101
|
Trotter A, Ebsen M, Kiossis E, Meggle S, Kueppers E, Beyer C, Pohlandt F, Maier L, Thome UH. Prenatal estrogen and progesterone deprivation impairs alveolar formation and fluid clearance in newborn piglets. Pediatr Res 2006; 60:60-4. [PMID: 16690946 DOI: 10.1203/01.pdr.0000220360.77567.d8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exposure to high levels of estradiol (E2) and progesterone (P) derived from the fetoplacentomaternal unit during the last trimester of pregnancy may play a crucial role in prenatal lung development and immediate postnatal alveolar fluid clearance (AFC). To measure prenatal alveolar formation and postnatal amiloride-sensitive AFC after pharmacological deprivation of E2 and P in utero, fetuses from five sows received an intramuscular depot injection of the E2 receptor blocker ICI 182.780 (ICI) and the P receptor blocker RTI 3021-022 (RTI) and fetuses of five other sows received a placebo injection (control group) during a laparotomy at 90 d of gestation (term gestation, 115 d). Piglets were delivered by cesarean section on d 114 of gestation. Of 95 live-born piglets, 35 were mechanically ventilated. The airways of the right lower lobe were isolated by a balloon catheter wedged in the bronchus and 5% albumin in 0.9% NaCl with or without 1 mmol/L amiloride was instilled. Amiloride-sensitive AFC was calculated from the protein concentration changes in fluid recovered after 120 min as the percentage of absorbed fluid. Lungs were removed under standardized conditions to perform alveolar counts. Prenatal treatment with ICI and RTI resulted in a significantly lower amiloride-sensitive AFC (median, 31%; min-max, -4-58) than placebo (74%, 18-231). Median alveolar counts per visual field were significantly lower in piglets that were exposed to ICI and RTI (38, 21-78) compared with placebo (56, 32-113). We conclude that prenatal E2 and P deprivation significantly impaired alveolar formation and amiloride-sensitive AFC.
Collapse
Affiliation(s)
- Andreas Trotter
- Division of Neonatology and Pediatric Critical Care Medicine, University of Ulm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
|
103
|
Chen HP, Fan J, Cui S. Detection and estrogen regulation of leptin receptor expression in rat dorsal root ganglion. Histochem Cell Biol 2006; 126:363-9. [PMID: 16708246 DOI: 10.1007/s00418-006-0170-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
Leptin receptor (OB-R) is a polypeptide consisting of a single transmembrane-spanning component. OB-R widely distributes in various tissues, including the peripheral nervous system (PNS). However, there is no data about the expression of OB-R in the dorsal root ganglion (DRG). In the present study, we first detected the expressions of OB-R protein and mRNA in the rat DRG using the methods of immunohistochemistry, western blot and reverse transcriptase polymerase chain reaction (RT-PCR). Estrogen is known to influence different functions on the DRG. In this study, we observed that 17beta-estradiol (E(2)) can increase the expressions of OB-R protein and mRNA (P<0.05) in ovariectomized rat DRG and these actions can be prevented by tamoxifen which is a specific estrogen receptors (ERs) antagonist. In addition, the results of dual labeling of OB-R with the two ER isoforms, ERalpha and ERbeta indicate that 100% colocalization of ERalpha with OB-R and about 15% colocalization of ERbeta with OB-R in DRG neurons. These results indicate that OB-R is expressed in the rat DRG and E(2) may up-regulate the expression of the OB-R protein and mRNA in an ERalpha-dependent way.
Collapse
Affiliation(s)
- Hong Ping Chen
- Department of Animal Physiology, College of Biological Sciences, China Agricultural University, 100094, Beijing, People's Republic of China
| | | | | |
Collapse
|
104
|
DiMeo AN, Wood RI. Self-administration of estrogen and dihydrotestosterone in male hamsters. Horm Behav 2006; 49:519-26. [PMID: 16388806 DOI: 10.1016/j.yhbeh.2005.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/03/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
Anabolic-androgenic steroids (AAS) are drugs of abuse. Previous studies have shown that male and female hamsters self-administer testosterone (T) and other AAS, suggesting that androgens are reinforcing in a context where athletic performance is irrelevant. AAS are synthetic derivatives of T, which may be aromatizable to estrogen and/or reducible to dihydrotestosterone (DHT). However, we do not know which metabolites of T are reinforcing. To determine if DHT, estradiol (E(2)), or DHT + E(2) are reinforcing, we tested intracerebroventricular (icv) self-administration in male hamsters. The hypothesis was that androgen reinforcement is sensitive to both androgenic and estrogenic T metabolites. If so, hamsters would self-administer DHT, E(2), and DHT + E(2). Twenty four castrated male hamsters (n = 8/group) received icv cannulas and sc T implants for physiologic androgen replacement. One week later, hamsters self-administered DHT (0.1, 1.0, 2.0 microg/microl), E(2) (0.001, 0.01, 0.02 microg/microl), or DHT + E(2), each for 8 days in increasing concentration (4 h/day). Operant chambers were equipped with an active and inactive nose-poke. At the medium concentration, hamsters self-administered DHT (active nose-poke: 47.9 +/- 13.9 responses/4 h vs. inactive: 18.7 +/- 4.8), E(2) (active: 44.8 +/- 14.9 vs. inactive: 16.6 +/- 2.6), and DHT + E(2) (active: 19.1 +/- 2.4 vs. inactive: 10.4 +/- 2.4, P < 0.05). At the highest concentration, males self-administered DHT (active: 28.3 +/- 7.7 vs. inactive: 15.0 +/- 3.5, P < 0.05) and DHT + E(2) (active: 22.6 +/- 3.8 vs. inactive: 11.6 +/- 2.5, P < 0.05), but not E(2). Hamsters did not self-administer the lowest concentrations of DHT, E(2), or DHT + E(2). These results support our hypothesis that both androgenic and estrogenic T metabolites are reinforcing. Together, they do not exert synergistic effects.
Collapse
Affiliation(s)
- Anita N DiMeo
- Neuroscience Program, Department of Cell and Neurobiology, Keck School of Medicine at the University of Southern California, 1333 San Pablo St., BMT 401, 90033, USA
| | | |
Collapse
|
105
|
Prange-Kiel J, Rune GM. Direct and indirect effects of estrogen on rat hippocampus. Neuroscience 2006; 138:765-72. [PMID: 16324798 DOI: 10.1016/j.neuroscience.2005.05.061] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 05/31/2005] [Indexed: 11/26/2022]
Abstract
Estrogen-induced synaptic plasticity was frequently shown by an increase of spines at apical dendrites of CA1 pyramidal neurons after systemic application of estradiol to ovariectomized rats. Recent findings question this direct endocrine regulation of synaptogenesis by estradiol. We have shown, for the first time, that estrogens are synthesized de novo in rat hippocampal neurons. By using letrozole, an inhibitor of aromatase, estradiol levels in hippocampal dispersion cultures as well as in hippocampal slice cultures were significantly suppressed. Letrozole treatment resulted in a significant decrease in the density of spines and spine synapses and in the number of presynaptic boutons. Quantitative immunohistochemistry revealed a dose-dependent downregulation of spinophilin, a spine marker, and of synaptophysin, a presynaptic marker, in the hippocampus. Surprisingly, exogenous application of estradiol to the cultures had no effect. Indirect effects of estrogens, mediated via subcortical nuclei, may help to explain this phenomenon. Implantation of estrogen-filled cannulae into the median raphe, which projects to the hippocampus, resulted in a significant increase in spine density in the hippocampus after seven days of treatment. This increase was paralleled by a decrease in the density of serotonergic innervation of the strata lacunosum moleculare and radiatum of the CA1 region. Apart from direct endocrine mechanisms our findings suggest that estradiol-induced spinogenesis in the hippocampus is also mediated by indirect mechanisms and is furthermore regulated endogenously, in a paracrine manner.
Collapse
Affiliation(s)
- J Prange-Kiel
- Institute of Anatomy I: Cellular Neurobiology, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Germany
| | | |
Collapse
|
106
|
Fragkouli A, Stamatakis A, Zographos E, Pachnis V, Stylianopoulou F. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function. Neuroscience 2005; 137:1153-64. [PMID: 16338089 DOI: 10.1016/j.neuroscience.2005.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 10/21/2005] [Accepted: 10/25/2005] [Indexed: 11/20/2022]
Abstract
It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia.
Collapse
Affiliation(s)
- A Fragkouli
- Laboratory of Biology-Biochemistry, Department of Basic Sciences, Faculty of Nursing, University of Athens, 123 Papadiamantopoulou str, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|
107
|
Isgor C, Watson SJ. Estrogen receptor alpha and beta mRNA expressions by proliferating and differentiating cells in the adult rat dentate gyrus and subventricular zone. Neuroscience 2005; 134:847-56. [PMID: 15994024 DOI: 10.1016/j.neuroscience.2005.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 04/19/2005] [Accepted: 05/11/2005] [Indexed: 11/18/2022]
Abstract
Numerous factors modulate neurogenesis in the adult dentate gyrus and subventricular zone, but it is often not clear if the modulation is mediated by direct effects on the proliferating and differentiating cells or secondary to effects on other cells. Also, while some factors selectively affect neurogenesis in one of the neurogenetic zones, it is not clear how selectivity is achieved. Estrogen is a hormonal modulator of neurogenesis. To address the issues of direct versus indirect control and regional specificity we investigated the colocalization of immunoreactivity for a proliferating cell marker, Ki-67, and a marker for migrating and differentiating cells with a neuronal phenotype, doublecortin, with the expressions of mRNA for estrogen receptors alpha and beta. We found an extensive colocalization of estrogen receptor alpha with both markers in the dentate gyrus and only with Ki-67 in the subventricular zone. An extensive colocalization of estrogen receptor beta with both markers was found in the dentate gyrus, but only a few Ki-67-immunoreactive and no doublecortin-immunoreactive cells of the subventricular zone expressed estrogen receptor beta mRNA. Estrogen receptor alpha and beta mRNAs were not expressed in other telencephalic Ki-67-immunoreactive cells or in constitutively doublecortin-immunoreactive cells of the piriform cortex. The extensive colocalization of immunoreactive markers for cell proliferation and differentiation with mRNAs for estrogen receptor alpha and estrogen receptor beta points to the direct modulation of dentate cell proliferation, differentiation and survival by estrogen, while direct effects of estrogen in the subventricular zone appear restricted to estrogen receptor alpha-mediated effects operating at the time of cell proliferation.
Collapse
Affiliation(s)
- C Isgor
- Department of Biomedical Science, Charles E. Schmidt Biomedical Center, Florida Atlantic University, Boca Raton, FL 33431-0991, USA.
| | | |
Collapse
|
108
|
Pawlak J, Brito V, Küppers E, Beyer C. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. ACTA ACUST UNITED AC 2005; 138:1-7. [PMID: 15896872 DOI: 10.1016/j.molbrainres.2004.10.043] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/11/2004] [Accepted: 10/24/2004] [Indexed: 11/18/2022]
Abstract
Estrogen influences neuronal development and a broad spectrum of neural functions. In addition, several lines of evidence suggest a role as neuroprotective factor for estrogen in the CNS. Neuroprotection can result from direct estrogen-neuron interactions or be mediated indirectly involving the regulation of physiological properties of nonneuronal cells, such as astrocytes and microglia. Increased l-glutamate levels are associated with neurotoxic and neurodegenerative processes in the brain. Thus, the removal of l-glutamate from the extracellular space by astrocytes through the astroglial glutamate transporters GLT-1 and GLAST appears essential for maintaining a homeostatic milieu for neighboring neurons. We have therefore studied the influence of 17beta-estradiol on l-glutamate metabolism in cultured astrocytes from the neonate mouse midbrain using quantitative RT-PCR and Western blotting for both transporters as well as functional l-glutamate uptake studies. The administration of estrogen significantly increased the expression of GLT-1 and GLAST on the mRNA and protein level. Likewise, specific l-glutamate uptake by astrocytes was elevated after estrogen exposure and mimicked by dbcAMP stimulation. Induction of transporter expression and l-glutamate uptake were sensitive to ICI 182,780 treatment suggesting estrogen action through nuclear estrogen receptors. These findings indicate that estrogen can prevent l-glutamate-related cell death by decreasing extracellular l-glutamate levels through an increased l-glutamate uptake capacity by astrocytes.
Collapse
Affiliation(s)
- Justyna Pawlak
- Anatomisches Institut, Universität Tübingen, Osterbergstr. 3, 72074 Tübingen, Germany
| | | | | | | |
Collapse
|
109
|
McCaffery P, Deutsch CK. Macrocephaly and the control of brain growth in autistic disorders. Prog Neurobiol 2005; 77:38-56. [PMID: 16280193 DOI: 10.1016/j.pneurobio.2005.10.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/29/2005] [Accepted: 10/05/2005] [Indexed: 01/17/2023]
Abstract
Autism is a childhood-onset neuropsychiatric disorder characterized by marked impairments in social interactions and communication, with restricted stereotypic and repetitive patterns of behavior, interests, and activities. Genetic epidemiology studies indicate that a strong genetic component exists to this disease, but these same studies also implicate significant environmental influence. The disorder also displays symptomatologic heterogeneity, with broad individual differences and severity on a graded continuum. In the search for phenotypes to resolve heterogeneity and better grasp autism's underlying biology, investigators have noted a statistical overrepresentation of macrocephaly, an indicator of enlarged brain volume. This feature is one of the most widely replicated biological findings in autism. What then does brain enlargement signify? One hypothesis invoked for the origin of macrocephaly is a reduction in neuronal pruning and consolidation of synapses during development resulting in an overabundance of neurites. An increase in generation of cells is an additional mechanism for macrocephaly, though it is less frequently discussed in the literature. Here, we review neurodevelopmental mechanisms regulating brain growth and highlight one underconsidered potential causal mechanism for autism and macrocephaly--an increase in neurogenesis and/or gliogenesis. We review factors known to control these processes with an emphasis on nuclear receptor activation as one signaling control that may be abnormal and contribute to increased brain volume in autistic disorders.
Collapse
|
110
|
Amantea D, Russo R, Bagetta G, Corasaniti MT. From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens. Pharmacol Res 2005; 52:119-32. [PMID: 15967377 DOI: 10.1016/j.phrs.2005.03.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 03/14/2005] [Indexed: 11/15/2022]
Abstract
Recent studies have highlighted that female sex hormones represent potential neuroprotective agents against damage produced by acute and chronic injuries in the adult brain. Clinical reports have documented the effectiveness of estrogens to attenuate symptoms associated with Parkinson's disease, and to reduce the risk of Alzheimer's disease and cerebrovascular stroke. This evidence is corroborated by numerous experimental studies documenting the protective role of female sex hormones both in vitro and in vivo. Accordingly, estrogens have been shown to promote survival and differentiation of several neuronal populations maintained in culture, and to reduce cell death associated with excitotoxicity, oxidative stress, serum deprivation or exposure to beta-amyloid. The neuroprotective effects of estrogens have been widely documented in animal models of neurological disorders, such as Alzheimer's and Parkinson's diseases, as well as cerebral ischemia. Although estrogens are known to exert several direct effects on neurones, the cellular and molecular mechanisms implicated in their protective actions on the brain are not completely understood. Thus, on the basis of clinical and experimental evidence, in this review, we discuss recent findings concerning the neuronal effects of estrogens that may contribute to their neuroprotective actions. Both estrogen receptor-dependent and -independent mechanisms will be described. These include modulation of cell death regulators, such as Bcl-2, Akt and calpain, as well as interaction with growth factors, such as BDNF, NGF, IGF-I and their receptors. The anti-inflammatory effects of estrogens will also be described, namely their ability to reduce brain levels of inflammatory mediators, cytokines and chemokines. Finally, a brief overview about receptor-independent mechanisms of neuroprotection will aim at describing the antioxidant effects of estrogens, as well as their ability to modulate neurotransmission.
Collapse
Affiliation(s)
- Diana Amantea
- Department of Pharmacobiology, University of Calabria, Via P. Bucci, Ed. Polifunzionale, Arcavacata di Rende (CS), Italy
| | | | | | | |
Collapse
|
111
|
Viso-León MC, Ripoll C, Nadal A. Oestradiol rapidly inhibits Ca2+ signals in ciliary neurons through classical oestrogen receptors in cytoplasm. Pflugers Arch 2005; 449:33-41. [PMID: 15258764 DOI: 10.1007/s00424-004-1308-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oestrogen plays a key role in a great variety of actions in the nervous system, either through classical or alternative pathways. The classical pathways are initiated after oestrogen binding to the oestrogen receptors ERalpha or ERbeta, which translocate from the cytoplasm to the nucleus and act there as transcription factors. Alternative pathways are initiated at the plasma membrane and cytoplasm, via binding to classical or non-classical ERs. Using isolated ciliary ganglion neurons from the chick embryo and Ca2+ imaging, we demonstrated that a 10-min exposure to 17beta-oestradiol reduces Ca2+ influx through the plasma membrane. This effect was not reproduced by oestradiol conjugated to bovine serum albumin, which does not cross the plasma membrane, indicating that 17beta-oestradiol was acting intracellularly. ERalpha was detected in the cytoplasm by immunostaining and its involvement in the regulation of Ca2+ influx by ICI182,780 inhibition. The phosphatidylinositol-3 kinase (Pi3-kinase) inhibitor wortmannin and the nitric oxide synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) both blocked the oestradiol effect. The oestradiol effect was reproduced by 8Br-cGMP and abolished in the presence of the cGMP-dependent protein kinase (PKG) inhibitor KT5823. Our study indicates that 17beta-oestradiol can regulate Ca2+ influx via PI3-kinase, NOS and PKG after activation of cytoplasmic ER.
Collapse
Affiliation(s)
- M Carmen Viso-León
- Institut de Bioenginyeria, Universitat Miguel Hernández d'Elx, Campus de Sant Joan, Carretera Alacant-Valéncia Km 87, 03550 Sant Joan d'Alacant, Spain
| | | | | |
Collapse
|
112
|
Riaz SS, Bradford HF. Factors involved in the determination of the neurotransmitter phenotype of developing neurons of the CNS: Applications in cell replacement treatment for Parkinson's disease. Prog Neurobiol 2005; 76:257-78. [PMID: 16256257 DOI: 10.1016/j.pneurobio.2005.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 06/07/2005] [Accepted: 08/04/2005] [Indexed: 02/08/2023]
Abstract
The developmental stages involved in the conversion of stem cells to fully functional neurons of specific neurotransmitter phenotype are complex and not fully understood. Over the past decade many studies have been published that demonstrate that in vitro manipulation of the epigenetic environment of the stem cells allows experimental control of final neuronal phenotypic choice. This review presents the evidence for the involvement of a number of endogenous neurobiochemicals, which have been reported to potently influence DAergic (and other neurotransmitter) phenotype expression in vitro. They act at different stages on the pathway to neurotransmitter phenotype determination, and in different ways. Many are better known for their involvement in other aspects of development, and in other biochemical roles. Their proper place, and precise roles, in neurotransmitter phenotype determination in vivo will no doubt be determined in the future. Meanwhile, considerable medical benefits are offered from producing large, long-term, viable cryostores of self-regenerating multipotential neural precursor cells (i.e., brain stem cells), which can be used for cell replacement therapies in the treatment of degenerative brain diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- S S Riaz
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Biochemistry Building, South Kensington Campus, Imperial College Road, SW7 2AZ London, UK
| | | |
Collapse
|
113
|
Pawlak J, Karolczak M, Krust A, Chambon P, Beyer C. Estrogen receptor-alpha is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia 2005; 50:270-5. [PMID: 15712205 DOI: 10.1002/glia.20162] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Estrogens influence CNS development and a broad spectrum of neural functions. Several lines of evidence also suggest a neuroprotective role for estrogen. Different modes of estrogen action have been described at the cellular level involving classical nuclear estrogen receptor (ER)-dependent and nonclassical membrane ER-mediated rapid signaling. We have previously shown that nonclassical estrogen signaling is implicated in the control of dopamine cell function and protection. Since nonclassical interactions between estrogens and glia may contribute to these effects, our aim was to demonstrate the presence of membrane-associated ERs and their putative coupling to intracellular signaling pathways in astrocytes. Confocal image analysis and fluorescence-activated cell sorting (FACS) studies indicated the attachment of ER-alpha but not ER-beta to the plasma membrane of astrocytes. ERs were located in the cell soma region and glial processes. FACS analysis revealed that only a subpopulation of midbrain astrocytes possesses membrane ER-alpha. In FACS studies on ER-alpha knockout astrocytes, only a few membrane ER-positive cells were detected. The activation of membrane ERs appears to be coupled to the MAP-kinase/Src signaling pathway as shown by Western blotting. In conclusion, our data provide good evidence that nonclassical estrogen action in astrocytes is mediated by membrane ER-alpha. The physiological consequence of this phenomenon is not yet understood, but it might have a pivotal role in estrogen-mediated protective effects on midbrain dopamine neurons.
Collapse
Affiliation(s)
- Justyna Pawlak
- Anatomisches Institut, Universität Tübingen, D-72047 Tübingen, Germany
| | | | | | | | | |
Collapse
|
114
|
Pellegrini E, Menuet A, Lethimonier C, Adrio F, Gueguen MM, Tascon C, Anglade I, Pakdel F, Kah O. Relationships between aromatase and estrogen receptors in the brain of teleost fish. Gen Comp Endocrinol 2005; 142:60-6. [PMID: 15862549 DOI: 10.1016/j.ygcen.2004.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 12/08/2004] [Accepted: 12/13/2004] [Indexed: 11/18/2022]
Abstract
Teleost fish are known for exhibiting a high aromatase activity mainly due to the expression of the cyp19b gene, encoding aromatase B (AroB). Recent studies based on both in situ hybridization and immunohistochemistry have demonstrated in three different species that this activity is restricted to radial glial cells. In agreement with measurements of aromatase activity, such aromatase-expressing cells are more abundant in the telencephalon, preoptic area, and mediobasal hypothalamus, although positive cells are also found in the midbrain and hindbrain. Comparative distribution of AroB and estrogen receptor (ERalpha, ERbeta1, and ERbeta2) expression indicates that the preoptic region and hypothalamus are major target for locally produced estradiol (E2) which is likely involved in controlling expression of genes implicated in neuroendocrine regulations. However, AroB and ER have never been reported to be co-expressed in the same cells which is intriguing given that, at least in some species, AroB is strongly up-regulated by E2 itself in agreement with the presence of an estrogen-responsive element (ERE) in the proximal promoter of the cyp19b gene. In vivo data in zebrafish have shown that E2 up-regulates AroB only in radial glial cells. This is in agreement with in vitro transfection experiments indicating that this ERE is functional, but not sufficient, as the E2 regulation of AroB only occurs in glial cell contexts, suggesting a cooperation between ER and so far unidentified glial-specific factors. These data also suggest that radial glial cells may express low amounts of ER that escaped detection until now. The expression of AroB in radial cells, well known for their roles in neurogenesis and now considered as progenitor cells, suggests that local E2 production within these cells could influence the well-documented capacity of the brain of teleosts to grow during adulthood.
Collapse
Affiliation(s)
- Elisabeth Pellegrini
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Pawlak J, Beyer C. Developmental expression of MNAR mRNA in the mouse brain. Cell Tissue Res 2005; 320:545-9. [PMID: 15846512 DOI: 10.1007/s00441-005-1090-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
During the development of the central nervous system, estrogen influences cellular differentiation and determines the functional connectivity of distinct neural networks. Estrogens generally act through nuclear estrogen receptors (ERs). Recent research has additionally revealed rapid estrogen effects requiring the binding of estrogen to membrane/cytoplasmic ERs and the activation of intracellular signaling systems such as the Src/MAPK cascade. The scaffold protein MNAR/PELP1 appears to be the designated functional mediator of such non-genomic estrogen effects between non-nuclear ERs and Src/MAPKs. In this study, we demonstrate the expression and differential regulation of MNAR mRNA in the developing male and female mouse brain by quantitative polymerase chain reaction. In the midbrain and hypothalamus, a gradual decline in MNAR mRNA levels has been observed prenatally with the highest values at embryonic day 15 and lowest at postnatal day 15. In the cortex, mRNA levels do not fluctuate until postnatal day 7 but decrease thereafter. No differences in MNAR expression between sexes have been detected. Analysis of neuronal and astroglia-enriched cell cultures has revealed the presence of MNAR in both cell types.
Collapse
Affiliation(s)
- Justyna Pawlak
- Anatomisches Institut, Universität Tübingen, Osterbergstrasse 3, 72074, Tübingen, Germany
| | | |
Collapse
|
116
|
Viglietti-Panzica C, Montoncello B, Mura E, Pessatti M, Panzica G. Organizational effects of diethylstilbestrol on brain vasotocin and sexual behavior in male quail. Brain Res Bull 2005; 65:225-33. [PMID: 15811585 DOI: 10.1016/j.brainresbull.2004.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Japanese quail, we previously described a sexual dimorphism of the parvocellular vasotocin system of the limbic region that, as the reproductive behavior, is steroid-sensitive and is organized during embryonic life by the exposure to estradiol. We verified in this study whether diethylstilbestrol, a chemical xenoestrogen, has analogous organizational effects on the vasotocin system of limbic regions and on copulatory behavior of male Japanese quail. We injected in the yolk sac of 3 day-old quail embryos diethylstilbestrol or estradiol benzoate (a treatment which suppresses male copulatory behavior in adulthood and reduces vasotocin innervation), or sesame oil (control). No further hormonal manipulations were performed after hatching. Sexual behavior was recorded in males at the age of 6 weeks. Estradiol- and diethylstilbestrol-treated males exhibited a total suppression of copulatory behavior. After behavioral tests, all males were sacrificed and brain sections processed for vasotocin immunocytochemistry. Significant decrease in the density of vasotocin immunoreactivity was detected in the medial preoptic nucleus, in the bed nucleus of stria terminalis, and in the lateral septum of diethylstilbestrol-treated males. The magnocellular vasotocin neurons were, in contrast, not affected. In conclusion, the present data demonstrate that embryonic treatment with diethylstilbestrol induces a full sex reversal of behavioral phenotype as well as a significant decrease of vasotocin expression in the preoptic-limbic region in male Japanese quail. Therefore, the parvocellular vasotocin system could represent an optimal model to investigate the effects of pollutants on neural circuits controlling reproductive functions.
Collapse
Affiliation(s)
- Carla Viglietti-Panzica
- Laboratory of Neuroendocrinology, Rita Levi Montalcini Center for Brain Repair, Department of Anatomy, University of Torino, Corso M. D'Azeglio 52, I-10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
117
|
Liu J, Chen D, Goldstein RS, Cui S. Effects of male and female sex steroids on the development of normal and the transient Froriep's dorsal root ganglia of the chick embryo. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 155:14-25. [PMID: 15763271 DOI: 10.1016/j.devbrainres.2004.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 12/08/2004] [Accepted: 12/09/2004] [Indexed: 11/16/2022]
Abstract
Sex steroids can influence developmental processes and support the survival of neurons in the embryonic central nervous system. Recent studies have shown that estrogen receptors are also expressed in the peripheral nervous system, in the dorsal root ganglia (DRG) of chick embryos. However, no studies have examined the effects of sex steroids on development of embryonic DRG. In the present study, 0.2 microg, 1.0 microg, 5.0 microg 10 microg, 20 microg, 25 microg, and 40 microg doses of testosterone or estradiol were delivered to chick embryos at Hamburger and Hamilton stage 18 (E3). The actions of these doses of sex steroids on the development of the C5DRG (fifth cervical ganglion, a "normal" DRG) and C2DRG (a transient ganglion known as a "Froriep's DRG") were then evaluated by quantifying ganglionic volumes, cell number, proliferation, and apoptosis after 1 day of growth to stage 23. We found that both testosterone and estradiol promoted proliferation of cells in both normal DRG and the Froriep's ganglia. By contrast, estradiol significantly increased the number of apoptotic cells, while testosterone strongly inhibited apoptosis. These actions of sex steroids on DRG development were dose-dependent, and C5DRG and C2DRG showed different sensitivities to the applied sex steroids. In addition, the present results demonstrated that specific ER and AR inhibitors (tamoxifen and flutamide) did not influence the effects of 5 microg E2 and 5 microg T on C2 and C5DRG significantly. These results demonstrate that male and female sex steroids can modulate DRG development through an epigenetic mechanism, as had been shown for the central nervous system.
Collapse
Affiliation(s)
- Jiali Liu
- College of Biological Sciences, China Agricultural University, Beijing, 100094, PR China
| | | | | | | |
Collapse
|
118
|
Behan M, Thomas CF. Sex hormone receptors are expressed in identified respiratory motoneurons in male and female rats. Neuroscience 2005; 130:725-34. [PMID: 15590155 DOI: 10.1016/j.neuroscience.2004.09.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2004] [Indexed: 11/30/2022]
Abstract
Sex hormones including estrogen, progesterone and testosterone can influence breathing. However, it is not clear whether such hormones exert their effects directly on respiratory motoneurons. We used immunocytochemistry to demonstrate that estrogen receptor alpha, estrogen receptor beta and androgen receptor are localized in respiratory motor neurons. Motoneurons in the hypoglossal (XII) and the phrenic nuclei were retrogradely labeled from the tongue and the diaphragm respectively. Double-label fluorescence immunocytochemistry was used to show that sex hormone receptors are present in respiratory motoneurons of both male and female rats. These data suggest that in male and female rats, sex hormones can modulate the output of respiratory motoneurons directly.
Collapse
Affiliation(s)
- M Behan
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA.
| | | |
Collapse
|
119
|
D'Astous M, Morissette M, Di Paolo T. Effect of estrogen receptor agonists treatment in MPTP mice: evidence of neuroprotection by an ER alpha agonist. Neuropharmacology 2005; 47:1180-8. [PMID: 15567427 DOI: 10.1016/j.neuropharm.2004.08.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 07/27/2004] [Accepted: 08/17/2004] [Indexed: 11/28/2022]
Abstract
Beneficial effects of 17 beta-estradiol (17 beta-E(2)) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced striatal dopamine (DA) depletion are well documented but the mechanisms implicated are poorly understood. The present experiments investigated the effect of estrogen receptor (ER) agonists treatment in MPTP mice as compared to 17 beta-E(2). The agonists specific for each subtype were 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)tris-phenol (PPT) (ER alpha agonist), 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and Delta 3-diol (5-androsten-3 beta, 17 beta-diol, also known as 5-androstenediol, androstenediol or hermaphrodiol) (ER beta agonists). Biogenic amines were assayed by HPLC with electrochemical detection. 8 mg/kg of MPTP was administered to give a moderate depletion of striatal DA and its metabolite dihydroxyphenylacetic acid (DOPAC). Protection against MPTP-induced striatal DA and DOPAC depletion was obtained with PPT and 17 beta-E(2) but not with DPN or Delta 3-diol. The striatal dopamine transporter (DAT) was assayed by autoradiography with [(125)I]RTI-121-specific binding. A positive and significant correlation was observed between striatal DA concentrations and [(125)I]RTI-121-specific binding, suggesting that estrogenic treatment that prevented the MPTP-induced DA depletion also prevented loss of DAT. The effect of PPT suggests the implication of an ER alpha in the estrogenic neuroprotection against MPTP. Pointing out which ER is implicated in neuroprotection becomes helpful in designing more specific estrogenic drugs for protection of the aging brain.
Collapse
Affiliation(s)
- Myreille D'Astous
- Molecular Endocrinology and Oncology Research Center, Laval University Medical Center, CHUL, 2705 Laurier Boulevard, Quebec City, Que. G1V 4G2, Canada
| | | | | |
Collapse
|
120
|
Correia HR, Balseiro SC, de Areia ML. Are genes of human intelligence related to the metabolism of thyroid and steroids hormones? – Endocrine changes may explain human evolution and higher intelligence. Med Hypotheses 2005; 65:1016-23. [PMID: 16122877 DOI: 10.1016/j.mehy.2005.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
We propose the hypothesis that genes of human intelligence are related with metabolism of thyroid and steroids hormones, which have a crucial role in brain development and function. First, there is evidence to support the idea that during hominid evolution small genetic differences were related with significant endocrine changes in thyroid and steroids hormones. Second, these neuroactive hormones are also related with unique features of human evolution such as body and brain size increase, penis and breast enlargement, pelvic sexual dimorphism, active sexuality, relative lack of hair and higher longevity. Besides underling many of the differences between humans and great apes, steroids hormones promote brain growth and development, are important in the myelination process, explain sexual dimorphisms in brain and intelligence and improve specific cognitive abilities in humans. Supporting our hypothesis, recent studies indicate differences in neuroactive hormones metabolism between humans and non-human primates. Furthermore, a link between X chromosome genes and sex steroids may explain why the frequency of genes affecting intelligence is so high on the X chromosome. This association suggests that, during hominid evolution, there was a positive feedback in both sexes on the same genes responsible for secondary sexual character development and intelligence. This interaction leads to acceleration of development of human brain and intelligence. Finally, we propose that neuroactive hormone therapy may provide significant improvement in some cognitive deficits in all stages of human life and in cases of neurodegenerative diseases. However, further investigation is needed, mainly in the enzymatic machinery, in order to understand the direct role of these hormones in intelligence.
Collapse
Affiliation(s)
- H R Correia
- Department of Anthropology, University of Coimbra, Rua Paulo Quintela, 329, Lote 7, 3A. 3030 393 Coimbra, Portugal.
| | | | | |
Collapse
|
121
|
Rune GM, Frotscher M. Neurosteroid synthesis in the hippocampus: Role in synaptic plasticity. Neuroscience 2005; 136:833-42. [PMID: 16344155 DOI: 10.1016/j.neuroscience.2005.03.056] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 03/10/2005] [Accepted: 03/13/2005] [Indexed: 11/21/2022]
Abstract
Neurosteroids are still found in the brain after steroidogenic glands were removed, indicating that they are synthesized either de novo or from endogenous precursors by enzymes present in the CNS. In fact, steroidogenic acute regulatory protein, and aromatase, two molecules essential for estrogen synthesis, are expressed in the hippocampus. We recently showed, for the first time, that estrogens are synthesized de novo in hippocampal neurons and that these hippocampus-derived estrogens are essential for synaptic plasticity. Both estrogen receptor isoforms, estrogen receptor alpha and estrogen receptor beta, are expressed in the hippocampus, and estradiol treatment of the cultures leads to an upregulation of estrogen receptor alpha. This finding confirmed the presence of functional estrogen receptors in hippocampal neurons and showed the responsiveness of the cultured hippocampal neurons to estradiol. By using letrozole, an inhibitor of aromatase, estradiol levels in hippocampal dispersion cultures as well as in hippocampal slice cultures were significantly suppressed which in turn led to a downregulation of estrogen receptor alpha. Letrozole treatment was followed by a significant decrease in the density of spines and spine synapses and in the number of presynaptic boutons. Quantitative immunohistochemistry revealed a dose-dependent downregulation of spinophilin, a spine marker, and of synaptophysin, a presynaptic marker, and of growth-associated protein 43 after letrozole treatment. Our data provide strong evidence for estrogens being potent modulators of structural synaptic plasticity and point to a paracrine rather than endocrine mechanism of estrogen action in the hippocampus.
Collapse
Affiliation(s)
- G M Rune
- Institute of Anatomy I: Cellular Neurobiology, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.
| | | |
Collapse
|
122
|
Menuet A, Pellegrini E, Brion F, Gueguen MM, Anglade I, Pakdel F, Kah O. Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. J Comp Neurol 2005; 485:304-20. [PMID: 15803511 DOI: 10.1002/cne.20497] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Compared with adult mammals, the brain of teleost fish is characterized by an extremely high capacity to aromatize androgens into estrogens, and this metabolic activity results from the expression of a specific brain aromatase (AroB) generated by the cyp19b gene. In this study, we first generated antibodies to zebrafish AroB and used them to map AroB-positive structures in the brain of adult zebrafish. We show that AroB is exclusively expressed in radial glial cells, mainly in the olfactory bulbs, telencephalon, preoptic area, and hypothalamus. Second, we investigated in vivo and in vitro the mechanisms involved in the estradiol (E2) regulation of the cyp19b gene. By means of whole-mount hybridization and immunohistochemistry on zebrafish embryos and larvae, we confirmed the E2-dependent upregulation of the cyp19b gene, and we show that E2 triggers AroB expression in radial glial cells mainly in the preoptic area and mediobasal hypothalamus of 48 hpf (hours post fertilization) and 108 hpf larvae. In addition, an in vitro analysis of 0.5 kb of the promoter region of the cyp19b gene demonstrated that this E2-dependent regulation involves a direct transcriptional action of estrogen receptors requiring estrogen-responsive elements. However, the data obtained on different cell lines demonstrate that a glial cell context is necessary for full E2 induction. The correlation between our in vivo and in vitro data suggests that the E2-dependent upregulation of AroB is favored by a glial cell context.
Collapse
Affiliation(s)
- Arnaud Menuet
- Endocrinologie Moléculaire de la Reproduction, Unité Mixte de Recherche 6026 Centre National de la Recherche Scientifique, Université de Rennes 1, 35042 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
123
|
Anderson LI, Leipheimer RE, Dluzen DE. Effects of neonatal and prepubertal hormonal manipulations upon estrogen neuroprotection of the nigrostriatal dopaminergic system within female and male mice. Neuroscience 2005; 130:369-82. [PMID: 15664693 DOI: 10.1016/j.neuroscience.2004.09.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
Estrogen (E) can function as a neuroprotectant of the nigrostriatal dopaminergic (NSDA) system against methamphetamine (MA) neurotoxicity in female, but not male, mice. In the present report we examined whether the organizational effects of gonadal steroid hormones, as exerted in the early postnatal period, or developmental effects, as exerted during the pubertal period, would contribute to this sexually dimorphic neuroprotectant action of E. Neonatal gonadectomy and treatment with testosterone of female mice, retained the ability to show an E neuroprotectant response when tested as adults. However, females not treated with gonadal steroids failed to show an E-dependent neuroprotectant response. Neonatal gonadectomy of male mice, failed to result in the display of an E neuroprotectant response when tested as adults. Prepubertal gonadectomy of female mice, with or without testosterone treatment, abolished the capacity for E to produce neuroprotection against MA-induced NSDA neurotoxicity. Nor did prepubertal gonadectomy enable male mice to show an E neuroprotectant response. Taken together these results demonstrate that none of the manipulations performed within male mice enabled them to show an E-dependent neuroprotective response against MA-induced neurotoxicity of the NSDA system when tested as adults. For the female, it appears that the presences of gonadal steroids at these two developmental periods are needed for the display of an E-dependent neuroprotectant response within the adult.
Collapse
Affiliation(s)
- L I Anderson
- Department of Anatomy, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, PO Box 95, Rootstown, OH 44272-0095, USA
| | | | | |
Collapse
|
124
|
Sipski ML, Jackson AB, Gómez-Marín O, Estores I, Stein A. Effects of gender on neurologic and functional recovery after spinal cord injury. Arch Phys Med Rehabil 2004; 85:1826-36. [PMID: 15520978 DOI: 10.1016/j.apmr.2004.04.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To assess gender differences in neurologic and functional outcome measures in persons with spinal cord injury (SCI). DESIGN Case series. SETTINGS Model Spinal Cord Injury Systems (MSCIS) throughout the United States. PARTICIPANTS People (N=14,433) admitted to an MSCIS within 30 days of injury. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Improvement in American Spinal Injury Association (ASIA) motor index score, ASIA Impairment Scale, level of injury, and FIM instrument scores after SCI. RESULTS When examining subjects grouped by severity of injury, changes in ASIA motor index total scores, from system admission to 1-year anniversary, were significantly greater for women than men with either complete ( P =.035) or incomplete ( P =.031) injuries. Functional comparison of men and women, using the FIM motor subscale, revealed that men had higher FIM motor scores at rehabilitation discharge among those with motor-complete injuries, except for those with C1-4 and C6 neurologic levels. Women with motor-incomplete high tetraplegia (C1-4 levels) had higher discharge FIM motor scores than did similarly afflicted men. There were no significant differences in FIM motor scores among men and women with other levels of motor incomplete SCI. CONCLUSIONS Gender differences in SCI were seen in several areas. Women may have more natural neurologic recovery than men; however, for a given level and degree of neurologic injury, men tend to do better functionally than women at time of discharge from rehabilitation. Future prospective study of the effects of estrogen on neurologic recovery and the effects of gender on functional potential are recommended.
Collapse
Affiliation(s)
- Marca L Sipski
- Center for Excellence in Functional Recovery in Chronic SCI, Veterans Administration Rehabilitation Research and Development, Miami, FL, USA.
| | | | | | | | | |
Collapse
|
125
|
Hunt R, Davis PG, Inder T. Replacement of estrogens and progestins to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2004; 2004:CD003848. [PMID: 15495067 PMCID: PMC8739665 DOI: 10.1002/14651858.cd003848.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND A potential therapeutic effect of sex steroids on premature infants has been proposed from animal data and observational studies in humans. Purported benefits include reduction in chronic lung disease, improved bone density and improved neurodevelopmental outcome. OBJECTIVES To determine if estrogens or progestins, either alone or in combination, when compared to placebo or no treatment, reduce morbidity and/or mortality in preterm infants. SEARCH STRATEGY The standard search strategy of the Cochrane Neonatal Review Group as outlined in the Cochrane Library (Issue 2, 2004) was used. This included searches of the Oxford Database of Perinatal Trials, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 2, 2004), MEDLINE 1966 to July 2004 inclusive, previous reviews including cross references, abstracts, conferences and symposia proceedings (Perinatal Society of Australia and New Zealand 1998-2004 and Pediatric Academic Societies meetings 1998-2004). SELECTION CRITERIA Randomised controlled trials comparing the use of estrogens and/or progestins with placebo or no treatment in preterm infants born less than 30 weeks gestation were included in this review. The primary outcome measures were neonatal mortality and medium-term neurodevelopmental outcome. Other outcomes included length of hospital stay, incidence of chronic lung disease, osteopaenia causing fractures and adverse effects of sex steroid administration. DATA COLLECTION AND ANALYSIS Two reviewers independently selected, assessed the quality of and extracted data from the included studies. Meta-analyses were performed using relative risk and risk difference for dichotomous data, and weighted mean difference for continuous data with 95% confidence intervals. MAIN RESULTS Two randomised controlled trials were identified by the search strategy and one was included in this review, comprising 30 preterm infants. There was no significant effect of replacement of estradiol and progesterone on the outcomes of mortality or neurodevelopmental disability in survivors followed. No adverse effects of sex steroid replacement on short or longer term outcomes were detected. REVIEWERS' CONCLUSIONS The one small randomised controlled trial demonstrated neither evidence of benefit or harm related to the replacement of estradiol and progesterone in preterm infants less than 30 weeks gestation. A properly powered randomised controlled trial is required to determine whether or not administration of estradiol or progesterone, either alone or in combination, and at varying doses, confers any clinically significant benefits, or poses any risk, to the preterm infant.
Collapse
Affiliation(s)
- R Hunt
- Department of Neonatal Medicine, Royal Children's Hospitals, Melbourne, Level 2, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Victoria, Australia, 3052.
| | | | | |
Collapse
|
126
|
Dluzen DE, McDermott JL. Developmental and Genetic Influences upon Gender Differences in Methamphetamine-Induced Nigrostriatal Dopaminergic Neurotoxicity. Ann N Y Acad Sci 2004; 1025:205-20. [PMID: 15542719 DOI: 10.1196/annals.1316.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The gonadal steroid hormone estrogen (E) may play an important role in sex differences in methamphetamine (MA)-induced neurotoxicity of the nigrostriatal dopaminergic (NSDA) system because E can serve as a neuroprotectant in female, but not male, mice. Gonadal steroid hormones also exert important organizational/developmental effects upon the brain at critical developmental periods. In Part 1 we assessed whether organizational (neonatal) or developmental (prepubertal) effects of gonadal steroids would alter gender/E-dependent neuroprotection of MA-induced NSDA neurotoxicity. Attempts to feminize male mice by gonadectomy at either the neonatal or prepubertal period failed to enable E to function as a neuroprotectant within the adult male mouse. Attempts to masculinize the female by testosterone administration at the neonatal period did not abolish the capacity for E to function as a neuroprotectant. However, prepubertal gonadectomy of female mice did disrupt E's capacity to serve as a neuroprotectant. These results suggest that genetic sex may prove the primary determinant for the sex differences observed in response to MA-induced NSDA neurotoxicity. In Part 2 we examined whether gender differences in response to MA-induced NSDA neurotoxicity would interact with a specific genetic alteration in a neurotrophic factor, brain-derived neurotrophic factor (BDNF). Female and male mice that were either deficient (+/- BDNF) or overexpressing (DBH:BDNF+) BDNF were treated with MA. Sex differences in MA-induced NSDA neurotoxicity remained present in +/- BDNF mice and were less severe as compared with their wild-type controls. A similar result was obtained in mice that overexpress BDNF, with female and mutant mice showing less NSDA neurotoxicity. In both BDNF-deficient mice and mice that overexpress BDNF, the relative degree of MA-induced NSDA neurotoxicity was lower in males. Taken together, these results suggest that a selective alteration in BDNF expression offers some neuroprotective potential against MA-induced NSDA neurotoxicity, and the relative degree of this neuroprotection may interact with the gender of the subject.
Collapse
Affiliation(s)
- Dean E Dluzen
- Department of Anatomy, Northeastern Ohio Universities College of Medicine (NEOUCOM), Rootstown, Ohio 44272-0095, USA.
| | | |
Collapse
|
127
|
Patchev AV, Götz F, Rohde W. Differential role of estrogen receptor isoforms in sex-specific brain organization. FASEB J 2004; 18:1568-70. [PMID: 15289439 DOI: 10.1096/fj.04-1959fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transient activation of estrogen receptors (ER) in the developing brain during a limited perinatal "window of time" is recognized as a key mechanism of defeminization of neural control of reproductive function and sexual behavior. Two major ER isoforms, alpha and beta, are present in neural circuits that govern ovarian cycle and sexual behavior. Using highly selective ER agonists, this study provides the first evidence for distinct contribution of individual ER isoforms to the process of estrogen dependent defeminization. Neonatal activation of the ERalpha in female rats resulted in abrogation of cyclic ovarian activity and female sexual behavior in adulthood. These effects are associated with male-like alterations in the morphology of the anteroventral periventricular (AVPV) and sexually dimorphic nucleus of the preoptic area (SDN-POA), as well as refractoriness to estrogen-mediated induction of sexual receptivity. Exposure to an ERbeta-selective agonist induced persistent estrus and had a strong defeminizing effect on the hypothalamic gonadotropin "surge generator" AVPV. However, neonatal ERbeta activation failed to alter female sexual behavior, responsiveness to estrogens and morphometric features of the behaviorally relevant SDN-POA. Thus, although co-present in several brain regions involved in the control of female reproductive function, ER isoforms convey different, and probably not synergistic, chemical signals in the course of neonatal sex-specific brain organization.
Collapse
Affiliation(s)
- Alexandre V Patchev
- Institute of Experimental Endocrinology, School of Medicine Charité, Schumannstr. 20/21, 10117 Berlin, Germany.
| | | | | |
Collapse
|
128
|
Connell S, Karikari C, Hohmann CF. Sex-specific development of cortical monoamine levels in mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 151:187-91. [PMID: 15246704 DOI: 10.1016/j.devbrainres.2004.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2004] [Indexed: 11/23/2022]
Abstract
Several mental health disorders exhibit sex differences in monoamine levels associated with dimorphic cortical ontogeny. Studies in rodents support the notion that monoamines can profoundly modulate morphogenesis. Here, we show significant sex and hemisphere differences in BALB/cByJ mice on postnatal day 3 for dopamine (DA) and serotonin (5-TH), supporting the notion that sex differences in early monoaminergic ontogeny may result in dimorphic cortical development. Such sex differences may also influence differential behavioral and/or clinical outcomes.
Collapse
Affiliation(s)
- Shelley Connell
- Doctoral Studies Program in Math and Science Education, Morgan State University, 1700 E. Cold Spring Ln., Baltimore, MD 21251, USA
| | | | | |
Collapse
|
129
|
Zhang Z, Cerghet M, Mullins C, Williamson M, Bessert D, Skoff R. Comparison of in vivo and in vitro subcellular localization of estrogen receptors alpha and beta in oligodendrocytes. J Neurochem 2004; 89:674-84. [PMID: 15086524 DOI: 10.1111/j.1471-4159.2004.02388.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The existence of estrogen receptors (ERs) in oligodendrocytes (OLGs) in vivo and in vitro is unresolved, as their presence has been reported in some studies and their absence in others. Using molecular and immunocytochemical techniques, we describe the subcellular localization of ERalpha and ERbeta in OLGs in vivo and in vitro. Both ERalpha and ERbeta are detected in an immortalized OLG cell line and in enriched OLG cultures by RT-PCR and western blot. Immunocytochemistry of OLGs from enriched cultures shows ERalpha receptors are nuclear, whereas ERbeta receptors are cytoplasmic. Confocal and deconvolution microscopy of enriched OLG cultures reveals ERbeta immunoreactivity is concentrated in perikarya and veins of OLG membrane sheets; lesser reactivity is present in their plasma membranes and nuclei. In vivo, we readily detect ERalpha in neurons but not in OLGs, even though we used different fixation procedures and different ERalpha antibodies. The presence of ERalpha in cultured OLGs may be due to culture media that contains factors stimulating ERalpha expression but are reduced in normal brain. In vivo, ERbeta immunoreactivity is readily detectable in OLG cytoplasm and in myelin sheaths. Incubation of glial cultures without or with increasing concentrations of 17beta-estradiol (E2) shows that E2 significantly accelerates OLG process formation.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
130
|
Guzeloglu Kayisli O, Kayisli UA, Luleci G, Arici A. In vivo and in vitro regulation of Akt activation in human endometrial cells is estrogen dependent. Biol Reprod 2004; 71:714-21. [PMID: 15115729 DOI: 10.1095/biolreprod.104.027235] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Estrogen-bound estrogen receptors (ER) alpha and beta classically activate gene expression after binding to the estrogen response element in the promoter regions of target genes. Estrogen also has rapid, nongenomic effects. It activates several membranous or cytoplasmic kinase cascades, including the phosphatidylinositol 3-phosphate (PI3K/Akt) cascade, a signaling pathway that plays a key role in cell survival and apoptosis. Normal human endometrium is exposed to variable levels of steroid hormones throughout the menstrual cycle. We hypothesized that Akt phosphorylation in human endometrium may vary with the menstrual cycle and in early pregnancy and that fluctuations in estrogen level may play a role in Akt activation in endometrial cells. We analyzed Akt phosphorylation using in vivo and in vitro techniques, including Western blot, immunohistochemistry, and immunocytochemistry. Estradiol significantly increased Akt phosphorylation in endometrial cells. Rapid stimulation of Akt activation in cultured stromal cells was observed. Akt phosphorylation by estradiol was inhibited by the PI3K inhibitor, wortmannin, but not by the ER antagonist, ICI 182 780. The maximal effect on Akt activity was observed following 5-15 min of estradiol treatment. Our results suggest that estradiol may directly affect PI3K-related signaling pathway by increasing the phosphorylation of Akt in endometrial cells. Thus, estradiol may exert part of its proliferative and antiapoptotic effects by a nongenomic manner through the Akt signaling pathway.
Collapse
Affiliation(s)
- Ozlem Guzeloglu Kayisli
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA
| | | | | | | |
Collapse
|
131
|
Beyer C, Küppers E, Karolczak M, Trotter A. Ontogenetic expression of estrogen and progesterone receptors in the mouse lung. Neonatology 2004; 84:59-63. [PMID: 12890938 DOI: 10.1159/000071445] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the mammalian lung, estrogen and progesterone seem to be import for the morphological and functional maturation. Despite this, only sparse information is available on the onset and ontogenic expression of estrogen receptors (ER) and progesterone receptors (PR) in the perinatal lung. The expression patterns of the two known nuclear isoforms ER-alpha and ER-beta and the PR were analyzed in the pre- and postnatal lungs of BALB/c mice. Steroid receptor mRNA expression of all three receptors were highest in the prenatal lung and declined thereafter to significantly lower levels in the postnatal and adult lung. The ontogenetic pattern of ER and PR expression supports the view that both gonadal steroids are pivotal for prenatal lung maturation and development.
Collapse
Affiliation(s)
- Cordian Beyer
- Department of Anatomy and Cell Biology, University of Ulm, Germany
| | | | | | | |
Collapse
|
132
|
Tanaka M, Ohtani-Kaneko R, Yokosuka M, Watanabe C. Low-dose perinatal diethylstilbestrol exposure affected behaviors and hypothalamic estrogen receptor-α-positive cells in the mouse. Neurotoxicol Teratol 2004; 26:261-9. [PMID: 15019959 DOI: 10.1016/j.ntt.2003.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2003] [Revised: 11/19/2003] [Accepted: 11/24/2003] [Indexed: 11/18/2022]
Abstract
To estimate the potential risk of perinatal exposure to estrogenic endocrine disrupters, pregnant female mice received daily oral administration of diethylstilbestrol (DES; either 0.3 or 3 microg/kg body weight) dissolved in corn oil from gestation days 11 to 17 and from postnatal days 2 to 6. Multiple behaviors that are sexually dimorphic were examined, and the numbers of estrogen receptor-alpha and tyrosine hydroxylase-immunoreactive (ER-IR and TH-IR) cells in some brain loci related to these behaviors were investigated. Perinatal exposure to DES caused significantly enhanced open-field activity in both males and females and significantly poorer passive avoidance performance in males. In addition, a significant increase in the number of ER-IR cells in the ventromedial hypothalamic nucleus (VMH) was demonstrated for the first time. The DES-induced increases in the sexual and aggressive behaviors, although statistically nonsignificant, and the increase in the number of ER-IR cells did not agree with those obtained in previous studies using high-dose DES, which suggests that DES may have a different effect on these endpoints depending on the dose used. The relationship between the increase in ER-IR cells and behavioral changes should be further examined.
Collapse
Affiliation(s)
- Mika Tanaka
- Department of Human Ecology, School of International Health, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | | | | | | |
Collapse
|
133
|
Kilicdag EB, Yavuz H, Bagis T, Tarim E, Erkan AN, Kazanci F. Effects of estrogen therapy on hearing in postmenopausal women. Am J Obstet Gynecol 2004; 190:77-82. [PMID: 14749639 DOI: 10.1016/j.ajog.2003.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This study was undertaken to investigate how hormone therapy affects hearing in postmenopausal women. STUDY DESIGN This prospective study involved 109 postmenopausal women. Twenty of the women were using estrogen therapy (ET group), 30 women were using hormone therapy (HT group), and 59 had not received hormone therapy of any kind (control group). Otoscopic examination revealed normal tympanic membranes in all 109 subjects. Each individual was tested with low- (250-2000 Hz) and high-frequency audiometry (4000-16000 Hz). Duration of hormone therapy was recorded, and patient characteristics (age, type of menopause, time since onset of menopause), body mass index (BMI), and hearing test results in the ET, HT, and control groups were compared. RESULTS There were no statistically significant differences between the treatment (ET and HT group) and control groups with respect to age, BMI, or time since onset of menopause. The mean time on HT and ET was 4.13+/-2.41 years and 3.35+/-2.20 years, respectively. The mean air conduction results at low frequencies (250, 500, 1000, and 2000 Hz) in the ET group were significantly higher than the corresponding findings in the control group (P<.001) and than the HT group (P<.001). When the same comparisons were made between the HT group and the control group, none of the differences was statistically significant (P>.05). The mean air-conduction results at high frequencies (4, 6, 8, 10, 12, 14, and 16 kHz) in the ET group were significantly higher than the corresponding results in the HT group (P<.008). ET versus controls and HT versus controls at high frequencies revealed no significant differences (P>.05). The mean bone conduction results in the ET group were significantly higher than the corresponding findings in the control group (P<.016). Analysis of the same comparisons between the HT-ET and HT-control groups revealed no significant differences (P>.05). CONCLUSION Estrogen therapy may slow down hearing loss in aging postmenopausal women; however, further studies of larger series are needed to confirm this, and the sites of hormonal action must also be explored.
Collapse
Affiliation(s)
- Esra Bulgan Kilicdag
- Department of Obstetrics and Gynecology, Baskent University Faculty of Medicine, Adana, Turkey
| | | | | | | | | | | |
Collapse
|
134
|
Beyer C, Pawlak J, Brito V, Karolczak M, Ivanova T, Kuppers E. Regulation of Gene Expression in the Developing Midbrain by Estrogen: Implication of Classical and Nonclassical Steroid Signaling. Ann N Y Acad Sci 2003; 1007:17-28. [PMID: 14993036 DOI: 10.1196/annals.1286.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Estrogen plays an important role during midbrain development. This is indicated by the presence of nuclear estrogen receptors and the transient expression of the estrogen-forming enzyme aromatase. A number of recent studies have shown that estrogen promotes the differentiation and survival, as well as physiological performance, of midbrain dopaminergic cells. In addition, we have reported that both ways of cellular estrogen signaling (classical and nonclassical) as well as interactions with nonneuronal target cells are involved in the transmission of intra- and intercellular estrogen effects in this brain region. This study provides additional evidence that (i) estrogen is capable of regulating gene expression in cultured embryonic neurons and astrocytes differently and (ii) both signaling mechanisms, i.e., classically through nuclear receptors and nonclassically through the stimulation of membrane-estrogen receptors, which are coupled to distinct intracellular signal transduction cascades, contribute diversely to gene regulation. These data reveal a high degree of complexity of estrogen action at the genomic level in the developing brain. Further studies are warranted to unravel the exact contribution of the differently regulated genes for developmental estrogen action.
Collapse
Affiliation(s)
- Cordian Beyer
- Abteilung Anatomie und Zellbiologie, Universität Ulm, D-89069 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
135
|
Audesirk T, Cabell L, Kern M, Audesirk G. β-estradiol influences differentiation of hippocampal neurons in vitro through an estrogen receptor-mediated process. Neuroscience 2003; 121:927-34. [PMID: 14580943 DOI: 10.1016/s0306-4522(03)00294-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We utilized morphometric analysis of 3 day cultures of hippocampal neurons to determine the effects of both estradiol and the synthetic estrogen receptor modulator raloxifene on several parameters of neuronal growth and differentiation. These measurements included survival, neurite production, dendrite number, and axon and dendrite length and branching. 17 beta-Estradiol (10 nM) selectively stimulated dendrite branching; this effect was neither mimicked by alpha-estradiol, nor blocked by the estrogen receptor antagonist ICI 182780. The selective estrogen receptor modulator raloxifene (100 nM) neither mimicked nor reversed the effects of estradiol on dendritic branching. Western immunoblotting for the alpha and beta subtypes of estrogen receptor revealed the presence of alpha, but not beta, estrogen receptors in our hippocampal cultures. There is growing recognition of the effects of 17 beta-estradiol on neuronal development and physiology, with implications for brain sexual dimorphism, plasticity, cognition, and the maintenance of cognitive function during aging. The role of estradiol in hippocampal neuronal differentiation and function has particular implications for learning and memory. These data support the hypothesis that 17 beta-estradiol is acting via alpha estrogen receptors in influencing hippocampal development in vitro. Raloxifene, prescribed to combat osteoporosis in post-menopausal women, is a selective estrogen receptor modulator with tissue-specific agonist/antagonist properties. Because raloxifene had no effect on dendritic branching, we hypothesize that it does not interact with the alpha estrogen receptor in this experimental paradigm.
Collapse
Affiliation(s)
- T Audesirk
- Biology Department, University of Colorado at Denver, PO Box 173364, Denver, CO 80217-3364, USA.
| | | | | | | |
Collapse
|
136
|
Ikeda Y, Nagai A, Ikeda MA, Hayashi S. Sexually dimorphic and estrogen-dependent expression of estrogen receptor beta in the ventromedial hypothalamus during rat postnatal development. Endocrinology 2003; 144:5098-104. [PMID: 12960049 DOI: 10.1210/en.2003-0267] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ventromedial hypothalamus (VMH) is a sexually dimorphic region of the brain related to female reproductive behavior. The effect of estrogen in the adult rat VMH is thought to be mediated predominantly via estrogen receptor (ER)alpha, because this receptor is expressed at considerably higher levels than ER beta. The present study revealed, using in situ hybridization and immunohistochemistry, that both ER beta mRNA and protein were expressed in the ventrolateral portion of the caudal VMH, at remarkably higher levels during early postnatal development than in adulthood. In addition, the expression was sexually dimorphic, with females having significantly more ER beta-immunoreactive (-ir) cells than males, between postnatal d 5 (P5) and P14, although the sex difference was not significant by P21. Double-label immunofluorescence revealed that 66% of ER beta-ir cells coexpressed ER alpha in the caudal VMH of the P5 female rat. Furthermore, neonatal treatment with E2 benzoate down-regulated ER beta mRNA in the female rat VMH at P5 and decreased VMH ER beta-ir cells during the period between P5 and P14. In contrast to females, no differences in expression of ER beta mRNA or protein were detected between control and E2 benzoate-treated males. These results suggest that estrogen is involved in regulating the sexually dimorphic expression of ER beta in the VMH during early postnatal development of the rat.
Collapse
Affiliation(s)
- Yayoi Ikeda
- Laboratory of Endocrinology, Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | | | | | | |
Collapse
|
137
|
Kruijver FPM, Balesar R, Espila AM, Unmehopa UA, Swaab DF. Estrogen-receptor-? distribution in the human hypothalamus: Similarities and differences with ER? distribution. J Comp Neurol 2003; 466:251-77. [PMID: 14528452 DOI: 10.1002/cne.10899] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study reports the first systematic rostrocaudal distribution of estrogen receptor beta immunoreactivity (ER beta-ir) in the human hypothalamus and adjacent areas in five males and five females between 20-39 years of age and compares its distribution to previously reported ER alpha in the same patients. ER beta-ir was generally observed more frequently in the cytoplasm than in the nucleus and appeared to be stronger in women. Basket-like fiber stainings, suggestive for ER beta-ir in synaptic terminals, were additionally observed in various areas. Men showed more robust nuclear ER beta-ir than women in the medial part of the bed nucleus of the stria terminalis, paraventricular and paratenial nucleus of the thalamus, while less intense, but more nuclear, ER beta-ir appeared to be present in, e.g., the BSTc, sexually dimorphic nucleus of the medial preoptic area, diagonal band of Broca and ventromedial nucleus. Women revealed more nuclear ER beta-ir than men of a low to intermediate level, e.g., in the suprachiasmatic, supraoptic, paraventricular, infundibular, and medial mamillary nucleus. These data indicate potential sex differences in ER beta expression. ER beta-ir expression patterns in subjects with abnormal hormone levels suggests that there may be sex differences in ER beta-ir that are "activational" rather than "organizational" in nature. Similarities, differences, potential functional, and clinical implications of the observed ER alpha and ER beta distributions are discussed in relation to reproduction, autonomic-function, mood, cognition, and neuroprotection in health and disease.
Collapse
Affiliation(s)
- Frank P M Kruijver
- Graduate School of Neurosciences, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
138
|
Abstract
Oestrogen is important for the development of neuroendocrine centres and other neural networks including limbic and motor systems. Later in adulthood, oestrogen regulates the functional performance of different neural systems and is presumably implicated in the modulation of cognitive efficiency. Although still a matter of controversial discussion, clinical and experimental studies point at a potential neuroprotective role of oestrogen. Concerning the concept of cellular oestrogen action, it is undisputed that it comprises the binding and activation of nuclear receptors. The last decades have, however, immensely broadened the spectrum of steroid signalling within a cell. Novel steroid-activated intracellular signalling mechanisms were described which are usually termed 'non-classical' or 'non-genomic'. The brain appears to be a rich source of this new mode of oestrogen action. Studies from the past years have pinpointed non-classical oestrogen effects in many CNS regions. All available data support the view that non-classical oestrogen action requires interactions with putative membrane binding sites/receptors. In this article, we aim at compiling the most recent findings on the nature and identity of membrane oestrogen receptors with respect to the brain. We also attempt to turn readers attention to the coupling of these 'novel' receptors to distinct intracellular signalling pathways.
Collapse
Affiliation(s)
- Cordian Beyer
- Abteilung Anatomie und Zellbiologie, Universität Ulm, Ulm, Germany.
| | | | | |
Collapse
|
139
|
Menuet A, Anglade I, Le Guevel R, Pellegrini E, Pakdel F, Kah O. Distribution of aromatase mRNA and protein in the brain and pituitary of female rainbow trout: Comparison with estrogen receptor alpha. J Comp Neurol 2003; 462:180-93. [PMID: 12794742 DOI: 10.1002/cne.10726] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent data indicate that estrogens locally produced in the brain by aromatization of androgens could be important for neurogenesis and brain repair. In this respect, fish are interesting because of the extremely high aromatase activity of their brain. In this study, the rainbow trout brain aromatase was cloned and riboprobes were used to map the distribution of cells expressing the corresponding mRNAs. A very strong hybridization signal was detected in the pituitary and in cells bordering the ventricles in the telencephalon and ventral diencephalon, with the highest expression in the preoptic area and hypothalamus. A weaker signal was detected in the ependymal layer bordering the torus semicircularis and optic tectum. This localization was fully confirmed by immunohistochemistry using antibodies against a teleost aromatase. In addition, this antibody showed that aromatase expression in fact corresponds to radial glial cells because immunoreactive cells had long cytoplasmic processes extending toward the pial surface. Because brain aromatase was shown to be upregulated by estradiol in fish, the distribution of aromatase mRNAs was compared with that of rainbow trout estrogen receptor alpha (rtERalpha) on adjacent sections. Although the highest aromatase expression was found in regions expressing rtERalpha, no obvious coexpression was found, as rtERalpha was never observed in radial cells. However, reverse transcriptase-polymerase chain reaction experiments performed on brain cell cultures enriched in glial cells suggest that a weak expression of rtERalpha in glial cells cannot be excluded. The possible role of the high brain aromatase content in fish could be related to the continuous growth of their central nervous system during adulthood.
Collapse
Affiliation(s)
- Arnaud Menuet
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | | | | | | | | |
Collapse
|
140
|
Murray HE, Pillai AV, McArthur SR, Razvi N, Datla KP, Dexter DT, Gillies GE. Dose- and sex-dependent effects of the neurotoxin 6-hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats: differential actions of estrogen in males and females. Neuroscience 2003; 116:213-22. [PMID: 12535954 DOI: 10.1016/s0306-4522(02)00578-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidemiological and clinical studies provide growing evidence for marked sex differences in the incidence of certain neurological disorders that are largely attributed to the neuroprotective effects of estrogen. Thus there is a keen interest in the clinical potential of estrogen-related compounds to act as novel therapeutic agents in conditions of neuronal injury and neurodegeneration such as Parkinson's disease. Studies employing animal models of neurodegeneration in ovariectomised female rats treated with estrogen support this hypothesis, yet experimental evidence for sex differences in the CNS response to direct neurotoxic insult is limited and, as yet, few studies have addressed the role played by endogenously produced hormones in neuroprotection. Therefore, in this study we aimed to determine (1) whether the prevailing levels of sex steroid hormones in the intact rat provide a degree of protection against neuronal assault in females compared with males and (2) whether sex differences depend solely on male/female differences in circulating estrogen levels or whether androgens could also play a role. Using the selective, centrally administered neurotoxin 6-hydroxydopamine, which induces a lesion in the nigrostriatal dopaminergic pathway similar to that seen in Parkinson's disease, we have demonstrated a sexually dimorphic (male-dominant), dose-dependent susceptibility in rats. Furthermore, following gonadectomy, dopamine depletion resulting from a submaximal dose of 6-hydroxydopamine (1 microg) was reduced in male rats, whereas in females, ovariectomy enhanced dopamine depletion. Administration of the nonaromatizable androgen dihydrotestosterone to gonadectomized animals had no significant effect on 6-hydroxydopamine toxicity in either males or females, whereas treatment of gonadectomized males and females with physiological levels of estrogen restored the extent of striatal dopamine loss to that seen in intact rats, viz, estrogen therapy reduced lesion size in females but increased it in males. Taken together, our findings strongly suggest that there are sex differences in the mechanisms whereby nigrostriatal dopaminergic neurones respond to injury. They also reveal that the reported clinically beneficial effects of estrogen in females may not be universally adopted for males. While the reasons for this gender-determined difference in response to the activational action of estrogen are unknown, we hypothesize that they may well be related to the early organizational events mediated by sex steroid hormones, which ultimately result in the sexual differentiation of the brain.
Collapse
Affiliation(s)
- H E Murray
- Department of Neuroendocrinology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | | | | | | | | | | | |
Collapse
|
141
|
Audesirk T, Cabell L, Kern M, Audesirk G. Enhancement of dendritic branching in cultured hippocampal neurons by 17beta-estradiol is mediated by nitric oxide. Int J Dev Neurosci 2003; 21:225-33. [PMID: 12781790 DOI: 10.1016/s0736-5748(03)00032-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Both 17beta-estradiol (E2) and nitric oxide (NO) are important in neuronal development, learning and memory, and age-related memory changes. There is growing evidence that a number of estrogen receptor-mediated effects of estradiol utilize nitric oxide as an intermediary. The role of estradiol in hippocampal neuronal differentiation and function has particular implications for learning and memory. Low levels of estradiol (10nM) significantly increase dendritic branching in cultured embryonic rat hippocampal neurons (158% of control). This study investigates the hypothesis that the estrogen-stimulated increase in dendritic branching is mediated by nitric oxide. We found that nitric oxide donors also produce significantly increased dendritic branching S-nitroso-N-acetylpenicillamine (SNAP: 119%; 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC-18): 128% of control). We then determined that the increases in dendritic branching stimulated by estradiol or by a nitric oxide donor were both blocked by an inhibitor of guanylyl cyclase. Dendritic branching was also stimulated by a cell permeable analog of cyclic guanosine monophosphate (dibutyryl-cGMP: 173% of control). Estradiol-stimulated dendritic branching was reversed by the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (carboxy-PTIO). This study provides evidence that estradiol influences the development of embryonic hippocampal neurons in culture by increasing the production of nitric oxide or by increasing the sensitivity of the neurons to nitric oxide. Nitric oxide in turn stimulates dendritic branching via activation of guanylyl cyclase.
Collapse
Affiliation(s)
- T Audesirk
- Biology Department, University of Colorado at Denver, P.O. Box 173364, Denver 80217-3364, USA.
| | | | | | | |
Collapse
|
142
|
Kajta M, Beyer C. Cellular strategies of estrogen-mediated neuroprotection during brain development. Endocrine 2003; 21:3-9. [PMID: 12777697 DOI: 10.1385/endo:21:1:3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 01/27/2003] [Accepted: 02/06/2003] [Indexed: 11/11/2022]
Abstract
The role of estrogen during brain development is well documented. Estrogen influences cell survival and differentiation and also controls the formation and maintenance of neural networks. Knowledge of trophic estrogen action in the central nervous system (CNS) was the basis for the establishment of research programs directed toward a potential function of estrogen as a neuroprotective factor in the adult brain. Considerable evidence has accumulated over the years supporting this hypothesis. Experimental and epidemiologic studies as well as clinical trials have demonstrated that estrogen is beneficial for the course of neurodegenerative disorders such as Parkinson and Alzheimer diseases but may also protect neurons from postischemic neuronal degeneration. In this article, we aim to unravel potential physiologic responses and cell survival strategies that allow a more detailed understanding of estrogen-mediated neuroprotection in the brain. In particular, we focus on the participation of estrogen in the regulation of apoptotic processes. Furthermore, we present data on reciprocal estrogen-growth factor interactions. Both of these mechanisms were found to operate during brain development and to conciliate estrogen effects on neurons. This makes them likely candidates for taking part in conveying estrogen-dependent neuroprotection in the adult CNS.
Collapse
Affiliation(s)
- Malgorzata Kajta
- Department of Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | |
Collapse
|
143
|
Prange-Kiel J, Wehrenberg U, Jarry H, Rune GM. Para/autocrine regulation of estrogen receptors in hippocampal neurons. Hippocampus 2003; 13:226-34. [PMID: 12699330 DOI: 10.1002/hipo.10075] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have shown that estrogens, originating from ovaries, have a wide variety of estrogen receptor (ER)-mediated effects in the hippocampus. In the present study, we have investigated whether estrogens, which are synthesized in the hippocampus, could induce these effects as well. As a parameter, we used ER expression in response to estrogen synthesis, because estrogen receptors are ligand-inducible transcription factors. The experiments were carried out with cultures of isolated adult rat hippocampal cells, which contained about 95% neurons and about 5% oligodendrocytes in serum-free and steroid-free medium. Hippocampal neurons express both estrogen receptor isoforms (ERalpha and ERbeta), as shown by reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization. The release of estrogens by hippocampal neurons was quantified by radioimmunoassay (RIA). The ER isoforms (alpha and beta) were studied by semiquantitative immunocytochemical image analysis. Hippocampal cells precultured for 4 days were found to synthesize 17beta-estradiol for the next 8 days. This synthesis was completely inhibited by letrozol, an aromatase inhibitor. Inhibition of estrogen synthesis by letrozol induced a significant decrease in ERalpha expression, but an increase in ERbeta. As a control, supplementation of the medium with 17beta-estradiol resulted in a significant increase of ERalpha expression, whereas ERbeta was downregulated. Our findings provide evidence for a de novo synthesis of estrogens in the hippocampus, differential regulation of estrogen receptor isoforms by estrogen and consequently for a para/autocrine loop of estrogen action in the hippocampus.
Collapse
|
144
|
Aste N, Honda S, Harada N. Forebrain Fos responses to reproductively related chemosensory cues in aromatase knockout mice. Brain Res Bull 2003; 60:191-200. [PMID: 12754080 DOI: 10.1016/s0361-9230(03)00035-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sexually relevant pheromonal cues are detected by the vomeronasal system which includes the posterodorsal part of the medial amygdala, the posteromedial part of the bed nucleus of the stria terminalis and the medial preoptic area. Copulatory behavior is impaired in mice lacking functional aromatase, the enzyme converting testosterone into estradiol. In this study, we used male aromatase knockout (ArKO) mice to investigate the role of aromatase in the differentiation and activation of preference for male- or female-related odorants. Moreover, using Fos immunoreactivity as a marker of neuronal activation we investigated the ability of sex-related pheromonal cues to activate the vomeronasal system. Both gonadally intact wild-type and ArKO mice preferred to investigate urine from females. The lack of estrogens did not reverse odor preferences, i.e. male ArKO mice did not show a preference for male odors. Exposure to soiled bedding from females induced Fos-protein in the posterodorsal part of the medial amygdala, in the posteromedial part of the bed nucleus of the stria terminalis, and in the periventricular part of the medial preoptic area of both the genotypes. Exposure to soiled bedding from intact males induced Fos in the posterodorsal part of the medial amygdala in wild-type mice and in the periventricular medial preoptic area in wild-type and ArKO mice. These results suggest that preference for female-related odors and the Fos-mediated activation of the vomeronasal system do not rely on estradiol. Furthermore, sensitivity to female chemosensory cues and copulatory behavior are uncoupled in this knockout model.
Collapse
Affiliation(s)
- N Aste
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | | | | |
Collapse
|
145
|
Mendez P, Azcoitia I, Garcia-Segura LM. Estrogen receptor alpha forms estrogen-dependent multimolecular complexes with insulin-like growth factor receptor and phosphatidylinositol 3-kinase in the adult rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:170-6. [PMID: 12670715 DOI: 10.1016/s0169-328x(03)00088-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Estradiol and insulin-like growth factor-I (IGF-I) have numerous functional interactions in the brain, including the regulation of neuroendocrine events, the control of reproductive behavior and the promotion of synaptic plasticity and neuronal survival. To explore the mechanisms involved in these interdependent actions of estradiol and IGF-I in the adult brain, the potential interactions of estrogen receptors with components of the IGF-I signaling system were assessed in this study. Systemic estradiol administration resulted in a transient immunocoprecipitation of the IGF-I receptor with the estrogen receptor alpha and in a transient increase in tyrosine phosphorylation of the IGF-I receptor in the hypothalamus of adult ovariectomized Wistar rats. Both effects were coincident in time, with a peak between 1 and 3 h after systemic estradiol administration. Three hours after estradiol treatment, there was an enhanced immunocoprecipitation of estrogen receptor alpha with p85 subunit of phosphatidylinositol 3-kinase, as well as an enhanced immunocoprecipitation of p85 with insulin receptor substrate-1. The interaction with the IGF-I receptor was specific for the alpha form of the estrogen receptor and was also induced by intracerebroventricular injection of IGF-I. These hormonal actions may be part of the mechanism by which estradiol activates IGF-I receptor signaling pathways in the brain and may explain the interdependence of estrogen receptors and the IGF-I receptor in synaptic plasticity, neuroprotection and other neural events.
Collapse
Affiliation(s)
- Pablo Mendez
- Instituto Cajal, C.S.I.C., Av. Dr. Arce 37, 28002, Madrid, Spain
| | | | | |
Collapse
|
146
|
Rao ML, Kölsch H. Effects of estrogen on brain development and neuroprotection--implications for negative symptoms in schizophrenia. Psychoneuroendocrinology 2003; 28 Suppl 2:83-96. [PMID: 12650683 DOI: 10.1016/s0306-4530(02)00126-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence during the last few years suggests that there are gender-specific differences in schizophrenia, influencing the age of onset, treatment outcome and the prevalence of negative symptoms. With respect to the latter in postmortem brain and cerebrospinal fluid of schizophrenic patients with negative symptoms a reduction of dopaminergic activity became evident. Measures of noradrenergic activity, dopamine beta-hydroxylase and the metabolite MHPG, appear to decrease with brain atrophy seen in patients with negative symptoms. Serotonergic activity tends to be low in patients with impaired cognitive function as is seen in negative schizophrenia. In these patients ventricular enlargement is associated with the severity of negative symptoms, low monoamine activity and low cerebral glucose metabolism. On the other hand atypical antipsychotic drugs that modulate also glutamate receptor activity, suggest an additional alternative mechanism of antipsychotic action beyond aminergic neurotransmitters. These drugs improve glutamatergic transmission and decrease negative symptoms; this suggests a glutamatergic deficiency as an extension of the dopamine model. The glutamate-dopamine interaction illustrates the importance of cross-talk between projections to the cortex, striatum, and lower brainstem for the expression of negative symptomatology. On the other hand, estradiol-17beta the most potent female sex hormone influences not only primary and secondary sexual characteristics but also embryonal and fetal growth as well as development of the brain aminergic networks, which are involved in schizophrenia. Estradiol-l7beta possesses neuroprotective properties, which are relevant for the course of schizophrenia and this may explain the pronounced gender differences with respect to progression and therapeutic response of schizophrenia. The present review attempts an update and synthesis of the information about the hormonal influence on neuronal pathways in negative symptoms of schizophrenia. It shows that estradiol-l7beta influences transporters and receptors as well as the morphological appearance of neuronal systems and that it may be an integral part of the neuroprotective system ameliorating schizophrenia.
Collapse
Affiliation(s)
- M L Rao
- Department of Psychiatry and Psychotherapy, Medical Department of the University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany.
| | | |
Collapse
|
147
|
Golovine K, Schwerin M, Vanselow J. Three different promoters control expression of the aromatase cytochrome p450 gene (cyp19) in mouse gonads and brain. Biol Reprod 2003; 68:978-84. [PMID: 12604651 DOI: 10.1095/biolreprod.102.008037] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aromatase cytochrome P450, the key enzyme of estrogen biosynthesis, is encoded by Cyp19. To elucidate the complex regulation of this gene in mouse gonads (ovary and testis) and brain (thalamic/hypothalamic areas), Cyp19 transcripts were isolated using rapid amplification of cDNA 5' ends and transcript concentrations were estimated in juveniles at different postnatal days (P0, P7, and P14) and in adult animals by real time polymerase chain reaction (PCR). In addition, the murine Cyp19 locus including all known exons and promoters was reconstructed from a recently published sequence of a mouse bacterial artificial chromosome. From each of the tissues investigated, Cyp19 transcripts with a specific 5' untranslated region (5' UTR) were isolated: T(ov) from ovary, T(br) from brain, and T(tes) from testis. T(tes) included a novel 5' UTR that did not show sequence similarities to other Cyp19 transcripts. Real time PCR experiments revealed similar levels of Cyp19 transcript concentrations in neonatal gonads of both sexes. The majority of transcripts were T(ov) in ovaries and T(tes) in testes. During further postnatal development, testicular Cyp19 transcript concentrations transiently decreased, but the contributions of different transcript variants basically remained unchanged. However, ovarian Cyp19 transcript concentrations increased by about 100 times, and almost 100% of all Cyp19 transcripts were identified as T(ov) in adult ovaries. Brains of both sexes showed highest transcript concentrations at P0. However, concentrations in female brains were reduced to adult levels earlier than in male brains. In brains of both sexes, T(br) was found to predominate throughout postnatal life. The results suggest that the mouse Cyp19 gene includes three different promoters that specifically direct expression in ovary, testis, and brain.
Collapse
Affiliation(s)
- Konstantin Golovine
- Research Unit Molecular Biology, Research Institute for the Biology of Farm Animals, 18196 Dummerstorf, Germany
| | | | | |
Collapse
|
148
|
Ivanova T, Beyer C. Estrogen regulates tyrosine hydroxylase expression in the neonate mouse midbrain. JOURNAL OF NEUROBIOLOGY 2003; 54:638-47. [PMID: 12555275 DOI: 10.1002/neu.10193] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Estrogen plays an important role during differentiation of midbrain dopaminergic neurons. This is indicated by the presence of estrogen receptors and the transient expression of the estrogen-forming enzyme aromatase within the dopaminergic cell groups. We have previously shown that estrogen regulates the plasticity of dopamine cells through the stimulation of neurite growth/arborization. In this study, we have analyzed the capability of estrogen to influence the activity of developing mouse dopamine neurons. The expression of tyrosine hydroxylase (TH) was assessed by competitive RT-PCR and Western blotting. The developmental expression of TH in the ventral midbrain was studied from embryonic day 15 until postnatal day 15 and revealed highest TH levels early postnatally. This profile coincides with the transient aromatase expression in this brain area. Using cultured midbrain cells, we found that estrogen increased TH mRNA/protein levels. The application of the estrogen receptor antagonist ICI 182,780 resulted in a complete inhibition of estrogen effects. To verify these data in vivo, fetuses were exposed in utero from E15 until birth to the aromatase inhibitor CGS 16949A or to CGS supplemented with estrogen. CGS caused a robust reduction in TH mRNA/protein levels in the midbrain, which could be restored by estrogen substitution. Taken together, our data strongly suggest that estrogen controls dopamine synthesis in the developing nigrostriatal dopaminergic system and support the concept that estrogen is implicated in the regulation of ontogenetic steps but also in the function of midbrain dopamine neurons.
Collapse
Affiliation(s)
- Tatiana Ivanova
- Abteilung Anatomie und Zellbiologie, Universität Ulm, D-89069 Ulm, Germany
| | | |
Collapse
|
149
|
Han TM, De Vries GJ. Organizational effects of testosterone, estradiol, and dihydrotestosterone on vasopressin mRNA expression in the bed nucleus of the stria terminalis. JOURNAL OF NEUROBIOLOGY 2003; 54:502-10. [PMID: 12532400 DOI: 10.1002/neu.10157] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone-filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system.
Collapse
Affiliation(s)
- Tina M Han
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
150
|
Roselli CE, Resko JA, Stormshak F. Estrogen synthesis in fetal sheep brain: effect of maternal treatment with an aromatase inhibitor. Biol Reprod 2003; 68:370-4. [PMID: 12533398 DOI: 10.1095/biolreprod.102.007633] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The aim of the present study was to determine whether the fetal lamb brain has the capacity to aromatize androgens to estrogens during the critical period for sexual differentiation. We also determined whether administration of the aromatase-inhibitor 1,4,6-androstatriene-3,17-dione (ATD) could cross the placenta and inhibit aromatase activity (AA) in fetal brain. Eight pregnant ewes were utilized. On Day 50 of pregnancy, four ewes were given ATD-filled Silastic implants, and the other four ewes received sham surgeries. The fetuses were surgically delivered 2 wk later (Day 64 of gestation). High levels of AA (0.8-1.4 pmol/h/mg protein) were present in the hypothalamus and amygdala. Lower levels (0.02-0.1 pmol/h/mg protein) were measured in brain stem regions, cortex, and olfactory bulbs. The Michaelis-Menten dissociation constant (K(m)) for aromatase in the fetal sheep brain was 3-4 nM. No significant sex differences in AA were observed in brain. Treatment with ATD produced significant inhibition of AA in most brain areas but did not significantly alter serum profiles of the major sex steroids in maternal and fetal serum. Concentrations of testosterone in serum from the umbilical artery and vein were significantly greater in male than in female fetuses. No other sex differences in serum steroids were observed. These data demonstrate that high levels of AA are found in the fetal sheep hypothalamus and amygdala during the critical period for sexual differentiation. They also demonstrate that AA can be inhibited in the fetal lamb brain by treating the mother with ATD, without harming fetal development.
Collapse
Affiliation(s)
- Charles E Roselli
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97201-3098, USA.
| | | | | |
Collapse
|