations in TyrOH that cause L-DOPA responsive parkinsonism and Segawa's syndrome. The location of 112 different point mutations in PheOH that lead to phenylketonuria (PKU) are predicted based on the TyrOH structure.
Collapse
Affiliation(s)
- K E Goodwill
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
142
|
Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature 1997; 387:827-30. [PMID: 9194566 DOI: 10.1038/42990] [Citation(s) in RCA: 334] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biosynthesis of penicillin and cephalosporin antibiotics in microorganisms requires the formation of the bicyclic nucleus of penicillin. Isopenicillin N synthase (IPNS), a non-haem iron-dependent oxidase, catalyses the reaction of a tripeptide, delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV), and dioxygen to form isopenicillin N and two water molecules. Mechanistic studies suggest the reaction is initiated by ligation of the substrate thiolate to the iron centre, and proceeds through an enzyme-bound monocyclic intermediate. Here we report the crystal structure of IPNS complexed to ferrous iron and ACV, determined to 1.3 A resolution. Based on the structure, we propose a mechanism for penicillin formation that involves ligation of ACV to the iron centre, creating a vacant iron coordination site into which dioxygen can bind. Subsequently, iron-dioxygen and iron-oxo species remove the requisite hydrogens from ACV without the direct assistance of protein residues. The crystal structure of the complex with the dioxygen analogue, NO and ACV bound to the active-site iron supports this hypothesis.
Collapse
Affiliation(s)
- P L Roach
- The Dyson Perrins Laboratory, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
143
|
Ito M, Que L. Biomimetische Extradiolspaltung von Catecholen: Einblicke in den Enzymmechanismus. Angew Chem Int Ed Engl 1997. [DOI: 10.1002/ange.19971091232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
144
|
Cameron AD, Olin B, Ridderström M, Mannervik B, Jones TA. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping. EMBO J 1997; 16:3386-95. [PMID: 9218781 PMCID: PMC1169964 DOI: 10.1093/emboj/16.12.3386] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The zinc metalloenzyme glyoxalase I catalyses the glutathione-dependent inactivation of toxic methylglyoxal. The structure of the dimeric human enzyme in complex with S-benzyl-glutathione has been determined by multiple isomorphous replacement (MIR) and refined at 2.2 A resolution. Each monomer consists of two domains. Despite only low sequence homology between them, these domains are structurally equivalent and appear to have arisen by a gene duplication. On the other hand, there is no structural homology to the 'glutathione binding domain' found in other glutathione-linked proteins. 3D domain swapping of the N- and C-terminal domains has resulted in the active site being situated in the dimer interface, with the inhibitor and essential zinc ion interacting with side chains from both subunits. Two structurally equivalent residues from each domain contribute to a square pyramidal coordination of the zinc ion, rarely seen in zinc enzymes. Comparison of glyoxalase I with other known structures shows the enzyme to belong to a new structural family which includes the Fe2+-dependent dihydroxybiphenyl dioxygenase and the bleomycin resistance protein. This structural family appears to allow members to form with or without domain swapping.
Collapse
Affiliation(s)
- A D Cameron
- Department of Molecular Biology, Uppsala University, Biomedical Center, Sweden
| | | | | | | | | |
Collapse
|
145
|
Wang YZ, Lipscomb JD. Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. Protein Expr Purif 1997; 10:1-9. [PMID: 9179284 DOI: 10.1006/prep.1996.0703] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Homoprotocatechuate (hpca, 3,4-dihydroxyphenylacetate) is a central intermediate for the bacterial degradation of aromatic compounds. Homoprotocatechuate 2,3-dioxygenase (HPCD) catalyzes the key ring cleavage step in the metabolism of hpca by the Gram (+) bacterium Brevibacterium fuscum to yield alpha-hydroxy-delta-carboxymethyl cis-muconic semialdehyde. A genomic DNA library of B. fuscum was constructed in Escherichia coli using a cosmid vector and screened by spraying the cells with hpca. One clone was found to contain the gene for HPCD based on its ability to convert hpca into the yellow-colored product. This cosmid clone was further subcloned and the gene for HPCD was localized and sequenced. The open reading frame codes for a protein with 365 amino acids and M(r) = 41,699, in accord with the characteristics of the previously purified wild-type enzyme. The gene for HPCD was overexpressed in E. coli to approximately 30% of the total soluble protein, and purification of the recombinant enzyme to apparent homogeneity was achieved by a two-step procedure. Iron was the only abundant metal found in the purified recombinant enzyme, and the specific activity per iron was comparable to that observed for the wild-type enzyme. The deduced amino acid sequence of HPCD has a very high level of homology (78.6% identity in the 337-aa overlap) to the manganese-dependent homoprotocatechuate 2,3-dioxygenase (MndD) from Arthrobacter globiformis CM-2. The basis for the difference in metal selection by HPCD and MndD was investigated by mutagenesis of a 50-base-pair region of the HPCD gene containing three frame shifts relative to the MndD gene. The purified triple mutant of HPCD did not exhibit a significant change in the metal content; therefore, other factors must contribute to the selection of the active site metal.
Collapse
Affiliation(s)
- Y Z Wang
- Department of Biochemistry, Medical School, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
146
|
Boldt YR, Whiting AK, Wagner ML, Sadowsky MJ, Que L, Wackett LP. Manganese(II) active site mutants of 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis strain CM-2. Biochemistry 1997; 36:2147-53. [PMID: 9047314 DOI: 10.1021/bi962362i] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Whereas all other members of the extradiol-cleaving catechol dioxygenase family are iron-dependent, the 3,4-dihydroxyphenylacetate 2,3-dioxygenase (MndD) from Arthrobacter globiformis CM-2 is dependent on manganese for catalytic activity. Recently, the endogenous iron ligands of one family member, the 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), were identified crystallographically as two histidines and a glutamic acid [Sugiyama, K., et al. (1995) Proc. Jpn. Acad., Ser. B 71, 32-35; Han, et al. (1995) Science 270, 976-980; Senda, T., et al. (1996) J. Mol. Biol. 255, 735-752]. Though BphC and MndD have low overall sequence identity (23%), the three BphC metal ligands are all conserved in MndD (H155, H214, and E266). In order to determine whether these residues also act as ligands to manganese in MndD, site-directed mutants of each were constructed, purified, and analyzed for activity and metal content. Mutations H155A, H214A, and E266Q yielded purified enzymes with specific activities of <0.1% of that of the wild-type dioxygenase and bound 0.4, 1.8, and 33% of the wild-type level of manganese, respectively. The relatively high level of manganese [with a Mn(II) EPR signal distinctly different from that of the wild-type enzyme] observed for E266Q suggests that the glutamine may act as a weak ligand to the metal. Mutant E266D, which retains the potential metal binding capability of a carboxylate group, exhibited 12% of the wild-type activity in crude extracts, suggesting that Mn remains bound; however, this mutant protein was too unstable to be purified and analyzed for metal content. On the basis of the low activity and metal content of mutant proteins, we propose that the conserved residues H155, H214, and E266 ligate manganese in MndD. As is the case with the superoxide dismutases, the extradiol-cleaving catechol dioxygenases appear to utilize identical coordinating residues for their iron- and manganese-dependent enzymes.
Collapse
Affiliation(s)
- Y R Boldt
- Department of Microbiology, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
147
|
|
148
|
Schmid A, Rothe B, Altenbuchner J, Ludwig W, Engesser KH. Characterization of three distinct extradiol dioxygenases involved in mineralization of dibenzofuran by Terrabacter sp. strain DPO360. J Bacteriol 1997; 179:53-62. [PMID: 8981980 PMCID: PMC178661 DOI: 10.1128/jb.179.1.53-62.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dibenzofuran-degrading bacterial strain DPO360 represents a new species of the genus Terrabacter together with the previously described dibenzofuran-mineralizing bacterial strain DPO1361 (K.-H. Engesser, V. Strubel, K. Christoglou, P. Fischer, and H. G. Rast, FEMS Microbiol. Lett. 65:205-210, 1989; V. Strubel, Ph.D. thesis, University of Stuttgart, Stuttgart, Germany, 1991; V. Strubel, H. G. Rast, W. Fietz, H.-J. Knackmuss, and K.-H. Engesser, FEMS Microbiol. Lett. 58:233-238, 1989). Two 2,3-dihydroxybiphenyl-1,2-dioxygenases (BphC1 and BphC2) and one catechol-2,3-dioxygenase (C23O) were shown to be expressed in Terrabacter sp. strain DPO360 growing with dibenzofuran as a sole source of carbon and energy. These enzymes exhibited strong sensitivity to oxygen. They were purified to apparent homogeneity as homodimers (BphC and BphC2) and as a homotetrameric catechol-2,3-dioxygenase (C23O). According to their specificity constants kcat/Km, both BphC1 and BphC2 were shown to be responsible for the cleavage of 2,2',3-trihydroxybiphenyl, the first metabolite in dibenzofuran mineralization along the angular dioxygenation pathway. With this substrate, BphC2 exhibited a considerably higher kcat/Km, value (183 microM/min) than BphC1 (29 microM/min). Catechol-2,3-dioxygenase was recognized to be not involved in the ring cleavage of 2,2',3-trihydroxybiphenyl (kcat/Km, 1 microM/min). Analysis of deduced amino acid sequence data of bphC1 revealed 36% sequence identity to nahC from Pseudomonas putida PpG7 (S. Harayama and M. Rekik, J. Biol. Chem. 264:15328-15333, 1989) and about 40% sequence identity to various bphC genes from different Pseudomonas and Rhodococcus strains. In addition, another 2,3-dihydroxybiphenyl-1,2-dioxygenase gene (bphC3) was cloned from the genome of Terrabacter sp. strain DPO360. Expression of this gene, however, could not be detected in Terrabacter sp. strain DPO360 after growth with dibenzofuran.
Collapse
Affiliation(s)
- A Schmid
- Institut für Mikrobiologie, Universität Stuttgart, Germany
| | | | | | | | | |
Collapse
|
149
|
Cloning and characterization of the genes involved in the degradation of dibenzofuran by Terrabacter sp. strain DBF63. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)81997-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
150
|
Introduction. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/978-94-011-5442-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|