101
|
Replication-Competent ΔNS1 Influenza A Viruses Expressing Reporter Genes. Viruses 2021; 13:v13040698. [PMID: 33920517 PMCID: PMC8072579 DOI: 10.3390/v13040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The influenza A virus (IAV) is able to infect multiple mammalian and avian species, and in humans IAV is responsible for annual seasonal epidemics and occasional pandemics of respiratory disease with significant health and economic impacts. Studying IAV involves laborious secondary methodologies to identify infected cells. Therefore, to circumvent this requirement, in recent years, multiple replication-competent infectious IAV expressing traceable reporter genes have been developed. These IAVs have been very useful for in vitro and/or in vivo studies of viral replication, identification of neutralizing antibodies or antivirals, and in studies to evaluate vaccine efficacy, among others. In this report, we describe, for the first time, the generation and characterization of two replication-competent influenza A/Puerto Rico/8/1934 H1N1 (PR8) viruses where the viral non-structural protein 1 (NS1) was substituted by the monomeric (m)Cherry fluorescent or the NanoLuc luciferase (Nluc) proteins. The ΔNS1 mCherry was able to replicate in cultured cells and in Signal Transducer and Activator of Transcription 1 (STAT1) deficient mice, although at a lower extent than a wild-type (WT) PR8 virus expressing the same mCherry fluorescent protein (WT mCherry). Notably, expression of either reporter gene (mCherry or Nluc) was detected in infected cells by fluorescent microscopy or luciferase plate readers, respectively. ΔNS1 IAV expressing reporter genes provide a novel approach to better understand the biology and pathogenesis of IAV, and represent an excellent tool to develop new therapeutic approaches against IAV infections.
Collapse
|
102
|
Chang J, Hwang HJ, Kim B, Choi YG, Park J, Park Y, Lee BS, Park H, Yoon MJ, Woo JS, Kim C, Park MS, Lee JB, Kim YK. TRIM28 functions as a negative regulator of aggresome formation. Autophagy 2021; 17:4231-4248. [PMID: 33783327 DOI: 10.1080/15548627.2021.1909835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Selective recognition and elimination of misfolded polypeptides are crucial for protein homeostasis. When the ubiquitin-proteasome system is impaired, misfolded polypeptides tend to form small cytosolic aggregates and are transported to the aggresome and eventually eliminated by the autophagy pathway. Despite the importance of this process, the regulation of aggresome formation remains poorly understood. Here, we identify TRIM28/TIF1β/KAP1 (tripartite motif containing 28) as a negative regulator of aggresome formation. Direct interaction between TRIM28 and CTIF (cap binding complex dependent translation initiation factor) leads to inefficient aggresomal targeting of misfolded polypeptides. We also find that either treatment of cells with poly I:C or infection of the cells by influenza A viruses triggers the phosphorylation of TRIM28 at S473 in a way that depends on double-stranded RNA-activated protein kinase. The phosphorylation promotes association of TRIM28 with CTIF, inhibits aggresome formation, and consequently suppresses viral proliferation. Collectively, our data provide compelling evidence that TRIM28 is a negative regulator of aggresome formation.AbbreviationsBAG3: BCL2-associated athanogene 3; CTIF: CBC-dependent translation initiation factor; CED: CTIF-EEF1A1-DCTN1; DCTN1: dynactin subunit 1; EEF1A1: eukaryotic translation elongation factor 1 alpha 1; EIF2AK2: eukaryotic translation initiation factor 2 alpha kinase 2; HDAC6: histone deacetylase 6; IAV: influenza A virus; IP: immunoprecipitation; PLA: proximity ligation assay; polypeptidyl-puro: polypeptidyl-puromycin; qRT-PCR: quantitative reverse-transcription PCR; siRNA: small interfering RNA.
Collapse
Affiliation(s)
- Jeeyoon Chang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hyun Jung Hwang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Byungju Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeon-Gil Choi
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Joori Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Ban Seok Lee
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Min Ji Yoon
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Jae-Sung Woo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chungho Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea.,Division of Life Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
103
|
Kimura I, Konno Y, Uriu K, Hopfensperger K, Sauter D, Nakagawa S, Sato K. Sarbecovirus ORF6 proteins hamper induction of interferon signaling. Cell Rep 2021; 34:108916. [PMID: 33765414 PMCID: PMC7953434 DOI: 10.1016/j.celrep.2021.108916] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/24/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The presence of an ORF6 gene distinguishes sarbecoviruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 from other betacoronaviruses. Here we show that ORF6 inhibits induction of innate immune signaling, including upregulation of type I interferon (IFN) upon viral infection as well as type I and III IFN signaling. Intriguingly, ORF6 proteins from SARS-CoV-2 lineages are more efficient antagonists of innate immunity than their orthologs from SARS-CoV lineages. Mutational analyses identified residues E46 and Q56 as important determinants of the antagonistic activity of SARS-CoV-2 ORF6. Moreover, we show that the anti-innate immune activity of ORF6 depends on its C-terminal region and that ORF6 inhibits nuclear translocation of IRF3. Finally, we identify naturally occurring frameshift/nonsense mutations that result in an inactivating truncation of ORF6 in approximately 0.2% of SARS-CoV-2 isolates. Our findings suggest that ORF6 contributes to the poor IFN activation observed in individuals with coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Yoriyuki Konno
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Kristina Hopfensperger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
104
|
Intranasal Immunization with the Influenza A Virus Encoding Truncated NS1 Protein Protects Mice from Heterologous Challenge by Restraining the Inflammatory Response in the Lungs. Microorganisms 2021; 9:microorganisms9040690. [PMID: 33810549 PMCID: PMC8067201 DOI: 10.3390/microorganisms9040690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
Influenza viruses with an impaired NS1 protein are unable to antagonize the innate immune system and, therefore, are highly immunogenic because of the self-adjuvating effect. Hence, NS1-mutated viruses are considered promising candidates for the development of live-attenuated influenza vaccines and viral vectors for intranasal administration. We investigated whether the immunogenic advantage of the virus expressing only the N-terminal half of the NS1 protein (124 a.a.) can be translated into the induction of protective immunity against a heterologous influenza virus in mice. We found that immunization with either the wild-type A/PR/8/34 (H1N1) influenza strain (A/PR8/NSfull) or its NS1-shortened counterpart (A/PR8/NS124) did not prevent the viral replication in the lungs after the challenge with the A/Aichi/2/68 (H3N2) virus. However, mice immunized with the NS1-shortened virus were better protected from lethality after the challenge with the heterologous virus. Besides showing the enhanced influenza-specific CD8+ T-cellular response in the lungs, immunization with the A/PR8/NS124 virus resulted in reduced concentrations of proinflammatory cytokines and the lower extent of leukocyte infiltration in the lungs after the challenge compared to A/PR8/NSfull or the control group. The data show that intranasal immunization with the NS1-truncated virus may better induce not only effector T-cells but also certain immunoregulatory mechanisms, reducing the severity of the innate immune response after the heterologous challenge.
Collapse
|
105
|
Pulkina AA, Sergeeva MV, Krokhin A, Stukova MA, Egorov A. Evidence for the extracellular delivery of influenza NS1 protein. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2021. [DOI: 10.18527/2500-2236-2021-8-1-27-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We constructed a reporter influenza A/Puerto Rico/8/1934 virus expressing truncated 124aa N-terminal NS1 protein fused to a luciferase reporter sequence (NanoLuc) without signal peptide. The reproduction activity of the vector correlated well with the luminescent activity in the lysates of infected cell cultures or mouse respiratory organ suspensions. Surprisingly, we found that luciferase enzymatic activity was present not only in the intracellular compartments but also in cell culture supernatants as well as in the sera or bronchiolar lavages of infected mice. This fact allowed us to formulate a working hypothesis about the extracellular delivery mechanism of the NS1 protein. To test this idea, we conducted co-transfection experiments in Vero cells with different combinations of plasmids encoding influenza genomic segments and chimeric NS1-NanoLuc encoding plasmid. We found that the emergence of the luciferase reporter in the extracellular compartment was promoted by the formation of the ribonucleoprotein complex (RNP) from the co-transfection of plasmids expressing PB1, PB2, PA, and NP proteins. Therefore, influenza NS1 protein may be delivered to the extracellular compartment together with the nascent RNP complexes during the maturation of virus particles.
Collapse
Affiliation(s)
- A. A. Pulkina
- Smorodintsev Research Institute of Influenza;
Peter the Great St. Petersburg Polytechnic University
| | - M. V. Sergeeva
- Smorodintsev Research Institute of Influenza;
Peter the Great St. Petersburg Polytechnic University
| | - A. Krokhin
- Smorodintsev Research Institute of Influenza
| | | | - A. Egorov
- Smorodintsev Research Institute of Influenza
| |
Collapse
|
106
|
Oh SJ, Shin OS. SARS-CoV-2 Nucleocapsid Protein Targets RIG-I-Like Receptor Pathways to Inhibit the Induction of Interferon Response. Cells 2021; 10:530. [PMID: 33801464 PMCID: PMC7999926 DOI: 10.3390/cells10030530] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) that has resulted in the current pandemic. The lack of highly efficacious antiviral drugs that can manage this ongoing global emergency gives urgency to establishing a comprehensive understanding of the molecular pathogenesis of SARS-CoV-2. We characterized the role of the nucleocapsid protein (N) of SARS-CoV-2 in modulating antiviral immunity. Overexpression of SARS-CoV-2 N resulted in the attenuation of retinoic acid inducible gene-I (RIG-I)-like receptor-mediated interferon (IFN) production and IFN-induced gene expression. Similar to the SARS-CoV-1 N protein, SARS-CoV-2 N suppressed the interaction between tripartate motif protein 25 (TRIM25) and RIG-I. Furthermore, SARS-CoV-2 N inhibited polyinosinic: polycytidylic acid [poly(I:C)]-mediated IFN signaling at the level of Tank-binding kinase 1 (TBK1) and interfered with the association between TBK1 and interferon regulatory factor 3 (IRF3), subsequently preventing the nuclear translocation of IRF3. We further found that both type I and III IFN production induced by either the influenza virus lacking the nonstructural protein 1 or the Zika virus were suppressed by the SARS-CoV-2 N protein. Our findings provide insights into the molecular function of the SARS-CoV-2 N protein with respect to counteracting the host antiviral immune response.
Collapse
Affiliation(s)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul
08308, Korea;
| |
Collapse
|
107
|
Topham DJ, DeDiego ML, Nogales A, Sangster MY, Sant A. Immunity to Influenza Infection in Humans. Cold Spring Harb Perspect Med 2021; 11:a038729. [PMID: 31871226 PMCID: PMC7919402 DOI: 10.1101/cshperspect.a038729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review discusses the human immune responses to influenza infection with some insights from studies using animal models, such as experimental infection of mice. Recent technological advances in the study of human immune responses have greatly added to our knowledge of the infection and immune responses, and therefore much of the focus is on recent studies that have moved the field forward. We consider the complexity of the adaptive response generated by many sequential encounters through infection and vaccination.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Marta L DeDiego
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnologia Agraria y Ailmentaria, 28040 Madrid, Spain
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
108
|
Khorramdelazad H, Kazemi MH, Najafi A, Keykhaee M, Zolfaghari Emameh R, Falak R. Immunopathological similarities between COVID-19 and influenza: Investigating the consequences of Co-infection. Microb Pathog 2021; 152:104554. [PMID: 33157216 PMCID: PMC7607235 DOI: 10.1016/j.micpath.2020.104554] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a global public health emergency since December 2019, and so far, more than 980,000 people (until September 24, 2020) around the world have died. SARS-CoV-2 mimics the influenza virus regarding methods and modes of transmission, clinical features, related immune responses, and seasonal coincidence. Accordingly, co-infection by these viruses is imaginable because some studies have reported several cases with SARS-CoV-2 and influenza virus co-infection. Given the importance of the mentioned co-infection and the coming influenza season, it is essential to recognize the similarities and differences between the symptoms, immunopathogenesis and treatment of SARS-CoV-2 and influenza virus. Therefore, we reviewed the virology, clinical features, and immunopathogenesis of both influenza virus and SARS-CoV-2 and evaluated outcomes in cases with SARS-CoV-2 and influenza virus co-infection.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
109
|
Phosphorylation of Influenza A Virus NS1 at Serine 205 Mediates Its Viral Polymerase-Enhancing Function. J Virol 2021; 95:JVI.02369-20. [PMID: 33408177 DOI: 10.1128/jvi.02369-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus (IAV) nonstructural protein 1 (NS1) is a protein with multiple functions that are regulated by phosphorylation. Phosphoproteomic screening of H1N1 virus-infected cells revealed that NS1 was phosphorylated at serine 205 in intermediate stages of the viral life cycle. Interestingly, S205 is one of six amino acid changes in NS1 of post-pandemic H1N1 viruses currently circulating in humans compared to the original swine-origin 2009 pandemic (H1N1pdm09) virus, suggesting a role in host adaptation. To identify NS1 functions regulated by S205 phosphorylation, we generated recombinant PR8 H1N1 NS1 mutants with S205G (nonphosphorylatable) or S205N (H1N1pdm09 signature), as well as H1N1pdm09 viruses harboring the reverse mutation NS1 N205S or N205D (phosphomimetic). Replication of PR8 NS1 mutants was attenuated relative to wild-type (WT) virus replication in a porcine cell line. However, PR8 NS1 S205N showed remarkably higher attenuation than PR8 NS1 S205G in a human cell line, highlighting a potential host-independent advantage of phosphorylatable S205, while an asparagine at this position led to a potential host-specific attenuation. Interestingly, PR8 NS1 S205G did not show polymerase activity-enhancing functions, in contrast to the WT, which can be attributed to diminished interaction with cellular restriction factor DDX21. Analysis of the respective kinase mediating S205 phosphorylation indicated an involvement of casein kinase 2 (CK2). CK2 inhibition significantly reduced the replication of WT viruses and decreased NS1-DDX21 interaction, as observed for NS1 S205G. In summary, NS1 S205 is required for efficient NS1-DDX21 binding, resulting in enhanced viral polymerase activity, which is likely to be regulated by transient phosphorylation.IMPORTANCE Influenza A viruses (IAVs) still pose a major threat to human health worldwide. As a zoonotic virus, IAV can spontaneously overcome species barriers and even reside in new hosts after efficient adaptation. Investigation of the functions of specific adaptational mutations can lead to a deeper understanding of viral replication in specific hosts and can probably help to find new targets for antiviral intervention. In the present study, we analyzed the role of NS1 S205, a phosphorylation site that was reacquired during the circulation of pandemic H1N1pdm09 "swine flu" in the human host. We found that phosphorylation of human H1N1 virus NS1 S205 is mediated by the cellular kinase CK2 and is needed for efficient interaction with human host restriction factor DDX21, mediating NS1-induced enhancement of viral polymerase activity. Therefore, targeting CK2 activity might be an efficient strategy for limiting the replication of IAVs circulating in the human population.
Collapse
|
110
|
Ehrlich M, Bacharach E. Oncolytic Virotherapy: The Cancer Cell Side. Cancers (Basel) 2021; 13:cancers13050939. [PMID: 33668131 PMCID: PMC7956656 DOI: 10.3390/cancers13050939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Oncolytic viruses (OVs) are a promising immunotherapy that specifically target and kill cancer cells and stimulate anti-tumor immunity. While different OVs are endowed with distinct features, which enhance their specificity towards tumor cells; attributes of the cancer cell also critically contribute to this specificity. Such features comprise defects in innate immunity, including antiviral responses, and the metabolic reprogramming of the malignant cell. The tumorigenic features which support OV replication can be intrinsic to the transformation process (e.g., a direct consequence of the activity of a given oncogene), or acquired in the course of tumor immunoediting—the selection process applied by antitumor immunity. Oncogene-induced epigenetic silencing plays an important role in negative regulation of immunostimulatory antiviral responses in the cancer cells. Reversal of such silencing may also provide a strong immunostimulant in the form of viral mimicry by activation of endogenous retroelements. Here we review features of the cancer cell that support viral replication, tumor immunoediting and the connection between oncogenic signaling, DNA methylation and viral oncolysis. As such, this review concentrates on the malignant cell, while detailed description of different OVs can be found in the accompanied reviews of this issue. Abstract Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy.
Collapse
|
111
|
Efficacy of a Cap-Dependent Endonuclease Inhibitor and Neuraminidase Inhibitors against H7N9 Highly Pathogenic Avian Influenza Virus Causing Severe Viral Pneumonia in Cynomolgus Macaques. Antimicrob Agents Chemother 2021; 65:AAC.01825-20. [PMID: 33257455 DOI: 10.1128/aac.01825-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/18/2020] [Indexed: 01/14/2023] Open
Abstract
H7N9 highly pathogenic avian influenza virus (HPAIV) infection in a human was first reported in 2017. A/duck/Japan/AQ-HE29-22/2017 (H7N9) (Dk/HE29-22), found in imported duck meat at an airport in Japan, possesses a hemagglutinin with a multibasic cleavage site, indicating high pathogenicity in chickens, as in the case of other H7 HPAIVs. In the present study, we examined the pathogenicity of Dk/HE29-22 and the effectiveness of a cap-dependent endonuclease inhibitor (baloxavir) and neuraminidase inhibitors (oseltamivir and zanamivir) against infection with this strain in a macaque model (n = 3 for each group). All of the macaques infected with Dk/HE29-22 showed severe signs of disease and pneumonia even after the virus had disappeared from lung samples. Virus titers in macaques treated with baloxavir were significantly lower than those in the other treated groups. After infection, levels of interferon alpha and beta (IFN-α and IFN-β) in the blood of macaques in the baloxavir group were the highest among the groups, whereas levels of tumor necrosis factor alpha (TNF-α) and interleukin 13 (IL-13) were slightly increased in the untreated group. In addition, immune checkpoint proteins, including programmed death 1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), were expressed at high levels in the untreated group, especially in one macaque that showed severe signs of disease, indicating that negative feedback responses against vigorous inflammation may contribute to disease progression. In the group treated with baloxavir, the percentages of PD-1-, CTLA-4-, and TIGIT-positive T lymphocytes were lower than those in the untreated group, indicating that reduction in virus titers may prevent expression of immune checkpoint molecules from downregulation of T cell responses.
Collapse
|
112
|
Bugybayeva D, Kydyrbayev Z, Zinina N, Assanzhanova N, Yespembetov B, Kozhamkulov Y, Zakarya K, Ryskeldinova S, Tabynov K. A new candidate vaccine for human brucellosis based on influenza viral vectors: a preliminary investigation for the development of an immunization schedule in a guinea pig model. Infect Dis Poverty 2021; 10:13. [PMID: 33593447 PMCID: PMC7886305 DOI: 10.1186/s40249-021-00801-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/29/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND A new candidate vector vaccine against human brucellosis based on recombinant influenza viral vectors (rIVV) subtypes H5N1 expressing Brucella outer membrane protein (Omp) 16, L7/L12, Omp19 or Cu-Zn SOD proteins has been developed. This paper presents the results of the study of protection of the vaccine using on guinea pigs, including various options of administering, dose and frequency. Provided data of the novel vaccine candidate will contribute to its further movement into the preclinical stage study. METHODS General states of guinea pigs was assessed based on behavior and dynamics of a guinea pig weight-gain test. The effectiveness of the new anti-brucellosis vector vaccine was determined by studying its protective effect after conjunctival, intranasal and sublingual administration in doses 105 EID50, 106 EID50 and 107 EID50 during prime and boost vaccinations of animals, followed by challenge with a virulent strain of B. melitensis 16 M infection. For sake of comparison, the commercial B. melitensis Rev.1 vaccine was used as a control. The protective properties of vaccines were assessed by quantitation of Brucella colonization in organs and tissues of infected animals and compared to the control groups. RESULTS It was observed a gradual increase in body weight of guinea pigs after prime and booster immunization with the vaccine using conjunctival, intranasal and sublingual routes of administration, as well as after using various doses of vaccine. The most optimal way of using the vaccine has been established: double intranasal immunization of guinea pigs at a dose of 106 EID50, which provides 80% protection of guinea pigs from B. melitensis 16 M infection (P < 0.05), which is comparable to the results of the effectiveness of the commercial B. melitensis Rev.1 vaccine. CONCLUSIONS We developed effective human vaccine candidate against brucellosis and developed its immunization protocol in guinea pig model. We believe that because of these studies, the proposed vaccine has achieved the best level of protection, which in turn provides a basis for its further promotion.
Collapse
Affiliation(s)
- Dina Bugybayeva
- Research Institute for Biological Safety Problems, 15 Momushuly, Gvardeyskiy, 080409, Kazakhstan
| | - Zhailaubay Kydyrbayev
- Research Institute for Biological Safety Problems, 15 Momushuly, Gvardeyskiy, 080409, Kazakhstan
| | - Nadezhda Zinina
- Research Institute for Biological Safety Problems, 15 Momushuly, Gvardeyskiy, 080409, Kazakhstan
| | - Nurika Assanzhanova
- Research Institute for Biological Safety Problems, 15 Momushuly, Gvardeyskiy, 080409, Kazakhstan
| | - Bolat Yespembetov
- Research Institute for Biological Safety Problems, 15 Momushuly, Gvardeyskiy, 080409, Kazakhstan
| | - Yerken Kozhamkulov
- Research Institute for Biological Safety Problems, 15 Momushuly, Gvardeyskiy, 080409, Kazakhstan
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems, 15 Momushuly, Gvardeyskiy, 080409, Kazakhstan
| | - Sholpan Ryskeldinova
- Research Institute for Biological Safety Problems, 15 Momushuly, Gvardeyskiy, 080409, Kazakhstan.
| | - Kaissar Tabynov
- Kazakh National Agrarian University, 8 Abay Avenue, Almaty, 050010, Kazakhstan. .,Research Institute of Cardiology and Internal Medicine, 120 Aiteke bi, Almaty, 050000, Kazakhstan.
| |
Collapse
|
113
|
Directed attenuation to enhance vaccine immunity. PLoS Comput Biol 2021; 17:e1008602. [PMID: 33524036 PMCID: PMC7877766 DOI: 10.1371/journal.pcbi.1008602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/11/2021] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Many viral infections can be prevented by immunizing with live, attenuated vaccines. Early methods of attenuation were hit-and-miss, now much improved by genetic engineering. However, even current methods operate on the principle of genetic harm, reducing the virus’s ability to grow. Reduced viral growth has the undesired side-effect of reducing the host immune response below that of infection with wild-type. Might some methods of attenuation instead lead to an increased immune response? We use mathematical models of the dynamics of virus with innate and adaptive immunity to explore the tradeoff between attenuation of virus pathology and immunity. We find that modification of some virus immune-evasion pathways can indeed reduce pathology yet enhance immunity. Thus, attenuated vaccines can, in principle, be directed to be safe yet create better immunity than is elicited by the wild-type virus. Live attenuated virus vaccines are among the most effective interventions to combat viral infections. Historically, the mechanism of attenuation has involved genetically reducing the viral growth rate, often achieved by adapting the virus to grow in a novel condition. More recent attenuation methods use genetic engineering but also are thought to impair viral growth rate. These classical attenuations typically result in a tradeoff whereby attenuation depresses the within-host viral load and pathology (which is beneficial to vaccine design), but reduces immunity (which is not beneficial). We use models to explore ways of directing the attenuation of a virus to avoid this tradeoff. We show that directed attenuation by interfering with (some) viral immune-evasion pathways can yield a mild infection but elicit higher levels of immunity than of the wild-type virus.
Collapse
|
114
|
Huang J, Wu S, Wu W, Liang Y, Zhuang H, Ye Z, Qu X, Liao M, Jiao P. The Biological Characteristics of Novel H5N6 Highly Pathogenic Avian Influenza Virus and Its Pathogenesis in Ducks. Front Microbiol 2021; 12:628545. [PMID: 33584629 PMCID: PMC7874018 DOI: 10.3389/fmicb.2021.628545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Clade 2.3.4.4 H5Nx highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in poultry in the world. Some of these viruses acquired internal genes from other subtype avian influenza viruses (AIVs) such as H9 and H6 for the generation of novel reassortant viruses and continually circulated in poultry. Here, we applied a duck-origin virus DK87 and a chicken-origin virus CK66 to assess the biological characteristics of novel reassortant H5N6 HPAIVs and its pathogenesis in ducks. A genetic analysis indicated that the HA genes of the two H5N6 HPAIVs were closely related to the H5 viruses of clade 2.3.4.4 circulating in Eastern Asia and classified into H5 AIV/Eastern Asia (EA)-like lineage. Their NA genes fell into Eurasian lineage had close relationship with those of H5N6 viruses circulating in China, Laos, Vietnam, Japan, and Korea. All internal genes of DK87 were aggregated closely with H5 AIV/EA-like viruses. The internal genes (PB1, PA, NP, M, and NS) of CK66 were derived from H9N2 AIV/SH98-like viruses and the PB2 were derived from H5 AIV/EA-like viruses. These results indicate that clade 2.3.4.4 H5N6 AIVs have continually evolved and recombined with the H9N2 viruses circulating in Southern China. Pathogenicity test showed that the two viruses displayed a broader tissue distribution in ducks and caused no clinical signs. These results indicated that ducks were permissive for the replication of the chicken-origin reassortant virus CK66 without prior adaptation, but the duck-origin virus DK87-inoculated ducks showed significantly higher viral titers in some organs than the CK66-inoculated ducks at 5 day post-inoculated (DPI). The recovery of viruses from oropharyngea and cloacal swabs of contacted ducks indicated that they transmitted in native ducks by direct contact. Quantitative reverse transcription PCR (qRT-PCR) results revealed that the immune-relative genes (PRRs, IFNs, Mx-1, IL-6, and IL-8) in the lungs of inoculated ducks were expressed regardless of virus origin, but the expression of these genes was significantly higher in response to infection with the DK87 virus compared to the CK66 virus at 3 DPI. Overall, we should provide further insights into how clade 2.3.4.4 H5N6 AIVs undergo genetic and pathogenic variations to prevent outbreaks of this disease.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Siyu Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wenbo Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwen Liang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haibin Zhuang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiyu Ye
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peirong Jiao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
115
|
Hoffmann HH, Schneider WM, Rozen-Gagnon K, Miles LA, Schuster F, Razooky B, Jacobson E, Wu X, Yi S, Rudin CM, MacDonald MR, McMullan LK, Poirier JT, Rice CM. TMEM41B Is a Pan-flavivirus Host Factor. Cell 2021; 184:133-148.e20. [PMID: 33338421 PMCID: PMC7954666 DOI: 10.1016/j.cell.2020.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Linde A Miles
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felix Schuster
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA; Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eliana Jacobson
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Soon Yi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Laura K McMullan
- Virus Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers of Disease Control and Prevention, Atlanta, GA, USA
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
116
|
Ma X, Li Z. Significantly Improved Recovery of Recombinant Sonchus Yellow Net Rhabdovirus by Expressing the Negative-Strand Genomic RNA. Viruses 2020; 12:v12121459. [PMID: 33348798 PMCID: PMC7766655 DOI: 10.3390/v12121459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Generation of recombinant negative-stranded RNA viruses (NSVs) from plasmids involves in vivo reconstitution of biologically active nucleocapsids and faces a unique antisense problem where the negative-sense viral genomic RNAs can hybridize to viral messenger RNAs. To overcome this problem, a positive-sense RNA approach has been devised through expression of viral antigenomic (ag)RNA and core proteins for assembly of antigenomic nucleocapsids. Although this detour strategy works for many NSVs, the process is still inefficient. Using Sonchus yellow net rhabdovirus (SYNV) as a model; here, we develop a negative-sense genomic RNA-based approach that increased rescue efficiency by two orders of magnitude compared to the conventional agRNA approach. The system relied on suppression of double-stranded RNA induced antiviral responses by co-expression of plant viruses-encoded RNA silencing suppressors or animal viruses-encoded double-stranded RNA antagonists. With the improved approach, we were able to recover a highly attenuated SYNV mutant with a deletion in the matrix protein gene which otherwise could not be rescued via the agRNA approach. Reverse genetics analyses of the generated mutant virus provided insights into SYNV virion assembly and morphogenesis. This approach may potentially be applicable to other NSVs of plants or animals.
Collapse
Affiliation(s)
- Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2387
| |
Collapse
|
117
|
Chen S, Miao X, Huangfu D, Zhao X, Zhang M, Qin T, Peng D, Liu X. H5N1 avian influenza virus without 80-84 amino acid deletion at the NS1 protein hijacks the innate immune system of dendritic cells for an enhanced mammalian pathogenicity. Transbound Emerg Dis 2020; 68:2401-2413. [PMID: 33124785 DOI: 10.1111/tbed.13904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
NS gene is generally considered to be related to the virulence of highly pathogenic avian influenza virus (AIV). In recent years, the strains with five amino acids added to the 80-84 positions of the NS1 protein have become prevalent in H5N1 subtype AIVs isolated from mammals. However, the pathogenicity and mechanism of this pattern in mammals remain unclear. In this study, H5N1 subtype AIVs without 80-84 amino acids of the NS1 protein (rNSΔ5aa ) and a mutant virus (rNS5aa-R ) with no deletion of 80-84 amino acids of the NS1 protein were used to determine the pathogenicity in mice. Our results showed that rNS5aa-R possessed an enhanced pathogenicity compared with rNSΔ5aa in vivo and in vitro, which was accompanied by high expression of IL-6, MX1 and CXCL10 in murine lungs. Furthermore, we found that rNS5aa-R increased the infection ability to dendritic cells (DCs). Besides, rNS5aa-R enhanced the expression of phenotypic markers (CD80, CD86, CD40 and MHCII), activation marker CD69, inflammatory cytokines (IL-6, TNF-α and IL-10) and antagonized interferon (IFN-α) of DCs, in comparison to rNSΔ5aa . Moreover, rNS5aa-R induced DCs to quickly migrate into nearby cervical lymph nodes by highly upregulating CCR7, and CD86 showed a high expression on the migrated DCs. We also found that rNS5aa-R -infected DCs significantly promoted the allogeneic CD4+ T-cell proliferation. These findings suggested that rNS5aa-R strongly induced the innate immune response compared with the rNSΔ5aa , which is conducive to activate a wide immune response, resulting in a strong cytokine storm and causing an enhanced pathogenicity of H5N1 subtype AIVs in mammals.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xinyu Miao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dandan Huangfu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyi Zhao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Minxia Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China
| |
Collapse
|
118
|
Wang H, Tian Z, Xu Y, Wang Q, Ding SW, Li Y. Altering Intracellular Localization of the RNA Interference Factors by Influenza A Virus Non-structural Protein 1. Front Microbiol 2020; 11:590904. [PMID: 33281788 PMCID: PMC7688628 DOI: 10.3389/fmicb.2020.590904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) causes seasonal infections and periodic pandemics in humans. The non-structural protein 1 (NS1) of IAV is the main viral antagonist of the innate immune responses that play a key role in influenza pathogenesis. However, the mechanism to disrupt the host cell homeostasis by IAV NS1 remains poorly understood. Here, we show that expression of NS1 from the WSN strain, but not PR8 strain, of IAV, markedly induced nuclear import of the host RNA interference (RNAi) factors such as Argonaute-2 and microRNA 16. We found that the single residue substitution of aspartic acid with histidine at position 101 (D101H) of IAV-PR8 NS1 was sufficient to induce the nuclear import process and to enhance the virulence of IAV-PR8 in mice. However, we observed no significant differences between the wild-type and mutant IAV-PR8 in virus titers or induction of the interferon response in lung tissues, indicating a novel role of NS1 in the virulence determination of IAV in a mammalian host. Moreover, our bioinformatic analysis of 69,057 NS1 sequences from all IAV subtypes deposited in the NCBI database revealed that the NS1-H101 gene of IAV-WSN was widespread among H1N1 viruses isolated in 1933 but disappeared completely after 1940. Thus, IAV NS1 (H101) is a mutation selected against during evolution of IAV, suggesting that mutation H101 confers an important biological phenotype.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhonghui Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Yang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
119
|
Eiden S, Dijkman R, Zell R, Fuchs J, Kochs G. Using a mouse-adapted A/HK/01/68 influenza virus to analyse the impact of NS1 evolution in codons 196 and 231 on viral replication and virulence. J Gen Virol 2020; 101:587-598. [PMID: 32416749 DOI: 10.1099/jgv.0.001422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Seasonal influenza viruses circulating between 1918 and 2009 harboured two prevalent genetic variations in the NS1 coding region. A glutamic acid (E)-to-lysine (K) exchange at position 196 was reported to diminish the capacity of NS1 to control interferon induction. Furthermore, alterations at position 231 determine a carboxy-terminal extension of seven amino acids from 230 to 237 residues. Sequence analyses of NS1 of the last 90 years suggest that variations at these two positions are functionally linked. To determine the impact of the two positions on viral replication in vivo, we used a mouse-adapted variant of A/Hong Kong/01/68 (maHK68) (H3N2). maHK68 encodes an NS1 of 237 amino acids with lysine at position 196. A panel of recombinant maHK68 viruses was generated encoding NS1 variants that differed at positions 196 and 231. Our analyses showed a clear effect of the K-196-to-E exchange on interferon induction and virus virulence. These effects were further modulated by the loss of the seven-amino-acid extension. We propose that the combination of NS1 E-196 with the short C-terminal variant conferred a fitness advantage that is reflected by increased virulence in vivo. Notably, this particular NS1 constellation was observed for the pandemic 1918 H1N1 virus.
Collapse
Affiliation(s)
- Sebastian Eiden
- Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Roland Zell
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Hans-Knöll-Strasse 2, 07745 Jena, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79008 Freiburg, Germany
| |
Collapse
|
120
|
Lim B, Kim S, Lim KS, Jeong CG, Kim SC, Lee SM, Park CK, Te Pas MFW, Gho H, Kim TH, Lee KT, Kim WI, Kim JM. Integrated time-serial transcriptome networks reveal common innate and tissue-specific adaptive immune responses to PRRSV infection. Vet Res 2020; 51:128. [PMID: 33050948 PMCID: PMC7552595 DOI: 10.1186/s13567-020-00850-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the most important viral disease causing severe economic losses in the swine industry. However, mechanisms underlying gene expression control in immunity-responsible tissues at different time points during PRRSV infection are poorly understood. We constructed an integrated gene co-expression network and identified tissue- and time-dependent biological mechanisms of PRRSV infection through bioinformatics analysis using three tissues (lungs, bronchial lymph nodes [BLNs], and tonsils) via RNA-Seq. Three groups with specific expression patterns (i.e., the 3-dpi, lung, and BLN groups) were discovered. The 3 dpi-specific group showed antiviral and innate-immune signalling similar to the case for influenza A infection. Moreover, we observed adaptive immune responses in the lung-specific group based on various cytokines, while the BLN-specific group showed down-regulated AMPK signalling related to viral replication. Our study may provide comprehensive insights into PRRSV infection, as well as useful information for vaccine development.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Sangwook Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungcheongbuk-do, 28644, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | | | - Haesu Gho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Tae-Hun Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
121
|
Hoffmann HH, Schneider WM, Rozen-Gagnon K, Miles LA, Schuster F, Razooky B, Jacobson E, Wu X, Yi S, Rudin CM, MacDonald MR, McMullan LK, Poirier JT, Rice CM. TMEM41B is a pan-flavivirus host factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.09.334128. [PMID: 33052348 PMCID: PMC7553181 DOI: 10.1101/2020.10.09.334128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. Based on our mechanistic studies we hypothesize that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication. HIGHLIGHTS TMEM41B and VMP1 are required for both autophagy and flavivirus infection, however, autophagy is not required for flavivirus infection.TMEM41B associates with viral proteins and likely facilitates membrane remodeling to establish viral RNA replication complexes.TMEM41B single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection.TMEM41B-deficient cells display an exaggerated innate immune response upon high multiplicity flavivirus infection.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Linde A Miles
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felix Schuster
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eliana Jacobson
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Soon Yi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Laura K McMullan
- Virus Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers of Disease Control and Prevention, Atlanta, GA, USA
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
122
|
Roles of the Non-Structural Proteins of Influenza A Virus. Pathogens 2020; 9:pathogens9100812. [PMID: 33023047 PMCID: PMC7600879 DOI: 10.3390/pathogens9100812] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus (IAV) is a segmented, negative single-stranded RNA virus that causes seasonal epidemics and has a potential for pandemics. Several viral proteins are not packed in the IAV viral particle and only expressed in the infected host cells. These proteins are named non-structural proteins (NSPs), including NS1, PB1-F2 and PA-X. They play a versatile role in the viral life cycle by modulating viral replication and transcription. More importantly, they also play a critical role in the evasion of the surveillance of host defense and viral pathogenicity by inducing apoptosis, perturbing innate immunity, and exacerbating inflammation. Here, we review the recent advances of these NSPs and how the new findings deepen our understanding of IAV–host interactions and viral pathogenesis.
Collapse
|
123
|
Muñoz-Moreno R, Martínez-Romero C, Blanco-Melo D, Forst CV, Nachbagauer R, Benitez AA, Mena I, Aslam S, Balasubramaniam V, Lee I, Panis M, Ayllón J, Sachs D, Park MS, Krammer F, tenOever BR, García-Sastre A. Viral Fitness Landscapes in Diverse Host Species Reveal Multiple Evolutionary Lines for the NS1 Gene of Influenza A Viruses. Cell Rep 2020; 29:3997-4009.e5. [PMID: 31851929 PMCID: PMC7010214 DOI: 10.1016/j.celrep.2019.11.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Influenza A viruses (IAVs) have a remarkable tropism in their ability to
circulate in both mammalian and avian species. The IAV NS1 protein is a
multifunctional virulence factor that inhibits the type I interferon host
response through a myriad of mechanisms. How NS1 has evolved to enable this
remarkable property across species and its specific impact in the overall
replication, pathogenicity, and host preference remain unknown. Here we analyze
the NS1 evolutionary landscape and host tropism using a barcoded library of
recombinant IAVs. Results show a surprisingly great variety of NS1 phenotypes
according to their ability to replicate in different hosts. The IAV NS1 genes
appear to have taken diverse and random evolutionary pathways within their
multiple phylogenetic lineages. In summary, the high evolutionary plasticity of
this viral protein underscores the ability of IAVs to adapt to multiple hosts
and aids in our understanding of its global prevalence. Muñoz-Moreno et al. report that influenza A virus NS1 undergoes
diverse and unpredictable evolutionary pathways based on its different
phylogenetic lineages. A high-throughput approach using a barcoded library is
used to test the interactions between NS1-recombinant viruses and to study their
preference for specific or multiple hosts.
Collapse
Affiliation(s)
- Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Blanco-Melo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Asiel Arturo Benitez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vinod Balasubramaniam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ilseob Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maryline Panis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Ayllón
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
124
|
Hu J, Kong M, Cui Z, Gao Z, Ma C, Hu Z, Jiao X, Liu X. PA-X protein of H5N1 avian influenza virus inhibits NF-kappaB activity, a potential mechanism for PA-X counteracting the host innate immune responses. Vet Microbiol 2020; 250:108838. [PMID: 33045633 DOI: 10.1016/j.vetmic.2020.108838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
PA-X is a fusion protein of influenza virus which plays a crucial role in modulating influenza virus-induced host innate immune response and subsequent pathogenicity. However, the potential mechanism of PA-X regulation of the host innate immune response remains largely unknown. It is well known that NF-κB signal pathway is crucial for the immediate early step of immune responses activation, while the specific role of PA-X in NF-κB transcriptional activity is totally unknown. In this study, we initially showed that PA-X inhibits NF-κB transcription that stimulated by poly(I:C). We then further determined that the inhibitory effect on NF-κB activation mediated by PA-X was characterized by restricting NF-κB p65 nuclear translocation and nuclear NF-κB p65 activity but not by impeding the phosphorylation of NF-κB p65. Correspondingly, PA-X decreases the amount of NF-κB signaling pathway-associated genes, including TNF-α, Nos2, IL-6 and IL-2. Moreover, PA-X also suppresses both the mRNA and protein expression level of IFN-β, suggesting the direct contribution of PA-X to the inhibition of NF-κB-regulated IFN-β expression. Together, our study sheds light on the potential molecular mechanisms underlying the regulation of host NF-κB activity by PA-X and also identifies a novel functional role for PA-X in counteracting the host innate immune response. However, further exploration of the more elaborate mechanism of PA-X-mediated inhibition of NF-κB activity and the associated signaling pathway may help to elucidate its precise mechanism of evading and subverting the host immune response.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ming Kong
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhu Cui
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
125
|
Konno Y, Kimura I, Uriu K, Fukushi M, Irie T, Koyanagi Y, Sauter D, Gifford RJ, Nakagawa S, Sato K. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Rep 2020; 32:108185. [PMID: 32941788 PMCID: PMC7473339 DOI: 10.1016/j.celrep.2020.108185] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
One of the features distinguishing SARS-CoV-2 from its more pathogenic counterpart SARS-CoV is the presence of premature stop codons in its ORF3b gene. Here, we show that SARS-CoV-2 ORF3b is a potent interferon antagonist, suppressing the induction of type I interferon more efficiently than its SARS-CoV ortholog. Phylogenetic analyses and functional assays reveal that SARS-CoV-2-related viruses from bats and pangolins also encode truncated ORF3b gene products with strong anti-interferon activity. Furthermore, analyses of approximately 17,000 SARS-CoV-2 sequences identify a natural variant in which a longer ORF3b reading frame was reconstituted. This variant was isolated from two patients with severe disease and further increased the ability of ORF3b to suppress interferon induction. Thus, our findings not only help to explain the poor interferon response in COVID-19 patients but also describe the emergence of natural SARS-CoV-2 quasispecies with an extended ORF3b gene that may potentially affect COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Yoriyuki Konno
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, the University of Tokyo, Tokyo 1130033, Japan
| | - Masaya Fukushi
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7398511, Japan
| | - Takashi Irie
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7398511, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
| | | | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan.
| |
Collapse
|
126
|
Way G, Xiong Z, Wang G, Dai H, Zheng S, García-Sastre A, Liao J. A novel SUMOylation site in the influenza a virus NS1 protein identified with a highly sensitive FRET assay. J Biotechnol 2020; 323:121-127. [PMID: 32822681 DOI: 10.1016/j.jbiotec.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Nonstructural protein 1 (NS1) of the influenza A virus is a major contributor to the virulence of the seasonal influenza A viruses, in part because it interferes with host viral defense mechanisms. SUMOylation regulates NS1 activity, and several residues of NS1 have been identified with traditional biochemical approaches as acceptor sites for SUMOylation. In this study, we developed a novel FRET assay to assess SUMOylation. Using this assay, we demonstrated that the lysine residue K131 in the effector domain of NS1 is a previously unidentified SUMO acceptor site. A recombinant H1N1 influenza A virus (A/PR/8/34) expressing a K131 SUMOylation-deficient NS1 had a significantly lower growth rate than the wild-type virus. These results suggest that NS1 SUMOylation at K131 is required for the rapid replication of H1N1 influenza viruses. The interaction between the NS1 protein and the host SUMOylation components may serve as a novel target for the development of anti-influenza A drugs.
Collapse
Affiliation(s)
- George Way
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA, 92521, United States
| | - Zhehao Xiong
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA, 92521, United States
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, United States
| | - Hanchu Dai
- Department of Health Sciences, College of Allied Health, California Baptist University, 8432 Magnolia Avenue, Riverside, CA, 92504, United States
| | - Shasha Zheng
- Department of Health Sciences, College of Allied Health, California Baptist University, 8432 Magnolia Avenue, Riverside, CA, 92504, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, United States
| | - Jiayu Liao
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA, 92521, United States; Center for Bioengineering Research, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA, 92521, United States; Institute for Integrative Genome Biology, University of California at Riverside, 900 University Avenue, Riverside, CA, 92521, United States.
| |
Collapse
|
127
|
Han Q, Chen G, Wang J, Jee D, Li WX, Lai EC, Ding SW. Mechanism and Function of Antiviral RNA Interference in Mice. mBio 2020; 11:e03278-19. [PMID: 32753500 PMCID: PMC7407090 DOI: 10.1128/mbio.03278-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Distinct mammalian RNA viruses trigger Dicer-mediated production of virus-derived small-interfering RNAs (vsiRNA) and encode unrelated proteins to suppress vsiRNA biogenesis. However, the mechanism and function of the mammalian RNA interference (RNAi) response are poorly understood. Here, we characterized antiviral RNAi in a mouse model of infection with Nodamura virus (NoV), a mosquito-transmissible positive-strand RNA virus encoding a known double-stranded RNA (dsRNA)-binding viral suppressor of RNAi (VSR), the B2 protein. We show that inhibition of NoV RNA replication by antiviral RNAi in mouse embryonic fibroblasts (MEFs) requires Dicer-dependent vsiRNA biogenesis and Argonaute-2 slicer activity. We found that VSR-B2 of NoV enhances viral RNA replication in wild-type but not RNAi-defective MEFs such as Argonaute-2 catalytic-dead MEFs and Dicer or Argonaute-2 knockout MEFs, indicating that VSR-B2 acts mainly by suppressing antiviral RNAi in the differentiated murine cells. Consistently, VSR-B2 expression in MEFs has no detectable effect on the induction of interferon-stimulated genes or the activation of global RNA cleavages by RNase L. Moreover, we demonstrate that NoV infection of adult mice induces production of abundant vsiRNA active to guide RNA slicing by Argonaute-2. Notably, VSR-B2 suppresses the biogenesis of both vsiRNA and the slicing-competent vsiRNA-Argonaute-2 complex without detectable inhibition of Argonaute-2 slicing guided by endogenous microRNA, which dramatically enhances viral load and promotes lethal NoV infection in adult mice either intact or defective in the signaling by type I, II, and III interferons. Together, our findings suggest that the mouse RNAi response confers essential protective antiviral immunity in both the presence and absence of the interferon response.IMPORTANCE Innate immune sensing of viral nucleic acids in mammals triggers potent antiviral responses regulated by interferons known to antagonize the induction of RNA interference (RNAi) by synthetic long double-stranded RNA (dsRNA). Here, we show that Nodamura virus (NoV) infection in adult mice activates processing of the viral dsRNA replicative intermediates into small interfering RNAs (siRNAs) active to guide RNA slicing by Argonaute-2. Genetic studies demonstrate that NoV RNA replication in mouse embryonic fibroblasts is inhibited by the RNAi pathway and enhanced by the B2 viral RNAi suppressor only in RNAi-competent cells. When B2 is rendered nonexpressing or nonfunctional, the resulting mutant viruses become nonpathogenic and are cleared in adult mice either intact or defective in the signaling by type I, II, and III interferons. Our findings suggest that mouse antiviral RNAi is active and necessary for the in vivo defense against viral infection in both the presence and absence of the interferon response.
Collapse
Affiliation(s)
- Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Gang Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Jinyan Wang
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - David Jee
- Department of Developmental Biology, Sloan Kettering Institute, New York, New York, USA
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, New York, New York, USA
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
128
|
Rai KR, Chen B, Zhao Z, Chen Y, Hu J, Liu S, Maarouf M, Li Y, Xiao M, Liao Y, Chen JL. Robust expression of p27Kip1 induced by viral infection is critical for antiviral innate immunity. Cell Microbiol 2020; 22:e13242. [PMID: 32596986 DOI: 10.1111/cmi.13242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin-dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild-type (WT) mice: exhibiting higher viral load in lung tissue, faster body-weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN-β and several critical antiviral interferon-stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV-infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN-β and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.
Collapse
Affiliation(s)
- Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
129
|
Sha TW, Weber M, Kasumba DM, Noda T, Nakano M, Kato H, Fujita T. Influenza A virus NS1 optimises virus infectivity by enhancing genome packaging in a dsRNA-binding dependent manner. Virol J 2020; 17:107. [PMID: 32677963 PMCID: PMC7367362 DOI: 10.1186/s12985-020-01357-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/17/2020] [Indexed: 01/07/2023] Open
Abstract
Background The non-structural protein 1 (NS1) of influenza A virus (IAV) is a key player in inhibiting antiviral response in host cells, thereby facilitating its replication. However, other roles of NS1, which are independent of antagonising host cells’ antiviral response, are less characterised. Methods To investigate these unidentified roles, we used a recombinant virus, which lacks NS1 expression, and observed its phenotypes during the infection of antiviral defective cells (RIG-I KO cells) in the presence or absence of exogeneous NS1. Moreover, we used virus-like particle (VLP) production system to further support our findings. Results Our experiments demonstrated that IAV deficient in NS1 replicates less efficiently than wild-type IAV in RIG-I KO cells and this replication defect was complemented by ectopic expression of NS1. As suggested previously, NS1 is incorporated in the virion and participates in the regulation of viral transcription and translation. Using the VLP production system, in which minigenome transcription or viral protein production was unaffected by NS1, we demonstrated that NS1 facilitates viral genome packaging into VLP, leading to efficient minigenome transfer by VLP. Furthermore, the incorporation of NS1 and the minigenome into VLP were impaired by introducing a point mutation (R38A) in the double stranded RNA-binding domain of NS1. Conclusion These results suggest a novel function of NS1 in improving genome packaging in a dsRNA binding-dependent manner. Taken together, NS1 acts as an essential pro-viral regulator, not only by antagonizing host immunity but also by facilitating viral replication and genome packaging.
Collapse
Affiliation(s)
- Tim Wai Sha
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan.,Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michaela Weber
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan.,Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Dacquin M Kasumba
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan.,Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masahiro Nakano
- Laboratory of Ultrastructural Virology, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroki Kato
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan.,Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan. .,Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
130
|
Malik G, Zhou Y. Innate Immune Sensing of Influenza A Virus. Viruses 2020; 12:E755. [PMID: 32674269 PMCID: PMC7411791 DOI: 10.3390/v12070755] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza virus infection triggers host innate immune response by stimulating various pattern recognition receptors (PRRs). Activation of these PRRs leads to the activation of a plethora of signaling pathways, resulting in the production of interferon (IFN) and proinflammatory cytokines, followed by the expression of interferon-stimulated genes (ISGs), the recruitment of innate immune cells, or the activation of programmed cell death. All these antiviral approaches collectively restrict viral replication inside the host. However, influenza virus also engages in multiple mechanisms to subvert the innate immune responses. In this review, we discuss the role of PRRs such as Toll-like receptors (TLRs), Retinoic acid-inducible gene I (RIG-I), NOD-, LRR-, pyrin domain-containing protein 3 (NLRP3), and Z-DNA binding protein 1 (ZBP1) in sensing and restricting influenza viral infection. Further, we also discuss the mechanisms influenza virus utilizes, especially the role of viral non-structure proteins NS1, PB1-F2, and PA-X, to evade the host innate immune responses.
Collapse
Affiliation(s)
- Gaurav Malik
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
131
|
Kabiljo J, Laengle J, Bergmann M. From threat to cure: understanding of virus-induced cell death leads to highly immunogenic oncolytic influenza viruses. Cell Death Discov 2020; 6:48. [PMID: 32542113 PMCID: PMC7288254 DOI: 10.1038/s41420-020-0284-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023] Open
Abstract
Oncolytic viruses constitute an emerging strategy in immunomodulatory cancer treatment. The first oncolytic virus, Talimogene laherparepvec (T-VEC), based on herpes simplex virus 1 (HSV-1), was approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2015. The field of oncolytic virotherapy is still in its beginnings, since many promising viruses remain only superficially explored. Influenza A virus causes a highly immunogenic acute infection but never leads to a chronic disease. While oncolytic influenza A viruses are in preclinical development, they have not made the transition into clinical practice yet. Recent insights into different types of cell death caused by influenza A virus infection illuminate novel possibilities of enhancing its therapeutic effect. Genetic engineering and experience in influenza A virus vaccine development allow safe application of the virus in patients. In this review we give a summary of efforts undertaken to develop oncolytic influenza A viruses. We discuss strategies for targeting viral replication to cancerous lesions and arming them with immunogenic transgenes. We furthermore describe which modes of cell death are induced by influenza A virus infection and how these insights may be utilized to optimize influenza A virus-based oncolytic virus design.
Collapse
Affiliation(s)
- Julijan Kabiljo
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Johannes Laengle
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Michael Bergmann
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
132
|
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020; 181:1036-1045.e9. [PMID: 32416070 PMCID: PMC7227586 DOI: 10.1016/j.cell.2020.04.026] [Citation(s) in RCA: 3144] [Impact Index Per Article: 628.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022]
Abstract
Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
Collapse
Affiliation(s)
- Daniel Blanco-Melo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin E Nilsson-Payant
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Skyler Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daisy Hoagland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rasmus Møller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tristan X Jordan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kohei Oishi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maryline Panis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taia T Wang
- Divison of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Virus Engineering Center for Therapeutics and Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
133
|
Molecular Dynamics Simulations of Influenza A Virus NS1 Reveal a Remarkably Stable RNA-Binding Domain Harboring Promising Druggable Pockets. Viruses 2020; 12:v12050537. [PMID: 32422922 PMCID: PMC7290946 DOI: 10.3390/v12050537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The non-structural protein NS1 of influenza A viruses is considered to be the major antagonist of the interferon system and antiviral defenses of the cell. It could therefore represent a suitable target for novel antiviral strategies. As a first step towards the identification of small compounds targeting NS1, we here investigated the druggable potential of its RNA-binding domain since this domain is essential to the biological activities of NS1. We explored the flexibility of the full-length protein by running molecular dynamics simulations on one of its published crystal structures. While the RNA-binding domain structure was remarkably stable along the simulations, we identified a flexible site at the two extremities of the “groove” that is delimited by the antiparallel α-helices that make up its RNA-binding interface. This groove region is able to form potential binding pockets, which, in 60% of the conformations, meet the druggability criteria. We characterized these pockets and identified the residues that contribute to their druggability. All the residues involved in the druggable pockets are essential at the same time to the stability of the RNA-binding domain and to the biological activities of NS1. They are also strictly conserved across the large sequence diversity of NS1, emphasizing the robustness of this search towards the identification of broadly active NS1-targeting compounds.
Collapse
|
134
|
Jung HE, Lee HK. Host Protective Immune Responses against Influenza A Virus Infection. Viruses 2020; 12:v12050504. [PMID: 32375274 PMCID: PMC7291249 DOI: 10.3390/v12050504] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Influenza viruses cause infectious respiratory disease characterized by fever, myalgia, and congestion, ranging in severity from mild to life-threating. Although enormous efforts have aimed to prevent and treat influenza infections, seasonal and pandemic influenza outbreaks remain a major public health concern. This is largely because influenza viruses rapidly undergo genetic mutations that restrict the long-lasting efficacy of vaccine-induced immune responses and therapeutic regimens. In this review, we discuss the virological features of influenza A viruses and provide an overview of current knowledge of the innate sensing of invading influenza viruses and the protective immune responses in the host.
Collapse
Affiliation(s)
- Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| |
Collapse
|
135
|
Park MS, Kim JI, Bae JY, Park MS. Animal models for the risk assessment of viral pandemic potential. Lab Anim Res 2020; 36:11. [PMID: 32337177 PMCID: PMC7175453 DOI: 10.1186/s42826-020-00040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| |
Collapse
|
136
|
Kumari R, Guo Z, Kumar A, Wiens M, Gangappa S, Katz JM, Cox NJ, Lal RB, Sarkar D, Fisher PB, García-Sastre A, Fujita T, Kumar V, Sambhara S, Ranjan P, Lal SK. Influenza virus NS1- C/EBPβ gene regulatory complex inhibits RIG-I transcription. Antiviral Res 2020; 176:104747. [PMID: 32092305 PMCID: PMC10773002 DOI: 10.1016/j.antiviral.2020.104747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.
Collapse
Affiliation(s)
- Rashmi Kumari
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amrita Kumar
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India
| | - Mayim Wiens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shivaprakash Gangappa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nancy J Cox
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Renu B Lal
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Department of Medicine Division of Infectious Diseases and Global Health, Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India; Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, 110070, India
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Sunil K Lal
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India; School of Science, Tropical Medicine and Biology Multidisciplinary Plateform, Monash University Malaysia, 47500, Bandar Sunway, Selangor DE, Malaysia.
| |
Collapse
|
137
|
Lutz MM, Dunagan MM, Kurebayashi Y, Takimoto T. Key Role of the Influenza A Virus PA Gene Segment in the Emergence of Pandemic Viruses. Viruses 2020; 12:v12040365. [PMID: 32224899 PMCID: PMC7232137 DOI: 10.3390/v12040365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza A viruses (IAVs) are a significant human pathogen that cause seasonal epidemics and occasional pandemics. Avian waterfowl are the natural reservoir of IAVs, but a wide range of species can serve as hosts. Most IAV strains are adapted to one host species and avian strains of IAV replicate poorly in most mammalian hosts. Importantly, IAV polymerases from avian strains function poorly in mammalian cells but host adaptive mutations can restore activity. The 2009 pandemic H1N1 (H1N1pdm09) virus acquired multiple mutations in the PA gene that activated polymerase activity in mammalian cells, even in the absence of previously identified host adaptive mutations in other polymerase genes. These mutations in PA localize within different regions of the protein suggesting multiple mechanisms exist to activate polymerase activity. Additionally, an immunomodulatory protein, PA-X, is expressed from the PA gene segment. PA-X expression is conserved amongst many IAV strains but activity varies between viruses specific for different hosts, suggesting that PA-X also plays a role in host adaptation. Here, we review the role of PA in the emergence of currently circulating H1N1pdm09 viruses and the most recent studies of host adaptive mutations in the PA gene that modulate polymerase activity and PA-X function.
Collapse
Affiliation(s)
- Michael M. Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Megan M. Dunagan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Yuki Kurebayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi 422-8526, Japan
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Correspondence: ; Tel.: +1-585-273-2856
| |
Collapse
|
138
|
Molecular Basis of the Ternary Interaction between NS1 of the 1918 Influenza A Virus, PI3K, and CRK. Viruses 2020; 12:v12030338. [PMID: 32244879 PMCID: PMC7150778 DOI: 10.3390/v12030338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/10/2023] Open
Abstract
The 1918 influenza A virus (IAV) caused the worst flu pandemic in human history. Non-structural protein 1 (NS1) is an important virulence factor of the 1918 IAV and antagonizes host antiviral immune responses. NS1 increases virulence by activating phosphoinositide 3-kinase (PI3K) via binding to the p85β subunit of PI3K. Intriguingly, unlike the NS1 of other human IAV strains, 1918 NS1 hijacks another host protein, CRK, to form a ternary complex with p85β, resulting in hyperactivation of PI3K. However, the molecular basis of the ternary interaction between 1918 NS1, CRK, and PI3K remains elusive. Here, we report the structural and thermodynamic bases of the ternary interaction. We find that the C-terminal tail (CTT) of 1918 NS1 remains highly flexible in the complex with p85β. Thus, the CTT of 1918 NS1 in the complex with PI3K can efficiently hijack CRK. Notably, our study indicates that 1918 NS1 enhances its affinity to p85β in the presence of CRK, which might result in enhanced activation of PI3K. Our results provide structural insight into how 1918 NS1 hijacks two host proteins simultaneously.
Collapse
|
139
|
Interferon- Stimulation Elicited by the Influenza Virus Is Regulated by the Histone Methylase Dot1L through the RIG-I-TRIM25 Signaling Axis. Cells 2020; 9:cells9030732. [PMID: 32188146 PMCID: PMC7140698 DOI: 10.3390/cells9030732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza virus infection increases the methylation of lysine 79 of histone 3 catalyzed by the Dot1L enzyme. The role of Dot1L against infections was highlighted by an increase of influenza A and vesicular stomatitis virus replication in Dot1L-inhibited cells mediated by a decreased antiviral response. Interferon-beta (IFN-β) reporter assays indicate that Dot1L is involved in the control of retinoic acid-inducible geneI protein (RIG-I) signaling. Accordingly, Dot1L inhibition decreases the IFN-β promoter stimulation and RIG-I- mitochondria-associated viral sensor (RIG-I-MAVS) association upon viral infection. Replication of an influenza A virus lacking NS1 (delNS1), incapable of counteracting the antiviral response, is not affected by Dot1L inhibition. Consequently, RIG-I-MAVS association and nuclear factor-B (NF-κ nuclear translocation, are not affected by the Dot1L inhibition in delNS1 infected cells. Restoration of NS1 expression in trans also reinstated Dot1L as a regulator of the RIG-I-dependent signaling in delNS1 infections. Interferon-inducible E3 ligase tripartite motif-containing protein 25 (TRIM25) expression increases in influenza virus infected cells, but Dot1L inhibition reduces both the TRIM25 expression and TRIM25 protein levels. TRIM25 overexpression reverses the defective innate response mediated by Dot1L inhibition elicited upon virus infection or by overexpression of RIG-I signaling intermediates. Thus, TRIM25 is a control point of the RIG-I recognition pathway controlled by Dot1L and may have a general role in RNA viruses recognized by the RIG-I sensor.
Collapse
|
140
|
Molecular recognition of a host protein by NS1 of pandemic and seasonal influenza A viruses. Proc Natl Acad Sci U S A 2020; 117:6550-6558. [PMID: 32152123 DOI: 10.1073/pnas.1920582117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 1918 influenza A virus (IAV) caused the most severe flu pandemic in recorded human history. Nonstructural protein 1 (NS1) is an important virulence factor of the 1918 IAV. NS1 antagonizes host defense mechanisms through interactions with multiple host factors. One pathway by which NS1 increases virulence is through the activation of phosphoinositide 3-kinase (PI3K) by binding to its p85β subunit. Here we present the mechanism underlying the molecular recognition of the p85β subunit by 1918 NS1. Using X-ray crystallography, we determine the structure of 1918 NS1 complexed with p85β of human PI3K. We find that the 1918 NS1 effector domain (1918 NS1ED) undergoes a conformational change to bind p85β. Using NMR relaxation dispersion and molecular dynamics simulation, we identify that free 1918 NS1ED exists in a dynamic equilibrium between p85β-binding-competent and -incompetent conformations in the submillisecond timescale. Moreover, we discover that NS1ED proteins of 1918 (H1N1) and Udorn (H3N2) strains exhibit drastically different conformational dynamics and binding kinetics to p85β. These results provide evidence of strain-dependent conformational dynamics of NS1. Using kinetic modeling based on the experimental data, we demonstrate that 1918 NS1ED can result in the faster hijacking of p85β compared to Ud NS1ED, although the former has a lower affinity to p85β than the latter. Our results suggest that the difference in binding kinetics may impact the competition with cellular antiviral responses for the activation of PI3K. We anticipate that our findings will increase the understanding of the strain-dependent behaviors of influenza NS1 proteins.
Collapse
|
141
|
Prasad AN, Ronk AJ, Widen SG, Wood TG, Basler CF, Bukreyev A. Ebola Virus Produces Discrete Small Noncoding RNAs Independently of the Host MicroRNA Pathway Which Lack RNA Interference Activity in Bat and Human Cells. J Virol 2020; 94:e01441-19. [PMID: 31852785 PMCID: PMC7158719 DOI: 10.1128/jvi.01441-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The question as to whether RNA viruses produce bona fide microRNAs (miRNAs) during infection has been the focus of intense research and debate. Recently, several groups using computational prediction methods have independently reported possible miRNA candidates produced by Ebola virus (EBOV). Additionally, efforts to detect these predicted RNA products in samples from infected animals and humans have produced positive results. However, these studies and their conclusions are predicated on the assumption that these RNA products are actually processed through, and function within, the miRNA pathway. In the present study, we performed the first rigorous assessment of the ability of filoviruses to produce miRNA products during infection of both human and bat cells. Using next-generation sequencing, we detected several candidate miRNAs from both EBOV and the closely related Marburg virus (MARV). Focusing our validation efforts on EBOV, we found evidence contrary to the idea that these small RNA products function as miRNAs. The results of our study are important because they highlight the potential pitfalls of relying on computational methods alone for virus miRNA discovery.IMPORTANCE Here, we report the discovery, via deep sequencing, of numerous noncoding RNAs (ncRNAs) derived from both EBOV and MARV during infection of both bat and human cell lines. In addition to identifying several novel ncRNAs from both viruses, we identified two EBOV ncRNAs in our sequencing data that were near-matches to computationally predicted viral miRNAs reported in the literature. Using molecular and immunological techniques, we assessed the potential of EBOV ncRNAs to function as viral miRNAs. Importantly, we found little evidence supporting this hypothesis. Our work is significant because it represents the first rigorous assessment of the potential for EBOV to encode viral miRNAs and provides evidence contrary to the existing paradigm regarding the biological role of computationally predicted EBOV ncRNAs. Moreover, our work highlights further avenues of research regarding the nature and function of EBOV ncRNAs.
Collapse
Affiliation(s)
- Abhishek N Prasad
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| | - Adam J Ronk
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Christopher F Basler
- Center of Microbial Pathogenesis, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
142
|
Jahan AS, Biquand E, Muñoz-Moreno R, Le Quang A, Mok CKP, Wong HH, Teo QW, Valkenburg SA, Chin AWH, Man Poon LL, Te Velthuis A, García-Sastre A, Demeret C, Sanyal S. OTUB1 Is a Key Regulator of RIG-I-Dependent Immune Signaling and Is Targeted for Proteasomal Degradation by Influenza A NS1. Cell Rep 2020; 30:1570-1584.e6. [PMID: 32023470 DOI: 10.1016/j.celrep.2020.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/21/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
Deubiquitylases (DUBs) regulate critical signaling pathways at the intersection of host immunity and viral pathogenesis. Although RIG-I activation is heavily dependent on ubiquitylation, systematic analyses of DUBs that regulate this pathway have not been performed. Using a ubiquitin C-terminal electrophile, we profile DUBs that function during influenza A virus (IAV) infection and isolate OTUB1 as a key regulator of RIG-I-dependent antiviral responses. Upon infection, OTUB1 relocalizes from the nucleus to mitochondrial membranes together with RIG-I, viral PB2, and NS1. Its expression depends on competing effects of interferon stimulation and IAV-triggered degradation. OTUB1 activates RIG-I via a dual mechanism of K48 polyubiquitin hydrolysis and formation of an E2-repressive complex with UBCH5c. We reconstitute this mechanism in a cell-free system comprising [35S]IRF3, purified RIG-I, mitochondrial membranes, and cytosol expressing OTUB1 variants. A range of IAV NS1 proteins trigger proteasomal degradation of OTUB1, antagonizing the RIG-I signaling cascade and antiviral responses.
Collapse
Affiliation(s)
- Akhee Sabiha Jahan
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Elise Biquand
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université de Paris, Institut Pasteur, Paris, France
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Agathe Le Quang
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Chris Ka-Pun Mok
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Ho Him Wong
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Qi Wen Teo
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Alex W H Chin
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Leo Lit Man Poon
- School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Artejan Te Velthuis
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Caroline Demeret
- Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université de Paris, Institut Pasteur, Paris, France
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong; School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong; School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
143
|
Increasing the Safety Profile of the Master Donor Live Attenuated Influenza Vaccine. Pathogens 2020; 9:pathogens9020086. [PMID: 32013198 PMCID: PMC7168643 DOI: 10.3390/pathogens9020086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 02/02/2023] Open
Abstract
Seasonal influenza epidemics remain one of the largest public health burdens nowadays. The best and most effective strategy to date in preventing influenza infection is a worldwide vaccination campaign. Currently, two vaccines are available to the public for the treatment of influenza infection, the chemically Inactivated Influenza Vaccine (IIV) and the Live Attenuated Influenza Vaccine (LAIV). However, the LAIV is not recommended for parts of the population, such as children under the age of two, immunocompromised individuals, the elderly, and pregnant adults. In order to improve the safety of the LAIV and make it available to more of the population, we sought to further attenuate the LAIV. In this study, we demonstrate that the influenza A virus (IAV) master donor virus (MDV) A/Ann Arbor/6/60 H2N2 LAIV can inhibit host gene expression using both the PA-X and NS1 proteins. Furthermore, we show that by removing PA-X, we can limit the replication of the MDV LAIV in a mouse model, while maintaining full protective efficacy. This work demonstrates a broadly applicable strategy of tuning the amount of host antiviral responses induced by the IAV MDV for the development of newer and safer LAIVs. Moreover, our results also demonstrate, for the first time, the feasibility of genetically manipulating the backbone of the IAV MDV to improve the efficacy of the current IAV LAIV.
Collapse
|
144
|
Khalil AM, Nishi N, Kojima I, Fukunaga W, Kuwahara M, Masatani T, Matsui T, Ozawa M. Transition in genetic constellations of H3N8 and H4N6 low-pathogenic avian influenza viruses isolated from an overwintering site in Japan throughout different winter seasons. Arch Virol 2020; 165:643-659. [PMID: 31925543 DOI: 10.1007/s00705-019-04519-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/06/2019] [Indexed: 11/24/2022]
Abstract
The Izumi plain in Kagoshima Prefecture, Japan, is an overwintering site for migratory ducks and endangered cranes. We have surveyed avian influenza viruses (AIVs) in this area since 2012 and isolated low-pathogenic AIVs (LPAIVs) of various subtypes every winter season. H3N8 LPAIVs were isolated during the 2012/13 and 2016/17 seasons, and H4N6 LPAIVs were isolated during the 2012/13 and 2013/14 seasons. In the 2017/18 season, one H3N8 and two H4N6 LPAIV strains were isolated from environmental water samples. Genetic and phylogenetic analysis for each gene segment from these H3N8 and H4N6 LPAIVs suggested that our isolates were genetic reassortants generated by intermixing between AIVs circulating not only in Eurasia but also in Africa and/or North America. Comparison of the genetic constellations of our three isolates with their counterparts isolated during previous seasons from the Izumi plain revealed a drastic transition in the genetic constellations of both subtypes. These findings emphasize the importance of continuous surveillance of AIVs on the Izumi plain.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Natsuko Nishi
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Isshu Kojima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Wataru Fukunaga
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | | | - Tatsunori Masatani
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tsutomu Matsui
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima, Japan
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan. .,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan. .,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. .,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. .,Kagoshima Crane Conservation Committee, Izumi, Kagoshima, Japan.
| |
Collapse
|
145
|
Baranovskaya I, Sergeeva M, Fadeev A, Kadirova R, Ivanova A, Ramsay E, Vasin A. Changes in RNA secondary structure affect NS1 protein expression during early stage influenza virus infection. Virol J 2019; 16:162. [PMID: 31864377 PMCID: PMC6925897 DOI: 10.1186/s12985-019-1271-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/13/2019] [Indexed: 11/10/2022] Open
Abstract
RNA secondary structures play a key role in splicing, gene expression, microRNA biogenesis, RNA editing, and other biological processes. The importance of RNA structures has been demonstrated in the life cycle of RNA-containing viruses, including the influenza virus. At least two regions of conserved secondary structure in NS segment (+) RNA are predicted to vary among influenza virus strains with respect to thermodynamic stability; both fall in the NS1 open reading frame. The NS1 protein is involved in multiple virus-host interaction processes, and its main function is to inhibit the cellular immune response to viral infection. Using a reverse genetics approach, four influenza virus strains were constructed featuring mutations that have different effects on RNA secondary structure. Growth curve experiments and ELISA data show that, at least in the first viral replication cycle, mutations G123A and A132G affecting RNA structure in the (82-148) NS RNA region influence NS1 protein expression.
Collapse
Affiliation(s)
- Irina Baranovskaya
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Str, Saint Petersburg, 197376, Russia. .,Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str, Saint Petersburg, 195251, Russia.
| | - Mariia Sergeeva
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Str, Saint Petersburg, 197376, Russia.,Global Viral Network, 725 West Lombard St Room S413, Baltimore, MD, 21201, USA
| | - Artem Fadeev
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Str, Saint Petersburg, 197376, Russia
| | - Renata Kadirova
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Str, Saint Petersburg, 197376, Russia
| | - Anna Ivanova
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Str, Saint Petersburg, 197376, Russia
| | - Edward Ramsay
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Str, Saint Petersburg, 197376, Russia
| | - Andrey Vasin
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Str, Saint Petersburg, 197376, Russia.,Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str, Saint Petersburg, 195251, Russia.,Global Viral Network, 725 West Lombard St Room S413, Baltimore, MD, 21201, USA
| |
Collapse
|
146
|
Nogales A, Aydillo T, Ávila-Pérez G, Escalera A, Chiem K, Cadagan R, DeDiego ML, Li F, García-Sastre A, Martínez-Sobrido L. Functional Characterization and Direct Comparison of Influenza A, B, C, and D NS1 Proteins in vitro and in vivo. Front Microbiol 2019; 10:2862. [PMID: 31921042 PMCID: PMC6927920 DOI: 10.3389/fmicb.2019.02862] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza viruses are important pathogens that affect multiple animal species, including humans. There are four types of influenza viruses: A, B, C, and D (IAV, IBV, ICV, and IDV, respectively). IAV and IBV are currently circulating in humans and are responsible of seasonal epidemics (IAV and IBV) and occasional pandemics (IAV). ICV is known to cause mild infections in humans and pigs, while the recently identified IDV primarily affect cattle and pigs. Influenza non-structural protein 1 (NS1) is a multifunctional protein encoded by the NS segment in all influenza types. The main function of NS1 is to counteract the host antiviral defense, including the production of interferon (IFN) and IFN-stimulated genes (ISGs), and therefore is considered an important viral pathogenic factor. Despite of homologous functions, the NS1 protein from the diverse influenza types share little amino acid sequence identity, suggesting possible differences in their mechanism(s) of action, interaction(s) with host factors, and contribution to viral replication and/or pathogenesis. In addition, although the NS1 protein of IAV, IBV and, to some extent ICV, have been previously studied, it is unclear if IDV NS1 has similar properties. Using an approach that allow us to express NS1 independently of the nuclear export protein from the viral NS segment, we have generated recombinant IAV expressing IAV, IBV, ICV, and IDV NS1 proteins. Although recombinant viruses expressing heterotypic (IBV, ICV, and IDV) NS1 proteins were able to replicate similarly in canine MDCK cells, their viral fitness was impaired in human A549 cells and they were highly attenuated in vivo. Our data suggest that despite the similarities to effectively counteract innate immune responses in vitro, the NS1 proteins of IBV, ICV, or IDV do not fully complement the functions of IAV NS1, resulting in deficient viral replication and pathogenesis in vivo.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Centro de Investigación en Sanidad Animal, Madrid, Spain
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gines Ávila-Pérez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin Chiem
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - Richard Cadagan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Feng Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
147
|
Schreiber A, Liedmann S, Brunotte L, Anhlan D, Ehrhardt C, Ludwig S. Type I interferon antagonistic properties of influenza B virus polymerase proteins. Cell Microbiol 2019; 22:e13143. [PMID: 31711273 DOI: 10.1111/cmi.13143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022]
Abstract
The innate immune system, in particular the type I interferon (IFN) response, is a powerful defence against virus infections. In turn, many if not all viruses have evolved various means to circumvent, resist, or counteract this host response to ensure efficient replication and propagation. Influenza viruses are no exception to this rule, and several viral proteins have been described to possess IFN-antagonistic functions. Although the viral nonstructural protein 1 appears to be a major antagonist in influenza A and B viruses (IAV and IBV), we have previously shown that a specific motif in the IAV polymerase proteins exerts an IFN-suppressive function very early in infection. The question remained whether a similar function would also exist in IBV polymerases. Here, we show that indeed a specific amino acid position (A523) of the PB1 protein in the IBV polymerase complex confers IFN-antagonistic properties. Mutation of this position leads to enhanced activation of the IFN-mediated signalling pathway after infection and subsequent reduction of virus titres. This indicates that inhibition of innate immune responses is a conserved activity shared by polymerase proteins of IAV and IBV.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology Muenster (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität, Muenster, Germany
| | - Swantje Liedmann
- Institute of Virology Muenster (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität, Muenster, Germany
| | - Darisuren Anhlan
- Institute of Virology Muenster (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität, Muenster, Germany
| |
Collapse
|
148
|
Cheng J, Tao J, Li B, Shi Y, Liu H. The tyrosine 73 and serine 83 dephosphorylation of H1N1 swine influenza virus NS1 protein attenuates virus replication and induces high levels of beta interferon. Virol J 2019; 16:152. [PMID: 31805964 PMCID: PMC6896355 DOI: 10.1186/s12985-019-1255-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nonstructural protein 1 (NS1) is a virulence factor encoded by influenza A virus (IAV) that is expressed in the nucleus and cytoplasm of host cells during the earliest stages of infection. NS1 is a multifunctional protein that plays an important role in virus replication, virulence and inhibition of the host antiviral immune response. However, to date, the phosphorylation sites of NS1 have not been identified, and the relationship between phosphorylation and protein function has not been thoroughly elucidated. METHOD In this study, potential phosphorylation sites in the swine influenza virus (SIV) NS1 protein were bioinformatically predicted and determined by Phos-tag SDS-PAGE analysis. To study the role of NS1 phosphorylation sites, we rescued NS1 mutants (Y73F and S83A) of A/swine/Shanghai/3/2014(H1N1) strain and compared their replication ability, cytokine production as well as the intracellular localization in cultured cells. Additionally, we used small interfering RNA (siRNA) assay to explore whether changes in the type I IFN response with dephosphorylation at positions 73 and 83 were mediated by the RIG-I pathway. RESULTS We checked 18 predicted sites in 30 SIV NS1 genes to exclude strain-specific sites, covering H1N1, H1N2 and H3N2 subtypes and identified two phosphorylation sites Y73 and S83 in the H1N1 SIV protein by Phos-tag SDS-PAGE analysis. We found that dephosphorylation at positions 73 and 83 of the NS1 protein attenuated virus replication and reduced the ability of NS1 to antagonize IFN-β expression but had no effect on nuclear localization. Knockdown of RIG-I dramatically impaired the induction of IFN-β and ISG56 in NS1 Y73F or S83A mutant-infected cells, indicating that RIG-I plays a role in the IFN-β response upon rSIV NS1 Y73F and rSIV NS1 S83A infection. CONCLUSION We first identified two functional phosphorylation sites in the H1N1 SIV protein: Y73 and S83. We found that dephosphorylation at positions 73 and 83 of the NS1 protein affected the antiviral state in the host cells, partly through the RIG-I pathway.
Collapse
Affiliation(s)
- Jinghua Cheng
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai, Academy of Agricultural Science, Shanghai, 201106, China. .,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China. .,Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China.
| |
Collapse
|
149
|
Streicher F, Jouvenet N. Stimulation of Innate Immunity by Host and Viral RNAs. Trends Immunol 2019; 40:1134-1148. [PMID: 31735513 DOI: 10.1016/j.it.2019.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
The interferon (IFN) response, a major vertebrate defense mechanism against viral infections, is initiated by RIG-I-like receptor (RLR)-mediated recognition of viral replicative intermediates in the cytosol. RLR purification methods coupled to RNA sequencing have recently led to the characterization of viral nucleic acid features recognized by RLRs in infected cells. This work revealed that some cellular RNAs can bind to RLRs and stimulate the IFN response. We provide an overview of self and non-self RNAs that activate innate immunity, and discuss the cellular dysregulation that allows recognition of cellular RNAs by RLRs, including RNA mislocalization and downregulation of RNA-shielding proteins. These discussions are relevant because manipulating RLR activation presents opportunities for treating viral infections and autoimmune disorders.
Collapse
Affiliation(s)
- Felix Streicher
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Paris, France; Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Nolwenn Jouvenet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Paris, France.
| |
Collapse
|
150
|
Uccellini MB, García-Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep 2019; 25:2784-2796.e3. [PMID: 30517866 PMCID: PMC6317368 DOI: 10.1016/j.celrep.2018.11.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/12/2023] Open
Abstract
Type I and type III interferons (IFNs) are critical for controlling viral infections. However, the precise dynamics of the IFN response have been difficult to define in vivo. Signaling through type I IFN receptors leads to interferon-stimulated response element (ISRE)-dependent gene expression and an antiviral state. As an alternative to tracking IFN, we used an ISRE-dependent reporter mouse to define the cell types, localization, and kinetics of IFN responding cells during influenza virus infection. We find that measurable IFN responses are largely limited to hematopoietic cells, which show a high sensitivity to IFN. Inflammatory monocytes display high basal IFN responses, which are enhanced upon infection and correlate with infection of these cells. We find that inflammatory monocyte development is independent of IFN signaling; however, IFN is critical for chemokine production and recruitment following infection. The data reveal a role for inflammatory monocytes in both basal IFN responses and responses to infection. Uccellini and García-Sastre create an ISRE reporter mouse and track interferon (IFN) responses in vivo in response to pathogen-associated molecular pattern (PAMP) stimulation and influenza infection. They find that IFN responses are highest in hematopoietic cells during infection. Specifically, Ly6Chi inflammatory monocytes have high basal IFN responses that are further enhanced upon infection.
Collapse
Affiliation(s)
- Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|