101
|
Two Cycloartenol Synthases for Phytosterol Biosynthesis in Polygala tenuifolia Willd. Int J Mol Sci 2017; 18:ijms18112426. [PMID: 29140303 PMCID: PMC5713394 DOI: 10.3390/ijms18112426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 01/16/2023] Open
Abstract
Oxidosqualene cyclases (OSCs) are enzymes that play a key role in control of the biosynthesis of phytosterols and triterpene saponins. In order to uncover OSC genes from Polygala tenuifolia seedlings induced by methyl jasmonate (MeJA), RNA-sequencing analysis was performed using the Illumina sequencing platform. A total of 148,488,632 high-quality reads from two samples (control and the MeJA treated) were generated. We screened genes related to phytosterol and triterpene saponin biosynthesis and analyzed the transcriptional changes of differentially expressed unigene (DEUG) values calculated by fragments per kilobase million (FPKM). In our datasets, two full-length cDNAs of putative OSC genes, PtCAS1, and PtCAS2, were found, in addition to the PtBS (β-amyrin synthase) gene reported in our previous studies and the two cycloartenol synthase genes of P. tenuifolia. All genes were isolated and characterized in yeast cells. The functional expression of the two PtCAS genes in yeast cells showed that the genes all produce a cycloartenol as the sole product. When qRT-PCR analysis from different tissues was performed, the expressions of PtCAS1 and PtCAS2 were highest in flowers and roots, respectively. After MeJA treatment, the transcripts of PtCAS1 and PtCAS2 genes increased by 1.5- and 2-fold, respectively. Given these results, we discuss the potential roles of the two PtCAS genes in relation to triterpenoid biosynthesis.
Collapse
|
102
|
Song S, Huang H, Wang J, Liu B, Qi T, Xie D. MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1752-1763. [PMID: 29017003 DOI: 10.1093/pcp/pcx112] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Jasmonates (JAs), lipid-derived phytohormones, regulate plant growth, development and defenses against biotic stresses. CORONATINE INSENSITIVE1 perceives bioactive JA and recruits JASMONATE ZIM-DOMAIN (JAZ) proteins for ubiquitination and subsequent degradation via the 26S proteasome, which de-represses JAZ-targeted transcription factors that regulate diverse JA responses. Recent studies showed that the Arabidopsis basic helix-loop-helix transcription factor MYC5 interacts with JAZs and regulates stamen development. However, whether MYC5 mediates other JA responses is unclear. Here, we show that MYC5 functions redundantly with MYC2, MYC3 and MYC4 to modulate JA-regulated root growth inhibition and plant defenses against insect attack and pathogen infection, and that it positively regulates JA-induced leaf senescence. Our findings define MYC5 as an important regulator that is essential for diverse JA responses.
Collapse
Affiliation(s)
- Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
103
|
Voxeur A, Soubigou-Taconnat L, Legée F, Sakai K, Antelme S, Durand-Tardif M, Lapierre C, Sibout R. Altered lignification in mur1-1 a mutant deficient in GDP-L-fucose synthesis with reduced RG-II cross linking. PLoS One 2017; 12:e0184820. [PMID: 28961242 PMCID: PMC5621668 DOI: 10.1371/journal.pone.0184820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
In the plant cell wall, boron links two pectic domain rhamnogalacturonan II (RG-II) chains together to form a dimer and thus contributes to the reinforcement of cell adhesion. We studied the mur1-1 mutant of Arabidopsis thaliana which has lost the ability to form GDP-fucose in the shoots and show that the extent of RG-II cross-linking is reduced in the lignified stem of this mutant. Surprisingly, MUR1 mutation induced an enrichment of resistant interunit bonds in lignin and triggered the overexpression of many genes involved in lignified tissue formation and in jasmonic acid signaling. The defect in GDP-fucose synthesis induced a loss of cell adhesion at the interface between stele and cortex, as well as between interfascicular fibers. This led to the formation of regenerative xylem, where tissue detachment occurred, and underlined a loss of resistance to mechanical forces. Similar observations were also made on bor1-3 mutant stems which are altered in boron xylem loading, leading us to suggest that diminished RG-II dimerization is responsible for regenerative xylem formation.
Collapse
Affiliation(s)
- Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment, Orsay, France
| | - Frédéric Legée
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Kaori Sakai
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sébastien Antelme
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Mylène Durand-Tardif
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
104
|
Zhang M, Chen Y, Nie L, Jin X, Fu C, Yu L. Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs. Gene 2017; 620:66-74. [DOI: 10.1016/j.gene.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
|
105
|
Cotrozzi L, Pellegrini E, Guidi L, Landi M, Lorenzini G, Massai R, Remorini D, Tonelli M, Trivellini A, Vernieri P, Nali C. Losing the Warning Signal: Drought Compromises the Cross-Talk of Signaling Molecules in Quercus ilex Exposed to Ozone. FRONTIERS IN PLANT SCIENCE 2017; 8:1020. [PMID: 28674543 PMCID: PMC5475409 DOI: 10.3389/fpls.2017.01020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/29/2017] [Indexed: 05/27/2023]
Abstract
Understanding the interactions between drought and acute ozone (O3) stress in terms of signaling molecules and cell death would improve the predictions of plant responses to climate change. The aim was to investigate whether drought stress influences the responses of plants to acute episodes of O3 exposure. In this study, the behavior of 84 Mediterranean evergreen Quercus ilex plants was evaluated in terms of cross-talk responses among signaling molecules. Half of the sample was subjected to drought (20% of the effective daily evapotranspiration, for 15 days) and was later exposed to an acute O3 exposure (200 nL L-1 for 5 h). First, our results indicate that in well-water conditions, O3 induced a signaling pathway specific to O3-sensitive behavior. Second, different trends and consequently different roles of phytohormones and signaling molecules (ethylene, ET; abscisic acid, ABA; salycilic acid, SA and jasmonic acid, JA) were observed in relation to water stress and O3. A spatial and functional correlation between these signaling molecules was observed in modulating O3-induced responses in well-watered plants. In contrast, in drought-stressed plants, these compounds were not involved either in O3-induced signaling mechanisms or in leaf senescence (a response observed in water-stressed plants before the O3-exposure). Third, these differences were ascribable to the fact that in drought conditions, most defense processes induced by O3 were compromised and/or altered. Our results highlight how Q. ilex plants suffering from water deprivation respond differently to an acute O3 episode compared to well-watered plants, and suggest new effect to be considered in plant responses to environmental changes. This poses the serious question as to whether or not multiple high-magnitude O3 events (as predicted) can change these cross-talk responses, thus opening it up possible further investigations.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Mariagrazia Tonelli
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| |
Collapse
|
106
|
Jasmonic acid signalling and the plant holobiont. Curr Opin Microbiol 2017; 37:42-47. [PMID: 28437665 DOI: 10.1016/j.mib.2017.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/22/2017] [Indexed: 01/14/2023]
Abstract
The plant holobiont - which is the plant and its associated microbiome - is increasingly viewed as an evolving entity. Some interacting microbes that compose the microbiome assist plants in combating pathogens and herbivorous insects. However, knowledge of the factors that influence the microbiome in the context of defence signalling pathways is still in its infancy. Recent research reported that changes in jasmonic acid (JA) and salicylic acid signalling affects the root microbiome of Arabidopsis thaliana. This review aims to present the hypothesis that the JA pathway represents a novel mechanism for microbiome engineering for improved holobiont fitness in agricultural systems.
Collapse
|
107
|
Pratiwi P, Tanaka G, Takahashi T, Xie X, Yoneyama K, Matsuura H, Takahashi K. Identification of Jasmonic Acid and Jasmonoyl-Isoleucine, and Characterization of AOS, AOC, OPR and JAR1 in the Model Lycophyte Selaginella moellendorffii. PLANT & CELL PHYSIOLOGY 2017; 58:789-801. [PMID: 28340155 DOI: 10.1093/pcp/pcx031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/16/2017] [Indexed: 05/24/2023]
Abstract
Jasmonic acid (JA) is involved in a variety of physiological responses in seed plants. However, the detection and role of JA in lycophytes, a group of seedless vascular plants, have remained elusive until recently. This study provides the first evidence of 12-oxo-phytodienoic acid (OPDA), JA and jasmonoyl-isoleucine (JA-Ile) in the model lycophyte Selaginella moellendorffii. Mechanical wounding stimulated the accumulation of OPDA, JA and JA-Ile. These data were corroborated by the detection of enzymatically active allene oxide synthase (AOS), allene oxide cyclase (AOC), 12-oxo-phytodienoic acid reductase 3 (OPR3) and JA-Ile synthase (JAR1) in S. moellendorffii. SmAOS2 is involved in the first committed step of JA biosynthesis. SmAOC1 is a crucial enzyme for generating the basic structure of jasmonates and is actively involved in the formation of OPDA. SmOPR5, a functionally active OPR3-like enzyme, is also vital for the reduction of (+)-cis-OPDA, the only isomer of the JA precursor. The conjugation of JA to Ile by SmJAR1 demonstrates that S. moellendorffii produces JA-Ile. Thus, the four active enzymes have characteristics similar to those in seed plants. Wounding and JA treatment induced the expression of SmAOC1 and SmOPR5. Furthermore, JA inhibited the growth of shoots in S. moellendorffii, which suggests that JA functions as a signaling molecule in S. moellendorffii. This study proposes that JA evolved as a plant hormone for stress adaptation, beginning with the emergence of vascular plants.
Collapse
Affiliation(s)
- Putri Pratiwi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Genta Tanaka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomohiro Takahashi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Hideyuki Matsuura
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kosaku Takahashi
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
108
|
Zhang H, Chen L, Sun Y, Zhao L, Zheng X, Yang Q, Zhang X. Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:301-311. [PMID: 28398122 DOI: 10.1094/mpmi-09-16-0189-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating defense response genes, such as peroxidase, thaumatin-like protein, and chitinase 4-like, which are involved in defense response in apple. [Formula: see text]
Collapse
Affiliation(s)
- Hongyin Zhang
- 1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and
| | | | - Yiwen Sun
- 1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and
| | - Lina Zhao
- 1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and
| | - Xiangfeng Zheng
- 1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and
| | - Qiya Yang
- 1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and
| | - Xiaoyun Zhang
- 1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; and
| |
Collapse
|
109
|
Ali SS, Shao J, Lary DJ, Strem MD, Meinhardt LW, Bailey BA. Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods. FRONTIERS IN PLANT SCIENCE 2017; 8:169. [PMID: 28261234 PMCID: PMC5306292 DOI: 10.3389/fpls.2017.00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/27/2017] [Indexed: 05/29/2023]
Abstract
Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) cause black pod rot of Theobroma cacao L. (cacao). Of these two clade 4 species, Pmeg is more virulent and is displacing Ppal in many cacao production areas in Africa. Symptoms and species specific sporangia production were compared when the two species were co-inoculated onto pod pieces in staggered 24 h time intervals. Pmeg sporangia were predominantly recovered from pod pieces with unwounded surfaces even when inoculated 24 h after Ppal. On wounded surfaces, sporangia of Ppal were predominantly recovered if the two species were simultaneously applied or Ppal was applied first but not if Pmeg was applied first. Pmeg demonstrated an advantage over Ppal when infecting un-wounded surfaces while Ppal had the advantage when infecting wounded surfaces. RNA-Seq was carried out on RNA isolated from control and Pmeg and Ppal infected pod pieces 3 days post inoculation to assess their abilities to alter/suppress cacao defense. Expression of 4,482 and 5,264 cacao genes was altered after Pmeg and Ppal infection, respectively, with most genes responding to both species. Neural network self-organizing map analyses separated the cacao RNA-Seq gene expression profiles into 24 classes, 6 of which were largely induced in response to infection. Using KEGG analysis, subsets of genes composing interrelated pathways leading to phenylpropanoid biosynthesis, ethylene and jasmonic acid biosynthesis and action, plant defense signal transduction, and endocytosis showed induction in response to infection. A large subset of genes encoding putative Pr-proteins also showed differential expression in response to infection. A subset of 36 cacao genes was used to validate the RNA-Seq expression data and compare infection induced gene expression patterns in leaves and wounded and unwounded pod husks. Expression patterns between RNA-Seq and RT-qPCR were generally reproducible. The level and timing of altered gene expression was influenced by the tissues studied and by wounding. Although, in these susceptible interactions gene expression patterns were similar, some genes did show differential expression in a Phytophthora species dependent manner. The biggest difference was the more intense changes in expression in Ppal inoculated wounded pod pieces further demonstrating its rapid progression when penetrating through wounds.
Collapse
Affiliation(s)
- Shahin S. Ali
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| | - Jonathan Shao
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| | - David J. Lary
- Physics Department, University of Texas at DallasRichardson, TX, USA
| | - Mary D. Strem
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| | - Bryan A. Bailey
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences InstituteBeltsville, MD, USA
| |
Collapse
|
110
|
Transcriptomic profiling of soybean in response to UV-B and Xanthomonas axonopodis treatment reveals shared gene components in stress defense pathways. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
111
|
Kuluev B, Mikhaylova E, Berezhneva Z, Nikonorov Y, Postrigan B, Kudoyarova G, Chemeris A. Expression profiles and hormonal regulation of tobacco NtEXGT gene and its involvement in abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:203-215. [PMID: 27940271 DOI: 10.1016/j.plaphy.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 05/21/2023]
Abstract
Despite the intensive study of xyloglucan endotransglucosylases/hydrolases, their multifaceted role in plant growth regulation in changing environmental conditions is not yet clarified. The functional role of the large number of genes encoding this group of enzymes is also still unclear. NtEXGT gene encodes one of xyloglucan endotransglucosylases/hydrolases (XTHs) of Nicotiana tabacum L. The highest level of NtEXGT gene expression was detected in young flowers and leaves near the shoot apex. Expression of the NtEXGT gene in leaves was induced by cytokinins, auxins, brassinosteroids and gibberellins. NtEXGT gene was also up-regulated by salinity, drought, cold, cadmium and 10 μM abscisic acid treatments and down-regulated in response to 0 °C and 100 μM abscisic acid. Pretreatment of leaves with fluridone contributed to smaller increase in the level of NtEXGT transcripts in response to drought stress. These data suggest that NtEXGT gene is ABA-regulated and probably implicated in ABA-dependent signaling in response to stress factors. 35S::NtEXGT plants of tobacco showed higher rate of root growth under salt-stress conditions, greater frost and heat tolerance as compared with the wild type tobacco plants.
Collapse
Affiliation(s)
- Bulat Kuluev
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia; Bashkir State University (BSU), Z. Validi str. 32, 450074, Ufa, Russia.
| | - Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia; Bashkir State University (BSU), Z. Validi str. 32, 450074, Ufa, Russia
| | - Zoya Berezhneva
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia
| | - Yuri Nikonorov
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia
| | - Bogdan Postrigan
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Russian Academy of Sciences (UIB RAS), pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Aleksey Chemeris
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences (IBG USC RAS), pr. Oktyabrya 71, 450054, Ufa, Russia
| |
Collapse
|
112
|
Čerekovic N, Poltronieri P. Plant signaling pathways activating defence response and interfering mechanisms by pathogen effectors, protein decoys and bodyguards. AIMS MOLECULAR SCIENCE 2017; 4:370-388. [DOI: 10.3934/molsci.2017.3.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
113
|
Svoboda P, Janská A, Spiwok V, Prášil IT, Kosová K, Vítámvás P, Ovesná J. Global Scale Transcriptional Profiling of Two Contrasting Barley Genotypes Exposed to Moderate Drought Conditions: Contribution of Leaves and Crowns to Water Shortage Coping Strategies. FRONTIERS IN PLANT SCIENCE 2016; 7:1958. [PMID: 28083001 PMCID: PMC5187378 DOI: 10.3389/fpls.2016.01958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/09/2016] [Indexed: 05/07/2023]
Abstract
Drought is a serious threat for sustainable agriculture. Barley represents a species well adapted to environmental stresses including drought. To elucidate the adaptive mechanism of barley on transcriptional level we evaluated transcriptomic changes of two contrasting barley cultivars upon drought using the microarray technique on the level of leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated vs. non-treated plants were identified. Both genotypes revealed tissue dehydration under drought conditions as shown at water saturation deficit and osmotic potential data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor under the same ambient conditions. Performed analysis showed that Amulet enhanced expression of genes related to active plant growth and development, while Tadmor regarding the stimulated genes revealed conservative, water saving strategy. Common reactions of both genotypes and tissues included an induction of genes encoding several stress-responsive signaling proteins, transcription factors as well as effector genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar effectively stimulated mainly the expression of genes encoding proteins and enzymes involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis and transport. The crown specific reaction of tolerant cultivar was an enhanced expression of genes encoding proteins and enzymes involved in cell wall lignification, ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with genes for numerous jasmonate induced proteins.
Collapse
Affiliation(s)
- Pavel Svoboda
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| | - Anna Janská
- Faculty of Science, Charles University in PraguePrague, Czechia
| | - Vojtěch Spiwok
- Faculty of Food and Biochemical Technology, University of Chemistry and TechnologyPrague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| | - Klára Kosová
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| | - Jaroslava Ovesná
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| |
Collapse
|
114
|
Ávila-Román J, Talero E, de los Reyes C, Zubía E, Motilva V, García-Mauriño S. Cytotoxic Activity of Microalgal-derived Oxylipins against Human Cancer Cell lines and their Impact on ATP Levels. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Oxylipins are metabolites derived from lipid peroxidation. The plant oxylipin methyl jasmonate (MJ) shows cytotoxic activity against cancer cell lines of various origins, with ATP-depletion being one of the mechanisms responsible for this effect. The cytotoxic activity of oxylipins (OXLs) isolated from the microalgae Chlamydomonas debaryana (13-HOTE) and Nannochloropsis gaditana (15-HEPE) was higher against UACC-62 (melanoma) than towards HT-29 (colon adenocarcinoma) cells. OXLs lowered the ATP levels of HT-29 and UACC-62 cells, but the effect was higher on the second cell line, which had higher basal ATP. This result proves a link between the cytotoxicity and the capability of these compounds to deplete ATP. In addition, the combination of 13-HOTE with the anticancer drug 5-fluorouracil (5-FU) induced a synergistic toxicity against HT-29 cells. These results highlight the therapeutic potential of oxylipins derived from microalgae.
Collapse
Affiliation(s)
| | - Elena Talero
- Department of Pharmacology, University of Seville, Seville, Spain
| | | | - Eva Zubía
- Departament of Organic Chemistry, University of Cádiz, Puerto Real, Spain
| | - Virginia Motilva
- Department of Pharmacology, University of Seville, Seville, Spain
| | | |
Collapse
|
115
|
Khan BR, Wherritt DJ, Huhman D, Sumner LW, Chapman KD, Blancaflor EB. Malonylation of Glucosylated N-Lauroylethanolamine: A NEW PATHWAY THAT DETERMINES N-ACYLETHANOLAMINE METABOLIC FATE IN PLANTS. J Biol Chem 2016; 291:27112-27121. [PMID: 27856641 DOI: 10.1074/jbc.m116.751065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/02/2016] [Indexed: 11/06/2022] Open
Abstract
N-Acylethanolamines (NAEs) are bioactive fatty acid derivatives present in trace amounts in many eukaryotes. Although NAEs have signaling and physiological roles in animals, little is known about their metabolic fate in plants. Our previous microarray analyses showed that inhibition of Arabidopsis thaliana seedling growth by exogenous N-lauroylethanolamine (NAE 12:0) was accompanied by the differential expression of multiple genes encoding small molecule-modifying enzymes. We focused on the gene At5g39050, which encodes a phenolic glucoside malonyltransferase 1 (PMAT1), to better understand the biological significance of NAE 12:0-induced gene expression changes. PMAT1 expression was induced 3-5-fold by exogenous NAE 12:0. PMAT1 knockouts (pmat1) had reduced sensitivity to the growth-inhibitory effects of NAE 12:0 compared with wild type leading to the hypothesis that PMAT1 might be a previously uncharacterized regulator of NAE metabolism in plants. To test this hypothesis, metabolic profiling of wild-type and pmat1 seedlings treated with NAE 12:0 was conducted. Wild-type seedlings treated with NAE 12:0 accumulated glucosylated and malonylated forms of this NAE species, and structures were confirmed using nuclear magnetic resonance (NMR) spectroscopy. By contrast, only the peak corresponding to NAE 12:0-glucoside was detected in pmat1 Recombinant PMAT1 catalyzed the reaction converting NAE 12:0-glucoside to NAE 12:0-mono- or -dimalonylglucosides providing direct evidence that this enzyme is involved in NAE 12:0-glucose malonylation. Taken together, our results indicate that glucosylation of NAE 12:0 by a yet to be determined glucosyltransferase and its subsequent malonylation by PMAT1 could represent a mechanism for modulating the biological activities of NAEs in plants.
Collapse
Affiliation(s)
- Bibi Rafeiza Khan
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Daniel J Wherritt
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249
| | - David Huhman
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401
| | - Lloyd W Sumner
- the Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, and
| | - Kent D Chapman
- the Division of Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5220
| | - Elison B Blancaflor
- From the Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, Oklahoma 73401,
| |
Collapse
|
116
|
Hibara KI, Isono M, Mimura M, Sentoku N, Kojima M, Sakakibara H, Kitomi Y, Yoshikawa T, Itoh JI, Nagato Y. Jasmonate regulates juvenile-to-adult phase transition in rice. Development 2016; 143:3407-16. [PMID: 27578792 DOI: 10.1242/dev.138602] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
Abstract
Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that morphological and physiological traits, such as midrib formation, shoot meristem size, photosynthetic rate and plastochron, in juvenile and juvenile-to-adult transition stages of the pre mutant have precociously acquired adult characteristics. In agreement with these results, expression patterns of miR156 and miR172, which are microRNAs regulating phase change, support the accelerated juvenile-to-adult phase change in the pre mutant. The mutated gene encodes an allene oxide synthase (OsAOS1), which is a key enzyme for the biosynthesis of jasmonic acid (JA). The pre mutant showed a low level of JA and enhanced sensitivity to gibberellic acid, which promotes the phase change in some plant species. We also show that prolonged plastochron in the pre mutant is caused by accelerated PLASTOCHRON1 (PLA1) function. The present study reveals a substantial role of JA as a negative regulator of vegetative phase change.
Collapse
Affiliation(s)
- Ken-Ichiro Hibara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Miyako Isono
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Manaki Mimura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Sentoku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuka Kitomi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takanori Yoshikawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Jun-Ichi Itoh
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuo Nagato
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
117
|
Abstract
Many plants, both in nature and in agriculture, are resistant to multiple diseases. Although much of the plant innate immunity system provides highly specific resistance, there is emerging evidence to support the hypothesis that some components of plant defense are relatively nonspecific, providing multiple disease resistance (MDR). Understanding MDR is of fundamental and practical interest to plant biologists, pathologists, and breeders. This review takes stock of the available evidence related to the MDR hypothesis. Questions about MDR are considered primarily through the lens of forward genetics, starting at the organismal level and proceeding to the locus level and, finally, to the gene level. At the organismal level, MDR may be controlled by clusters of R genes that evolve under diversifying selection, by dispersed, pathogen-specific genes, and/or by individual genes providing MDR. Based on the few MDR loci that are well-understood, MDR is conditioned by diverse mechanisms at the locus and gene levels.
Collapse
Affiliation(s)
- Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| | - Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
118
|
Naselli M, Urbaneja A, Siscaro G, Jaques JA, Zappalà L, Flors V, Pérez-Hedo M. Stage-Related Defense Response Induction in Tomato Plants by Nesidiocoris tenuis. Int J Mol Sci 2016; 17:ijms17081210. [PMID: 27472328 PMCID: PMC5000608 DOI: 10.3390/ijms17081210] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of direct predation by zoophytophagous biological control agents (BCAs), such as the mirid bug Nesidiocoris tenuis, are well-known. However, the benefits of zoophytophagous BCAs’ relation with host plants, via induction of plant defensive responses, have not been investigated until recently. To date, only the females of certain zoophytophagous BCAs have been demonstrated to induce defensive plant responses in tomato plants. The aim of this work was to determine whether nymphs, adult females, and adult males of N. tenuis are able to induce defense responses in tomato plants. Compared to undamaged tomato plants (i.e., not exposed to the mirid), plants on which young or mature nymphs, or adult males or females of N. tenuis fed and developed were less attractive to the whitefly Bemisia tabaci, but were more attractive to the parasitoid Encarsia formosa. Female-exposed plants were more repellent to B. tabaci and more attractive to E. formosa than were male-exposed plants. When comparing young- and mature-nymph-exposed plants, the same level of repellence was obtained for B. tabaci, but mature-nymph-exposed plants were more attractive to E. formosa. The repellent effect is attributed to the signaling pathway of abscisic acid, which is upregulated in N. tenuis-exposed plants, whereas the parasitoid attraction was attributed to the activation of the jasmonic acid signaling pathway. Our results demonstrate that all motile stages of N. tenuis can trigger defensive responses in tomato plants, although these responses may be slightly different depending on the stage considered.
Collapse
Affiliation(s)
- Mario Naselli
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy.
| | - Alberto Urbaneja
- Unidad Asociada de Entomología UJI-IVIA, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera de Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain.
| | - Gaetano Siscaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy.
| | - Josep A Jaques
- Unitat Associada d'Entomologia UJI-IVIA, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, UJI, Campus del Riu Sec, 12071 Castelló de la Plana, Spain.
| | - Lucia Zappalà
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy.
| | - Víctor Flors
- Unitat Associada d'Entomologia UJI-IVIA, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, UJI, Campus del Riu Sec, 12071 Castelló de la Plana, Spain.
| | - Meritxell Pérez-Hedo
- Unidad Asociada de Entomología UJI-IVIA, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera de Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain.
- Unitat Associada d'Entomologia UJI-IVIA, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, UJI, Campus del Riu Sec, 12071 Castelló de la Plana, Spain.
| |
Collapse
|
119
|
Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance. Int J Mol Sci 2016; 17:ijms17071180. [PMID: 27455238 PMCID: PMC4964550 DOI: 10.3390/ijms17071180] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022] Open
Abstract
Seedlings of aluminum-tolerant ‘Xuegan’ (Citrus sinensis) and Al-intolerant ‘sour pummelo’ (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl3·6H2O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance.
Collapse
|
120
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
121
|
Shigenaga AM, Argueso CT. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 2016; 56:174-189. [PMID: 27312082 DOI: 10.1016/j.semcdb.2016.06.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence.
Collapse
Affiliation(s)
- Alexandra M Shigenaga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
122
|
Coolen S, Proietti S, Hickman R, Davila Olivas NH, Huang PP, Van Verk MC, Van Pelt JA, Wittenberg AHJ, De Vos M, Prins M, Van Loon JJA, Aarts MGM, Dicke M, Pieterse CMJ, Van Wees SCM. Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:249-67. [PMID: 26991768 DOI: 10.1111/tpj.13167] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 05/19/2023]
Abstract
In nature, plants have to cope with a wide range of stress conditions that often occur simultaneously or in sequence. To investigate how plants cope with multi-stress conditions, we analyzed the dynamics of whole-transcriptome profiles of Arabidopsis thaliana exposed to six sequential double stresses inflicted by combinations of: (i) infection by the necrotrophic fungus Botrytis cinerea, (ii) herbivory by chewing larvae of Pieris rapae, and (iii) drought stress. Each of these stresses induced specific expression profiles over time, in which one-third of all differentially expressed genes was shared by at least two single stresses. Of these, 394 genes were differentially expressed during all three stress conditions, albeit often in opposite directions. When two stresses were applied in sequence, plants displayed transcriptome profiles that were very similar to the second stress, irrespective of the nature of the first stress. Nevertheless, significant first-stress signatures could be identified in the sequential stress profiles. Bioinformatic analysis of the dynamics of co-expressed gene clusters highlighted specific clusters and biological processes of which the timing of activation or repression was altered by a prior stress. The first-stress signatures in second stress transcriptional profiles were remarkably often related to responses to phytohormones, strengthening the notion that hormones are global modulators of interactions between different types of stress. Because prior stresses can affect the level of tolerance against a subsequent stress (e.g. prior herbivory strongly affected resistance to B. cinerea), the first-stress signatures can provide important leads for the identification of molecular players that are decisive in the interactions between stress response pathways.
Collapse
Affiliation(s)
- Silvia Coolen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Silvia Proietti
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Nelson H Davila Olivas
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ping-Ping Huang
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Johan A Van Pelt
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | | | - Martin De Vos
- Keygene N.V., PO Box 216, 6700 AE, Wageningen, The Netherlands
| | - Marcel Prins
- Keygene N.V., PO Box 216, 6700 AE, Wageningen, The Netherlands
| | - Joop J A Van Loon
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
123
|
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:470. [PMID: 27199999 PMCID: PMC4843763 DOI: 10.3389/fpls.2016.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide ([Formula: see text]), hydrogen peroxide (H2O2) and the hydroxyl radical ((•)OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Mofatto LS, Carneiro FDA, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil JL, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GAG, Andrade AC, Marraccini P. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC PLANT BIOLOGY 2016; 16:94. [PMID: 27095276 PMCID: PMC4837521 DOI: 10.1186/s12870-016-0777-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/13/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Drought is a widespread limiting factor in coffee plants. It affects plant development, fruit production, bean development and consequently beverage quality. Genetic diversity for drought tolerance exists within the coffee genus. However, the molecular mechanisms underlying the adaptation of coffee plants to drought are largely unknown. In this study, we compared the molecular responses to drought in two commercial cultivars (IAPAR59, drought-tolerant and Rubi, drought-susceptible) of Coffea arabica grown in the field under control (irrigation) and drought conditions using the pyrosequencing of RNA extracted from shoot apices and analysing the expression of 38 candidate genes. RESULTS Pyrosequencing from shoot apices generated a total of 34.7 Mbp and 535,544 reads enabling the identification of 43,087 clusters (41,512 contigs and 1,575 singletons). These data included 17,719 clusters (16,238 contigs and 1,575 singletons) exclusively from 454 sequencing reads, along with 25,368 hybrid clusters assembled with 454 sequences. The comparison of DNA libraries identified new candidate genes (n = 20) presenting differential expression between IAPAR59 and Rubi and/or drought conditions. Their expression was monitored in plagiotropic buds, together with those of other (n = 18) candidates genes. Under drought conditions, up-regulated expression was observed in IAPAR59 but not in Rubi for CaSTK1 (protein kinase), CaSAMT1 (SAM-dependent methyltransferase), CaSLP1 (plant development) and CaMAS1 (ABA biosynthesis). Interestingly, the expression of lipid-transfer protein (nsLTP) genes was also highly up-regulated under drought conditions in IAPAR59. This may have been related to the thicker cuticle observed on the abaxial leaf surface in IAPAR59 compared to Rubi. CONCLUSIONS The full transcriptome assembly of C. arabica, followed by functional annotation, enabled us to identify differentially expressed genes related to drought conditions. Using these data, candidate genes were selected and their differential expression profiles were confirmed by qPCR experiments in plagiotropic buds of IAPAR59 and Rubi under drought conditions. As regards the genes up-regulated under drought conditions, specifically in the drought-tolerant IAPAR59, several corresponded to orphan genes but also to genes coding proteins involved in signal transduction pathways, as well as ABA and lipid metabolism, for example. The identification of these genes should help advance our understanding of the genetic determinism of drought tolerance in coffee.
Collapse
Affiliation(s)
- Luciana Souto Mofatto
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Fernanda de Araújo Carneiro
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Natalia Gomes Vieira
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Karoline Estefani Duarte
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Ramon Oliveira Vidal
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Jean Carlos Alekcevetch
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Michelle Guitton Cotta
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | | | | | | | | | | | - David Pot
- />CIRAD UMR AGAP, F-34398 Montpellier, France
| | - Gustavo Costa Rodrigues
- />Embrapa Informática Agropecuária, UNICAMP, Av. André Tosello n° 209, CP 6041, 13083-886 Campinas, SP Brazil
| | - Marcelo Falsarella Carazzolle
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Gonçalo Amarante Guimarães Pereira
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Alan Carvalho Andrade
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
- />present address: Embrapa Café, INOVACAFÉ, Campus UFLA, 37200-000 Lavras, MG Brazil
| | - Pierre Marraccini
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
- />CIRAD UMR AGAP, F-34398 Montpellier, France
| |
Collapse
|
125
|
Sahu R, Sharaff M, Pradhan M, Sethi A, Bandyopadhyay T, Mishra VK, Chand R, Chowdhury AK, Joshi AK, Pandey SP. Elucidation of defense-related signaling responses to spot blotch infection in bread wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:35-49. [PMID: 26932764 DOI: 10.1111/tpj.13149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 05/20/2023]
Abstract
Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat.
Collapse
Affiliation(s)
- Ranabir Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Murali Sharaff
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Maitree Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Avinash Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Tirthankar Bandyopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Vinod K Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 22105, India
| | - Ramesh Chand
- Department of Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 22105, India
| | - Apurba K Chowdhury
- Uttar Banga Krishi Viswavidyalaya, Cooch Behar, Varanasi, 736165, West Bengal, India
| | - Arun K Joshi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 22105, India
- The International Maize and Wheat Improvement Center (CIMMYT) South Asia Office, Singh Durbar Plaza Marg, Kathmandu, Nepal
| | - Shree P Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
126
|
Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2277-84. [PMID: 26873978 PMCID: PMC4809285 DOI: 10.1093/jxb/erw028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT.
Collapse
Affiliation(s)
- Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fabián E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alison D Gilday
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Steven D Penfield
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
127
|
Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. Molecules 2016; 21:254. [PMID: 26907241 PMCID: PMC6273781 DOI: 10.3390/molecules21020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Nine oxylipin mimics were designed and synthesized starting from d-mannose. Their antifungal activity against three citrus postharvest pathogens was evaluated by spore germination assay. The results indicated that all the compounds significantly inhibited the growth of Penicillium digitatum, Penicillium italicum and Aspergillus niger. The compound (3Z,6Z,8S,9R,10R)-octadeca-3,6-diene-8,9,10-triol (3) exhibited excellent inhibitory effect on both Penicillium digitatum (IC50 = 34 ppm) and Penicillium italicum (IC50 = 94 ppm). Their in vivo antifungal activities against citrus postharvest blue mold were tested with fruit inoculated with the pathogen Penicillium italicum. The compound (3R,4S)-methyl 3,4-dihydroxy-5-octyltetrahydrofuran-2-carboxylate (9) demonstrated significant efficacy by reducing the disease severity to 60%. The antifungal mechanism of these oxylipin mimics was postulated in which both inhibition of pathogenic mycelium and stimuli of the host oxylipin-mediated defense response played important roles.
Collapse
|
128
|
Strittmatter M, Grenville-Briggs LJ, Breithut L, Van West P, Gachon CMM, Küpper FC. Infection of the brown alga Ectocarpus siliculosus by the oomycete Eurychasma dicksonii induces oxidative stress and halogen metabolism. PLANT, CELL & ENVIRONMENT 2016; 39:259-71. [PMID: 25764246 PMCID: PMC4949667 DOI: 10.1111/pce.12533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/03/2014] [Accepted: 02/07/2015] [Indexed: 05/24/2023]
Abstract
Pathogens are increasingly being recognized as key evolutionary and ecological drivers in marine ecosystems. Defence mechanisms of seaweeds, however, have mostly been investigated by mimicking infection using elicitors. We have established an experimental pathosystem between the genome brown model seaweed Ectocarpus siliculosus and the oomycete Eurychasma dicksonii as a powerful new tool to investigate algal responses to infection. Using proteomics, we identified 21 algal proteins differentially accumulated in response to Eu. dicksonii infection. These include classical algal stress response proteins such as a manganese superoxide dismutase, heat shock proteins 70 and a vanadium bromoperoxidase. Transcriptional profiling by qPCR confirmed the induction of the latter during infection. The accumulation of hydrogen peroxide was observed at different infection stages via histochemical staining. Inhibitor studies confirmed that the main source of hydrogen peroxide is superoxide converted by superoxide dismutase. Our data give an unprecedented global overview of brown algal responses to pathogen infection, and highlight the importance of oxidative stress and halogen metabolism in these interactions. This suggests overlapping defence pathways with herbivores and abiotic stresses. We also identify previously unreported actors, in particular a Rad23 and a plastid-lipid-associated protein, providing novel insights into the infection and defence processes in brown algae.
Collapse
Affiliation(s)
- Martina Strittmatter
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Laura J Grenville-Briggs
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, 230 53, Sweden
| | - Lisa Breithut
- Fachbereich Biologie, Universität Konstanz, Konstanz, D-78457, Germany
| | - Pieter Van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
| | - Frithjof C Küpper
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland, PA37 1QA, UK
- Oceanlab, University of Aberdeen, Main Street, Newburgh, Scotland, AB41 6AA, UK
| |
Collapse
|
129
|
Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:101-10. [PMID: 26748373 DOI: 10.1016/j.jplph.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/23/2023]
Abstract
The treatment of 4-days-old wheat seedlings with methyl jasmonate (MeJA) in concentration optimal for their growth (0.1 μM) resulted in a rapid transient almost two-fold increase in the level of cytokinins (CKs). MeJA-induced accumulation of CKs was due to inhibition of both cytokinin oxidase (CKX) (cytokinin oxidase/dehydrogenase, EC 1.5.99.12) gene expression and activity of this enzyme. Pretreatment of wheat seedlings with MeJA decreased the growth-retarding effect of sodium chloride salinity and accelerated growth recovery after withdrawal of NaCl from the incubation medium. We speculate that this protective effect of the hormone might be due to MeJA's ability to prevent the salinity-induced decline in CK concentration that was caused by inhibition of gene expression and activity of CKX in wheat seedlings. The data might indicate an important role for endogenous cytokinins in the implementation of growth-promoting and protective effects of exogenous MeJA application on wheat plants.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kirill Somov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450054, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Farida Shakirova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia.
| |
Collapse
|
130
|
Farooq MA, Gill RA, Islam F, Ali B, Liu H, Xu J, He S, Zhou W. Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2016; 7:468. [PMID: 27148299 PMCID: PMC4826882 DOI: 10.3389/fpls.2016.00468] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/24/2016] [Indexed: 05/17/2023]
Abstract
Methyl jasmonate (MJ) is an important plant growth regulator, involved in plant defense against abiotic stresses, however, its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As) stress were investigated in two Brassica napus L. cultivars (ZS 758 - a black seed type, and Zheda 622 - a yellow seed type). The As treatment at 200 μM was more phytotoxic, however, its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH(-)) in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD), secondary metabolites (PAL, PPO, CAD) and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622) as compared to black seeded plants (ZS 758). The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars.
Collapse
Affiliation(s)
- Muhammad A. Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Rafaqat A. Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Hongbo Liu
- College of Agriculture and Food Science, Zhejiang A & F UniversityLin’an, China
- *Correspondence: Weijun Zhou, ; Hongbo Liu,
| | - Jianxiang Xu
- Institute of Crop Science, Quzhou Academy of Agricultural SciencesQuzhou, China
| | - Shuiping He
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
- *Correspondence: Weijun Zhou, ; Hongbo Liu,
| |
Collapse
|
131
|
Liu Z, Zhang S, Sun N, Liu H, Zhao Y, Liang Y, Zhang L, Han Y. Functional diversity of jasmonates in rice. RICE (NEW YORK, N.Y.) 2015; 8:42. [PMID: 26054241 PMCID: PMC4773313 DOI: 10.1186/s12284-015-0042-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/14/2015] [Indexed: 05/18/2023]
Abstract
Phytohormone jasmonates (JA) play essential roles in plants, such as regulating development and growth, responding to environmental changes, and resisting abiotic and biotic stresses. During signaling, JA interacts, either synergistically or antagonistically, with other hormones, such as salicylic acid (SA), gibberellin (GA), ethylene (ET), auxin, brassinosteroid (BR), and abscisic acid (ABA), to regulate gene expression in regulatory networks, conferring physiological and metabolic adjustments in plants. As an important staple crop, rice is a major nutritional source for human beings and feeds one third of the world's population. Recent years have seen significant progress in the understanding of the JA pathway in rice. In this review, we summarize the diverse functions of JA, and discuss the JA interplay with other hormones, as well as light, in this economically important crop. We believe that a better understanding of the JA pathway will lead to practical biotechnological applications in rice breeding and cultivation.
Collapse
Affiliation(s)
- Zheng Liu
- />College of Life Sciences, Hebei University, Baoding, China
| | - Shumin Zhang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Ning Sun
- />The Affiliated School of Hebei Baoding Normal, Baoding, China
| | - Hongyun Liu
- />College of Life Sciences, Hebei University, Baoding, China
| | - Yanhong Zhao
- />College of Agriculture, Ludong University, Yantai, China
| | - Yuling Liang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Liping Zhang
- />College of Life Sciences, Hebei University, Baoding, China
| | - Yuanhuai Han
- />School of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong, China
- />Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan, China
| |
Collapse
|
132
|
Jiang HX, Yang LT, Qi YP, Lu YB, Huang ZR, Chen LS. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity. BMC Genomics 2015; 16:949. [PMID: 26573913 PMCID: PMC4647617 DOI: 10.1186/s12864-015-2133-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Limited information is available on aluminum (Al)-toxicity-responsive proteins in woody plant roots. Seedlings of 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) were treated for 18 weeks with nutrient solution containing 0 (control) or 1.2 mM AlCl3 · 6H2O (+Al). Thereafter, we investigated Citrus root protein profiles using isobaric tags for relative and absolute quantification (iTRAQ). The aims of this work were to determine the molecular mechanisms of plants to deal with Al-toxicity and to identify differentially expressed proteins involved in Al-tolerance. RESULTS C. sinensis was more tolerant to Al-toxicity than C. grandis. We isolated 347 differentially expressed proteins from + Al Citrus roots. Among these proteins, 202 (96) proteins only presented in C. sinensis (C. grandis), and 49 proteins were shared by the two species. Of the 49 overlapping proteins, 45 proteins were regulated in the same direction upon Al exposure in the both species. These proteins were classified into following categories: sulfur metabolism, stress and defense response, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, cell transport, biological regulation and signal transduction, cell wall and cytoskeleton metabolism, and jasmonic acid (JA) biosynthesis. The higher Al-tolerance of C. sinensis may be related to several factors, including: (a) activation of sulfur metabolism; (b) greatly improving the total ability of antioxidation and detoxification; (c) up-regulation of carbohydrate and energy metabolism; (d) enhancing cell transport; (e) decreased (increased) abundances of proteins involved in protein synthesis (proteiolysis); (f) keeping a better balance between protein phosphorylation and dephosphorylation; and (g) increasing JA biosynthesis. CONCLUSIONS Our results demonstrated that metabolic flexibility was more remarkable in C. sinenis than in C. grandis roots, thus improving the Al-tolerance of C. sinensis. This provided the most integrated view of the adaptive responses occurring in Al-toxicity roots.
Collapse
Affiliation(s)
- Huan-Xin Jiang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Yi-Bin Lu
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zeng-Rong Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
133
|
Analysis of key genes of jasmonic acid mediated signal pathway for defense against insect damages by comparative transcriptome sequencing. Sci Rep 2015; 5:16500. [PMID: 26560755 PMCID: PMC4642351 DOI: 10.1038/srep16500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
Corn defense systems against insect herbivory involve activation of genes that lead to metabolic reconfigurations to produce toxic compounds, proteinase inhibitors, oxidative enzymes, and behavior-modifying volatiles. Similar responses occur when the plant is exposed to methyl jasmonate (MeJA). To compare the defense responses between stalk borer feeding and exogenous MeJA on a transcriptional level, we employed deep transcriptome sequencing methods following Ostrinia furnacalis leaf feeding and MeJA leaf treatment. 39,636 genes were found to be differentially expressed with O. furnacalis feeding, MeJA application, and O. furnacalis feeding and MeJA application. Following Gene Ontology enrichment analysis of the up- or down- regulated genes, many were implicated in metabolic processes, stimuli-responsive catalytic activity, and transfer activity. Fifteen genes that indicated significant changes in the O. furnacalis feeding group: LOX1, ASN1, eIF3, DXS, AOS, TIM, LOX5, BBTI2, BBTI11, BBTI12, BBTI13, Cl-1B, TPS10, DOX, and A20/AN1 were found to almost all be involved in jasmonate defense signaling pathways. All of the data demonstrate that the jasmonate defense signal pathway is a major defense signaling pathways of Asian corn borer’s defense against insect herbivory. The transcriptome data are publically available at NCBI SRA: SRS965087.
Collapse
|
134
|
Miao Z, Xu W, Li D, Hu X, Liu J, Zhang R, Tong Z, Dong J, Su Z, Zhang L, Sun M, Li W, Du Z, Hu S, Wang T. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics 2015; 16:818. [PMID: 26481731 PMCID: PMC4615886 DOI: 10.1186/s12864-015-2019-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022] Open
Abstract
Background The entire world is facing a deteriorating environment. Understanding the mechanisms underlying plant responses to external abiotic stresses is important for breeding stress-tolerant crops and herbages. Phytohormones play critical regulatory roles in plants in the response to external and internal cues to regulate growth and development. Medicago falcata is one of the stress-tolerant candidate leguminous species and is able to fix atmospheric nitrogen. This ability allows leguminous plants to grow in nitrogen deficient soils. Methods We performed Illumina sequencing of cDNA prepared from abiotic stress treated M. falcata. Sequencedreads were assembled to provide a transcriptome resource. Transcripts were annotated using BLASTsearches against the NCBI non-redundant database and gene ontology definitions were assigned. Acomparison among the three abiotic stress treated samples was carried out. The expression of transcriptswas confirmed with qRT-PCR. Results We present an abiotic stress-responsive M. falcata transcriptome using next-generation sequencing data from samples grown under standard, dehydration, high salinity, and cold conditions. We combined reads from all samples and de novo assembled 98,515 transcripts to build the M. falcata gene index. A comprehensive analysis of the transcriptome revealed abiotic stress-responsive mechanisms underlying the metabolism and core signalling components of major phytohormones. We identified nod factor signalling pathways during early symbiotic nodulation that are modified by abiotic stresses. Additionally, a global comparison of homology between the M. falcata and M. truncatula transcriptomes, along with five other leguminous species, revealed a high level of global sequence conservation within the family. Conclusions M. falcata is shown to be a model candidate for studying abiotic stress-responsive mechanisms in legumes. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to abiotic stresses. Our data provides many gene candidates that might be used for herbage and crop breeding. Additionally, FalcataBase (http://bioinformatics.cau.edu.cn/falcata/) was built for storing these data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2019-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Present address: Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | - Wei Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Daofeng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Present address: Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Xiaona Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zongyong Tong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Min Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wenjie Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Zhenglin Du
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
135
|
Scholz SS, Reichelt M, Boland W, Mithöfer A. Additional evidence against jasmonate-induced jasmonate induction hypothesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:9-14. [PMID: 26398786 DOI: 10.1016/j.plantsci.2015.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/20/2015] [Accepted: 06/27/2015] [Indexed: 06/05/2023]
Abstract
Jasmonates are phytohormones involved in development and stress reactions. The most prominent jasmonate is jasmonic acid, however, the bioactive jasmonate is (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile). Biosynthesis of jasmonates is long time known; compartmentalization, enzymes and corresponding genes are well studied. Because all genes encoding these biosynthetic enzymes are jasmonate inducible, a hypothesis of jasmonate-induced-jasmonate-biosynthesis is widely accepted. Here, this hypothesis was revisited by employing the synthetic JA-Ile mimic coronalon to intact and wounded leaves, which excludes structural cross-contamination with endogenous jasmonates. At an effective concentration that induced various jasmonate-responsive genes in Arabidopsis, neither accumulation of endogenous jasmonic acid, JA-Ile, nor of their hydroxylated metabolites was detected. Results indicate that in spite of jasmonate-induced biosynthetic gene expression, no jasmonate biosynthesis/accumulation takes place supporting a post-translational regulation.
Collapse
Affiliation(s)
- Sandra S Scholz
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Michael Reichelt
- Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Axel Mithöfer
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| |
Collapse
|
136
|
Yuan Z, Zhang D. Roles of jasmonate signalling in plant inflorescence and flower development. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:44-51. [PMID: 26125498 DOI: 10.1016/j.pbi.2015.05.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Development of inflorescences and flowers in plants is controlled by the combined action of environmental and genetic signals. Investigations reveal that the phytohormone jasmonate (JA) plays a critical function in plant reproduction such as male fertility, sex determination and seed maturation. Here, we review recent progress on JA synthesis, signalling, the interplay between JAs and other hormones, and regulatory network of JA in controlling the development of inflorescence, flower and the male organ. The conserved and diversified roles of JAs in meristem transition and specification of flower organ identity and number, and multiple regulatory networks of JAs in stamen development are highlighted. Further, this review provides perspectives on future research endeavors to elucidate mechanisms underlying JAs homeostasis and transport during plant reproductive development.
Collapse
Affiliation(s)
- Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia; Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian Normal University, Jiangsu 223300, China.
| |
Collapse
|
137
|
Kuluev B, Avalbaev A, Nurgaleeva E, Knyazev A, Nikonorov Y, Chemeris A. Role of AINTEGUMENTA-like gene NtANTL in the regulation of tobacco organ growth. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:11-23. [PMID: 26479044 DOI: 10.1016/j.jplph.2015.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
The Nicotiana tabacum AINTEGUMENTA-like gene (NtANTL), encoding one of AP2/ERF transcription factors, is a putative ortholog of the AtANT gene from Arabidopsis thaliana. In wild-type tobacco plants, the NtANTL gene was expressed in the actively dividing young flowers, shoot apices, and calluses, while the level of its mRNA increased considerably after treatment with exogenous 6-benzylaminopurine, indoleacetic acid and 24-epibrassinolide. We found a positive correlation among the expression levels of NtANTL, cyclin NtCYCD3;1 and cyclin-dependent kinase NtCDKB1-1 genes, suggesting possible molecular links between AINTEGUMENTA and cell cycle regulators in tobacco plants. However, no correlation was observed between NtANTL, NtCYCD3;1 and NtCDKB1-1 expression levels in response to NaCl and ABA. These observations indicate that the transcription factor NtANTL was not involved in the regulation of the cellular response to salinity nor did it affect the expression of NtCYCD3;1 and NtCDKB1-1 when tobacco plants were exposed to salt stress and ABA. In addition, we generated transgenic tobacco plants with both up-regulated and down-regulated expression of the NtANTL gene. Constitutive expression of the NtANTL gene contributed to an increase in the size of leaves and corolla of transgenic plants. Transgenic plants with reduced expression of the NtANTL gene had smaller leaves, flowers and stems, but showed a compensatory increase in the cell size of leaves and flowers. The results show the significance of the NtANTL gene for the control of organ growth by both cell division and expansion in tobacco plants.
Collapse
Affiliation(s)
- Bulat Kuluev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia; Bashkir State University, Z. Validi str. 32, 450074 Ufa, Russia.
| | - Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia.
| | | | - Alexey Knyazev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| | - Yuriy Nikonorov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| | - Alexey Chemeris
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
138
|
Liu H, Wu W, Hou K, Chen J, Zhao Z. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate. Mol Genet Genomics 2015; 291:337-48. [PMID: 26342927 PMCID: PMC4729805 DOI: 10.1007/s00438-015-1112-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 08/27/2015] [Indexed: 01/04/2023]
Abstract
The phytohormone methyl jasmonate (MeJA) has been successfully used as an effective elicitor to enhance production of stilbenoid which is induced in plants as a secondary metabolite possibly in defense against herbivores and pathogens. However, the mechanism of MeJA-mediated stilbenoid biosynthesis remains unclear. Genomic information for Polygonum multiflorum Thunb. (P. multiflorum) is currently unavailable. To obtain insight into the global regulation mechanism of MeJA in the steady state of stilbene glucoside production (26 h after MeJA elicitation), especially on stilbene glucoside biosynthesis, we sequenced the transcriptomes of MeJA-treated and untreated P. multiflorum roots and obtained more than 51 million clean reads, from which 79,565 unigenes were obtained by de novo assembly. 56,972 unigenes were annotated against databases including Nr, Nt, Swiss-Prot, KEGG and COG. 18,677 genes expressed differentially between untreated and treated roots. Expression level analysis indicated that a large number of genes were associated with plant–pathogen interaction, plant hormone signal transduction, stilbenoid backbone biosynthesis, and phenylpropanoid biosynthesis. 15 known genes involved in the biosynthesis of stilbenoid backbone were found with 7 genes showing increased transcript abundance following elicitation of MeJA. The significantly up (down)-regulated changes of 70 genes in stilbenoid biosynthesis were validated by qRT-PCR assays and PCR product sequencing. According to the expression changes and the previously proposed enzyme functions, multiple candidates for the unknown steps in stilbene glucoside biosynthesis were identified. We also found some genes putatively involved in the transcription factors. This comprehensive description of gene expression information could greatly facilitate our understanding of the molecular mechanisms of MeJA-mediated stilbenoid biosynthesis in P. multiflorum roots. Our results shed new light on the global regulation mechanism by which MeJA regulates the physiology of P. multiflorum roots and is helpful to understand how MeJA elicits other plant species besides P. multiflorum.
Collapse
Affiliation(s)
- Hongchang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Kai Hou
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Junwen Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Zhi Zhao
- Guizhou Key (Engineering) Laboratory for Propagation and Cultivation of Medicinal Plants, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
139
|
Perdiguero P, Venturas M, Cervera MT, Gil L, Collada C. Massive sequencing of Ulmus minor's transcriptome provides new molecular tools for a genus under the constant threat of Dutch elm disease. FRONTIERS IN PLANT SCIENCE 2015; 6:541. [PMID: 26257751 PMCID: PMC4507047 DOI: 10.3389/fpls.2015.00541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/03/2015] [Indexed: 05/30/2023]
Abstract
Elms, especially Ulmus minor and U. americana, are carrying out a hard battle against Dutch elm disease (DED). This vascular wilt disease, caused by Ophiostoma ulmi and O. novo-ulmi, appeared in the twentieth century and killed millions of elms across North America and Europe. Elm breeding and conservation programmes have identified a reduced number of DED tolerant genotypes. In this study, three U. minor genotypes with contrasted levels of tolerance to DED were exposed to several biotic and abiotic stresses in order to (i) obtain a de novo assembled transcriptome of U. minor using 454 pyrosequencing, (ii) perform a functional annotation of the assembled transcriptome, (iii) identify genes potentially involved in the molecular response to environmental stress, and (iv) develop gene-based markers to support breeding programmes. A total of 58,429 putative unigenes were identified after assembly and filtering of the transcriptome. 32,152 of these unigenes showed homology with proteins identified in the genome from the most common plant model species. Well-known family proteins and transcription factors involved in abiotic, biotic or both stresses were identified after functional annotation. A total of 30,693 polymorphisms were identified in 7,125 isotigs, a large number of them corresponding to single nucleotide polymorphisms (SNPs; 27,359). In a subset randomly selected for validation, 87% of the SNPs were confirmed. The material generated may be valuable for future Ulmus gene expression, population genomics and association genetics studies, especially taking into account the scarce molecular information available for this genus and the great impact that DED has on elm populations.
Collapse
Affiliation(s)
- Pedro Perdiguero
- Grupo de Investigación en Genética, Fisiología e Historia Forestal, Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de MadridMadrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Universidad Politécnica de MadridMadrid, Spain
| | - Martin Venturas
- Grupo de Investigación en Genética, Fisiología e Historia Forestal, Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de MadridMadrid, Spain
| | - María Teresa Cervera
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Universidad Politécnica de MadridMadrid, Spain
- Departamento de Ecología y Genética, Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Luis Gil
- Grupo de Investigación en Genética, Fisiología e Historia Forestal, Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de MadridMadrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Universidad Politécnica de MadridMadrid, Spain
| | - Carmen Collada
- Grupo de Investigación en Genética, Fisiología e Historia Forestal, Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de MadridMadrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Universidad Politécnica de MadridMadrid, Spain
| |
Collapse
|
140
|
Yastreb TO, Kolupaev YE, Shvidenko NV, Lugovaya AA, Dmitriev AP. Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s000368381504016x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
141
|
Terrasson E, Darrasse A, Righetti K, Buitink J, Lalanne D, Ly Vu B, Pelletier S, Bolingue W, Jacques MA, Leprince O. Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3737-52. [PMID: 25922487 DOI: 10.1093/jxb/erv167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant pathogenic bacteria disseminate and survive mainly in association with seeds. This study addresses whether seeds are passive carriers or engage a molecular dialogue with pathogens during their development. We developed two pathosystems using Medicago truncatula with Xanthomonas alfalfae subsp. alfalfae (Xaa), the natural Medicago sp. pathogen and Xanthomonas campestris pv. campestris (Xcc), a Brassicaceae pathogen. Three days after flower inoculation, the transcriptome of Xcc-infected pods showed activation of an innate immune response that was strongly limited in Xcc mutated in the type three secretion system, demonstrating an incompatible interaction of Xcc with the reproductive structures. In contrast, the presence of Xaa did not result in an activation of defence genes. Transcriptome profiling during development of infected seeds exhibited time-dependent and differential responses to Xcc and Xaa. Gene network analysis revealed that the transcriptome of Xcc-infected seeds was mainly affected during seed filling whereas that of Xaa-infected seeds responded during late maturation. The Xcc-infected seed transcriptome exhibited an activation of defence response and a repression of targeted seed maturation pathways. Fifty-one percent of putative ABSCISIC ACID INSENSITIVE3 targets were deregulated by Xcc, including oleosin, cupin, legumin and chlorophyll degradation genes. At maturity, these seeds displayed decreased weight and increased chlorophyll content. In contrast, these traits were not affected by Xaa infection. These findings demonstrate the existence of a complex molecular dialogue between xanthomonads and developing seeds and provides insights into a previously unexplored trade-off between seed development and pathogen defence.
Collapse
Affiliation(s)
- Emmanuel Terrasson
- Université d'Angers, Institut de Recherche en Horticulture et Semences, UMR 1345, SFR 4207 QUASAV, 16 Boulevard Lavoisier, F-49045 Angers, France
| | - Armelle Darrasse
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 42 rue Georges Morel, F-49071 Beaucouzé, France
| | - Karima Righetti
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - Julia Buitink
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - David Lalanne
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - Benoit Ly Vu
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences, UMR 1345, 49045 Angers, France
| | - Sandra Pelletier
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - William Bolingue
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 16 Boulevard Lavoisier, F-49045 Angers
| | - Marie-Agnès Jacques
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 42 rue Georges Morel, F-49071 Beaucouzé, France
| | - Olivier Leprince
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences, UMR 1345, 49045 Angers, France
| |
Collapse
|
142
|
Müller A, Kaling M, Faubert P, Gort G, Smid HM, Van Loon JJA, Dicke M, Kanawati B, Schmitt-Kopplin P, Polle A, Schnitzler JP, Rosenkranz M. Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles. BMC PLANT BIOLOGY 2015; 15:165. [PMID: 26122266 PMCID: PMC4486431 DOI: 10.1186/s12870-015-0542-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/05/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chrysomela populi (poplar leaf beetle) is a common herbivore in poplar plantations whose infestation causes major economic losses. Because plant volatiles act as infochemicals, we tested whether isoprene, the main volatile organic compound (VOC) produced by poplars (Populus x canescens), affects the performance of C. populi employing isoprene emitting (IE) and transgenic isoprene non-emitting (NE) plants. Our hypothesis was that isoprene is sensed and affects beetle orientation or that the lack of isoprene affects plant VOC profiles and metabolome with consequences for C. populi feeding. RESULTS Electroantennographic analysis revealed that C. populi can detect higher terpenes, but not isoprene. In accordance to the inability to detect isoprene, C. populi showed no clear preference for IE or NE poplar genotypes in the choice experiments, however, the beetles consumed a little bit less leaf mass and laid fewer eggs on NE poplar trees in field experiments. Slight differences in the profiles of volatile terpenoids between IE and NE genotypes were detected by gas chromatography - mass spectrometry. Non-targeted metabolomics analysis by Fourier Transform Ion Cyclotron Resonance Mass Spectrometer revealed genotype-, time- and herbivore feeding-dependent metabolic changes both in the infested and adjacent undamaged leaves under field conditions. CONCLUSIONS We show for the first time that C. populi is unable to sense isoprene. The detected minor differences in insect feeding in choice experiments and field bioassays may be related to the revealed changes in leaf volatile emission and metabolite composition between the IE and NE poplars. Overall our results indicate that lacking isoprene emission is of minor importance for C. populi herbivory under natural conditions, and that the lack of isoprene is not expected to change the economic losses in poplar plantations caused by C. populi infestation.
Collapse
Affiliation(s)
- Anna Müller
- Büsgen Institute, Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Moritz Kaling
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Patrick Faubert
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Département des Sciences Fondamentales, Chaire en éco-conseil, Université du Québec à Chicoutimi, 555, boul. de l'Université, Chicoutimi, Qc, G7H 2B1, Canada.
| | - Gerrit Gort
- Mathematical and Statistical Methods Group, Wageningen University, P.O. Box 100, 6700 AC, Wageningen, Netherlands.
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Joop J A Van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, NL-6700 EH, Wageningen, Netherlands.
| | - Basem Kanawati
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Andrea Polle
- Büsgen Institute, Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
143
|
Żur I, Dubas E, Krzewska M, Janowiak F. Current insights into hormonal regulation of microspore embryogenesis. FRONTIERS IN PLANT SCIENCE 2015; 6:424. [PMID: 26113852 PMCID: PMC4462098 DOI: 10.3389/fpls.2015.00424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/26/2015] [Indexed: 05/24/2023]
Abstract
Plant growth regulator (PGR) crosstalk and interaction with the plant's genotype and environmental factors play a crucial role in microspore embryogenesis (ME), controlling microspore-derived embryo differentiation and development as well as haploid/doubled haploid plant regeneration. The complexity of the PGR network which could exist at the level of biosynthesis, distribution, gene expression or signaling pathways, renders the creation of an integrated model of ME-control crosstalk impossible at present. However, the analysis of the published data together with the results received recently with the use of modern analytical techniques brings new insights into hormonal regulation of this process. This review presents a short historical overview of the most important milestones in the recognition of hormonal requirements for effective ME in the most important crop plant species and complements it with new concepts that evolved over the last decade of ME studies.
Collapse
Affiliation(s)
- Iwona Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of SciencesKraków, Poland
| | | | | | | |
Collapse
|
144
|
Lin YT, Wei HM, Lu HY, Lee YI, Fu SF. Developmental- and Tissue-Specific Expression of NbCMT3-2 Encoding a Chromomethylase in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2015; 56:1124-43. [PMID: 25745030 DOI: 10.1093/pcp/pcv036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/23/2015] [Indexed: 05/11/2023]
Abstract
The chromomethylase (CMT) protein family is unique to plants and controls non-CpG methylation. Here, we investigated the developmental expression of CMT3-2 in Nicotiana benthamiana (NbCMT3-2) and its significance by analyzing plants with silenced NbCMT3-2 and leaf tissues transiently expressing the N-terminal polypeptide. Alignment of the NbCMT3-2 amino acid sequence with that of other plant CMT3s showed a specific N-terminal extension required for nuclear localization. Transient expression of the N-terminal polypeptide in N. benthamiana resulted in chlorotic lesions. NbCMT3-2 was expressed mainly in proliferating tissues such as the shoot apex and developing leaves. We generated transgenic N. benthamiana harboring a fusion reporter construct linking the NbCMT3-2 promoter region and the β-glucuronidase (GUS) reporter (pNbCMT3-2::GUS) to analyze the tissue-specific expression of NbCMT3-2. NbCMT3-2 was expressed in the shoot and root apical meristem and leaf primordia in young seedlings and highly expressed in developing leaves and ovary as well as lateral buds in mature plants. Virus-induced gene silencing used to knock down the expression of NbCMT3 or NbCMT3-2 or both led to partial loss of genomic DNA methylation. Plants with suppressed NbCMT3 expression grew and developed normally, whereas leaves with NbCMT3-2 knockdown showed mild curling as compared with controls. Silencing NbCMT3/3-2 severely interfered with leaf development and directly or indirectly affected the expression of genes involved in jasmonate homeostasis. The differential roles of NbCMT3 and NbCMT3-2 were investigated and compared. We reveal the expression patterns of NbCMT3-2 in proliferating tissues. NbCMT3-2 may play an essential role in leaf development by modulating jasmonate pathways.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Huei-Mei Wei
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Hsueh-Yu Lu
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| | - Yung-I Lee
- Botany Department, National Museum of Natural Science, No. 1, Guancian Road, Taichung 404, Taiwan
| | - Shih-Feng Fu
- Department of Biology, National Changhua University of Education, No. 1, Jin-De Road, Changhua, 500, Taiwan
| |
Collapse
|
145
|
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. TRENDS IN PLANT SCIENCE 2015; 20:219-29. [PMID: 25731753 DOI: 10.1016/j.tplants.2015.02.001] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/25/2015] [Accepted: 02/01/2015] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) and ethylene (ET), often acting cooperatively, play essential roles in regulating plant defense against pests and pathogens. Recent research reviewed here has revealed mechanistic new insights into the mode of action of these hormones in plant abiotic stress tolerance. During cold stress, JAs and ET differentially regulate the C-repeat binding factor (CBF) pathway. Major JA and ET signaling hubs such as JAZ proteins, CTR1, MYC2, components of the mediator complex, EIN2, EIN3, and several members of the AP2/ERF transcription factor gene family all have complex regulatory roles during abiotic stress adaptation. Better understanding the roles of these phytohormones in plant abiotic stress tolerance will contribute to the development of crop plants tolerant to a wide range of stressful environments.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, Australia; The Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland, Australia.
| |
Collapse
|
146
|
Springer A, Acker G, Bartsch S, Bauerschmitt H, Reinbothe S, Reinbothe C. Differences in gene expression between natural and artificially induced leaf senescence in barley. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:180-91. [PMID: 25637827 DOI: 10.1016/j.jplph.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/24/2014] [Accepted: 01/02/2015] [Indexed: 05/22/2023]
Abstract
Senescence is the last step of leaf development in the life span of an annual plant. Senescence can be induced prematurely by treating leaf tissues with jasmonic acid methyl ester (methyl jasmonate, MeJA). During both senescence programmes, drastic changes occur at the biochemical, cellular and ultra-structural levels that were compared here for primary leaves of barley (Hordeum vulgare L.). Our findings indicate that both types of senescence are similar with respect to the morphological changes including the loss of chlorophyll, disintegration of thylakoids, and formation of plastoglobules. However, the time elapsed for reaching senescence completion was different and ranged from 7 to 8 days for artificially senescing, MeJA-treated plants to 7-8 weeks for naturally senescing plants. Pulse-labelling studies along with RNA and protein gel blot analyses showed differential changes in the expression of both plastid and nuclear genes coding for photosynthetic proteins. Several unique messenger products accumulated in naturally and artificially senescing, MeJA-treated leaves. Detailed expression and crosslinking studies revealed that pheophorbide a oxygenase (PAO), a previously implicated key enzyme of chlorophyll breakdown, is most likely not rate-limiting for chlorophyll destruction under both senescence conditions. Metabolite profiling identified differential changes in the composition of carotenoid derivatives and prenyl-lipids to occur in naturally senescing and artificially senescing plants that underscored the differences between both senescence programmes.
Collapse
Affiliation(s)
- Armin Springer
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Georg Acker
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Sandra Bartsch
- Universität Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | | | - Steffen Reinbothe
- Université Joseph Fourier, LBFA, BP53, F-38041 Grenoble cedex 9, France.
| | | |
Collapse
|
147
|
Transcriptome analysis of thermogenic Arum concinnatum reveals the molecular components of floral scent production. Sci Rep 2015; 5:8753. [PMID: 25736477 PMCID: PMC5390080 DOI: 10.1038/srep08753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/02/2015] [Indexed: 11/09/2022] Open
Abstract
Several plant species can generate enough heat to increase their internal floral temperature above ambient temperature. Among thermogenic plants, Arum concinnatum shows the highest respiration activity during thermogenesis. However, an overall understanding of the genes related to plant thermogenesis has not yet been achieved. In this study, we performed de novo transcriptome analysis of flower organs in A. concinnatum. The de novo transcriptome assembly represented, in total, 158,490 non-redundant transcripts, and 53,315 of those showed significant homology with known genes. To explore genes associated with thermogenesis, we filtered 1266 transcripts that showed a significant correlation between expression pattern and the temperature trend of each sample. We confirmed five putative alternative oxidase transcripts were included in filtered transcripts as expected. An enrichment analysis of the Gene Ontology terms for the filtered transcripts suggested over-representation of genes involved in 1-deoxy-d-xylulose-5-phosphate synthase (DXS) activity. The expression profiles of DXS transcripts in the methyl-d-erythritol 4-phosphate (MEP) pathway were significantly correlated with thermogenic levels. Our results suggest that the MEP pathway is the main biosynthesis route for producing scent monoterpenes. To our knowledge, this is the first report describing the candidate pathway and the key enzyme for floral scent production in thermogenic plants.
Collapse
|
148
|
de los Reyes BG, Mohanty B, Yun SJ, Park MR, Lee DY. Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. RICE (NEW YORK, N.Y.) 2015; 8:14. [PMID: 25844119 PMCID: PMC4385054 DOI: 10.1186/s12284-015-0041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/12/2015] [Indexed: 05/23/2023]
Abstract
Dissecting the upstream regulatory architecture of rice genes and their cognate regulator proteins is at the core of network biology and its applications to comparative functional genomics. With the rapidly advancing comparative genomics resources in the genus Oryza, a reference genome annotation that defines the various cis-elements and trans-acting factors that interface each gene locus with various intrinsic and extrinsic signals for growth, development, reproduction and adaptation must be established to facilitate the understanding of phenotypic variation in the context of regulatory networks. Such information is also important to establish the foundation for mining non-coding sequence variation that defines novel alleles and epialleles across the enormous phenotypic diversity represented in rice germplasm. This review presents a synthesis of the state of knowledge and consensus trends regarding the various cis-acting and trans-acting components that define spatio-temporal regulation of rice genes based on representative examples from both foundational studies in other model and non-model plants, and more recent studies in rice. The goal is to summarize the baseline for systematic upstream sequence annotation of the rapidly advancing genome sequence resources in Oryza in preparation for genus-wide functional genomics. Perspectives on the potential applications of such information for gene discovery, network engineering and genomics-enabled rice breeding are also discussed.
Collapse
Affiliation(s)
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Song Joong Yun
- />Department of Crop Science and Institute of Agricultural Science and Technology, Chonbuk National University, Chonju, 561-756 Korea
| | - Myoung-Ryoul Park
- />School of Biology and Ecology, University of Maine, Orono, ME 04469 USA
| | - Dong-Yup Lee
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| |
Collapse
|
149
|
Sherif S, El-Sharkawy I, Mathur J, Ravindran P, Kumar P, Paliyath G, Jayasankar S. A stable JAZ protein from peach mediates the transition from outcrossing to self-pollination. BMC Biol 2015; 13:11. [PMID: 25857534 PMCID: PMC4364584 DOI: 10.1186/s12915-015-0124-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variations in floral display represent one of the core features associated with the transition from allogamy to autogamy in angiosperms. The promotion of autogamy under stress conditions suggests the potential involvement of a signaling pathway with a dual role in both flower development and stress response. The jasmonic acid (JA) pathway is a plausible candidate to play such a role because of its involvement in many plant responses to environmental and developmental cues. In the present study, we used peach (Prunus persica L.) varieties with showy and non-showy flowers to investigate the role of JA (and JA signaling suppressors) in floral display. RESULTS Our results show that PpJAZ1, a component of the JA signaling pathway in peach, regulates petal expansion during anthesis and promotes self-pollination. PpJAZ1 transcript levels were higher in petals of the non-showy flowers than those of showy flowers at anthesis. Moreover, the ectopic expression of PpJAZ1 in tobacco (Nicotiana tabacum L.) converted the showy, chasmogamous tobacco flowers into non-showy, cleistogamous flowers. Stability of PpJAZ1 was confirmed in vivo using PpJAZ1-GFP chimeric protein. PpJAZ1 inhibited JA-dependent processes in roots and leaves of transgenic plants, including induction of JA-response genes to mechanical wounding. However, the inhibitory effect of PpJAZ1 on JA-dependent fertility functions was weaker, indicating that PpJAZ1 regulates the spatial localization of JA signaling in different plant organs. Indeed, JA-related genes showed differential expression patterns in leaves and flowers of transgenic plants. CONCLUSIONS Our results reveal that under stress conditions – for example, herbivore attacks – stable JAZ proteins such as PpJAZ1 may alter JA signaling in different plant organs, resulting in autogamy as a reproductive assurance mechanism. This represents an additional mechanism by which plant hormone signaling can modulate a vital developmental process in response to stress.
Collapse
Affiliation(s)
- Sherif Sherif
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
- />Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St, PO Box 22516, Damanhour, Al-Behira Egypt
| | - Islam El-Sharkawy
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
- />Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St, PO Box 22516, Damanhour, Al-Behira Egypt
| | - Jaideep Mathur
- />Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Pratibha Ravindran
- />Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543 Singapore
| | - Prakash Kumar
- />Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore, 117543 Singapore
| | - Gopinadhan Paliyath
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Subramanian Jayasankar
- />Vineland Research Station, Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON L0R 2E0 Canada
| |
Collapse
|
150
|
Bektas Y, Eulgem T. Synthetic plant defense elicitors. FRONTIERS IN PLANT SCIENCE 2015; 5:804. [PMID: 25674095 PMCID: PMC4306307 DOI: 10.3389/fpls.2014.00804] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/22/2014] [Indexed: 05/18/2023]
Abstract
To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.
Collapse
Affiliation(s)
- Yasemin Bektas
- Center for Plant Cell Biology, Institute for Integrative Genome Biology – Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
- Department of Biology, Faculty of Arts and Science, Gaziosmanpasa UniversityTokat, Turkey
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute for Integrative Genome Biology – Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
| |
Collapse
|